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1. Application Framework 

development and to manage various physical simulators.  The proposed framework 
provides an efficient way to construct applications using the inheritance mechanism of 
object-oriented technology (OOT).  In addition, the inheritance plays an important role 
to build applications with a unified behavior.  It is expected that the framework brings 
efficiency for software development and makes easy to operate the developed 
applications.  The framework also delivers high-level conceptual parallel programming 
environment based on the parallelism of domain decomposition. 

1.1. Outline of Framework Library 
A proposed system is an object-oriented framework named SPHERE (Skeleton for 
PHysical and Engineering REsearch), which is designed to apply building unsteady 
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physical simulators.  SPHERE would provide various benefits both developers and end-
users as described by following sub-sections. 

1.1.1. Basic features of SPHERE 
This framework supplies both a control structure and basic functions that are essential 
for time evolutional physical simulations.  Since a simulation code can be conceptually 
divided into three parts like, pre-process, main-process, and post-process, programmers 
can describe their applications using a common structure.  Thus, the mechanism that has 
the skeleton of the control structure should be established and be utilized as a solver 
base class depicted in Fig. 1.  

Fig. 1.  Control structure of a solver class and provided libraries on a proposed framework.  
SPHERE framework supplies a skeleton for unsteady physical simulators that require time 
evolution as well as steady simulation. 

 A programmer makes a target application class inheriting from the base class and 
constructs the application by implementing user’s code on the derived class.  Although 
the framework is written by the manner of OOT, a procedural programming style is 
taken over because many scientific applications are described by C/Fortran.  The class 
abstraction that corresponds to the conventional procedural process enables us to port 
existing software resources to the program on the framework easily.  The maximum unit 
of a class can be assumed by the program unit working as a solver, and defines as a 
solver class.  In addition, SPHERE provides convenient functions as libraries to 
construct solvers.  These functions are consisting of common functions, such as data 
management, parsing of various parameters described by XML language, file I/O, and 
so on. 

1.1.2. Realization of a unified user interface using a user-defined base class 
Making and utilizing the base class that has more concrete and lump functions, the 
programmer can develop solver classes that have a unified user interface and a behavior.  
Both the abstraction of common functions and the versatility of the implemented 
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methods are required for the user-defined base class to realize this idea.  To do so, the 
mechanism of class inheritance in OOT plays an important role. 

1.1.3. Application management and execution environment 
Programmers can describe their specific solver class using the proposed framework.  
The written solver class is equivalent to a program unit as an application in the usual 
sense.  The framework has a structure that enables us to register user’s solver classes on 
it.  SPHERE behaves as a monolithic application that can execute the registered solver 
classes by invoking a solver keyword described in an XML parameter file.  This 
mechanism brings the extension of solver coupling into view. 

1.1.4. Source code portability 
The current framework supports major platforms like UNIX (Linux), Windows, and 
Mac OSX.  The interoperability of compilers turns the mixed language programming 
into reality.  Although the main function of the framework is required to be written by 
C++, C and Fortran language are available as functions or subroutines.  This feature 
helps us to port existing Fortran program to the solver class.  While system call is 
written by C/C++, the process that requires high performance can be written by Fortran 
language. 

1.1.5. Achievement of high performance 
On scientific applications with OOT, it should be taken care to achieve high 
performance.  One may describe the code with the operator overload technique that 
permits to carry out operations between the classes in order to increase flexibility of the 
code description.  Giving high readability of source code to us, this operator overload 
technique brings a serious defect on performance due to the internal generation of 
temporal class objects [1].  To remedy this problem, expression templates technique [2] 
is proposed and employed in POOMA [3].  Instead, the current framework keeps the 
performance high by simple implementation, which suppresses the operator overload 
and passes the address of array variable to subroutines and functions directly. 

1.1.6. Easy parallelization from serial code based on domain decomposition 
SPHERE provides a high-level parallel programming environment based on the domain 
decomposition method.  An extension to a parallel code can be realized by inserting 
methods into the serial source code.  Several useful patterns for parallelization are 
prepared and are delivered by the framework.  This simple procedure is so powerful to 
build up the parallel code. 

1.2. Organization of framework 
The framework takes on the functions between an operating system and applications as 
shown in Fig. 2.  The MPI library is employed to help the parallelization and is used to 
construct data/parallel manager classes.  Several libraries are incorporated in the 
framework such as file I/O library, libxml2 library that parses the parameter described 
in XML language and so on.  Other libraries, of course, can be added to the framework.  

