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1 Introduction

These lecture notes are based on a mini-course which I taught at Prague
school in September 2006. The idea was to try to develop and ex-
plain to probabilistically minded students a unified approach to the
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Fortuin-Kasteleyn (FK) and to the random current (RC) representa-
tion of classical and quantum Ising models via path integrals. No back-
ground in quantum statistical mechanics was assumed.

In Section 1 familiar classical Ising models are rewritten in the quan-
tum language. In this way usual FK and RC representations emerge as
different instances of Lie-Trotter product formula. Then I am following
[4] and set up a general notation for the Poisson limits.

In Section 2 both FK and the RC representations are generalized
to quantum Ising models in transverse field. The FK representation
was originally derived in [8] and [3]. The observation regarding the
RC representation seems to be new. Both representations are used to
derive formulas for one and two point functions and for the matrix and
reduced density matrix elements.

Section 3 is devoted to the quantum Curie-Weiss model in trans-
verse field. In the quantum mean field case the FK representation
is built upon a generalization of the classical random graph model.
I briefly explain recent results of [15], where the critical curve for quan-
tum random graphs was explicitly computed. The critical curve for the
quantum Curie-Weiss model itself is computed in the concluding Sub-
section 3.3 via partial Trotterization and a large deviation approach.

Of course, stochastic geometric methods apply for a large variety
of other models, see the seminal [4] as well as [18, 20] and references
therein. I did not try to provide a complete bibliography on the subject -
the emphasis was rather on trying to advertise probabilistic aspects of
quantum spin systems to a reader who is (like me) not very well familiar
with the latter. I, therefore, apologize for many excellent and relevant
papers which were not mentioned.

2 Classical Ising Model

We use the following notation for the classical Ising model:

• (Λ, E) is a finite graph with unoriented edges e = {i, j} = {j, i} ∈ E .
• J = {Jij ≥ 0} are coupling constants. By definition Jij > 0 ⇔
{i, j} ∈ E .

• h ∈ R is a magnetic field.
• ν ∈ ΩΛ Δ= {−1, 1}Λ is a spin configuration on Λ.

The Hamiltonian HΛ is a function on ΩΛ,

−HΛ(ν) =
∑

(i,j)∈E
Jijνiνj + h

∑

i∈Λ
νi.
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Given β ≥ 0 (inverse temperature) define the classical Ising-Gibbs
probability distribution μβ,hΛ on ΩΛ as

μβ,hΛ (ν) =
1

ZΛ(β, h)
e−βHΛ(ν),

where the normalizing constant (partition function) is given by

ZΛ(β, h) =
∑

ν∈ΩΛ

e−βHΛ(ν). (2.1)

In the sequel we shall use μβ,hΛ (•) for the expectation under μβ,hΛ . In
particular, the mean value of the spin at i is

μβ,hΛ (νi) =
1

ZΛ(β, h)

∑

ν∈ΩΛ

νie−βHΛ(ν), (2.2)

and the two-point function μβ,hΛ (νiνj) is

μβ,hΛ (νiνj) =
1

ZΛ(β, h)

∑

ν∈ΩΛ

νiνje−βHΛ(ν). (2.3)

Two examples we shall consider in this paper are:

1. Curie-Weiss model: Λ = {1, 2 . . . , N} and Jij ≡ 1/N .
2. Finite range Ising model: Λ ⊂ Z

d and Jij = 0 for ‖i− j‖ ≥ R.

2.1 Classical Ising Model Dressed as Quantum

Let us re-derive formulas (2.1), (2.2) and (2.3) in the quantum language.
In this way spin values±1 are understood as eigenvalues of Pauli matrix

σ̂z =
(

1 0
0 −1

)
. (2.4)

Let us define the corresponding eigenfunctions

ψ+1 =
(

1
0

)
and ψ−1 =

(
0
1

)
. (2.5)

Of course, σ̂zψν = νψν for ν = ±1. Throughout these lectures we shall
work only with real numbers. Using eigenfunctions ψ±1 one constructs
the following “lifting” of classical configurations ν ∈ ΩΛ: Define

XΛ =
⊗

i∈Λ
R

2.
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XΛ is a 2|Λ|-dimensional vector space over the field of reals. Classical
configurations ν ∈ ΩΛ are encoded in XΛ as tensor products,

Ψν
Δ= ⊗i∈Λψνi . (2.6)

The collection {Ψν}ν∈ΩΛ
is a complete orthonormal basis of XΛ with

respect to the scalar product

〈Ψν |Ψν′〉
Δ=

∏

i∈Λ
〈ψνi , ψν′i〉2,

where 〈•, •〉2 is the usual scalar product of R
2. With each i ∈ Λ we

associate a linear self-adjoint operator (symmetric matrix) σ̂z
i which

acts on i-th coordinate of Ψ as a copy of Pauli matrix σ̂z defined in
(2.4). Namely, for each ν ∈ ΩΛ,

σ̂z
iΨν

Δ= ψν1 ⊗ · · · ⊗ σ̂zψνi ⊗ . . . = νiΨν . (2.7)

Obviously, σ̂z
i and σ̂z

j commute, and, moreover,

σ̂z
i σ̂

z
jΨν = νiνjΨν . (2.8)

Define now the quantum Hamiltonian HΛ as a linear self-adjoint
operator on XΛ,

−HΛ =
∑

(i,j)∈E
Jij σ̂

z
i σ̂

z
j + h

∑

i∈Λ
σ̂z
i . (2.9)

Then, (2.7) and (2.8) imply,

HΛΨν = HΛ(ν)Ψν .

In other words, HΛ is diagonal in the {Ψν} basis, and with the
corresponding eigenvalues being equal to values of the classical Ising
Hamiltonian on configurations ν.

It is possible now to rewrite classical formulas (2.1)-(2.3) in terms
of the quantum Hamiltonian HΛ. First of all,

Tr
(
e−βHΛ

)
=

∑

ν∈ΩΛ

〈Ψν |e−βHΛ |Ψν〉 =
∑

ν∈ΩΛ

e−βHΛ(ν) = ZΛ(β, h).

(2.10)
Similarly,

μβ,hΛ (νi) =
Tr

(
σ̂z
i e
−βHΛ

)

Tr (e−βHΛ)
and μβ,hΛ (νiνj) =

Tr
(
σ̂z
i σ̂

z
je
−βHΛ

)

Tr (e−βHΛ)
.

(2.11)
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2.2 Path Integral Representation and Poisson Limits

Since all the operators {σ̂z
i} commute,

e−βHΛ =
(∏

(i,j)

eΔJij σ̂
z
iσ̂

z
j

∏

i

eΔhσ̂
z
i

)β/Δ
. (2.12)

To facilitate the exposition we shall focus now on the case of zero
magnetic field h = 0, the full Hamiltonian with both non-zero h will
be considered in Subsection 2.3 and in Subsection 2.4, furthermore, an
additional positive field in the traverse direction will be considered in
Section 3.

For small Δ we shall linearize eΔJij σ̂
z
iσ̂

z
j in (2.12) in two different

ways:
1) Write

Jij σ̂
z
i σ̂

z
j = JijI− JijI + Jij σ̂z

i σ̂
z
j .

Then,

e−βHΛ = eβ
∑

(i,j) Jij lim
Δ→0

(∏

(i,j)

{
(1−ΔJij)I +ΔJij σ̂z

i σ̂
z
j

})β/Δ
. (2.13)

This will lead to the random current representation of the model.
2) Write

Jij σ̂
z
i σ̂

z
j = JijI− 2JijI + 2Jij

I + σ̂z
i σ̂

z
j

2
.

In the latter case,

e−βHΛ = eβ
∑

(i,j) Jij lim
Δ→0

(∏

(i,j)

{
(1− 2ΔJij)I + 2ΔJij

I + σ̂z
i σ̂

z
j

2

})β/Δ
.

(2.14)

As we shall see below such linearization leads to the FK (Fortuin-
Kasteleyn) representation of the model. Thus both the FK and the
random current representations are instances of path integral represen-
tation via Poisson limits which, following [4], we proceed to discuss in
a somewhat general context.
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General Setup for Poisson Limits

The fact that the operators σ̂z
i σ̂

z
j in (2.13) or operators (I + σ̂z

i σ̂
z
j)/2

in (2.14) commute is not essential for the path integral representation
via Poisson limits. For the rest of this Subsection we shall work in the
following general context:

1. X is an M -dimensional vector space (over R) with a scalar product
〈•|•〉 and an orthonormal basis {Ψi}

2. K1, . . . ,Km are self-adjoint operators (matrices) on X, in general
non-commuting.

3. λ1, . . . , λm are positive numbers.

Given β > 0, we would like to find a probabilistic representation for

exp
{
β
m∑

1

λlKl

}
(2.15)

The linearization relies on two basic facts from theory of matrices:

Lie-Trotter Formula

Let A and B be two matrices. Then

eA+B = lim
n→∞

(
eA/neB/n

)n
. (2.16)

Proof (following [19]). Set

Tn = e(A+B)/n and Sn = eA/neB/n.

Then,

Tnn − Snn =
n−1∑

l=0

(
Tn−ln Sln − Tn−l−1

n Sl+1
n

)
=
n−1∑

l=0

Tn−l−1
n (Tn − Sn)Sln.

Now,

Tn−Sn=
∞∑

k=0

1
k!

(
A+B
n

)k
−
{ ∞∑

k=0

1
k!

(
A

n

)k}{ ∞∑

k=0

1
k!

(
B

n

)k}
=O

( 1
n2

)
.

On the other hand, ‖Tn−l−1
n ‖ · ‖Sln‖ ≤ e‖A‖+‖B‖ for all l = 1, . . . , n− 1.

��
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Product Expansion Formula

Let A1, A2, . . . , An be self-adjoint matrices and Ψ, Ψ ′ two vectors in X.
Then,

〈Ψ |A1 . . . An|Ψ ′〉 =
∑

Ψi1
,...Ψin

〈Ψ |A1|Ψi1〉〈Ψi1 |A2|Ψi2〉 . . . 〈Ψin−1 |An|Ψ ′〉,

(2.17)

where Ψil-s run through the elements of the orthonormal basis {Ψi} for
all l = 1, . . . , n− 1.

