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1 Introduction

These lecture notes are based on a mini-course which I taught at Prague
school in September 2006. The idea was to try to develop and ex-

plain to probabilistically minded students a unified approach to
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88 D. Ioffe

Fortuin-Kasteleyn (FK) and to the random current (RC) representa-
tion of classical and quantum Ising models via path integrals. No back-
ground in quantum statistical mechanics was assumed.

In Section 1 familiar classical Ising models are rewritten in the quan-
tum language. In this way usual FK and RC representations emerge as
different instances of Lie-Trotter product formula. Then I am following
[4] and set up a general notation for the Poisson limits.

In Section 2 both FK and the RC representations are generalized
to quantum Ising models in transverse field. The FK representation
was originally derived in [8] and [3]. The observation regarding the
RC representation seems to be new. Both representations are used to
derive formulas for one and two point functions and for the matrix and
reduced density matrix elements.

Section 3 is devoted to the quantum Curie-Weiss model in trans-
verse field. In the quantum mean field case the FK representation
is built upon a generalization of the classical random graph model.
I briefly explain recent results of [15], where the critical curve for quan-
tum random graphs was explicitly computed. The critical curve for the
quantum Curie-Weiss model itself is computed in the concluding Sub-
section 3.3 via partial Trotterization and a large deviation approach.

Of course, stochastic geometric methods apply for a large variety
of other models, see the seminal [4] as well as [18, 20] and references
therein. I did not try to provide a complete bibliography on the subject -
the emphasis was rather on trying to advertise probabilistic aspects of
quantum spin systems to a reader who is (like me) not very well familiar
with the latter. I, therefore, apologize for many excellent and relevant
papers which were not mentioned.

2 Classical Ising Model

We use the following notation for the classical Ising model:

e (A, &) is a finite graph with unoriented edges e = {i,j} = {j,i} € £.

e J = {J;; >0} are coupling constants. By definition J;; > 0 <
{i,j} €&.

e h € R is a magnetic field.

o veN 2 {-1,1}"" is a spin configuration on A.
The Hamiltonian H, is a function on {24,

—HA(Z/) = Z Jijyiyj+hzyi-

(ig)€€ ieA
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Given 8 > 0 (inverse temperature) define the classical Ising-Gibbs

probability distribution uﬁ’h on 24 as

WOR) = =L e AHaw)

ZA(B? h’) ’
where the normalizing constant (partition function) is given by

ZA(B,h) = Y e PHal), (2.1)

Ve,

In the sequel we shall use A’h(o) for the expectation under p A’h. In
particular, the mean value of the spin at 7 is

Bh N _ 1 ~—BHA(V)
wy(v) = =———= E v;e , 2.2
A ( ) ZA(B, h) 5 ( )

and the two-point function A’h(yiuj) is

Bhe oy _ 1 o~ BHAW) 93

HA (VZV]) ZA(ﬁy h) EZQ vivje . ( . )
vef2p

Two examples we shall consider in this paper are:

1. Curie-Weiss model: A ={1,2..., N} and J;; = 1/N.
2. Finite range Ising model: A C Z% and J;; = 0 for ||i — j|| > R.

2.1 Classical Ising Model Dressed as Quantum

Let us re-derive formulas (2.1), (2.2) and (2.3) in the quantum language.
In this way spin values +1 are understood as eigenvalues of Pauli matrix

5 = ((1) _01) (2.4)

Let us define the corresponding eigenfunctions

b = (é) and W, = (?) (2.5)

Of course, 6%, = v, for v = +1. Throughout these lectures we shall
work only with real numbers. Using eigenfunctions 11 one constructs
the following “lifting” of classical configurations v € §24: Define

Xy = ®R2.

ieA
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X, is a 2MI-dimensional vector space over the field of reals. Classical
configurations v € {24 are encoded in X, as tensor products,

A
Wl/ — ®i€/1¢l/i' (26)

The collection {¥,},, is a complete orthonormal basis of X4 with
respect to the scalar product

@[ 2,) 2 [[Wn )2,
€A

where (e, )y is the usual scalar product of R%. With each i € A we
associate a linear self-adjoint operator (symmetric matrix) 67 which
acts on i-th coordinate of ¥ as a copy of Pauli matrix 6% defined in
(2.4). Namely, for each v € 24,

N A ~
o, =y, @ Q%Y @ ... = W, (2.7)
Obviously, 67 and &; commute, and, moreover,
AZAZ

6705, = vivj¥,. (2.8)

Define now the quantum Hamiltonian H, as a linear self-adjoint
operator on X4,

—Ha = Y Jij6i6% + h)Y 67 (2.9)
(i,9)€€ i€
Then, (2.7) and (2.8) imply,
HAPv = Hy(v)W,.

In other words, H, is diagonal in the {¥,} basis, and with the
corresponding eigenvalues being equal to values of the classical Ising
Hamiltonian on configurations v.

It is possible now to rewrite classical formulas (2.1)-(2.3) in terms
of the quantum Hamiltonian H 4. First of all,

Te(e ) = 30 Wl ) = 3 e A = 2,(3,n)

vEN ) vesl2y
(2.10)
Similarly,
"y 5252—BHa
Ha Vi Tr (e=FHa) Ha ¥ivs Tr (e=FHa)
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2.2 Path Integral Representation and Poisson Limits

Since all the operators {67} commute,

s <Heﬂw”ﬂeﬂfw> | (2.12)

(4,9)

To facilitate the exposition we shall focus now on the case of zero
magnetic field A = 0, the full Hamiltonian with both non-zero h will
be considered in Subsection 2.3 and in Subsection 2.4, furthermore, an
additional positive field in the traverse direction will be considered in
Section 3. o

For small A we shall linearize ¢“74%% in (2.12) in two different
ways:
1) Write

Jijoio; = Jijl = Jil + Jij67675.

Then,

6/A
—BHA _ B> i 1 ~Z Az
e BHa — BXiy T i@o((n){ 1— AT )1+ AJij676% ) . (2.13)
7‘7

This will lead to the random current representation of the model.
2) Write

~ZAZ I+6—z A;
JijO'Z-O'j = JijI—2J¢jI+2JZ’j72
In the latter case,
I + 6262 B/A
—BH N F
e PHA — eﬁz(m) J ilgl()(H {(1 —2AJZ‘j)I+2AJZ]2}> .