11Development of a Framework for Parallel Simulators



SolverBase class, which is a base class provided by the framework, has all functions of 
libraries incorporated and the procedure of the solver control.  The classes Ω and ß just 
above on SolverBase class in Fig. 2 indicate the user-defined base classes; and four 
different kind of solver classes are build on them. 
As mentioned above, although this framework is designed with OOT, the framework 
SPHERE has advantages of high ability of porting from and high affinity with the 
existing C/Fortran codes, introducing the abstraction based on conventional procedure 
and mixed language programming.  These merits are unique feature that is not found in 
other OOT frameworks like SAMRAI [4], Overture [5], and Cactus [6]. 
 

Fig. 2.  Diagram of SPHERE architecture.  User-defined base classes are useful class that includes 
common functions for specific applications such as flow simulators, structural simulators, and 
electro-magnetic solvers.  Each solver class A~D indicates a real application in the usual sense. 

2. Application packaging by inheritance of a user-defined base class 

As shown in Fig. 2, SPHERE framework consists of libraries and provides its functions 
as a base class to the programmers who will write an application program using the 
inheritance mechanism.  SPHERE is made up of highly abstracted generic program 
components that support the development of time evolutional simulator.  More concrete 
and functionally lumped processes should be described with those basic functions to 
make a specific application.  Consequently, the authors employed the approach that the 
programmer could design the user-defined base class that has versatility in a way for 
limited applicable scope; programmer can write the specific application inheriting the 
user-defined base class. 
In Fig. 3, SklSolverBase class is a super class, which is able to use all the function of 
the incorporated libraries.  On the other hand, FlowBass class is the user-defined base 
class that is derived from SklSolverBase class and is designed for flow simulators.  This 
FlowBase class has functions such as the solver control, boundary control and treatment, 
preprocess of voxel data, the retention and reading parameters in XML files.  The user-
defined base class includes basic user interface of applications.   
This approach offers both a programmer and end-users several merits.  First, the 
development of application can be efficient.  The base classes enable us to write source 
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code with high-level description.  The programmers can concentrate their effort on 
algorithm and maintain their codes without great effort.  Second, the unified user 
interface will deliver for the end-users.  In this context, since the behavior of the 
application on the framework is almost same regardless of the different types of physics 
or methods utilized, the barrier and the learning curve at the introducing the applications 
will be greatly reduced.  As a demerit, meanwhile, the current way has no small effect 
on the developers, who are enforced in coding manner and programming style as well as 
the concept of OOT. 
In Fig. 3, five solver classes are derived from FlowBase and registered on SPHERE.  
Each keyword of CBS, CVC, RSC, and PBC means the shape approximation by binary 
voxel for an object on the Cartesian mesh with staggered variable arrangement, by 
volume fraction on the Cartesian with collocated, by Signed Distance Function (SDF) 
on non-uniformly Cartesian with collocated, and by binary voxel on Octree with 
collocated, respectively.  In addition, _H, _CP, _IC keywords indicate heat solver, 
compressible flow solver, and incompressible flow solver, respectively.  Thus, the 
proposed framework has two aspects; a development environment and a run-time 
environment. 

Fig. 3.  A user-defined base class and derived solver classes.  While framework provides Skl, 
SklBase, and SklSolverBase classes, other classes are written by application developers. 

3. Data Class 

Parallel process, which the framework takes on, is one of the key functions in SPHERE.  
In the case of distributed parallel computation, generally, programming and the 
implementation of boundary conditions tend to be complex.  SPHERE provides an 
abstracted programming environment where the description of the low-level process is 
hidden by introducing a concept of data class.  While parallel process will be discussed 
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for a domain decomposition method on a structured grid system in this paper, the 
proposed framework has no limit to incorporate any data structure, calculation 
algorithm, and parallel algorithm.   
Data class is a collection of class to provide useful functions, which are designed for 
accessing to one-dimensional array data inside the data class as if the data class is multi-
dimensional array.  Data class library consists of two layers, i.e., data class itself and 
data manager class which keeps it up, to provide flexible programming environment.  
An abstraction of data class is designed so that the provided operations and the 
functions are confined to the management, the operation, and the parallelization for the 
array.  The selection of implemented functions are paid attention to following issues; the 
portability of legacy Fortran programs, the affinity on the program development with 
mixed language, the suppression of inherent overhead for the object-oriented language, 
and the flexibility of programming. 