Proof. In the case n = 2 (2.17) follows from expansion of A1Ψ in the
basis {Ψi},

A1Ψ =
M∑

i1=1

〈Ψ |A1|Ψi1〉Ψi1 .

The general case follows by induction. ��

Path Integral Representation

Let us go back to (2.15). By Lie-Trotter formula (2.16),

exp
{
β
m∑

1

λlKl

}
= eβ

∑
λl lim
Δ→0

( m∏

l=1

{(1−Δλl)I +ΔλlKl}
)β/Δ
.

(2.18)

In the sequel we shall tacitly assume that β/Δ ∈ N. For each l =
1, . . . ,m consider a sequence of iid Bernoulli random variables

ξ
l
= {ξl(1), ξl(2) . . . , ξl(β/Δ)} ,

with the probability of success being equal to Δλl. We assume that
the sequences ξ

l
are independent and let P

λ
β,Δ be the corresponding

probability measure on

{0, 1}β/Δ × · · · × {0, 1}β/Δ

Above λ is a shorthand notation for the vector of success rates
{λ1, . . . , λm}. Then we can expand the expression on the right-hand
side of (2.18) as follows,

( m∏

l=1

{(1−Δλl)I +ΔλlKl}
)β/Δ

=
∑

a1,...am

P
λ
β,Δ

( m⋂

l=1

{
ξ
l
= al

})
Ka,

(2.19)
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where the matrix Ka is defined by

Ka Δ= Ka1,...,am
=
β/Δ∏

j=1

{ m∏

l=1

((1− al(j))I + al(j)Kl)
}
. (2.20)

Our next step is to associate with each sequence ξ
l
of Bernoulli trials a

point process of arrivals of operators Kl on the interval [0, β]. Define,

ξΔl =
β/δ∑

j=1

ξl(j)δiΔ. (2.21)

Let Ψ and Ψ ′ be two elements of the basis {Ψi}. In order to derive
a path integral representation of 〈Ψ |Ka1 , . . . ,Kam

|Ψ ′〉 notice first of
all that up to probabilities of order O(Δ) we may restrict attention
to sequences a1, . . . , am with disjoint occurrence of successes, that is∑
l al(j) = 0 or 1 for every j = 1, . . . , β/Δ. In the language of (2.21)

this means that the realizations of ξΔ1 , . . . , ξ
Δ
m are pairwise disjoint and

hence for each arrival time

t ∈ ξΔ Δ= ∪ξΔl =

{
jΔ :

m∑

l=1

al(j) = 1

}
,

there is a well defined arrival type lΔ(t) ∈ {1, . . . ,m}. Accordingly, one
can rewrite

Ka1,...,am
=
β/Δ∏

j=1

{
δ{jΔ/∈ξΔ}I + δ{jΔ∈ξΔ}KlΔ(jΔ)

}
Δ=
β/Δ∏

j=1

K̃Δj .

By the product expansion formula (2.17),

〈Ψ |Ka|Ψ ′〉 =
∑

Ψi1
,...Ψiβ/Δ−1

〈Ψ |K̃Δ1 |Ψi1〉
β/Δ−1∏

j=2

〈Ψij−1 |K̃Δj |Ψij 〉〈Ψiβ/Δ−1
|K̃Δβ/Δ|Ψ ′〉.

(2.22)
Of course,

〈Ψl|K̃Δj |Ψk〉 =
{

δ{Ψl=Ψk} if jΔ /∈ ξΔ
〈Ψl|KlΔ(jΔ)|Ψk〉 if jΔ ∈ ξΔ (2.23)

We can now put this into the continuous time context as follows: To
a given sequence Ψ, Ψi1 , . . . , Ψiβ/Δ−1

, Ψ ′ associate a piecewise constant
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function ΨΔ : [0, β] → {Ψj}, such that ΨΔ = Ψ on [0, Δ), ΨΔ(β) = Ψ ′,
and,

ΨΔ = Ψij on [jΔ, (j + 1)Δ) for j = 1, . . . β/Δ− 1.

Given a realization ξΔ let us say that a piecewise constant function
ΨΔ as above is compatible with ξΔ, ΨΔ ∼ ξΔ if all the jumps of ΨΔ

occur only at arrival times of ξΔ. By (2.23) only compatible functions
contribute to (2.22). In fact, in the notation just introduced the latter
expansion reads as,

〈Ψ |Ka1,...,am
|Ψ ′〉 =

∑

ΨΔ∼ξΔ

∏

t∈ξΔ
〈ΨΔ(t−)|KlΔ(t)|ΨΔ(t)〉. (2.24)

Poisson Limits

A basic result on Poisson approximation implies that
(
ξΔ1 , . . . , ξ

Δ
m, l

Δ
)
⇒ (ξ1, . . . , ξm, l)

where (ξ1, . . . , ξm) are independent Poisson point processes on [0, β]
with intensities (λ1, . . . , λm) respectively. Let us use P

λ
β for the distri-

bution of the latter. By independence there are no simultaneous ar-
rivals, that is the type l(t) ∈ {1, . . . ,m} of an arrival is well defined for
each t ∈ ξ Δ= ∪ξl. Furthermore, conditioned on the realization of ξ the
arrival types l(t) are independent and

P
λ
β

(
l(t) = l

∣∣ t ∈ ξ
)

=
λl

λ1 + · · ·+ λm
.

Passing to the limit Δ → 0 in (2.24) and (2.19), we arrive to the fol-
lowing representation of matrix elements of exp {β

∑
λlKl}: For every

two elements of the basis Ψ, Ψ ′ ∈ {Ψi},

〈Ψ |eβ
∑
λlKl |Ψ ′〉

exp {β
∑
l λl}

=
∫

P
λ
β (dξ1 . . .dξm)

∑

Ψ∼ξ

∏

t∈ξ
〈Ψ(t−)|Kl(t)|Ψ(t)〉,

(2.25)

where, given a realization of ξ the summation is over all ξ-compatible
(having jumps only at arrival times of ξ) piecewise constant right-
continuous functions Ψ : [0, β] �→ {Ψi}, which, in addition, satisfy
boundary conditions Ψ(0) = Ψ and Ψ(β) = Ψ ′. Clearly, since X is
finite dimensional, and since, there are P

λ
β-a.s. finite number of arrivals

of ξ, there are P
λ
β-a.s. finitely many such compatible functions.
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Formula (2.25) enables a re-interpretation of various quantities
related to the Hamiltonians H in terms of stochastic geometry of the
family of Poisson processes ξ. For example,

Tr
(
eβ

∑
λlKl

)

exp {β
∑
l λl}

=
∫

P
λ
β (dξ)

∑

Ψ∼ξ
〈Ψ(0)|Ψ(β)〉

∏

t∈ξ
〈Ψ(t−)|Kl(t)|Ψ(t)〉.

(2.26)
In general, given a self-adjoint matrix A,

Tr
(
Aeβ

∑
λlKl

)

exp {β
∑
l λl}

=
∫

P
λ
β (dξ)

∑

Ψ∼ξ
〈Ψ(0)|A|Ψ(β)〉

∏

t∈ξ
〈Ψ(t−)|Kl(t)|Ψ(t)〉.

(2.27)
The approach has two degrees of freedom to play with:

1. There are different ways to decompose H as H = −
∑
λlKl.

2. There are different choices of orthonormal bases {Ψi} of X.

In the following two subsections we shall consider the FK and the
RC (random current) representation of classical Ising systems (2.9)
as different instances of the path integral representation (2.25). Then
in Section 3 we shall develop the FK and the RC representation for
genuine quantum systems in traverse magnetic field.

2.3 FK Representation

Classical FK representation corresponds to the decomposition of the
Hamiltonian HΛ in (2.9) as,

−HΛ = −

⎛

⎝
∑

(i,j)

Jij +
∑

i

h

⎞

⎠ I +
∑

(i,j)

2Jij
I + σ̂z

i σ̂
z
j

2
+

∑

i

2h
I + σ̂z

i

2
,

with matrix elements of e−βHΛ being computed in the z-basis (2.6).
In the language of the preceeding Subsection, we are dealing with

independent Poisson processes ξij of arrivals of operators Kij
Δ=

I+σ̂z
iσ̂

z
j

2
with intensities 2Jij and with independent Poisson processes ξi of ar-

rivals of operators Ki
Δ= I+σ̂z

i
2 with intensities 2h each. Let ν, ν ′ ∈ ΩΛ

be two classical configurations and let, as before, Ψν and Ψν′ be the
corresponding elements of the basis of XΛ. Then,

〈Ψν |Kij |Ψν′〉 = δ{ν=ν′}δ{νi=νj}. (2.28)
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Similarly,
〈Ψν |Ki|Ψν′〉 = δ{ν=ν′}δ{νi=1}. (2.29)

Due to our choice of the orthonormal basis, any piecewise constant
function Ψ : [0, β] �→ {Ψν} is of the form Ψν(•), where ν : [0, β] �→ ΩΛ is
a piecewise constant classical spin configuration valued function. In fact
relations (2.28) and (2.29) imply that, whatever are the realizations of
Poisson processes ξ = {ξij , ξi} the only compatible ν ∼ ξ are constant
configurations ν(•) ≡ const. Furthermore, an arrival of Kij at time
t imposes and additional constraint νi(t) = νj(t), whereas an arrival
of Ki imposes an additional constraint νi(t) = 1. It is convenient to
explore (2.25) in terms of the following graphical representation (see
Figure 1 below):

To each site i ∈ Λ we attach a time interval Sβ
Δ= [0, β]. In order to

distinguish between intervals attached to different sites we use notation
S
i
β . Points on S

i
β labeled as (i, t). An arrival of ξij at time t is visualized

as a link between (i, t) and (j, t). An arrival of ξi at time t puts a ∗-
mark at (i, t). It is also convenient to think about all ∗-marks being
linked (wired) to some ghost site g. Two intervals S

i
β and S

j
β are said

to be connected if ξij �= ∅. Thus, any realization of {ξij} splits

*
*

*

*

*

*

*

10 2 4 5 6 9 103 7 8

¯

Λ

Fig. 1. The box Λ is split into three connected components, C1 =
{1, 2, 3, 4, 5} × Sβ , C2 = {6, 7, 8, 9} × Sβ and C3 = {10} × Sβ . Components
C1 and C3 are wired, whereas C2 is free
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Λ× Sβ =
⋃

i∈Λ
S
i
β = ∪Cl

into the union of maximal connected components. Of course, each Cl
above corresponds to a subset Al of Λ,

Cl =
⋃

i∈Al

S
i
β .