)
(2.14)
As we shall see below such linearization leads to the FK (Fortuin-
Kasteleyn) representation of the model. Thus both the FK and the
random current representations are instances of path integral represen-
tation via Poisson limits which, following [4], we proceed to discuss in
a somewhat general context.
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General Setup for Poisson Limits

The fact that the operators 676% in (2.13) or operators (I + 676%)/2
in (2.14) commute is not essential for the path integral representatlon
via Poisson limits. For the rest of this Subsection we shall work in the
following general context:

1. X'is an M-dimensional vector space (over R) with a scalar product
(e]e) and an orthonormal basis {¥;}

2. Ky,...,K,, are self-adjoint operators (matrices) on X, in general
non-commuting.
3. A1,..., Ay, are positive numbers.

Given 3 > 0, we would like to find a probabilistic representation for

exp{ﬁzm:)\lKl} (2.15)
1

The linearization relies on two basic facts from theory of matrices:
Lie-Trotter Formula
Let A and B be two matrices. Then

B — lim (eA/”eB/">n. (2.16)

Proof (following [19]). Set

T, = eATB)/n and S, = eA/neB/m,

Then,
n—1 n—1
— S = > (TS - TISE) = YT (T - S S
=0 =0
Now,

(S0 SR HER () )

On the other hand, ||77="=1|- || SL| < elAIFIBI for all 1 = 1,...,n—1.
O
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Product Expansion Formula

Let Ay, As, ..., A, be self-adjoint matrices and ¥, ¥’ two vectors in X.
Then,

(AL LAY = > (WA, ) (T, | Ao|By) . (T, | An|P),

(2.17)

where ¥;,-s run through the elements of the orthonormal basis {¥;} for
alll=1,...,n—1.

Proof. In the case n = 2 (2.17) follows from expansion of A4;¥ in the
basis {¥;},
M
AW = (WA,

i1=1
The general case follows by induction. O

Path Integral Representation
Let us go back to (2.15). By Lie-Trotter formula (2.16),

n m B/A
exp{ ﬁZ)\lKl} — BN iimo <H {(1— AN+ A)lel}> .
1 TN
(2.18)
In the sequel we shall tacitly assume that 5/A € N. For each [ =

1,...,m consider a sequence of iid Bernoulli random variables

§ =1{a),&(?2)....a(5/4)},

with the probability of success being equal to A);. We assume that
the sequences § , are independent and let IP% A be the corresponding
probability measure on

0,1}/ x ... x {0,1}7/4

Above )\ is a shorthand notation for the vector of success rates
{A1,...,Am}. Then we can expand the expression on the right-hand
side of (2.18) as follows,

(ﬁ{(l—mz)umlm})mi > P%,A<ﬂ {& :al}>/ca,

Ay ey,
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where the matrix K, is defined by

B/A

Ko 2 Kyoow = H{H (1 - a >>I+al<j>Kl>}. (2.20)

Our next step is to associate with each sequence § of Bernoulli trials a
point process of arrivals of operators K; on the mterval [0, 5]. Define,

B/é

2= &a0)dia (2.21)
j=1

Let ¥ and ¥’ be two elements of the basis {¥;}. In order to derive
a path integral representation of (¥|K, ,...,K, |¥’) notice first of
all that up to probabilities of order O(A) we may restrict attention
to sequences ay,...,a,, with disjoint occurrence of successes, that is
Yya(j) =0o0r1 for every j =1,...,5/A. In the language of (2.21)
this means that the realizations of £1A, e ,E,% are pairwise disjoint and

hence for each arrival time
A . - .
tegd =g = {yA : Zalu):l},
=1

there is a well defined arrival type [2(¢) € {1,...,m}. Accordingly, one
can rewrite

8/A Nz
A
Kayoan = 11 {%‘Agé&ﬂ}l + 5{jAe§A}KIA(jA)} = [ &%
j=1 j=1

By the product expansion formula (2.17),

B/A-1
@0y = > @IEP W) [ @ K 1W) (Wi, [KG)AlP).
iy Pig)a j=2
(2.22)
Of course,
- Sy, — if jA¢ A
| KA, = (i=wi} e 2.23
CA K1) {@HK[A@A)WH if jA €A (223)

We can now put this into the continuous time context as follows: To

a given sequence ¥, ¥; , ..., Wiﬁ / 471797/ associate a piecewise constant
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function ¥4 : [0, 8] — {¥;}, such that ¥4 = ¥ on [0, A), U2 (8) = ¥,
and,

72 =0, on [jA,(j+1)A) forj=1,...8/A-1.

Given a realization £ let us say that a piecewise constant function
¥4 as above is compatible with &2, U4 ~ &4 if all the jumps of ¥4
occur only at arrival times of £2. By (2.23) only compatible functions
contribute to (2.22). In fact, in the notation just introduced the latter
expansion reads as,

oy, [P Z H (A=) Ka ) |02 (1)) (2.24)

YA~EA tegA

aren

Poisson Limits

A basic result on Poisson approximation implies that

(62 & 1) = (&b D)

where (£1,...,&n) are independent Poisson point processes on [0, J]

with intensities (A1, ..., Ay) respectively. Let us use IP% for the distri-
bution of the latter. By independence there are no simultaneous ar-
rivals, that is the type [(¢) € {1,...,m} of an arrival is well defined for

each t € £ 2 U¢;. Furthermore, conditioned on the realization of £ the
arrival types [(t) are independent and
Al
MA4 4 Am
Passing to the limit A — 0 in (2.24) and (2.19), we arrive to the fol-

lowing representation of matrix elements of exp {3 > N K;}: For every
two elements of the basis ¥, ¥’ € {¥;},

(@JZM&W@i
exp (B3 M} ‘/ (dey-... dém) WZN&Q =) Kl (1),

P (It) =1|te€) =

(2.25)

where, given a realization of £ the summation is over all {-compatible
(having jumps only at arrival times of &) piecewise constant right-
continuous functions ¥ : [0,3] — {¥%}, which, in addition, satisfy
boundary conditions ¥(0) = ¥ and ¥(5) = ¥'. Clearly, since X is

o . . A . .
finite dimensional, and since, there are P3-a.s. finite number of arrivals

of &, there are ]P%—a.s. finitely many such compatible functions.
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Formula (2.25) enables a re-interpretation of various quantities
related to the Hamiltonians H in terms of stochastic geometry of the
family of Poisson processes £. For example,

Tr (eﬁZAsz) 3
5] = ] B0 oo [Jee oo,

(2.26)

In general, given a self-adjoint matrix A,

Tr (Aef 2 ik
W = [Ba gmmww» g@(t—)wwt»-

(2.27)
The approach has two degrees of freedom to play with:

1. There are different ways to decompose H as H = — > N K.
2. There are different choices of orthonormal bases {¥;} of X.

