Development of a framework for parallel
simulators with various physics and its
performance

Kenji Ono,”” Tsuyoshi Tamaki,® Hiroyuki Yoshikawa*

“Functionality Simulation and Information team, VCAD System Research
Program, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan

®Division of Human Mechanical Systems and Design, Faculty and
Graduate School of Engineering, Hokkaido University, N13, W$8, Kita-ku,
Sapporo, 060-8628, Japan

“Fujitsu Nagano Systems Engineering, 1415 Midori-cho, Tsuruga,
Nagano, 380-0813, Japan

Keywords: Object-Oriented Framework; Parallel Computation; MPI; Data Class

1. Application Framework

An object-oriented framework with class libraries is designed to enhance the software
development and to manage various physical simulators. The proposed framework
provides an efficient way to construct applications using the inheritance mechanism of
object-oriented technology (OOT). In addition, the inheritance plays an important role
to build applications with a unified behavior. It is expected that the framework brings
efficiency for software development and makes easy to operate the developed
applications. The framework also delivers high-level conceptual parallel programming
environment based on the parallelism of domain decomposition.

1.1. Outline of Framework Library
A proposed system is an object-oriented framework named SPHERE (Skeleton for
PHysical and Engineering REsearch), which is designed to apply building unsteady

L.H. Tuncer et al., Parallel Computational Fluid Dynamics 2007, 9
DOI: 10.1007/978-3-540-92744-0_2, © Springer-Verlag Berlin Heidelberg 2009

10 K. Ono, T. Tamaki and H. Yoshikawa

physical simulators. SPHERE would provide various benefits both developers and end-
users as described by following sub-sections.

1.1.1. Basic features of SPHERE

This framework supplies both a control structure and basic functions that are essential
for time evolutional physical simulations. Since a simulation code can be conceptually
divided into three parts like, pre-process, main-process, and post-process, programmers
can describe their applications using a common structure. Thus, the mechanism that has
the skeleton of the control structure should be established and be utilized as a solver
base class depicted in Fig. 1.

SPHERE Framework
Solver Class i

Pre Process
Main
Process
fime :
1= 1+At
Post Process
I
!

Fig. 1. Control structure of a solver class and provided libraries on a proposed framework.
SPHERE framework supplies a skeleton for unsteady physical simulators that require time
evolution as well as steady simulation.

A programmer makes a target application class inheriting from the base class and
constructs the application by implementing user’s code on the derived class. Although
the framework is written by the manner of OOT, a procedural programming style is
taken over because many scientific applications are described by C/Fortran. The class
abstraction that corresponds to the conventional procedural process enables us to port
existing software resources to the program on the framework easily. The maximum unit
of a class can be assumed by the program unit working as a solver, and defines as a
solver class. In addition, SPHERE provides convenient functions as libraries to
construct solvers. These functions are consisting of common functions, such as data
management, parsing of various parameters described by XML language, file 1/0, and
SO on.

1.1.2. Realization of a unified user interface using a user-defined base class

Making and utilizing the base class that has more concrete and lump functions, the
programmer can develop solver classes that have a unified user interface and a behavior.
Both the abstraction of common functions and the versatility of the implemented

Development of a Framework for Parallel Simulators 11

methods are required for the user-defined base class to realize this idea. To do so, the
mechanism of class inheritance in OOT plays an important role.

1.1.3. Application management and execution environment

Programmers can describe their specific solver class using the proposed framework.
The written solver class is equivalent to a program unit as an application in the usual
sense. The framework has a structure that enables us to register user’s solver classes on
it. SPHERE behaves as a monolithic application that can execute the registered solver
classes by invoking a solver keyword described in an XML parameter file. This
mechanism brings the extension of solver coupling into view.

1.1.4. Source code portability

The current framework supports major platforms like UNIX (Linux), Windows, and
Mac OSX. The interoperability of compilers turns the mixed language programming
into reality. Although the main function of the framework is required to be written by
C++, C and Fortran language are available as functions or subroutines. This feature
helps us to port existing Fortran program to the solver class. While system call is
written by C/C++, the process that requires high performance can be written by Fortran
language.