A component Cl is said to be wired if ξi �= ∅ for some i ∈ Al. It is
convenient to link all wired components into one connected component.
Given a realization ξ = {ξij , ξi} of all Poisson processes of arrivals of
operatorsKij andKi let #w(ξ) be the number of all maximal connected
components Cl which are not wired to the ghost site g. Then the number
of (constant ) classical trajectories which satisfy (2.28) and (2.29) is
precisely 2#w(ξ). For each such trajectory ν(•) ≡ ν,

∏

t∈ξ
〈Ψν |Kl(t)|Ψν〉 = 1.

Consequently, let P
J,h
β,Λ be the (Poisson ) distribution of ξ. Then, (2.25)

implies,

Tr
(
e−βHΛ

)
= eβ(

∑
(i,j) Jij+

∑
i h)P

J,h
β,Λ

(
2#w(ξ)

)
. (2.30)

Define a new measure P̃
J,h
β,Λ on trajectories of point processes ξ,

P̃
J,h
β,Λ (dξ) =

2#w(ξ)
P

J,h
β,Λ (dξ)

P
J,h
β,Λ

(
2#w(ξ)

) . (2.31)

P̃
J,h
β,Λ is called FK or random cluster measure. Using (2.11) and (2.27) we

arrive to the following stochastic geometric representation of classical
expectations,

μβ,hΛ (νi) = P̃
J,h
β,Λ (i←→ g) and μβ,hΛ (νiνj) = P̃

J,h
β,Λ (i←→ j) ,

(2.32)

where the event {i←→ g} means that the connected component of S
i
β

is wired, whereas {i←→ j} means that S
i
β and S

j
β belong to the same

connected component (including the case when {i←→ g}∩{j ←→ g}).
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2.4 Random Current Representation

In its turn classical RC representation corresponds to the decomposi-
tion of the Hamiltonian HΛ in (2.9) as,

−HΛ =
∑

(i,j)

Jij σ̂
z
i σ̂

z
j +

∑

i

hσ̂z
i .

The trick is to compute matrix elements of e−βHΛ in the x-basis, which
is defined as follows: With ψ±1 being defined as in (2.5), set

φ±1 =
1√
2

(ψ1 ± ψ−1) . (2.33)

Clearly {φ−1, φ1} is an orthonormal basis of R
2. To a given classical

x-configuration ϑ ∈ ΩΛ one corresponds the vector,

Φϑ = ⊗i∈Λφϑi . (2.34)

The collection {Φϑ} is an orthonormal basis of XΛ. In the x-basis Pauli
matrix σ̂z looks like

σ̂z =
(

0 1
1 0

)
or σ̂zφ±1 = φ∓1. (2.35)

Thus in the x-basis σ̂z is just a spin-flip operator. As in (2.7) the action
of σ̂z

i on Φϑ is given by

σ̂z
iΦϑ = φϑ1 ⊗ · · · ⊗ σ̂zφϑi ⊗ . . . .

In other words, σ̂z
i flips i-th component of Φϑ.

In the language of Subsection 2.2, we are dealing with independent
Poisson processes ξij of arrivals of operatorsKij

Δ= σ̂z
i σ̂

z
j with intensities

Jij and with independent Poisson processes ξi of arrivals of operators

Ki
Δ= σ̂z

i with intensities h each. We continue to employ the running
notation P

J,h
β,Λ for the distribution of ξ.

Let ϑ, ϑ′ ∈ ΩΛ be two classical x-configurations and let, as before,
Φϑ and Φϑ′ be the corresponding elements of the x-basis of XΛ. Then,

〈Ψϑ|Kij |Ψν′〉 = δ{ϑ′=σ̂z
iσ̂

z
jϑ} and 〈Ψϑ|Ki|Ψν′〉 = δ{ϑ′=σ̂z

iϑ}. (2.36)

In other words, each arrival of operator Kij enforces a simultaneous
flip of i-th and j-th coordinate of Φ, and each arrival of operator Ki
enforces a flip of i-th coordinate of Φ. Therefore, given a realization of
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ξ, compatible space-time configurations Φ(·) ∼ ξ are deterministically
recovered from the initial value Φ(0). Therefore, there are exactly 2|Λ|

compatible configurations for each realization of ξ.
Consider now the representation of the trace in (2.26). Clearly a

space-time configuration Φ(·) contributes only if Φ(0) = Φ(β). In view
of the above description of action of operators Kij and Ki, this ob-
viously imposes a restriction on admissible realization of ξ: Namely,
there are trajectories Φ ∼ ξ with Φ(0) = Φ(β) if and only if ξ flips each
coordinate i ∈ Λ even number of times.

With a slight abuse of notation let ξij and ξi also denote the number
of arrivals of Kij , respectively Ki on the interval [0, β]. In this way ξ
will be called random currents. The total current through i ∈ Λ is
ξ[i] =

∑
j ξij + ξi and the total current through the ghost site g is

ξ[g] =
∑
i ξi. The boundary of a current is,

∂ξ
Δ= {u ∈ Λ ∪ g : ξ[u] is odd} . (2.37)

If ∂ξ = ∅, then all of 2|Λ| compatible configurations Ψ(•) ∼ ξ satisfy
Φ(0) = Φ(β), otherwise (if ∂ξ �= ∅) none of them is periodic. Conse-
quently, (2.26) implies,

Tr
(
e−βHΛ

)

eβ(
∑

(i,j) Jij+
∑

i h)
= 2|Λ|PJ,h

β,Λ (∂ξ = ∅) . (2.38)

The following representation of one and two point functions is now
almost straightforward,

μβ,hΛ (νi) =
P

J,h
β,Λ (∂ξ = {i, g})
P

J,h
β,Λ (∂ξ = ∅)

and μβ,hΛ (νiνj) =
P

J,h
β,Λ (∂ξ = {i, j})
P

J,h
β,Λ (∂ξ = ∅)

(2.39)

Switching Lemma

Let ξ and η be two independent random currents distributed according
to the product Poisson measure P

J,h
β each. We continue to P

J,h
β to denote

the product measure. Then, for every i, j and for every subset A ⊆
Λ ∪ g,

P
J,h
β,Λ (∂ξ = {i, j}) P

J,h
β,Λ (∂η = A) = P

J,h
β,Λ

(
∂ξ = ∅; ∂η = AΔ {i, j} ; i

ξ+η←→ j
)
,

(2.40)

where the event
{
i
ξ+η←→ j

}
means that there exists a path of bonds

b ∈ E from i to j with ξ(b) + η(b) > 0.
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We refer to [1] for a proof of (2.40). In view of (2.39) an immediate
consequence is the following representation of the truncated two-point
function:

μβ,hΛ (νiνj)− μβ,hΛ (νi)μ
β,h
Λ (νj) =

P
J,h
β,Λ

(
∂ξ = ∅; ∂ν = {i, j} ; i

ξ+ν

�←→ g

)

P
J,h
β,Λ (∂ξ = ∅; ∂η = ∅)

.

(2.41)

Exponential Decay of Two-point Functions
at Non-zero Magnetic Fields

Representation (2.41) and similar formulas pave the way for a stochastic
geometric interpretation of semi-invariants and give rise to a useful
intuition. As an example let us show how (2.41) implies that classical
Ising truncated two-point functions always have non-zero exponential
rate of decay once h �= 0. The argument below was developed together
with Roberto Fernandez and Yvan Velenik some time ago. As it was
pointed out by Yvan, a conventional proof could be found in [12].

Let κ = ξ+η be the combined current. Any realization of κ splits Λ
into a disjoint union of maximal connected components: as before we
say that i and j are connected if there exists a chain of bonds b leading
from i to j with κ(b) > 0 on each bond. Clearly {∂ξ = ∅; ∂η = {i, j}}
implies that ∂κ = {i, j} and, in particular that i and j are connected
in κ or, in other words, that i and j belong to the same connected
component C of κ. If R is the range of interaction, then |C| ≥ |i−j|/R,

as soon as we impose an additional constraint
{
C

κ
�←→ g

}
. It is almost

obvious now why (2.41) implies exponential decay: one should pay a
fixed price to disconnect each site l ∈ C from the ghost site g, see
Figure 2.

It remains to make the last remark precise. For any connected set
C ⊂ Λ define # (E(C,Λ \ C)) as the number of edges in E(C,Λ \ C),
where the latter is the set of edges b with Jb > 0, which have one end-
point in C and another in Λ \C. The probability p(C,Λ \C) that none
of the processes κb; b ∈ E(C,Λ \ C) arrives on the interval [0, β] is

p(C,Λ \ C) = exp
{
−2β

∑

b∈E(C,Λ\C)

Jb

}
.

Given a connected set C and i, j ∈ C, define the following event

Aij(C) =
{
∂ξC = ∅; ∂ηC = {i, j} ; C is connected in κC ; C

κC

�←→ g

}
,
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i
j

C

Fig. 2. Each site l inside the connected component C has a chance to be
connected by a direct non-zero current to the ghost site g

where ξC , ηC (respectively ξΛ\C , ηΛ\C) and κC (respectively κΛ\C) are
the restrictions of the corresponding processes to the bonds with either
both end-points at C (Λ \ C) or with one end-point at C (Λ \ C)
and another end-point being g. In this notation the expression in the
numerator in (2.41)

∑

C connected

P
J,h
β,Λ

(
∂ξΛ\C = ∅; ∂ηΛ\C = ∅

)
· p(C,Λ \ C) · PJ,h

β,Λ (Aij(C)) .

(2.42)

On the other hand, the denominator in (2.41) is certainly bounded
below by

∑

C connected

P
J,h
β,Λ

(
∂ξΛ\C = ∅; ∂ηΛ\C = ∅

)
· p(C,Λ \ C) · PJ,h

β,Λ

(
Ae
ij(C)

)
,

(2.43)
where the event

Ae
ij(C) = {∂ξC = ∅; ∂ηC = ∅; C is connected in κC} .