In the following two subsections we shall consider the FK and the
RC (random current) representation of classical Ising systems (2.9)
as different instances of the path integral representation (2.25). Then
in Section 3 we shall develop the FK and the RC representation for
genuine quantum systems in traverse magnetic field.

2.3 FK Representation

Classical FK representation corresponds to the decomposition of the
Hamiltonian H 4 in (2.9) as,

—Hy = — ZJUJrZh I+ Zz]”

(1,9) i

with matrix elements of e 774 being computed in the z-basis (2.6).
In the language of the preceeding Subsection, we are dealing with
I ZsZ
independent Poisson processes §;; of arrivals of operators K; 2 ¥

with intensities 2.J;; and with independent Poisson processes &; of ar-

rivals of operators K; = H_;’ with intensities 2h each. Let v,/ € 2,

be two classical configurations and let, as before, ¥, and ¥,, be the
corresponding elements of the basis of X 4. Then,

(W | Kij| W) = 0gymuy 0=} (2.28)
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Similarly,
(O |Ki|®,) = 5{1/:1/’}6{1/1-:1}- (2.29)

Due to our choice of the orthonormal basis, any piecewise constant
function ¥ : [0, 8] = {¥,} is of the form ¥, ,), where v : [0, f] — §24 is
a piecewise constant classical spin configuration valued function. In fact
relations (2.28) and (2.29) imply that, whatever are the realizations of
Poisson processes & = {&;;,&} the only compatible v ~ £ are constant
configurations v(e) = const. Furthermore, an arrival of Kj; at time
t imposes and additional constraint v;(t) = v;(t), whereas an arrival
of K; imposes an additional constraint v;(¢) = 1. It is convenient to
explore (2.25) in terms of the following graphical representation (see
Figure 1 below):

To each site ¢ € A we attach a time interval Sg = [0, 5]. In order to
distinguish between intervals attached to different sites we use notation
S%. Points on S% labeled as (4,t). An arrival of §;; at time ¢ is visualized
as a link between (i,t) and (j,¢). An arrival of §; at time ¢ puts a *-
mark at (i,¢). It is also convenient to think about all x-marks being
linked (wired) to some ghost site g. Two intervals Siﬁ and S% are said
to be connected if &;; # (. Thus, any realization of {¢;;} splits

g

A

Fig. 1. The box A is split into three connected components, C; =
{1,2,3,4,5} x Sg, C2 = {6,7,8,9} x Sg and C3 = {10} x Sg. Components
C1 and C3 are wired, whereas Cs is free
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AXSﬁ = US}; = Uu(
€A
into the union of maximal connected components. Of course, each C;
above corresponds to a subset A; of A,

a=Jsh
€A

A component C; is said to be wired if & # @ for some i € A;. It is
convenient to link all wired components into one connected component.
Given a realization & = {¢;;,&} of all Poisson processes of arrivals of
operators K;; and K; let #,(€) be the number of all maximal connected
components C; which are not wired to the ghost site g. Then the number
of (constant ) classical trajectories which satisfy (2.28) and (2.29) is
precisely 2%+ For each such trajectory v(e) = v,

[[wlK@lw) =1

teg

Consequently, let ]P’gl/l1 be the (Poisson ) distribution of £. Then, (2.25)
implies,

Tr (e*ﬁHA) — eIB(Z(i,j) Jij+2ih)PzJ/Ll (2#w(§)) . (230)
Define a new measure ﬁg}}l on trajectories of point processes &,

o#w(€)pd »h " (de)

Py (dg) = (2.31)

P’ }}1 is called FK or random cluster measure. Using (2.11) and (2.27) we
arrive to the following stochastic geometric representation of classical
expectations,

=J.h /. SJIh - .
pit ) = By (ie—g)  and  pi"(uivy) = Py (),

(2.32)
where the event {i «— g} means that the connected component of S%

is wired, whereas {i «— j} means that Sg and Sfé belong to the same
connected component (including the case when {i «— g}N{j < g}).
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2.4 Random Current Representation

In its turn classical RC representation corresponds to the decomposi-
tion of the Hamiltonian H, in (2.9) as,

~Ha = Y Jijoi65+ Y hor.
(i) i

The trick is to compute matrix elements of e~#74 in the x-basis, which
is defined as follows: With 111 being defined as in (2.5), set

b1 = \2 (V1 £4h1). (2.33)

Clearly {¢_1,¢1} is an orthonormal basis of R?. To a given classical
x-configuration ¥ € {24 one corresponds the vector,

Dy = ®i€/1¢19¢' (234)

The collection {@y} is an orthonormal basis of X 4. In the x-basis Pauli
matrix % looks like

. 01 .
6% = <1 0) or Uz¢i1 :¢2F1~ (2.35)

Thus in the x-basis 67 is just a spin-flip operator. As in (2.7) the action
of 67 on Py is given by

OA'iZSplg = ¢§1®'--®&Z¢§i®....

In other words, 67 flips i-th component of ®y.
In the language of Subsection 2.2, we are dealing with independent

Poisson processes §;; of arrivals of operators K; 2 &f&; with intensities
Ji; and with independent Poisson processes §; of arrivals of operators
A .y . . .

K; = 67 with intensities h each. We continue to employ the running

notation IP’%Z for the distribution of &.

Let 9,9’ e 24 be two classical x-configurations and let, as before,
@y and Dy be the corresponding elements of the x-basis of X 4. Then,

<%|Kiij,,,> = (5{19,:&5&?9} and <W19|KZ"@,,/> = (5{19,:&;19}. (2.36)

In other words, each arrival of operator K;; enforces a simultaneous
flip of i-th and j-th coordinate of @, and each arrival of operator K;
enforces a flip of i-th coordinate of @. Therefore, given a realization of
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¢, compatible space-time configurations @(-) ~ £ are deterministically
recovered from the initial value @(0). Therefore, there are exactly 2l Al
compatible configurations for each realization of &.

Consider now the representation of the trace in (2.26). Clearly a
space-time configuration @(-) contributes only if ¢(0) = &(3). In view
of the above description of action of operators K;; and Kj, this ob-
viously imposes a restriction on admissible realization of &: Namely,
there are trajectories @ ~ & with @(0) = &(3) if and only if £ flips each
coordinate i € A even number of times.