3.1. Role and function of data class 
Data class, which is one of a class libraries inside SPHERE, is in charge of management 
of arrays such as creating, deleting, allocating arrays on memory space, and so on.  A 
base class of data class is implemented as C++ template class.  N-dimensional class 
inherits from the base class that has only one-dimensional array and provides interface 
to access array data with n-dimensional indices.  In the concrete, as shown in Fig. 4, a 
set of data class has SklArayidxN (N stands for 1, 2, 3, 4) classes, which are derived 
from SklAray (Base) class.  These classes are also distinguished by the variable type of 
scalar and vector.   
 

Fig. 4. Class hierarchy for data class.  SklArayBase is implemented as an abstract class with pure 
virtual functions. 
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In the case of parallel solver, this data class has functions of data communication 
between each sub-domain.  The basic idea is borrowed from Ohta [7], but the concept is 
extended by the combination of data class and manager class so that SPHERE can give 
more flexibility to manage various types of data array.  Derived parallel version has 
additional information of guide cell, which acts as buffer region to synchronize data 
between adjacent domains. 
Data class provides the functions such as the acquisition of top address of array data 
inside data class, the operator to access n-dimensional array, synchronization according 
to the domain decomposition manner. 

3.2. Role and function of manager class 
Manager class has two types; one is for serial code and the other is for parallel.  Serial 
manager class performs the creation, the deletion, and the registration of a data class.  
Parallel manager class has a function of management of parallel environment in addition 
to one of serial manager class.   

3.3. Functions for parallel process 
In the case of parallel code, the parallel manager and related classes are derived from 
SklBase class as shown in both Fig. 3 and Fig. 5.  SklParaManager class has 
SklParaNodeInfo class, SklVoxelInfo class, and SklParaIF class in its inside (see Fig. 6).  
SklParaIF is an abstract class and real communication procedures are implemented on 
SklparaMPI class.  Of course, other communication libraries like PVM and LAM are 
another option.  SklParaNodeInfo and SklVoxelInfo classes have the information such 
as the number of cells for a whole computational domain, the number of nodes, the 
number of domains, and rank number of each domain. 

Fig. 5.  Class hierarchy for manager class.  Both SklBase and SklParaIF are abstract class.  
SklParaManager class includes SklParaNodeInfo, SklVoxelInfo, and SklParaIF class. 

Fig. 6 shows the behaviour of both a solver class and SklParaManager classes.  Node 
numbers indicate each sub-domain.  A solver class in SPHERE has the class objects of 
SklParaManager class as one of the member, and requests parallel instructions to 
SklParaManager objects.  SklParaManager class takes in charge of all communications 
as far as parallel process in the solver class.  When synchronizing, solver class object 
issues the synchronization instruction to SklParaManager object, and then 
SklParaManager objects communicate each other. 
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Fig. 6.  Role of parallel manager class.  SklParaManager class is in charge of all communications 
between sub-domains and includes low-level implementation for communication. 

4. Performance Evaluation 

To confirm the performance of the developed application on the framework, a 
benchmark program was used to evaluate on several parallel machines. 

4.1. Test Environment and Preliminarily Benchmark Code 
Benchmark is performed in several environments as shown in Table 1.  RSCC [8], 
which is the acronym for “Riken Super Combined Cluster,” is Linux cluster system and 
consists of 1,024 nodes (2048 CPUs) in total.  SCore is used as a clustering middleware. 
 
Table 1.  Specification for evaluated environments. 

 RSCC SGI Altix 4700 Xeon Cluster 

CPU Xeon  

(Prestonia) 

Itanium2 9000 

(Montecito) 

Xeon 5160 

(Woodcrest) 

Clock [GHz] 3.06 1.6 3.0 

CPU (Core) / Node 2 (2) 2 (4) 2 (4) 

Node 1,024 32 32 

Memory/node 1GB 4GB 8GB 

Middleware Score 5.6.1 SGI ProPack 5 SGI ProPack 5 

Interconnect InfiniBand (8Gbps) NUMA link (8.5GB/s) InfiniBand (8Gbps) 

Compiler Fujitsu Linux 

Parallel Package 

Intel C++/Fortran 

Compiler 9.1 

Intel C++/Fortran 

Compiler 9.1 

MPI Library Included in SCore SGI MPT 1.14 Voltaire MPI 
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A program used for the benchmark is a code to solve an elliptic partial differential 
equation by Jacobi relaxation method, which is commonly found in an incompressible 
flow solver or an electro-magnetic solver.  This code has the characteristics of memory-
bound, that is, the memory bandwidth has much impact on the performance in addition 
to CPU ability because the number of arithmetic operation is comparable with the 
number of load/store in the source code.  This original code is parallelized by MPI 
library based on the domain decomposition method. 
The benchmark code on the framework [8] is ported from the original code which is 
parallelized by the similar MPI coding. 