We claim that there exist two positive constants c1 and c2 which depend
on β, h (but not on the range R of the interaction, the dimension of
the lattice, connected C and {i, j} ⊆ C), such that,

P
J,h
β,Λ (Aij(C))

P
J,h
β,Λ

(
Ae
ij(C)

) ≤ c1e−c2|i−j|/R. (2.44)
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Indeed, for each current ηC with ∂η = {i, j} and g
ηC

�←→ C, we may
construct a family of currents

{ηC}e =
{
η+(2ri+1)δ(i,g)+(2rj+1)δ(j,g)+

∑

k∈C\{i,j}
2rkδ(k,g)

}
rl=0,1,...for l∈C .

Thus, the family {ηC}e is generated by tuples r = {rl}l∈Λ of non-
negative integers. Evidently,

{ηC}e ∩
{
η′C

}e = ∅,

whenever ηC �= η′C . Furthermore, (ξC , ηC) ∈ Aij(C) ⇒ ξC × {ηC}e ⊆
Ae
ij(C). However, for such ηC ,

P
J,h
β,Λ ({ηC}e)
P

J,h
β,Λ (ηC)

= (sinh(βh))2 · (cosh(βh))|C|−2 ,

and (2.44) follows.

3 Quantum Ising Models in Transverse Field

Quantum Ising Hamiltonian in transverse field λ is given by

−HΛ =
∑

(i,j)

Jij σ̂
z
i σ̂

x
j + h

∑

i

σ̂z
i + λ

∑

i

σ̂x
i , (3.1)

where λ ≥ 0, and (in the z-basis),

σ̂z =
(

1 0
0 −1

)
. and σ̂x =

(
0 1
1 0

)
(3.2)

Since matrices σ̂x and σ̂z do not commute, as soon as the strength of
the transverse field λ > 0, the operator HΛ does not have diagonal
form neither in z-basis (2.6), nor in the x-basis (2.34). Nevertheless,
the analog of Lie-Trotter product formula still holds,

e−βHΛ = lim
Δ→0

(∏

(i,j)

eΔJij σ̂
z
iσ̂

z
j

∏

i

eΔhσ̂
z
i

∏

i

eΔλσ̂
x
i

)β/Δ
. (3.3)

As in the classical case various choices of bases and of decomposition of
HΛ lead to different stochastic geometric representations of the model.
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3.1 FK Representation

As in the classical case the traces are computed in the z-basis. As for
the decomposition represent −HΛ as

−
(∑

(i,j)

Jij +
∑

i

h +
∑

i

λ

)
I +

∑

(i,j)

2Jij

I + σ̂z
i σ̂

z
j

2
+

∑

i

2h
I + σ̂z

i

2
+

∑

i

λ(σ̂x
i + I).

In the language of Subsection 2.2 we are dealing with Poisson process
ξ of arrivals on the interval [0, β] of the following type of operators:

• Operators Kij =
(
σ̂z
i σ̂

z
j + I

)
/2 which arrive with intensities 2Jij .

We shall call these processes links and denote them as ξij .
• Operators Khi = (σ̂z

i + I) /2 which arrive with intensities 2h. We
shall call these processes links to g and denote them as ξhi .

• Operators Kλi = σ̂x
i +I which arrive with intensities λ. We shall call

these processes holes and denote them as ξλi .

As in Subsection 2.3 piece-wise constant functions Ψ : [0, β] �→ {Ψν}
are labeled by piece-wise constant classical trajectories ν : [0, β] �→ ΩΛ.
Given a realization ξ =

{
ξij , ξ

h
i , ξ

λ
i

}
let us try to describe the family of

compatible trajectories ν ∼ ξ.
1. Since 〈Ψν |Kij |Ψν′〉 = δ{ν=ν′}δ{νi=νj}, an arrival of an (i, j)-link at

time t imposes the constraint ν(t, i) = ν(t, j).
2. Since 〈Ψν |Khi |Ψν′〉 = δ{ν=ν′}δ{νi=1}, an arrival of an (i, g)-link at

time t imposes the constraint ν(t, i) = 1.
3. Since

〈Ψν |Kλi |Ψν′〉 = δ{νj=ν′j for all j �=i},

an arrival of an i-hole at time t enables a flip of i-th coordinate
of ν(t, ·).

Thus, contrary to the classical situation considered in Subsection 2.3,
compatible configurations ν ∼ ξ are permitted to have jumps at arrival
times of ξλ. It is convenient to visualize compatible periodic ν(·) as
follows (see Figure 3): For each i ∈ Λ the process of holes ξλi splits the
circle S

i
β (which is the interval i× [0, β] with the end-points (i, 0) and

(i, β) identified) into a disjoint union of connected intervals. Two such
intervals i×I ⊆ S

i
β and j×J ⊆ S

j
β are said to be connected in ξ if there

is an arrival of ξij at a time t ∈ I ∩ J . A maximal connected cluster
∪l {il × Il} (with il-s being not necessarily different, but with {il × Il}∩
{im × Im} = ∅ whenever l �= m) is said to be connected to the ghost
site g if for some for some il a process ξhil arrives at t ∈ Il. Otherwise
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C3

C3

C2
C2

C1

C1

¯

0

Fig. 3. Configurations with periodic boundary conditions ν(i, 0) = ν(i, β).
Connected components C1 and C3 are linked to g and hence ν ≡ 1 on them.
Connected component C2 is “free” and hence one can colour it in either of
±1 colours.

such maximal connected cluster is called free. Define #w (ξ) to be the
number of maximal free connected clusters of ξ. Then, using P

J,h,λ
β,Λ for

the reference product distribution of independent Poisson processes ξ,
we arrive to the following quantum version of the FK representation
(2.30) of the trace,

Tr
(
e−βHΛ

)
= eβ(

∑
(i,j) Jij+

∑
i h+

∑
i λ)P

J,h
β,Λ

(
2#w(ξ)

)
. (3.4)

As in the classical case define a new measure P̃
J,h,λ
β,Λ on trajectories of

point processes ξ,

P̃
J,h,λ
β,Λ (dξ) =

2#w(ξ)
P

J,h,λ
β,Λ (dξ)

P
J,h,λ
β,Λ

(
2#w(ξ)

) . (3.5)

Once again, using (2.11) and (2.27) we arrive to the following stochastic
geometric representation of expectations,

Tr
(
σ̂z
i e
−βHΛ

)

Tr (e−βHΛ)
= P̃

J,h,λ
β,Λ ((i, 0) ←→ g) (3.6)

where the event {(i, 0) ←→ g} means that the S
i
β interval containing

(i, 0) belongs to a cluster which is connected to g. Similarly,

Tr
(
σ̂z
i σ̂

z
je
−βHΛ

)

Tr (e−βHΛ)
= P̃

J,h,λ
β,Λ ((i, 0) ←→ (j, 0)) , (3.7)
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where the event {(i, 0) ←→ (j, 0)} means that the corresponding S
i
β

and S
j
β intervals belong to the same connected cluster.

Ground States, Matrix and Reduced Density Matrix Elements Let us
fix a finite graph (Λ, E), coupling constants J and λ ≥ 0. In order to
facilitate the notation we shall set magnetic filed in z-direction to zero,
h = 0. For each β ∈ R, z-matrix elements ρz

β(ν, ν
′) are defined via,

ρz
β(ν, ν

′) =
〈Ψν |e−βHΛ |Ψν′〉

Tr (e−βHΛ)
. (3.8)

In order to derive an appropriate expression in terms of Poisson arrival
measures P

J,λ
β,Λ or in terms of the FK measures P

J,λ
β,Λ we should introduce

a modification of the notion of connected components of ξ. Originally,
those were defined as unions of sub-intervals of Sβ . However, in the
computation of matrix elements we, obviously, do not impose periodic-
ity conditions. In the sequel, given a subset A ⊂ Λ and a configuration ξ
let ξA be obtained from ξ via adding holes at all the points (i, 0) = (i, β)
with i ∈ A. One can think about ξA in terms of slitting the A-part of
ξ along t = 0.

Any piece-wise trajectory ν : [0, β] → ΩΛ which contributes to the
numerator in (3.8) satisfies boundary conditions,

ν(i, 0) = νi and ν(i, β) = ν ′i ∀ i ∈ Λ.

As a result, realizations of ξ which place points (i, T ) and (j, S) (with
i, j ∈ Λ and T, S = 0 orβ) with ν(i, T ) �= ν(j, S) into same connected
components of the slit configuration ξΛ do not have compatible trajec-
tories at all. Let us say that ξΛ ∼ {ν, ν ′}, if the latter does not happen.
If ξΛ ∼ {ν, ν ′}, then the set of all ξ-compatible trajectories, which con-
tribute to the denominator in (3.8) is constructed in the following way:
Each connected cluster of ξΛ whose closure hits either t = 0 or t = β
layers inherits the z-spin value from ν or ν ′. On the other hand, each
interior cluster of ξΛ or, alternatively each cluster of ξ which does not
contain points with 0 = β time coordinates, could be still coloured into
±1. Clusters of ξ which are not interior are called boundary. Thus, if
we use #0(ξ) and #∂(ξ) = #(ξ) − #0(ξ) for the number of interior
(respectively boundary ) clusters of ξ,

ρz
β(ν, ν

′) =
P

J,λ
β,Λ

(
ξΛ ∼ {ν, ν ′} ; 2#0(ξ)

)

P
J,λ
β,Λ

(
2#(ξ)

) = P̃
J,λ
β,Λ

(
ξΛ ∼

{
ν, ν ′

}
; 2−#∂(ξ)

)
.

(3.9)
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For each λ > 0 there exist non-trivial limits P
J,λ
∞,Λ and P̃

J,λ
∞,Λ as β →∞.