With a slight abuse of notation let §;; and &; also denote the number
of arrivals of Kjj;, respectively K; on the interval [0, 5]. In this way &
will be called random currents. The total current through i € A is
€li] = >2;&; + & and the total current through the ghost site g is
€lgl = >, &- The boundary of a current is,

06 2 {ue AUg : £[u] is odd} . (2.37)

If 9¢ = (), then all of 2/l compatible configurations ¥(e) ~ ¢ satisfy
&(0) = P(3), otherwise (if ¢ # () none of them is periodic. Conse-
quently, (2.26) implies,
Tr (e_ﬁH/‘)
B gy Jis T2 h)

= 2MIPY (06 = 0). (2.38)

The following representation of one and two point functions is now
almost straightforward

((95 {i.a}) PL (06 = {3, j})
B,y — and @t () — il
/LA ( l) (85 @) dMA ( J) Pg (85 @)
(2.39)

Switching Lemma

Let £ and 1 be two independent random currents distributed according
to the product Poisson measure P%’h each. We continue to Pg’h to denote

the product measure. Then, for every i, 7 and for every subset A C
AUg,

PY (06 = (i, 1) YA (9n = A) = PY (96 = 0300 = AA (i, j} 50 &2 ),
(2.40)

where the event {z &, 7 } means that there exists a path of bonds

b € & from i to j with £(b) +n(b) > 0.
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We refer to [1] for a proof of (2.40). In view of (2.39) an immediate
consequence is the following representation of the truncated two-point
function:

3 h
" ( A ) " ) = il (ag 0:0v = (0.} % g>
M (0€ = 0;0n = 0)

2

(2.41)

Exponential Decay of Two-point Functions
at Non-zero Magnetic Fields

Representation (2.41) and similar formulas pave the way for a stochastic
geometric interpretation of semi-invariants and give rise to a useful
intuition. As an example let us show how (2.41) implies that classical
Ising truncated two-point functions always have non-zero exponential
rate of decay once h # 0. The argument below was developed together
with Roberto Fernandez and Yvan Velenik some time ago. As it was
pointed out by Yvan, a conventional proof could be found in [12].

Let k = £+ be the combined current. Any realization of x splits A
into a disjoint union of maximal connected components: as before we
say that 7 and j are connected if there exists a chain of bonds b leading
from i to j with x(b) > 0 on each bond. Clearly {9¢ = 0;0n = {i,j}}
implies that Ok = {i,j} and, in particular that ¢ and j are connected
in k or, in other words, that ¢ and j belong to the same connected
component C of . If R is the range of interaction, then |C| > |i—j|/R,

K

as soon as we impose an additional constraint {C — g}. It is almost
obvious now why (2.41) implies exponential decay: one should pay a
fixed price to disconnect each site [ € C' from the ghost site g, see
Figure 2.

It remains to make the last remark precise. For any connected set
C C A define # (£(C, A\ C)) as the number of edges in £(C, A\ C),
where the latter is the set of edges b with J; > 0, which have one end-
point in C' and another in A\ C. The probability p(C, A\ C') that none
of the processes rp; b € E(C, A\ C) arrives on the interval [0, 5] is

p(C,A\C):eXp{ 28 ) Jb}.

beE(C,A\C)

Given a connected set C' and ¢, j € C, define the following event

A (C) = {85(; = 0;0nc = {i,j}; C is connected in k¢o; C ;CQ g},
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Fig. 2. Each site [ inside the connected component C' has a chance to be
connected by a direct non-zero current to the ghost site g

where {c,nc (respectively {4\ ¢, na\¢) and k¢ (respectively x4 ¢) are
the restrictions of the corresponding processes to the bonds with either

both end-points at C' (A \ C) or with one end-point at C' (A \ C)
and another end-point being g. In this notation the expression in the
numerator in (2.41)

> By (9me = 0:9nne = 0) - p(C, A\ O) - B (A ().
C connected

(2.42)

On the other hand, the denominator in (2.41) is certainly bounded
below by

Z Pﬂ (8Enc =0;0nnc =0) - p(C,A\C) - Pgﬁ (A5(0))
C' connected

(2.43)

where the event
A%(C) = {0¢c = 0;nc = 0; C is connected in K¢} .

We claim that there exist two positive constants ¢; and ¢z which depend
on (3,h (but not on the range R of the interaction, the dimension of
the lattice, connected C' and {i,j} C C), such that,

PJvh AZ C .
M < cpe—celi-il/R, (2.44)

YA (45,0)

)
)

J
B
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e
Indeed, for each current nc with dn = {i,j} and g </~ C, we may
construct a family of currents

(e} = {n+@2ri+1)d6.g+2ri+1)8G. 9+ Y 2rk8(kg) } o1 tor 1eC
keC\{i.j}

Thus, the family {nc}° is generated by tuples r = {r;};c, of non-
negative integers. Evidently,

{nc}*n {nc}* =10,

whenever no # 17’0. Furthermore, (c,nc) € Aij(C) = &o X {nc}® €
A%(C). However, for such n¢,

Jh
PB,A ({nc}®)
]P)J,h

= (sinh(Bh))? - (cosh(Bh))7I72,
8,4 (nc)

and (2.44) follows.

3 Quantum Ising Models in Transverse Field

Quantum Ising Hamiltonian in transverse field A is given by
~Hy = Y Jij6765 + b 67 + A 67, (3.1)
(4,9) i i

where A > 0, and (in the z-basis),

- (10 ~ (01
ot = (0_1>. and ¢* = (10) (3.2)

Since matrices 6* and 6% do not commute, as soon as the strength of

the transverse field A > 0, the operator H, does not have diagonal
form neither in z-basis (2.6), nor in the x-basis (2.34). Nevertheless,
the analog of Lie-Trotter product formula still holds,

B/A
—BHa _ AJ;;626% Ahs? ANG* ' 33
e Algl()((l' |{)e J || e || e > (3.3)
,] 7 7

As in the classical case various choices of bases and of decomposition of
H 4 lead to different stochastic geometric representations of the model.
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3.1 FK Representation
As in the classical case the traces are computed in the z-basis. As for
the decomposition represent —H 4 as

Z

(ZJ”+Zh+Z )I+ZZJU 49

(4,5) g (4,5)

(67 +1).