1.1.5. Achievement of high performance

On scientific applications with OOT, it should be taken care to achieve high
performance. One may describe the code with the operator overload technique that
permits to carry out operations between the classes in order to increase flexibility of the
code description. Giving high readability of source code to us, this operator overload
technique brings a serious defect on performance due to the internal generation of
temporal class objects [1]. To remedy this problem, expression templates technique [2]
is proposed and employed in POOMA [3]. Instead, the current framework keeps the
performance high by simple implementation, which suppresses the operator overload
and passes the address of array variable to subroutines and functions directly.

1.1.6. Easy parallelization from serial code based on domain decomposition

SPHERE provides a high-level parallel programming environment based on the domain
decomposition method. An extension to a parallel code can be realized by inserting
methods into the serial source code. Several useful patterns for parallelization are
prepared and are delivered by the framework. This simple procedure is so powerful to
build up the parallel code.

1.2. Organization of framework

The framework takes on the functions between an operating system and applications as
shown in Fig. 2. The MPI library is employed to help the parallelization and is used to
construct data/parallel manager classes. Several libraries are incorporated in the
framework such as file I/O library, libxml2 library that parses the parameter described
in XML language and so on. Other libraries, of course, can be added to the framework.

12 K. Ono, T. Tamaki and H. Yoshikawa

SolverBase class, which is a base class provided by the framework, has all functions of
libraries incorporated and the procedure of the solver control. The classes Q and B just
above on SolverBase class in Fig. 2 indicate the user-defined base classes; and four
different kind of solver classes are build on them.

As mentioned above, although this framework is designed with OOT, the framework
SPHERE has advantages of high ability of porting from and high affinity with the
existing C/Fortran codes, introducing the abstraction based on conventional procedure
and mixed language programming. These merits are unique feature that is not found in
other OOT frameworks like SAMRALI [4], Overture [5], and Cactus [6].

(cn) (ee) (G0) (cio)

User Defined Base Class Liser Defined Base Class B
£ i
§ XML
g g Base class . Orcher
Parallel Manager / Data Manager Libraries
E MPICH
System Library (Operating System)

Fig. 2. Diagram of SPHERE architecture. User-defined base classes are useful class that includes
common functions for specific applications such as flow simulators, structural simulators, and
electro-magnetic solvers. Each solver class A~D indicates a real application in the usual sense.

2. Application packaging by inheritance of a user-defined base class

As shown in Fig. 2, SPHERE framework consists of libraries and provides its functions
as a base class to the programmers who will write an application program using the
inheritance mechanism. SPHERE is made up of highly abstracted generic program
components that support the development of time evolutional simulator. More concrete
and functionally lumped processes should be described with those basic functions to
make a specific application. Consequently, the authors employed the approach that the
programmer could design the user-defined base class that has versatility in a way for
limited applicable scope; programmer can write the specific application inheriting the
user-defined base class.

In Fig. 3, SklSolverBase class is a super class, which is able to use all the function of
the incorporated libraries. On the other hand, FlowBass class is the user-defined base
class that is derived from SklSolverBase class and is designed for flow simulators. This
FlowBase class has functions such as the solver control, boundary control and treatment,
preprocess of voxel data, the retention and reading parameters in XML files. The user-
defined base class includes basic user interface of applications.

This approach offers both a programmer and end-users several merits. First, the
development of application can be efficient. The base classes enable us to write source

Development of a Framework for Parallel Simulators 13

code with high-level description. The programmers can concentrate their effort on
algorithm and maintain their codes without great effort. Second, the unified user
interface will deliver for the end-users. In this context, since the behavior of the
application on the framework is almost same regardless of the different types of physics
or methods utilized, the barrier and the learning curve at the introducing the applications
will be greatly reduced. As a demerit, meanwhile, the current way has no small effect
on the developers, who are enforced in coding manner and programming style as well as
the concept of OOT.