These measures could be constructed directly: P
J,λ
∞,Λ is just the distri-

bution of Poisson processes of arrival ξ on R. Connected components
of ξ are understood now as linked sub-intervals of R over various spa-
tial coordinates i ∈ Λ. The FK measure P̃

J,λ
∞,Λ is then constructed via

modification of P
J,λ
∞,Λ by the 2#(ξ) factor (as a limiting procedure, of

course). Boundary clusters of the slit configuration ξΛ are coloured in
this way according to ν just above the t = 0 layer and according to ν ′

just below it. If we slit along all of Λ, then the compatibility condition
ξΛ ∼ {ν, ν ′} decouples into {ξ+ ∼ ν} ∩ {ξ− ∼ ν ′} for the upper and
lower halves ξ+ and ξ− of configuration ξ. At this point it makes sense
to introduce Poisson P

J,λ,+
∞,Λ and, accordingly, FK P̃

J,λ,+
∞,Λ measures for

arrival processes on R+. It is straightforward now to check that matrix
elements ρz

∞(ν, ν ′) = 〈Ψν |Ψ〉〈Ψ |Ψν′〉, which are generated by projections
of the ground state Ψ of HΛ are given by,

ρz
∞(ν, ν ′) = P̃

J,λ
∞,Λ

(
ξΛ ∼

{
ν, ν ′

}
; 2−#∂(ξ)

)
. (3.10)

In the notation just introduced above the latter expression equals to

〈Ψν |Ψ〉〈Ψ |Ψν′〉 = P̃
J,λ,+
∞,Λ

(
ξ ∼ ν; 2−#∂(ξ)

)
P̃

J,λ,+
∞,Λ

(
ξ ∼ ν ′; 2−#∂(ξ)

)
.

Similarly, for A ⊆ Λ and θ, θ′ ∈ {±1}A, the reduced density matrix
entry ρz

∞,A(θ, θ′) is given by

ρz
∞,A(θ, θ′) = P̃

J,λ
∞,Λ

(
ξA ∼

{
θ, θ′

}
; 2−#∂,A(ξ)

)
, (3.11)

where the compatibility condition ξA ∼ {ν, ν ′} for the slit configuration
ξA is defined in the obvious way, and #∂,A(ξ) stands for the number of
connected clusters of ξ which contain points (0, i) with i ∈ A.

3.2 Random Current Representation

In order to derive an appropriate version of random current represen-
tation let us rewrite the Hamiltonian (3.1) as

−
(∑

i

λ

)
I +

∑

(i,j)

Jij σ̂
z
i σ̂

z
j +

∑

i

hσ̂z
i +

∑

i

2λ
σ̂x
i + I
2

.

As in the classical case the traces are going to be computed in the
x-basis (2.34). Thus, in the language of Subsection 2.2 we are dealing
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with Poisson process ξ of independent arrivals on [0, β] of the following
type of operators:

• Operators of simultaneous (ij)-flipsKij = σ̂z
i σ̂

z
j which arrive with in-

tensities Jij . We shall denote the corresponding Poisson process ξij .
• Operators of i-flips Khi = σ̂z

i which arrive with intensity h each. The
corresponding Poisson processes are denoted as ξhi .

• Operators Kλi = (σ̂x +I)/2 which arrive with intensity 2λ each. The
corresponding Poisson process is denoted ξλi . Since,

〈Φϑ|Kλi |Φϑ′〉 = δ{ϑ=ϑ′}δ{ϑi=1},

an arrival of ξλi at time t imposes the constraint ϑ(i, t) = 1 for every
ξ-compatible classical piece-wise constant x-trajectory ϑ : [0, β] �→
ΩΛ. We shall refer to ξλ as to processes of marks.

Accordingly, for a given realization of ξ compatible periodic piece-wise
constant trajectories ϑ(·) are characterized as follows:

1. Arrivals of ξij and of ξhi enforce simultaneous flips of i-th and j-th
coordinates of ϑ, respectively of i-th coordinate of ϑ. These are the
only jumps of ϑ(·).

2. For each i ∈ Λ, ϑ(i, t) = 1 at all arrival times of ξλi .

Let us try to compute the number of ξ-compatible trajectories ϑ for a
given realization ξ. It is natural to modify the notion of the boundary
∂ξ as follows: For every i ∈ Λ the process of marks ξλi splits the circle
S
i
β into the disjoint union of intervals,

S
i
β \ ξλi = ∪m(i)

l=1 J
(i)
l

Δ= ∪m(i)
l=1 il × I

(i)
l . (3.12)

The number m(i) of such disjoint intervals equals to 1 if ξλi = 0 and
to ξλi otherwise. Let us say that an interval J (i)

l in the decomposition
(3.12) belongs to the boundary ∂ξ if (see Figure 4) the total current
through J (i)

l

ξ[J (i)
l ] Δ=

∑

j∈Λ\i
ξij(J

(i)
l ) + ξhi (J

(i)
l ),

is odd. Evidently, there are periodic compatible ϑ ∼ ξ iff ∂ξ = ∅. In
the later case, there is a unique compatible trajectory ν(i, ·) for every
marked i ∈ Λ such that ξλi > 0 and, accordingly, there are precisely
two compatible trajectories for every unmarked i with ξλi = 0. Let
#m (ξ) = #

{
i : ξλi = 0

}
be the total number of unmarked intervals

[0, β]. By the general trace formula (2.26),
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t1

t2

t3

J1
(i)

J2
(i)

J3
(i)

∪ ( Λ \ i )

Fig. 4. The arrival times of the process of marks ξλi are t1, t2 and t3.
Accordingly, S

i
β is split into three marked intervals J (i)

1 , J
(i)
2 and J (i)

3 . The

total number of arrivals of flips on J (i)
3 equals to three, hence J (i)

3 ⊆ ∂ξ.

Tr
(
e−βHΛ

)

eβ(
∑

(i,j) Jij+
∑

i h+
∑

i λ)
= P

J,h,λ
β

(
2#m(ξ) ; ∂ξ = ∅

)
. (3.13)

Thus, contrary to what happened in the the classical case, one should
modify the reference (Poisson ) measure. Define,

P̃
J,λ,h
β,Λ (dξ) =

2#m(ξ)
P

J,λ,h
β,Λ (dξ)

P
J,λ,h
β,Λ

(
2#m(ξ)

) .

Then, as in the classical case, the following random current represen-
tation of one and two point functions hold: Let J(i, t) be the marked
interval containing (i, t). Then,

Tr
(
σ̂z
i e
−βHΛ

)

Tr (e−βHΛ)
=

P̃
J,λ,h
β,Λ (∂ξ = J(i, 0) ∪ g)

P̃
J,λ,h
β,Λ (∂ξ = ∅)

(3.14)

and, similarly,

Tr
(
σ̂z
i σ̂

z
je
−βHΛ

)

Tr (e−βHΛ)
=

P̃
J,h,λ
β,Λ (∂ξ = J(i, 0) ∪ J(j, 0))

P̃
J,h,λ
β,Λ (∂ξ = ∅)

(3.15)

It is, of course, a very natural question what should be a correct analog
of the switching lemma in the quantum case. A closed form answer is
still missing, but some aspects of this issue are discussed in [9].1

1 Appropriate versions of switching lemma were recently derived by Crawford and
Ioffe [10] and by Björnberg and Grimmett [5].
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Ground States, Matrix and Reduced Density Matrix Elements Let us
briefly sketch how matrix and reduced density matrix elements in the
x-basis could be written using the RC representation. Again, in order
to simplify the notation we shall consider only the case of h = 0, and,
exactly as in the end of Subsection 3.1, we shall directly pass to the
ground state limit β → ∞. In the ground state we are dealing with
processes of arrivals ξ on the whole real line R. We use P

J,λ
∞,Λ to denote

the corresponding product measure. Evidently, ξλi �= ∅ ∀i P
J,λ
∞,Λ-a.s. In

other words, for each i ∈ Λ the copy of the real line associated with i
contains marks. As in the FK case, given ξ and a subset A ⊆ Λ, we
use ξA to denote the slit configuration: except that now we view ξA as
ξ with additional marks placed at time zero for each i ∈ A.

With such notation in mind we classify all marked intervals of ξλ

and ξλA as follows:

1. Marked interval i× I of ξλ belong to M0(ξλ) if 0 ∈ I. Otherwise it
belongs to Mext(ξλ).

2. Marked intervals of the type i × (0, t) of ξA belong to M+
0 (ξA).

Similarly, marked intervals of the type i × (−t, 0) of ξA belong to
M−

0 (ξλA).
3. All other marked intervals are ξA are also marked intervals of ξ and

we classify them as M0(ξλA) and Mext(ξλA).

Accordingly, we define the boundaries ∂0ξ, ∂extξ, ∂+
0 ξA, ∂−0 ξA, ∂0ξA

and ∂extξA as e.g.,

∂0ξ =
{
i× I ∈M0(ξλ) : ξ[i× I] is odd

}
.

Let us introduce the following conditional measure

M
J,λ
∞,Λ = P

J,λ
∞,Λ (·|∂extξ = ∅) .

Since Λ is finite the above definition can be easily turned into a mean-
ingful one via an appropriate limiting procedure.

Let ϑ, ϑ′ ∈ {±1}Λ be two classical x-configurations, and let
ρx
∞ (ϑ, ϑ′) be the corresponding matrix element. From our interpre-

tation of a mark in terms of a +1-spin enforcement at the correspond-
ing space-time arrival point, it is apparent that that ξ contributes to
ρx
∞ (ϑ, ϑ′) iff the following event E±(ϑ, ϑ′) = E+(ϑ) ∩ E−(ϑ′) occurs:

1. Event E+(ϑ): For every i× I ∈M+
0 (ξλΛ), i× I ∈ ∂+

0 ξA iff ϑi is −1.
2. Event E−(ϑ′): For every i× I ∈M−

0 (ξλΛ), i× I ∈ ∂−0 ξA iff ϑ′i is −1.



Stochastic Geometry of Ising Models 111

Then,

ρx
∞

(
ϑ, ϑ′

)
=

M
J,λ
∞,Λ (E±(ϑ, ϑ′))

M
J
∞,Λ, λ (∂0ξ = ∅)

.

In a similar fashion for A ⊆ Λ and two classical x-configurations θ, θ′ ∈
{±1}A define the event EA±(θ, θ′) exactly as above, except that even/odd
conditions on currents are restricted to intervals i × I from M±

0 (ξλA).
Then, the (θ, θ′) entry of the reduced density matrix is given by,

ρx
∞,A

(
θ, θ′

)
=

M
J,λ
∞,Λ

(
EA±(θ, θ′); ∂0ξA = ∅

)

M
J,λ
∞,Λ (∂0ξ = ∅)

.