In the language of Subsection 2.2 we are dealing with Poisson process
¢ of arrivals on the interval [0, ] of the following type of operators:

e Operators K;; = (“Z Z+1) /2 which arrive with intensities 2.J;;.

We shall call these processes links and denote them as ;.

e Operators K" = (67 +1) /2 which arrive with intensities 2h. We
shall call these processes links to g and denote them as f’zh

e Operators Kl)‘ = o7 +1 which arrive with intensities A\. We shall call
these processes holes and denote them as 5-)‘.

As in Subsection 2.3 piece-wise constant functions ¥ : [0, 5] — {¥,}
are labeled by piece-wise constant classical trajectories v : [0, Bl — 2.
Given a realization & = {gij, flh, 51)‘} let us try to describe the family of
compatible trajectories v ~ &.

1. Since (¥, |K;j|¥) = 6(y=,110(y,=0,}, an arrival of an (i, j)-link at
time ¢ imposes the constraint v(t,7) = v(t, j).

2. Since (¥, |K!w,)) = 0fy=1110qy,=1}, an arrival of an (7, g)-link at
time ¢ imposes the constraint v(t,i) = 1.

3. Since

A
(0| K7 |W,) = 5{1,]-:1/; forallj;éi}’

an arrival of an i-hole at time t enables a flip of i-th coordinate
of v(t,-).

Thus, contrary to the classical situation considered in Subsection 2.3,
compatible configurations v ~ £ are permitted to have jumps at arrival
times of &*. It is convenient to visualize compatible periodic v(-) as
follows (see Figure 3): For each i € A the process of holes & splits the
circle S}; (which is the interval i x [0, 3] with the end-points (,0) and
(i, 3) identified) into a disjoint union of connected intervals. Two such
intervals i x I C ng and j x J C S/, are said to be connected in € if there
is an arrival of &;; at a time ¢t € I N J. A maximal connected cluster
Ui {i; x I;} (with i;-s being not necessarily different, but with {4; x I;}N
{im x I,} = 0 whenever | # m) is said to be connected to the ghost
site g if for some for some 7; a process §Z arrives at ¢t € I;. Otherwise
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0

Fig. 3. Configurations with periodic boundary conditions v(i,0) = v(i, 3).
Connected components C; and Cg are linked to g and hence v = 1 on them.
Connected component C, is “free” and hence one can colour it in either of
+1 colours.

such maximal connected cluster is called free. Define #,, (£) to be the

number of maximal free connected clusters of {. Then, using P’y for
the reference product distribution of independent Poisson processes &,
we arrive to the following quantum version of the FK representation
(2.30) of the trace,

Tr(e—/BHA) — 65(2(1‘,]‘) Jij 432 h 22, )‘)Pgﬁ (2#w(f)) . (34)

. . =g NN . .
As in the classical case define a new measure }P’ﬂ’ /" on trajectories of
point processes &,

Q#W(f)pg:’XA (d¢)
ng’/‘lvA (2#w(9) '

PYA (d€) = (3.5)

Once again, using (2.11) and (2.27) we arrive to the following stochastic
geometric representation of expectations,

Tr (&Z-Ze_m“)

Tr (e—ﬁHA) - ﬁz:}/ﬁ)\ ((,0) «—g) (3.6)

where the event {(¢,0) «— g} means that the S/ig interval containing
(7,0) belongs to a cluster which is connected to g. Similarly,

Tr(626%e 0Ha) . |
W = Py ((4,0) — (5,0)) (3.7)
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where the event {(i,0) «— (j,0)} means that the corresponding S,i@’

and S% intervals belong to the same connected cluster.

Ground States, Matriz and Reduced Density Matriz Elements Let us
fix a finite graph (A, €&), coupling constants J and A > 0. In order to
facilitate the notation we shall set magnetic filed in z-direction to zero,
h = 0. For each € R, zzmatrix elements pzﬁ(y, V') are defined via,

) = e )

In order to derive an appropriate expression in terms of Poisson arrival
measures P i‘l or in terms of the FK measures P2\ "y we should introduce
a modification of the notion of connected components of £. Originally,
those were defined as unions of sub-intervals of Sg. However, in the
computation of matrix elements we, obviously, do not impose periodic-
ity conditions. In the sequel, given a subset A C A and a configuration &
let €4 be obtained from ¢ via adding holes at all the points (i,0) = (7, 3)
with 7 € A. One can think about &4 in terms of slitting the A-part of
¢ along t = 0.

Any piece-wise trajectory v : [0, 3] — 24 which contributes to the
numerator in (3.8) satisfies boundary conditions,

v(i,0) = v; and v(i,f) = v, Vie A

As a result, realizations of £ which place points (¢,7") and (j, S) (with
i,j € Aand T,S = 0or ) with v(i,T) # v(j,S) into same connected
components of the slit configuration £4 do not have compatible trajec-
tories at all. Let us say that £4 ~ {v, '}, if the latter does not happen.
If €4 ~ {v,v'}, then the set of all £&-compatible trajectories, which con-
tribute to the denominator in (3.8) is constructed in the following way:
Each connected cluster of {4 whose closure hits either t =0 or t = (8
layers inherits the z-spin value from v or /. On the other hand, each
interior cluster of £4 or, alternatively each cluster of & which does not
contain points with 0 = 3 time coordinates, could be still coloured into
+1. Clusters of £ which are not interior are called boundary. Thus, if

we use #0(€) and #9(§) = #(&) — #0(&) for the number of interior
(respectively boundary ) clusters of &,

[p)Ji‘l (x ~ {V s 2#0(5))

wd,A ~ #o(8)
L) B ) s200)

(3.9)

pzﬁ(y’yl) =
5,A
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For each A > 0 there exist non-trivial limits P’ oA and P A as [ — oo.