In Fig. 3, five solver classes are derived from FlowBase and registered on SPHERE.
Each keyword of CBS, CVC, RSC, and PBC means the shape approximation by binary
voxel for an object on the Cartesian mesh with staggered variable arrangement, by
volume fraction on the Cartesian with collocated, by Signed Distance Function (SDF)
on non-uniformly Cartesian with collocated, and by binary voxel on Octree with
collocated, respectively. In addition, H, CP, IC keywords indicate heat solver,
compressible flow solver, and incompressible flow solver, respectively. Thus, the
proposed framework has two aspects; a development environment and a run-time
environment.

SPHERE Frampwork

=51 = -
[casap_n| [rscap_cr|

e L

Derived Solver Class

Fig. 3. A user-defined base class and derived solver classes. While framework provides Skl,
SkiBase, and SklSolverBase classes, other classes are written by application developers.

3. Data Class

Parallel process, which the framework takes on, is one of the key functions in SPHERE.
In the case of distributed parallel computation, generally, programming and the
implementation of boundary conditions tend to be complex. SPHERE provides an
abstracted programming environment where the description of the low-level process is
hidden by introducing a concept of data class. While parallel process will be discussed

14 K. Ono, T. Tamaki and H. Yoshikawa

for a domain decomposition method on a structured grid system in this paper, the
proposed framework has no limit to incorporate any data structure, calculation
algorithm, and parallel algorithm.

Data class is a collection of class to provide useful functions, which are designed for
accessing to one-dimensional array data inside the data class as if the data class is multi-
dimensional array. Data class library consists of two layers, i.e., data class itself and
data manager class which keeps it up, to provide flexible programming environment.
An abstraction of data class is designed so that the provided operations and the
functions are confined to the management, the operation, and the parallelization for the
array. The selection of implemented functions are paid attention to following issues; the
portability of legacy Fortran programs, the affinity on the program development with
mixed language, the suppression of inherent overhead for the object-oriented language,
and the flexibility of programming.

3.1. Role and function of data class

Data class, which is one of a class libraries inside SPHERE, is in charge of management
of arrays such as creating, deleting, allocating arrays on memory space, and so on. A
base class of data class is implemented as C++ template class. N-dimensional class
inherits from the base class that has only one-dimensional array and provides interface
to access array data with n-dimensional indices. In the concrete, as shown in Fig. 4, a
set of data class has SklArayidxN (N stands for 1, 2, 3, 4) classes, which are derived
from SklAray (Base) class. These classes are also distinguished by the variable type of
scalar and vector.

SklArayBane

]]
5h||".rn- SH.*.M!.- Skl A rary SklAray
Irlﬂ |:I=|. |r|t! Iekad

[] [smiu"GF}
SiIS-mlar 0
["il:.llnrll) J[\"mnrzl‘l [W{Hﬂi]h]
ikll‘.:m 'i“kll.nra 'ﬁkll"ﬂu
ScalarlD Vector2D Vector2 DEx
| I]

Skl Sk Skl Skl
Scalardld ScalardDEx Vector 1D Vector3DEx
SkiPara SkiPara Sklftara Sklfara
Scalardd ScalardDEx VectordD Viector 3 DiEx

Fig. 4. Class hierarchy for data class. SklArayBase is implemented as an abstract class with pure
virtual functions.

Development of a Framework for Parallel Simulators 15

In the case of parallel solver, this data class has functions of data communication
between each sub-domain. The basic idea is borrowed from Ohta [7], but the concept is
extended by the combination of data class and manager class so that SPHERE can give
more flexibility to manage various types of data array. Derived parallel version has
additional information of guide cell, which acts as buffer region to synchronize data
between adjacent domains.

Data class provides the functions such as the acquisition of top address of array data
inside data class, the operator to access n-dimensional array, synchronization according
to the domain decomposition manner.

3.2. Role and function of manager class

Manager class has two types; one is for serial code and the other is for parallel. Serial
manager class performs the creation, the deletion, and the registration of a data class.
Parallel manager class has a function of management of parallel environment in addition
to one of serial manager class.