4 Curie-Weiss Model and Erdős-Rényi Random Graphs

Classical Curie-Weiss mean-field Hamiltonian HCW
N is a function on

ΩN = {±1}N ,

−HCW
N (ν) =

1
N

∑

(i,j)

νiνj , (4.1)

where, as before, the summation is over all unordered pairs of i �= j.
In the language of Subsection 2.1,

{
HCW
N (ν)

}
are eigenvalues of the

quantum Hamiltonian HCW
N ,

HCW
N Ψν = HCW

N (ν)Ψν , where −HCW
N =

1
N

∑

(i,j)

σ̂z
i σ̂

z
j .

Accordingly, for a given value of the inverse temperature β, the distri-
bution of ν is,

μβN (ν) =
1
ZN

e−βH
CW
N (ν) =

〈Ψν |e−βH
CW
N (ν)|Ψν〉

Tr
(
e−βH

CW
N (ν)

) . (4.2)

One way to pin down phase transition in the CW model is to study
statistical properties of the mean magnetization

ν̄N
Δ=

1
N

∑

i

νi,

under μβN . As it is well known, for β ≤ 1, the distribution of ν̄N is
sharply concentrated around ±m∗, where the spontaneous magnetiza-
tion m∗ = m∗(β) equals to zero for β ≤ 1 and is positive (and hence



112 D. Ioffe

there are coexisting ±phases) for β > 1. This could be verified in two
different ways, which correspond to two equality signs in (4.2): either
directly through large deviation computations for Bernoulli random
variables, or using the geometric FK representation as described in Sub-
section 2.3. In the latter case phase transition in the CW model is re-
lated to emergence of the giant component in the classical Erdős-Rényi
random graph. Both methods are briefly recalled in Subsection 4.1

The main objective of this Section, however, is to explain that a
very similar story happens with the quantum CW model in transverse
field,

−HCW
N =

1
N

∑

(i,j)

σ̂z
i σ̂

z
j + λ

∑

i

σ̂x
i .

In particular, there is a natural inclusion of (one parameter) Erdős-
Rényi random graph models into a two-parameter family of space-time
random graphs. In this way classical Erdős-Rényi critical point β = 1 is
just the limiting point on the whole critical curve in the (β, λ) plane. It
is somewhat amusing that, apparently, such quantum version of Erdős-
Rényi random graphs was overlooked for a long time, and the corre-
sponding critical curve was originally computed only in [15].

Contrary to what happens in the classical case, however, for the
moment it is not clear how recover the critical curve for the quantum
CW model in the transverse field from the critical curve for the quan-
tum Erdős-Rényi random graph, although a conjecture has appeared
in [14]. In principle, the quantum CW critical curve could be derived
from the results of [17], where limiting states were classified for essen-
tially all mean field type models. Alternatively, one can use infinite
dimensional theory of large deviations, see [11] and references therein.
In the concluding Subsection 4.3 we shall briefly report on recent re-
sults of [9]. As in [11] the approach relies on a partial Trotterization
of the mean-field Hamiltonian under, however, a different choice of ar-
rival operators associated to transversal field: Ours corresponds to the
FK setup of Subsection 3.1. Such FK point of view leads to certain
advantages and, as a result, we go beyond just computing the critical
curve itself. In particular, we are able to derive sharp asymptotics of
the spontaneous magnetization m∗(β, λ) in the vicinity of the critical
curve, and for (β, λ) away from the critical curve we are able to derive
quadratic stability bounds for maximizers of the corresponding infinite
dimensional mean-field variational problem.
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4.1 Classical Case

The probability measure νβN in (4.2) could be described in the following
way: Let Q be the uniform (1/2) distribution on {±1} and let ⊗Q be
the corresponding product measure on ΩN = {±1}N . Then,

μβN (ν) =
⊗Q

(
eNβ(ν̄N )2/2; ν

)

⊗Q
(
eNβ(ν̄N )2/2

) . (4.3)

Then, elementary one-dimensional theory of large deviations implies
that μβN exponentially concentrates around

{
ν : ν̄N is close to argmax

(β
2
m2 − I(m)

)}
,

where I is the large deviation rate function for ν̄N under ⊗Q,

I(m) = sup
h
{hm− Λ(h)} and Λ(h) = log Q

(
ehν

)
= log

eh + e−h

2
.

It is easy to see that I is strictly convex and differentiable on (−1, 1)
with I ′(m) → ±∞ asm→ ±1. In particular, the supremum of βm2/2−
I(m) is actually attained inside (−1, 1) for any β ∈ R+. Furthermore,
since I(·)/β is the convex conjugate of Λ(β·)/β,

argmax
{
m2

2
− 1
β
I(m)

}
= argmax

{
1
β
Λ(βh)− h

2

2

}
. (4.4)

But Λ(β·) is the log-moment generating function of the ±β Bernoulli
random variable. If we use Qβ for the corresponding distribution, then
it is straightforward to check that the maximizers in (4.4) are of the
form ±m∗(β), where m∗(β) > 0 iff,

1 <
1
β

Var (β) (ν) =
β2

β
, (4.5)

and we, thereby, recover the critical value β = 1 of the classical CW
model.

Relation to Random Graphs. Let us go back to the definition of the
classical FK measure in (2.31), and let us use the shorthand notation
P̃β,N for the CW case at zero magnetic field, J ≡ 1/N and h = 0. By

the second equality in (4.2), the distribution μβN can be constructed
from P̃β,N as follows:
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First sample arrival processes ξ = {ξij} from P̃β,N . Two sites i and
j (or, equivalently, two circles S

i
β and S

j
β) are said to be connected in

ξ if ξij �= ∅. Thus, any realization of ξ splits {1, . . . , N} into maximal
connected components. At the second step paint those connected com-
ponents into ±1 independently and with probability 1/2 each. In fact
we have just constructed a joint measure Mβ,N (dξ, ν) with marginals
P̃β,N and μβN .

In view of such two-step construction of μβN , the critical point β = 1
and the value of the spontaneous magnetization m∗(β) could be re-
covered now from the following facts about the FK measures P̃β,N on
complete graph: With P̃β,N -probabilities tending to 1, as N tends to∞,

1. For β < 1 all connected components of ξ have sizes O(logN) at
most.

2. For β > 1, there is exactly one giant connected component of size
∼ m∗(β)N , whereas the remaining connected components of ξ have
sizes O(logN) at most.

Above statements are similar to classical results on the emergence of
giant component in random complete graphs. Indeed, by construction,

P̃β,N (dξ) =
2#(ξ)

Pβ,N (dξ)

Pβ,N

(
2#(ξ)

) , (4.6)

where #(ξ) is the number of connected components of ξ (recall that
since we take h = 0 there are no wired components as in the general for-
mula (2.31)). We can think about Pβ,N in terms of Erdős-Rényi random
graph on {1, . . . , N} where bonds between different sites i, j are placed
independently and with probability 2β/N each. Indeed, 1− e−2β/N is
the probability that ξij �= ∅. Furthermore, as it was observed by Ed-
wards and Sokal [13], the conditional ξ-marginal of

Mβ,N (·|ν1 = 1, . . . , νM = 1, νM+1 = −1, . . . , νN = −1)

is exactly Pβ,M ⊗Pβ,N−M . Since max {M,N −M} ≥ N/2, the inequal-
ity βc ≤ 1 for the critical FK value of β is immediately implied by
classical Erdős-Rényi results, see e.g. [6]: Let {1, . . . ,K} be the com-
plete graph of K sites. Assume that an (un-oriented) edge (i, j) is open
with probability ε/K independently from all other edges. Then εc = 1
is the threshold for the emergence of the giant component. Moreover,
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in the case of ε > 1 the density ρ(ε) of the giant component is asymp-
totically close to the positive solution of

1 − ρ = e−ερ. (4.7)

In over case, K = max {M,N −M} ≥ N/2, and hence 2β/N > 1/K
whenever β > 1.

The reverse inequality βc ≥ 1 is not much harder: Assume that
β < 1. Without loss of generality we can consider only the case when
the total number of + spins M ≤ N/2. Then, under Pβ,M all the con-
nected components of {1, . . . ,M} are small. A-priori, a giant connected
component still could appear under Pβ,N−M . Let ρ be the density of
this component. Then (1 − ρ)(N −M) of the remaining − spins live
on small components of sizes O(logN) at most. Since in the origi-
nal coupled measure Mβ,N all the small connected components were
coloured independently, we infer thatM ∼ (1−ρ)(N−M). Accordingly,
K
Δ= N −M ∼ N/(2− ρ) and hence 2β/N ∼ ε/K with ε = 2β/(2− ρ).

Thus, by (4.7), the relative density ρ should satisfy

1 − ρ = e−2βρ/(2−ρ).

But the latter equation does not have a positive solution. Indeed, set
θ = ρ/(2− ρ) or ρ = (1− θ)/(1 + θ). Then θ is positive as soon as ρ is
positive, and

1− θ
1 + θ

= e−2βθ

Taking logs and expanding,

2θ +
2
3
θ3 + . . . = 2βθ,

which is impossible unless θ = or β > 1.
A general class of FK models on complete graphs is examined in [7].

4.2 Curie-Weiss Model in Transverse Field and Quantum
Random Graphs

Quantum Curie-Weiss Hamiltonian in transverse field λ ≥ 0 is given by,

−HCW
N =

1
N

∑

(i,j)

σ̂z
i σ̂

z
j + λ

∑

i

σ̂x
i .

Following the approach of Subsection 3.1 we associate to HCW
N the

following family ξ of independent Poisson processes of arrivals on the
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circle Sβ : For each un-oriented couple (i, j) operators
(
I + σ̂z

i σ̂
z
j

)
arrive

with intensity 2/N , whereas operators (I + σ̂x
i ) arrive with intensity λ

for every i = 1, . . . , N . Connected components of {1, . . . , N} × Sβ in-
duced by ξ are defined precisely as in Subsection 3.1. Recall that each
such connected component C is represented as a union,

C =
⋃

l

{il × Il} ,

of disjoint space-time intervals. The size of C could be measured in
several ways: For example we can compute number of different spatial
coordinates (out of {1, . . . , N}) which contribute to C. The most natural
definition of the size, however, is

|C| =
∑

l

|Il|, (4.8)

that is the total length of all time intervals of C.
Since we consider the case of zero z-field, all connected components

of ξ are free. Consequently, the FK modification P̃
λ
β,N of the reference

product Poisson measure P
λ
β,N is given by

P̃
λ
β,N (dξ) =

2#(ξ)
P
λ
β,N (dξ)

P
λ
β,N

(
2#(ξ)

) , (4.9)

In view of (3.7) it is suggestive to try to study the question of phase
co-existence in terms of emergence of giant components under P̃

λ
β,N .