These measures could be constructed directly: ]P’(X;? 4 is just the distri-
bution of Poisson processes of arrival £ on R. Connected components
of ¢ are understood now as linked sub-intervals of R over various spa-
tial coordinates i E A. The FK measure f”go)‘/l is then constructed via

modification of P A 4 by the 2# () factor (as a limiting procedure, of
course). Boundary clusters of the slit configuration £4 are coloured in
this way according to v just above the ¢ = 0 layer and according to v/
just below it. If we slit along all of A, then the compatibility condition
&x ~ {v,v'} decouples into {&; ~ v} N {&_ ~ '} for the upper and
lower halves £y and £_ of configuration £. At this point it makes sense
to introduce Poisson P ’AAJF and, accordingly, FK ]P’J measures for
arrival processes on R . It is straightforward now to Check that matrix
elements p2 (v,v') = (¥, |¥)(¥|¥,,), which are generated by projections
of the ground state ¥ of H 4 are given by,

P V) = BN (ea ~ (v} 27#0), (3.10)
In the notation just introduced above the latter expression equals to
(@ | U)W @) = PINT (€ ~ vy 27#O)PIAN (€ ~ oy 27 #01)),

Similarly, for A C A and 6,0" € {:tl}A, the reduced density matrix
entry pi, 4(0,0') is given by

Proa(0.0) = P2 (a ~ {0,0} ; 27 #2040, (3.11)

where the compatibility condition £4 ~ {v,v'} for the slit configuration
€4 is defined in the obvious way, and # 4(&) stands for the number of
connected clusters of & which contain points (0,4) with i € A.

3.2 Random Current Representation

In order to derive an appropriate version of random current represen-
tation let us rewrite the Hamiltonian (3.1) as

o
—(ZA) +ZJUAZAZ+Zh T PRIk

As in the classical case the traces are going to be computed in the
x-basis (2.34). Thus, in the language of Subsection 2.2 we are dealing
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with Poisson process £ of independent arrivals on [0, ] of the following
type of operators:

e Operators of simultaneous (ij)-flips K;; = ;6% which arrive with in-
tensities .J;;. We shall denote the corresponding Poisson process &;;.

e Operators of i-flips K Zh = 67 which arrive with intensity h each. The
corresponding Poisson processes are denoted as d‘.

e Operators K = (6*+1)/2 which arrive with intensity 2\ each. The
corresponding Poisson process is denoted fﬁ. Since,

(Do K |Pyr) = Opg—p10p9,-1),

an arrival of &} at time ¢ imposes the constraint (i, t) = 1 for every
&-compatible classical piece-wise constant x-trajectory ¢ : [0, 3] —
24. We shall refer to £ as to processes of marks.

Accordingly, for a given realization of £ compatible periodic piece-wise
constant trajectories ¥(-) are characterized as follows:

1. Arrivals of &; and of ¢ enforce simultaneous flips of i-th and j-th
coordinates of 9, respectively of i-th coordinate of ¥). These are the
only jumps of 9(-).

2. For each i € A, ¥(i,t) = 1 at all arrival times of &?.

Let us try to compute the number of &-compatible trajectories ¥ for a
given realization £. It is natural to modify the notion of the boundary
0¢ as follows: For every i € A the process of marks 55‘ splits the circle

i into the disjoint union of intervals,

g = upQa? £ Ui x 1) (3.12)

The number m(i) of such disjoint intervals equals to 1 if &} = 0 and
to 55\ otherwise. Let us say that an interval Jl(l) in the decomposition
(3.12) belongs to the boundary 9¢ if (see Figure 4) the total current

through Jl(i)
i A 7 7
g 23 (1) + e,

FEAN
is odd. Evidently, there are periodic compatible ¥ ~ £ iff 9§ = (). In
the later case, there is a unique compatible trajectory v(i,-) for every
marked i € A such that 53‘ > 0 and, accordingly, there are precisely
two compatible trajectories for every unmarked i with fi)‘ = 0. Let
#m (&) = #{i: & =0} be the total number of unmarked intervals
[0, 5]. By the general trace formula (2.26),



Stochastic Geometry of Ising Models 109

g9

Fig. 4. The arrival times of the process of marks 55‘ are ti,ty and t3.
Accordingly, S}; is split into three marked intervals Jl(l),Jg(Z) and Jéz). The

total number of arrivals of flips on Jéi) equals to three, hence J?Ei) C 0¢.

Tr (e_ﬁH/‘)
B i) Jig T2 bt A)

Thus, contrary to what happened in the the classical case, one should
modify the reference (Poisson ) measure. Define,

2#m(§)[p>g:i‘lvh (d¢)
pgﬁvh (2#n(©) '

Py (d) =

Then, as in the classical case, the following random current represen-
tation of one and two point functions hold: Let J(i,t) be the marked
interval containing (7,t). Then,

Tr (62~ 1) PR (95 = J(i,0)Ug)
Tr (e=FHa) PIY" (9€ = 0)

(3.14)

and, similarly,

T (&gf};e*ﬁHA) B PLIA (0€ = J(i,0) U J(5,0)) (3.15)
O D |

It is, of course, a very natural question what should be a correct analog
of the switching lemma in the quantum case. A closed form answer is
still missing, but some aspects of this issue are discussed in [9].1

L Appropriate versions of switching lemma were recently derived by Crawford and
Ioffe [10] and by Bjérnberg and Grimmett [5].
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Ground States, Matriz and Reduced Density Matriz Elements Let us
briefly sketch how matrix and reduced density matrix elements in the
x-basis could be written using the RC representation. Again, in order
to simplify the notation we shall consider only the case of h = 0, and,
exactly as in the end of Subsection 3.1, we shall directly pass to the
ground state limit § — oo. In the ground state we are dealing with
processes of arrivals € on the whole real line R. We use ch’:‘/l to denote

the corresponding product measure. Evidently, £ # (Vi }ch’;\A—a.s. In
other words, for each i € A the copy of the real line associated with ¢
contains marks. As in the FK case, given £ and a subset A C A, we
use £4 to denote the slit configuration: except that now we view £4 as
¢ with additional marks placed at time zero for each i € A.

With such notation in mind we classify all marked intervals of &
and fi‘l as follows:

1. Marked interval i x T of £* belong to Mg (&) if 0 € I. Otherwise it
belongs to Mexi (€1).

2. Marked intervals of the type i x (0,t) of 4 belong to M{ (£4).
Similarly, marked intervals of the type i x (—t,0) of £4 belong to
Mg (€)):

3. All other marked intervals are 4 are also marked intervals of £ and
we classify them as Mo(€)) and My (£}).

Accordingly, we define the boundaries 0p&, Oext&, (96“ &a, Oy €a, 0o€a
and Oextéa as e.g.,

Oo& = {ix I € Mo(&): €[i x I] is odd}.
Let us introduce the following conditional measure
JA JA
MOO,A = IP)OO,A (“86)(1]5 — @) .

Since A is finite the above definition can be easily turned into a mean-
ingful one via an appropriate limiting procedure.