3.3. Functions for parallel process

In the case of parallel code, the parallel manager and related classes are derived from
SklBase class as shown in both Fig. 3 and Fig. 5. SklParaManager class has
SklParaNodelnfo class, SkIVoxellnfo class, and SklParalF class in its inside (see Fig. 6).
SklParalF is an abstract class and real communication procedures are implemented on
SklparaMPI class. Of course, other communication libraries like PVM and LAM are
another option. SklParaNodelnfo and SklVoxellnfo classes have the information such
as the number of cells for a whole computational domain, the number of nodes, the
number of domains, and rank number of each domain.

Skifara Skifara Skl :
(Manager] [Nn-dulnfu] [mellnfnj [i]

SklPara
MPI

Fig. 5. Class hierarchy for manager class. Both SkiBase and SklParalF are abstract class.
SklParaManager class includes SklParaNodelnfo, SklVoxellnfo, and SklParalF class.

Fig. 6 shows the behaviour of both a solver class and SklParaManager classes. Node
numbers indicate each sub-domain. A solver class in SPHERE has the class objects of
SklParaManager class as one of the member, and requests parallel instructions to
SklParaManager objects. SklParaManager class takes in charge of all communications
as far as parallel process in the solver class. When synchronizing, solver class object
issues the synchronization instruction to SklParaManager object, and then
SklParaManager objects communicate each other.

16 K. Ono, T. Tamaki and H. Yoshikawa

Fig. 6. Role of parallel manager class. SklParaManager class is in charge of all communications
between sub-domains and includes low-level implementation for communication.

4. Performance Evaluation

To confirm the performance of the developed application on the framework, a
benchmark program was used to evaluate on several parallel machines.

4.1. Test Environment and Preliminarily Benchmark Code

Benchmark is performed in several environments as shown in Table 1.

RSCC [8],

which is the acronym for “Riken Super Combined Cluster,” is Linux cluster system and
consists of 1,024 nodes (2048 CPUs) in total. SCore is used as a clustering middleware.

Table 1. Specification for evaluated environments.

RSCC SGI Altix 4700 Xeon Cluster
CPU Xeon Itanium2 9000 Xeon 5160
(Prestonia) (Montecito) (Woodcrest)
Clock [GHz] 3.06 1.6 3.0
CPU (Core) /Node 2 (2) 2(4) 2(4)
Node 1,024 32 32
Memory/node 1GB 4GB 8GB
Middleware Score 5.6.1 SGI ProPack 5 SGI ProPack 5
Interconnect InfiniBand (8 Gbps) NUMA link (8.5GB/s) InfiniBand (8Gbps)
Compiler Fujitsu Linux Intel C++/Fortran Intel C++/Fortran

MPI Library

Parallel Package
Included in SCore

Compiler 9.1
SGIMPT 1.14

Compiler 9.1
Voltaire MPI

Development of a Framework for Parallel Simulators 17

A program used for the benchmark is a code to solve an elliptic partial differential
equation by Jacobi relaxation method, which is commonly found in an incompressible
flow solver or an electro-magnetic solver. This code has the characteristics of memory-
bound, that is, the memory bandwidth has much impact on the performance in addition
to CPU ability because the number of arithmetic operation is comparable with the
number of load/store in the source code. This original code is parallelized by MPI
library based on the domain decomposition method.

The benchmark code on the framework [8] is ported from the original code which is
parallelized by the similar MPI coding.

4.2. Parallel Performance

Table 2 shows the comparison results of the measured timing on RSCC for both the
original code without the framework and SPHERE code. It was found that the speed of
operation on SPHERE code goes down around five percent in comparison with the
original code. This point is thought as reasonable because the framework has the
inherent overhead for its parallel process in exchange for convenience in writing code.

Table 2. Measured performance in GFLOPS for both the original and SPHERE code with
different size (Original / SPHERE code).