Note that in a genuine quantum case of λ > 0, this is a non-trivial
question even in the ground state limit when β → ∞. In fact, instead
of one critical value of β one should face here a whole critical curve in
the (λ, β) positive quarter plane. For the moment we do not know how
to derive this curve via direct analysis of random space-time graphs
induced by the family of quantum FK measures (4.9). This, however,
is a meaningful question even for the reference family of measures P

λ
β,N .

Quantum Random Graphs As it is apparent from a comparison between
(4.9) and (4.6) the measures P

λ
β,N play the same role for the quantum

Curie-Weiss model in transverse field as Erdős-Rényi random graphs
Pβ,N play for the classical CW model. Accordingly, we shall refer to the
collection of independent Poisson processes of holes and links induced
by P

λ
β,N as to quantum random graphs. In order to be compatible with

the usual random graph notation let us modify the arrival rates un-
der P

λ
β,N in the following way: The holes still arrive with intensity λ,
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¯

¸

¸c= 2

¯c= 1

ALRO

ASRO

(¯;¸ ) = 1

Fig. 5. Decomposition of the (β, λ) quarter plane into the short range and
long range regions.

however the links between an unordered pair of sites i �= j arrive now
with intensity 1/N . In this way βc = 1 is the classical critical value
which corresponds to λ = 0. The main result of [15] asserts that the
full critical curve for the family of quantum random graphs is implicitly
given by,

F(β, λ) Δ=
2
λ

(
1− e−λβ

)
− βe−λβ = 1. (4.10)

The curve is depicted on Figure 5. Note that the classical critical value
βc = 1 is just the end-point of the curve on β-axis. Notice also that
the critical value of λ in the ground state model β = ∞ equals to
λc = 2. Let us be more specific about the nature of phase transition for
quantum random graphs: The critical curve (4.10) splits the positive
quarter-plane into

ALRO
Δ= {(β, λ) : F(β, λ) > 1} and ASRO

Δ= {(β, λ) : F(β, λ) < 1} ,

where LRO (respectively SRO) stands for long (respectively short)
range order. Here is a justification for such a terminology: By defi-
nition, two points (i, t), (j, s) are connected in ξ, if the intervals con-
taining these points belong to the same connected component C in the
ξ-induced decomposition of {1, . . . , N}×Sβ . We shall denote the latter
event as {(i, t)←→ (j, s)}. Then,

1. If (β, λ) ∈ ASRO, then

P
λ
β,N ((i, t) ←→ (j, s)) = O

( logN
N

)
(4.11)

uniformly in t, s ∈ Sβ and i �= j.
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2. On the other hand, if β < ∞ and (β, λ) ∈ ALRO, then there exists
ρ = ρ(β, λ) ∈ (0, 1), such that

P
λ
β,N ((i, t) ←→ (j, s)) = ρ(β, λ)2 (1 + o(1)) , (4.12)

also uniformly in t, s ∈ Sβ and i �= j.
As in the classical Erdős-Rényi case the short/long range order transi-
tion for β <∞ is related to an emergence of a unique giant connected
component. In fact, the number ρ(β, λ) in (4.12) is precisely the limit-
ing space-time density of the latter. More precisely, let us use (4.8) to
measure sizes of random connected components of {1, . . . , N}×Sβ . Let
M and Mnext be the largest and the next to the largest sizes of these
connected components (of course, these definitions make sense only for
β <∞). Then,

1. If (β, λ) ∈ ASRO, then for every κ > 0 there exists c = c(β, λ, κ) <
∞, such that

P
λ
β,N

(∣∣C ((i, t))
∣∣ > c logN

)
= o

( 1
Nκ

)
, (4.13)

where C((i, t)) is the connected component containing (i, t). Clearly,
the distribution of

∣∣C ((i, t))
∣∣ is the same for all i ∈ {1, . . . , N} and

t ∈ Sβ (by definition S∞ = R). Furthermore, if β <∞, then

P
λ
β,N (M > c logN) = o

( 1
Nκ−1

)
(4.14)

2. If, however, β <∞ and (β, λ) ∈ ALRO then there exists a sequence
of positive numbers εN (β, λ) → 0 such that,

P
λ
β,N

(∣∣∣∣
|C((i, t))|
Nβ

− ρ
∣∣∣∣ < εN

)
= ρ(β, λ)(1− o(1)), (4.15)

where ρ(β, λ) is the same probability as in (4.12). Furthermore, in
the β <∞ case, there exists a constant c = c(β, λ) <∞ such that

P
λ
β,N (E(ρ, εN , c)) = 1− o(1), (4.16)

where the event E(ρ, εN , c) is defined via

E(ρ, εN , c) =
{∣∣∣∣
M
βN

− ρ
∣∣∣∣ < εN

}
∩
{
Mnext < c logN

}
. (4.17)
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The original proof of the above results appeared in [15]. Afterwards, the
statements related to the β < ∞ case were re-proven using somewhat
different methods in [16].

We finish this Subsection by indicating how the expression (4.10)
comes into play. As in the classical case one couples a construction of
a single connected component with a Galton-Watson process. In the
quantum case descendant of a point (i, t) ∈ {1, . . . , N} are generated
in the following fashion:

1. First generate a random interval I ⊆ Sβ around (i, t),so that the
end-points of I would imitate two successive holes. Since the holes
arrive with intensity λ the length |I| should be distributed as
min {Γ (2, λ), β}.

2. Given a realization of I ) t, the number of all links to i which ar-
rive during I is distributed Poisson(N−1

N |I|). In the Galton-Watson
approximation we take it to be exactly Poisson(|I|).

Accordingly, if we denote the number of descendants in the Galton-
Watson approximation by X, then E(X|I) = |I|. Let V ∼ Γ (2, λ)
Then,

E (|I|) = E (V ;V < β) + βP (V ≥ β) ,

Now,

P (V ≥ β) =
∫ ∞

β
λ2te−λtdt = (λβ + 1)e−λβ.

In the same fashion,

E (V ;V ≤ β) =
2
λ

(
1− e−λβ

)
−

(
β2λ+ 2β

)
e−λβ.

Consequently,

E (|I|) =
2
λ

(
1− e−λβ

)
− βe−λβ,

which is precisely the expression in (4.10).

4.3 Critical Curve for Quantum Curie-Weiss Model
via Large Deviations

Large deviation representation of the CW model in transverse field is
obtained via partial linearization in the Lie-Trotter product formula
(or partial Poissonization of the CW Hamiltonian). Namely,

e−βH
CW
N

eλN
= lim
Δ→0

(
∏

(i,j)

e
Δ
N
σ̂z

iσ̂
z
j

∏

i

{(1−Δλ)I +Δλ(σ̂x
i + I)}

)β/Δ
. (4.18)
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Note that matrices e
Δ
N
σ̂z

iσ̂
z
j are diagonal in the z-basis,

〈Ψν |e
Δ
N
σ̂z

iσ̂
z
j |Ψν′〉 = e

Δ
N
νiνj . (4.19)

Let P
λ
β be the distribution of the Poisson point process (of holes) on

the circle Sβ with arrival intensity λ. We shall use ⊗P
λ
β for the product

distribution of N independent copies ξ = (ξ1, . . . , ξN ). Given a real-
ization of ξ let us say that a classical piece-wise constant trajectory
ν : S

β �→ {±1}N is compatible with ξ; ν ∼ ξ, if for every i = 1, . . . , N
jumps of νi(·) occur only at arrival times of ξi. Passing to the limit in
(4.18) we, in view of (4.19), infer

Tr
(
e−βH

CW
N

)

eλN
=

∫
⊗P

λ
β(dξ)

∑

ν∼ξ
exp

{∫ β

0

1
N

∑

(i,j)

νi(t)νj(t)dt
}
. (4.20)

For every i let #(ξi) be the number of connected components of Sβ \ξi.
Evidently, the number of all compatible ν ∼ ξ equals to 2

∑
i #(ξi). Define

P̃
λ
β (dξ) =

2#(ξ)
P
λ
β (dξ)

P
λ
β

(
2#(ξ)

)

This is just the one-circle FK measure. Consider probability distri-
bution Q

λ
β on piece-wise constant classical one-circle spin trajectories

ν : Sβ �→ {±1} which is generated by the following two step procedure:
First sample ξ from P̃

λ
β , and then paint connected components of Sβ \ ξ

into ±1, independently and with probability 1/2 each. Let ⊗Q
λ
β be the

corresponding product measure. It is straightforward to check that the
righthand side of (4.20) equals to

[
P̃
λ
β

(
e#(ξ)

)]N
⊗Q

λ
β

(
exp

{∫ β

0

1
N

∑

(i,j)

νi(t)νj(t)dt
})
.

Consequently, an analysis of phase diagram of the CW model in trans-
verse filed boils down to an investigation of asymptotic properties for
weighted measures

⊗Q̃
λ
β(dν)

Δ=
⊗Q

λ
β

(
exp

{
N
2

∫ β
0 (ν̄N (t))2 dt

}
; dν

)

⊗Q
λ
β

(
exp

{
N
2

∫ β
0 (ν̄N (t))2 dt

}) , (4.21)
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where,
ν̄N (t) =

1
N

∑

i

νi(t).

This problem belongs to the realm of theory of large deviations. For-
mally, the measures (4.21) are asymptotically concentrated around so-
lutions of

sup
m

{1
2

∫ β

0
m2(t)dt − I(m)

}
Δ= sup

m
G(m), (4.22)

where I is the large deviation rate function for the average ν̄N under the
product measures ⊗Q

λ
β . If we formulate the large deviation principle in

L2(Sβ), then, using (·, ·)β for the corresponding scalar product,

I(m) = sup
h
{(h,m)β − Λ(h)} where Λ(h) = log Q

λ
β

(
e(h,ν)β

)
.

(4.23)
A detailed analysis of the variational problem (4.22) and of the weighted
measures Q̃

λ
β,N will appear in the forthcoming [9]. Here we shall try to

give a brief sketch of the results and techniques, in particular, we shall
explain how the critical curve of the CW model in the transverse field
could be read from (4.22).