Let 9,9 € {:tl}/1 be two classical x-configurations, and let
pso (9,9) be the corresponding matrix element. From our interpre-
tation of a mark in terms of a +1-spin enforcement at the correspond-
ing space-time arrival point, it is apparent that that £ contributes to
pso (9,19) iff the following event E4(9,9") = E4(9) N E_(¥') occurs:

1. Event &4 (9): For every i x I € Mg (&}), i x I € 05 €4 iff 0 is —1.
2. Event £_(¥): For every i x I € My (§}), i x I € 9y & iff ¥ is —1.
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Then,
JA
Moo 2 (E£(0,9"))
oo A (805 @)

In a similar fashion for A C A and two classical x-configurations 6,60’
{£1}" define the event £4(0,0") exactly as above, except that even/odd
conditions on currents are restricted to intervals ¢ x I from /\/l(j)c(ﬁ;\l).
Then, the (6,6") entry of the reduced density matrix is given by,

) (£2(0,0'); 0064 = 0)
M (@ =0)

% (0,9") =

p)cio,A (Ha 0/) =

4 Curie-Weiss Model and Erdés-Rényi Random Graphs

Classical Curie-Weiss mean-field Hamiltonian H]CVW is a function on

Qy = {£1}V
Z vivj, (4.1)
(ZJ

where, as before, the summation is over all unordered pairs of i # j.
In the language of Subsection 2.1, {H]CVW(V)} are eigenvalues of the
quantum Hamiltonian H]CVW

HWMw, = HQV(v)w,, where —HGY = ZAZ s
(w

Accordingly, for a given value of the inverse temperature (3, the distri-
bution of v is,

—BHW (v
9 () = ey ATV
ZN Tr(e_ﬁHg\fW(”))

One way to pin down phase transition in the CW model is to study
statistical properties of the mean magnetization

UN = E vy,

under ,u/]gv. As it is well known, for 8 < 1, the distribution of vy is
sharply concentrated around +m®*, where the spontaneous magnetiza-
tion m* = m*(8) equals to zero for < 1 and is positive (and hence
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there are coexisting + phases) for 3 > 1. This could be verified in two
different ways, which correspond to two equality signs in (4.2): either
directly through large deviation computations for Bernoulli random
variables, or using the geometric FK representation as described in Sub-
section 2.3. In the latter case phase transition in the CW model is re-
lated to emergence of the giant component in the classical Erdos-Rényi
random graph. Both methods are briefly recalled in Subsection 4.1
The main objective of this Section, however, is to explain that a
very similar story happens with the quantum CW model in transverse

field,
—HY = %Zaﬁ&; +A) 67
(4,9) i

In particular, there is a natural inclusion of (one parameter) Erd&s-
Rényi random graph models into a two-parameter family of space-time
random graphs. In this way classical Erdés-Rényi critical point § = 1 is
just the limiting point on the whole critical curve in the (3, ) plane. It
is somewhat amusing that, apparently, such quantum version of Erdds-
Rényi random graphs was overlooked for a long time, and the corre-
sponding critical curve was originally computed only in [15].

Contrary to what happens in the classical case, however, for the
moment it is not clear how recover the critical curve for the quantum
CW model in the transverse field from the critical curve for the quan-
tum Erdés-Rényi random graph, although a conjecture has appeared
in [14]. In principle, the quantum CW critical curve could be derived
from the results of [17], where limiting states were classified for essen-
tially all mean field type models. Alternatively, one can use infinite
dimensional theory of large deviations, see [11] and references therein.
In the concluding Subsection 4.3 we shall briefly report on recent re-
sults of [9]. As in [11] the approach relies on a partial Trotterization
of the mean-field Hamiltonian under, however, a different choice of ar-
rival operators associated to transversal field: Ours corresponds to the
FK setup of Subsection 3.1. Such FK point of view leads to certain
advantages and, as a result, we go beyond just computing the critical
curve itself. In particular, we are able to derive sharp asymptotics of
the spontaneous magnetization m*(3, A) in the vicinity of the critical
curve, and for (3, \) away from the critical curve we are able to derive
quadratic stability bounds for maximizers of the corresponding infinite
dimensional mean-field variational problem.
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4.1 Classical Case

The probability measure V]BV in (4.2) could be described in the following
way: Let Q be the uniform (1/2) distribution on {1} and let ®Q be
the corresponding product measure on 2y = {jzl}N . Then,

®@ eNﬂ(DN)2/2;V
ity = 22 )
®Q (eNBEN)?/2)

(4.3)

Then, elementary one-dimensional theory of large deviations implies
that u% exponentially concentrates around

{y : vy is close to argmax(§m2 - I(m)) },
where [ is the large deviation rate function for 7y under ®Q,

el + el

I(m) = Sl}llp {hm — A(h)} and A(h) =logQ(e") = log 5

It is easy to see that I is strictly convex and differentiable on (—1,1)
with I’(m) — 400 as m — 1. In particular, the supremum of 3m?/2—
I(m) is actually attained inside (—1,1) for any § € R,. Furthermore,
since I(-)/f is the convex conjugate of A(3-)/0,

21 1 h?
argmax {T;L - ﬁl(m)} = argmax {BA(ﬂh) - 2} : (4.4)
But A(3) is the log-moment generating function of the +/3 Bernoulli
random variable. If we use Qg for the corresponding distribution, then
it is straightforward to check that the maximizers in (4.4) are of the
form +m*(3), where m*(3) > 0 iff,

1< T (9) ) = %

and we, thereby, recover the critical value 3 = 1 of the classical CW
model.

(4.5)

Relation to Random Graphs. Let us go back to the definition of the
classical FK measure in (2.31), and let us use the shorthand notation
Py y for the CW case at zero magnetic field, J = 1/N and h = 0. By

the second equality in (4.2), the distribution N?\r can be constructed

from I@ﬂ, y as follows:
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First sample arrival processes £ = {;;} from @57 - Two sites ¢ and

Jj (or, equivalently, two circles S% and S/]@) are said to be connected in
€ if &; # 0. Thus, any realization of ¢ splits {1,..., N} into maximal
connected components. At the second step paint those connected com-
ponents into +1 independently and with probability 1/2 each. In fact
we have just constructed a joint measure Mg y(d¢,v) with marginals

IPB@ N and /‘?\/'

In view of such two-step construction of Mﬁn the critical point g =1
and the value of the spontaneous magnetization m*(3) could be re-
covered now from the following facts about the FK measures I?P/)gy N on

complete graph: With I?Pi’ﬁ ny-Probabilities tending to 1, as N tends to oo,

1. For # < 1 all connected components of £ have sizes O(log N) at
most.

2. For § > 1, there is exactly one giant connected component of size
~ m*(3)N, whereas the remaining connected components of £ have
sizes O(log N) at most.