Number of CPU core 256x128x128 (M) 512x256x256 (L) 1024x512x512(XL)
32 11.13/10.21 11.34/11.50 11.22/12.57
64 22.42/20.99 21.19/22.85 21.48/23.98
128 38.53/35.91 44.44 | 44.68 40.59 / 48.94
256 65.36/62.56 83.12/83.40 80.18 /90.93
512 109.00 /107.14 158.09 / 160.28 155.10 / 180.95
1024 150.57 / 147.25 264.93/251.17 316.11/297.90

Next, Table 3 shows the performance on different kind of machines for SPHERE code.
SGI Altix 4700 system shows the best performance among them due to the fastest
interconnect speed and also, achieves high speed up ratio; this performance is over 30
percent of its theoretical performance. The Xeon (Woodcrest) cluster demonstrated
second best performance. In this result, no gain is observed from one core to two cores
because this system shares a system bus with two cores and the benchmark code is
characterized by memory-bound.

5. Concluding Remarks

An object-oriented framework for physical simulators is developed to enhance
efficiency of the software development and to manage various applications, and then, a
preliminarily benchmark is performed on several parallel environments. Finally, it was
found that the newly designed framework worked well and exhibited reasonably good

18 K. Ono, T. Tamaki and H. Yoshikawa

performance in comparison to the original benchmark code without the framework.
This framework will be deliver from our website [9].

Acknowledgement

This study was partially supported by Industrial Technology Research Grant Program in
'04 from New Energy and Industrial Technology Development Organization (NEDO) of
Japan and, by computational resources of the RIKEN Super Combined Cluster (RSCC).
We would like to thanks to Mr. Takeda, SGI Japan, Ltd. for the cooperation of the
benchmark.

Table 3. Measured performance in GFLOPS and speed up ratio of SPHERE code for
512x256x256 (L size) grid points. Values with * mark are for reference. Those are results for
256x128x128 (M size) due to the restriction of amount of main memory. The figures shown in
parenthesis indicate the speed up ratio of parallelization.

Number of CPU core RSCC SGI Altix 4700 Xeon Cluster
1 0.55* (1.00) 2.57 (1.00) 1.33 (1.00)
2 0.97* (1.76) 3.45(1.34) 1.35(1.02)
4 1.58 (2.87) 6.84 (2.67) 2.35(1.71)
8 3.08 (5.60) 13.67 (5.33) 5.08 (3.81)
16 5.65(10.27) 26.67 (10.39) 10.32 (7.74)
32 11.73 (21.33) 54.29 (21.16) 20.82 (15.61)
64 23.30 (42.36) 111.73 (43.55) 44.54 (33.39)
128 45.55 (82.82) 268.51 (104.65) 88.80 (66.57)
Reference

1. Bulka, D., and Mayhew, D., Efficient C++ Performance Programming Techniques,
Addison-Wesley, (1999).

2. Veldhuizen, T., “Expression Templates,” C++ Report, Vol. 7 No. 5 June, pp. 26-31 (1995).

3. http://www.nongnu.org/freepooma

4. Hornung, R.D., and Kohn, S.R., “Managing Application Complexity in the SAMRAI
Object-Oriented Framework,” in Concurrency and Computation: Practice and Experience
(Special Issue), 14, pp. 347-368 (2002).

5. Henshaw, W.D., “Overture: An Object-Oriented Framework for Overlapping Grid
Applications,” AIAA conference on Applied Aerodynamics (2002), also UCRL-JC-147889.

6. http://www.cactuscode.org/

7. Ohta, T., and Shirayama, S., “Building an Integrated Environment for CFD with an Object-
Orientd Framework,” Transactions of JSCES, No. 19990001, in Japanese (1999).

8. http://acce.riken.go.jp/

9. http://vcad-hpsv.riken.jp/

2 Springer
http://www.springer.com/978-3-540-92743-3

Parallel Computational Fluid Dynamics 2007
Implementations and Experiences on Large Scale and
Grid Computing

Tuncer, I.H.; Gulcat, U.; Emerson, D.R.; Matsuno, K
(Eds.)

20089, XIl, 488 p. 333 illus., 197 illus. in color., Softcover
ISBM: 978-3-540-92743-3