The critical curve is implicitly given by

f(λ, β) Δ=
1
β

Varλ (β) ((ν, 1I)β) =
1
λ

tanh(λβ) = 1, (4.24)

where Varλ (β) is the variance under the one-circle spin measure Q
λ
β . As

we show in [9], the variational problem (4.22) has constant maximizers
±m∗(λ, β), where the spontaneous z-magnetization m∗ satisfies:

1. If f(λ, β) ≤ 1, then m∗ = 0.
2. If f(λ, β) > 1, thenm∗ > 0, and, consequently there are two distinct

solutions to (4.22).

Furthermore, away from the critical curve the solutions ±m∗1I are sta-
ble in the following sense: There exists c = c(λ, β) > 0 and a strictly
convex symmetric function U with U(r) ∼ r log r growth at infinity
such that

G(±m∗1I)−G(m) ≥ cmin
{
‖m−m∗1I‖2β , ‖m+m∗1I‖2β

}
+
∫ β

0
U(m′(t))dt.

(4.25)
The second term above is important in the super-critical regime
(f(λ, β) > 1) since it rules out trajectories of ν̄N (·) with rapid transi-
tions between the optimal values ±m∗.
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Properties of One-circle Spin Measures

The following properties of Q
λ
β are crucial for the analysis of (4.22):

1. Q
λ
β possesses the FKG property.

2. Q
λ
β satisfies the following qualitative version of the GHS inequality:

Given h ∈ R+ define the tilted measure

Q
λ,h
β (dν) =

Q
λ
β

(
eh(ν,1I)β ; dν

)

Q
λ
β

(
eh(ν,1I)β

) .

Then, there exists c1 = c1(λ, β) > 0, such that

d
dh

Varλ,h (β) ((ν, 1I)β) ≤ −c1he−2βh. (4.26)

3. Q
λ
β is reflection positive: Let n ∈ N, 0 < t1 < · · · < tn < β/2 and

let f : {±1}n → C. Set sk = β − tk. Then,

Q
λ
β

(
f(νt1 , . . . , νtn)f̄(νs1 , . . . , νsn)

)
≥ 0. (4.27)

Properties 1. and 3. are more or less immediate since Q
λ
β could be

viewed in terms of an approximation by ferromagnetic nearest neigh-
bour one-dimensional Ising models. Namely, let us approximate ξ by
Bernoulli point process of arrivals ξΔ, exactly as in (2.21). Modify
Bernoulli weights by 2#(ξΔ) and paint connected components of S \ ξΔ
into ±1, independently and with probability 1/2 each. Then, the re-
sulting measure Q

λ
β,Δ approximates Q

λ
β . Of course Q

λ
β,Δ charges only

trajectories ν which jump at times jΔ. For such trajectories,

Q
λ
β,Δ(ν) ∼

β/Δ−1∏

i=0

(
δ{ν(iΔ)=ν((i+1)Δ)} +Δλδ{ν(iΔ)=ν(i+1)Δ}

)
.

Set J = J(Δ,λ) = − log
√
Δλ. Since

δ{ν(iΔ)=ν((i+1)Δ)} +Δλδ{ν(iΔ)=ν((i+1)Δ)} =
eJν(iΔ)ν((i+1)Δ)

eJ
,

we recognize Q
λ
β,Δ as a scaling of the nearest neighbour Ising model on

discrete circle Sβ/Δ at unit temperature and with interaction strength
J(Δ,λ).

Inequality (4.26) is proved in [9] using the same approximation (by
1D Ising models) with an additional care being paid to limits of random
current representation of third semi-invariants (based on [2]).
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Dual Variational Problem

In order to explain the implications of the properties of Q
λ
β listed

above, it is convenient to consider the dual variational problem,

sup
h

{
Λ(h) − 1

2

∫ β

0
h2(t)dt

}
Δ= sup

h
G∗(h). (4.28)

Any solution h̃ of (4.28) is also a solution to (4.22). This is a general fact
from convex analysis: Let F and G be two proper lower-semicontinuous
convex functionals (on say L2(Sβ)) and let F ∗ and G∗ be their convex
conjugates. Assume that

F ∗(h̃)−G∗(h̃) = max
h
{F ∗(h)−G∗(h)} ,

and assume that both F ∗ and G∗ are Gateaux differentiable (in fact
sub-differentiability would be enough) at h̃. Let m̃ = ∇F ∗(h̃) =
∇G∗(h̃). Then,

F ∗(h̃)−G∗(h̃) = G(m̃)− F (m̃).

Consequently, for each couple of functions m and h,

{(m,h)β −G∗(h)} − {(m,h)β − F ∗(h)} ≤ G(m̃)− F (m̃).

It follows that for everym, G(m)−F (m) ≤ G(m̃)−F (m̃). Furthermore,
assume that we can quantify stability property of the dual variational
problem in the following way: There exists a non-negative functional
D, such that D = 0 only on the solutions of the dual problem, and for
any function h,

F ∗(h)−G∗(h) +D(h) ≤ F ∗(h̃)−G∗(h̃). (4.29)

Then such stability bound is transferable to the direct problem: Assume
that h = ∇G(m). Then,

G(m)− F (m) +D(h) + {F (m) + F ∗(h)− (m,h)β} ≤ G(m̃)− F (m̃).
(4.30)

In particular, G(m)− F (m) < G(m̃)− F (m̃), whenever ∇G(m) is not
a solution of the dual problem or whenever h �∈ ∂F (m).

Let us now go back to (4.22) and (4.28). In the above notation:
F (m) = I(m) and G(m) = ‖m‖2β/2. Accordingly, F ∗(h) = Λ(h) and
G∗(h) = ‖h‖2β/2. In particular, G,G∗ and F ∗ are everywhere Gateaux
differentiable. Of course, ∇G(m) = m. Consequently, once we derive a
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stability bound of the type (4.29) for the dual problem, we immediately
recover a stability bound

1
2

∫ β

0
m2(t)dt− I(m) +D(m) +

{
I(m) + Λ(m)− ‖m‖2β

}
≤ G(m̃)

(4.31)
for the original problem (4.22). In particular, any solution of (4.22) is
a solution of (4.28).

We, therefore, proceed to study the dual variational problem (4.28).

Reduction to a One-dimensional Problem

Reflection positivity property (4.27) implies that for any h ∈ L2(Sβ),

Λ(h) ≤ 1
β

∫ β

0
Λ (h(t)1I) dt. (4.32)

Note that (4.32) has been originally proved in a somewhat more general
context in [11]. As a result,

G∗(h) ≤
∫ β

0

{ 1
β
Λ (h(t)1I)− 1

2
h2(t)

}
dt ≤ β sup

h∈R

{ 1
β
Λ (h1I)− 1

2
h2

}
.

We claim that the maximizers of the one-dimensional variational
problem

max
h∈R

{ 1
β
Λ (h1I)− 1

2
h2

}
, (4.33)

are of the form ±h∗, where h∗ > 0 if and only if f(λ, β) > 1.

The critical curve (4.24). Compute,

d
dh

{ 1
β
Λ(h1I)− 1

2
h2

}
=

1
β

Q
λ,h
β ((ν, 1)β)− h.

The latter expression is evidently negative for h large enough, hence
the maximum in (4.33) is attained at a critical point. Furthermore,

d
dh

Q
λ,h
β ((ν, 1)β) = Varλ (β) ((ν, 1)β) .

Since by symmetry at h = 0 the expectation Q
λ
β ((ν, 1)β) = 0, and since

by (4.26) the function h → Q
λ,h
β ((ν, 1)β) is strictly concave on [0,∞),

we infer that:
Either Varλ (β) ((ν, 1)β) ≤ β, and then h = 0 is the only critical

point of the function in (4.33). Or, Varλ (β) ((ν, 1)β) > β, and then
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there are exactly three critical points; 0 and ±h∗, the latter inevitably
being the global maxima.

Stability of the one-dimensional problem. We claim, furthermore, that
whenever (λ, β) is away from the critical curve, the problem (4.33) is
stable,

{ 1
β
Λ (h1I)− 1

2
h2

}
+ d(h) ≤ 1

β
Λ (±h∗1I)− 1

2
(h∗)2, (4.34)

where d satisfies the following bound: There exists c1 = c1(λ, β) > 0,
such that,

d(h) ≥ c2e−2β|h| min
{
(h− h∗)2, (h+ h∗)2

}
. (4.35)

Proof of (4.34). Follows from (4.26).

Stability of the original variational problem. It follows that the dual
variational problem (4.28) (recall that in our case F ∗(·) = Λ(·) and
G∗(·) = 1/2‖ · ‖2β) satisfies (4.29) with

D(h) =
1
β

∫ β

0
d(h(t))dt.

Of course, the bound (4.34) could be improved for large values of |h|,
however since we are primarily interested in transferring stability to the
direct variational problem (4.22), the values of |h| > 1 are, in view of
(4.31), irrelevant. In particular D(m) clearly dominates (with h∗ = m∗

and c chosen appropriately small) the first term on the right hand side
of (4.25).

The second term
∫ β
0 U(m′(t))dt on the right hand side of (4.25)

is related to a more careful analysis of
{
I(m) + Λ(m)− ‖m‖2β

}
term

in (4.31), which is unfortunately beyond the scope of these lectures.
We, therefore, refer the reader to [9].

Behaviour Near the Critical Curve

The GHS-type bound (4.26) implies that the 4-th semi-invariant

−s4(λ, β) Δ=
d4Λ(h1I)

dh4

∣∣∣
h=0
,

is locally uniformly negative. Let f(λ, β) > 1 and assume that (λ, β)
is close to the critical curve, in particular that h∗(λ, β) is small. Then,
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h∗(λ, β) =
1
β

∫ h∗

0
Varλ,τ (β) ((ν, 1I)) dτ

= h∗f(λ, β)− s4(λ, β)(h∗)3

6β
(1 + O(h∗)) . (4.36)

It follows that in the vicinity of the critical curve spontaneous magne-
tization m∗(λ, β) = h∗(λ, β) scales like

m∗(λ, β)√
6β(f(λ, β)− 1)/s4(λ, β)

= 1 + o(1).
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