4.2. Parallel Performance 
Table 2 shows the comparison results of the measured timing on RSCC for both the 
original code without the framework and SPHERE code.  It was found that the speed of 
operation on SPHERE code goes down around five percent in comparison with the 
original code.  This point is thought as reasonable because the framework has the 
inherent overhead for its parallel process in exchange for convenience in writing code. 
Table 2.  Measured performance in GFLOPS for both the original and SPHERE code with 
different size (Original / SPHERE code). 

 
Next, Table 3 shows the performance on different kind of machines for SPHERE code.  
SGI Altix 4700 system shows the best performance among them due to the fastest 
interconnect speed and also, achieves high speed up ratio; this performance is over 30 
percent of its theoretical performance.  The Xeon (Woodcrest) cluster demonstrated 
second best performance.  In this result, no gain is observed from one core to two cores 
because this system shares a system bus with two cores and the benchmark code is 
characterized by memory-bound. 

5. Concluding Remarks 

An object-oriented framework for physical simulators is developed to enhance 
efficiency of the software development and to manage various applications, and then, a 
preliminarily benchmark is performed on several parallel environments.  Finally, it was 
found that the newly designed framework worked well and exhibited reasonably good 

Number of CPU core 256x128x128 (M) 512x256x256 (L) 1024x512x512(XL) 

32 11.13 / 10.21 11.34 / 11.50 11.22 / 12.57 

64 22.42 / 20.99 21.19 / 22.85 21.48 / 23.98 

128 38.53 / 35.91 44.44 / 44.68 40.59 / 48.94 

256 65.36 / 62.56 83.12 / 83.40 80.18 / 90.93 

512 109.00 / 107.14 158.09 / 160.28 155.10 / 180.95 

1024 150.57 / 147.25 264.93 / 251.17 316.11 / 297.90 
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performance in comparison to the original benchmark code without the framework.  
This framework will be deliver from our website [9]. 
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Table 3.  Measured performance in GFLOPS and speed up ratio of SPHERE code for 
512x256x256 (L size) grid points.  Values with * mark are for reference.  Those are results for 
256x128x128 (M size) due to the restriction of amount of main memory.  The figures shown in 
parenthesis indicate the speed up ratio of parallelization.  

Number of CPU core RSCC SGI Altix 4700 Xeon Cluster 

1 0.55* (1.00) 2.57 (1.00) 1.33 (1.00) 

2 0.97* (1.76) 3.45 (1.34) 1.35 (1.02) 

4 1.58 (2.87) 6.84 (2.67) 2.35 (1.71) 

8 3.08 (5.60) 13.67 (5.33) 5.08 (3.81) 

16 5.65 (10.27) 26.67 (10.39) 10.32 (7.74) 

32 11.73 (21.33) 54.29 (21.16) 20.82 (15.61) 

64 23.30 (42.36) 111.73 (43.55) 44.54 (33.39) 

128 45.55 (82.82) 268.51 (104.65) 88.80 (66.57) 

 

Reference 
1. Bulka, D., and Mayhew, D., Efficient C++ Performance Programming Techniques,  

Addison-Wesley, (1999). 
2. Veldhuizen, T., “Expression Templates,” C++ Report, Vol. 7 No. 5 June, pp. 26-31 (1995). 
3. http://www.nongnu.org/freepooma 
4. Hornung, R.D., and Kohn, S.R., “Managing Application Complexity in the SAMRAI 

Object-Oriented Framework,” in Concurrency and Computation: Practice and Experience 
(Special Issue), 14, pp. 347-368 (2002). 

5. Henshaw, W.D., “Overture: An Object-Oriented Framework for Overlapping Grid 
Applications,” AIAA conference on Applied Aerodynamics (2002), also UCRL-JC-147889. 

6. http://www.cactuscode.org/ 
7. Ohta, T., and Shirayama, S., “Building an Integrated Environment for CFD with an Object-

Orientd Framework,” Transactions of JSCES, No. 19990001, in Japanese (1999). 
8. http://accc.riken.go.jp/ 
9. http://vcad-hpsv.riken.jp/ 

18 K. Ono, T. Tamaki and H. Yoshikawa



http://www.springer.com/978-3-540-92743-3