Above statements are similar to classical results on the emergence of
giant component in random complete graphs. Indeed, by construction,

2#(5)]}%71\[ (d¢)

Py (df) = — 20227
BN Py n (2#(6))

(4.6)

where #(&) is the number of connected components of £ (recall that
since we take h = 0 there are no wired components as in the general for-
mula (2.31)). We can think about P ,; in terms of Erdés-Rényi random
graph on {1,..., N} where bonds between different sites 4, j are placed
independently and with probability 25/N each. Indeed, 1 — e 20/N g
the probability that &; # . Furthermore, as it was observed by Ed-
wards and Sokal [13], the conditional &-marginal of

Mgn (i =1,...,vm=1vpy =—1,..., vy = —1)

is exactly Py , ®Pj ;. Since max {M,N — M} > N/2, the inequal-
ity B. < 1 for the critical FK value of § is immediately implied by
classical Erdés-Rényi results, see e.g. [6]: Let {1,..., K} be the com-
plete graph of K sites. Assume that an (un-oriented) edge (i, 7) is open
with probability ¢/K independently from all other edges. Then e, = 1
is the threshold for the emergence of the giant component. Moreover,
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in the case of € > 1 the density p(e€) of the giant component is asymp-
totically close to the positive solution of

1—p=e . (4.7)

In over case, K = max{M,N — M} > N/2, and hence 25/N > 1/K
whenever 5 > 1.

The reverse inequality 5. > 1 is not much harder: Assume that
B < 1. Without loss of generality we can consider only the case when
the total number of +spins M < N/2. Then, under ]P’@M all the con-
nected components of {1,..., M} are small. A-priori, a giant connected
component still could appear under IP’@ N_u- Let p be the density of
this component. Then (1 — p)(N — M) of the remaining — spins live
on small components of sizes O(log N) at most. Since in the origi-
nal coupled measure Mg n all the small connected components were
coloured independently, we infer that M ~ (1—p)(N—M). Accordingly,
K2N-M~ N/(2— p) and hence 26/N ~ ¢/K with e = 23/(2 —p).
Thus, by (4.7), the relative density p should satisfy

1—p= e—28p/(2=p)

But the latter equation does not have a positive solution. Indeed, set
0=p/(2—p)orp=(1-0)/(1+80). Then 0 is positive as soon as p is
positive, and

120 _ 20

1+46
Taking logs and expanding,

20 + %03+... = 230,

which is impossible unless § = or § > 1.
A general class of FK models on complete graphs is examined in [7].

4.2 Curie-Weiss Model in Transverse Field and Quantum
Random Graphs
Quantum Curie-Weiss Hamiltonian in transverse field A > 0 is given by,
1
—HRY = 0105 + A 6
(4.9) ¢

Following the approach of Subsection 3.1 we associate to H]CVW the
following family ¢ of independent Poisson processes of arrivals on the
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circle Sg: For each un-oriented couple (i, j) operators (I + 5;6;) arrive

with intensity 2/N, whereas operators (I 4+ ¢7) arrive with intensity A
for every ¢ = 1,..., N. Connected components of {1,..., N} x Sg in-
duced by & are defined precisely as in Subsection 3.1. Recall that each
such connected component C is represented as a union,

¢ =|J{ux L},
!

of disjoint space-time intervals. The size of C could be measured in
several ways: For example we can compute number of different spatial
coordinates (out of {1, ..., N}) which contribute to C. The most natural
definition of the size, however, is

cl =14l (4.8)
l

that is the total length of all time intervals of C.
Since we consider the case of zero z-field, all connected components
of ¢ are free. Consequently, the FK modification Pé y of the reference

product Poisson measure ]P’g N is given by

2#(&)[@2’]\[ (d€)

~\ B

(4.9)

In view of (3.7) it is suggestive to try to study the question of phase
co-existence in terms of emergence of giant components under IF’% N
Note that in a genuine quantum case of A > 0, this is a non-trivial
question even in the ground state limit when 3 — oco. In fact, instead
of one critical value of 3 one should face here a whole critical curve in
the (A, B) positive quarter plane. For the moment we do not know how
to derive this curve via direct analysis of random space-time graphs
induced by the family of quantum FK measures (4.9). This, however,
is a meaningful question even for the reference family of measures }P’a N-

Quantum Random Graphs As it is apparent from a comparison between
(4.9) and (4.6) the measures ]P’a ~ DPlay the same role for the quantum
Curie-Weiss model in transverse field as Erd&s-Rényi random graphs
P4 v play for the classical CW model. Accordingly, we shall refer to the
collection of independent Poisson processes of holes and links induced
by Pg} n as to quantum random graphs. In order to be compatible with
the usual random graph notation let us modify the arrival rates un-
der ]P’g} y in the following way: The holes still arrive with intensity A,
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B.=1

Fig. 5. Decomposition of the (3, \) quarter plane into the short range and
long range regions.

however the links between an unordered pair of sites ¢ # j arrive now
with intensity 1/N. In this way . = 1 is the classical critical value
which corresponds to A = 0. The main result of [15] asserts that the
full critical curve for the family of quantum random graphs is implicitly
given by,

38,0 2 % (1 - e_)‘ﬁ) —Be8 = 1. (4.10)

The curve is depicted on Figure 5. Note that the classical critical value
B, = 1 is just the end-point of the curve on (-axis. Notice also that
the critical value of A in the ground state model 8 = oo equals to
Ae = 2. Let us be more specific about the nature of phase transition for
quantum random graphs: The critical curve (4.10) splits the positive
quarter-plane into

Arro 2 {(B,\) : F(B,0) > 1} and Aspo 2 {(B,)) : F(B,\) < 11,

where LRO (respectively SRO) stands for long (respectively short)
range order. Here is a justification for such a terminology: By defi-
nition, two points (i,t), (j,s) are connected in &, if the intervals con-
taining these points belong to the same connected component C in the
¢-induced decomposition of {1,..., N} xSz. We shall denote the latter
event as {(i,t) < (j,s)}. Then,

1. If (B,\) € Asro, then

Bl (0.1) — (5.9) = O("8X) (4.11)

uniformly in ¢, s € Sg and i # j.
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2. On the other hand, if § < oo and (8, \) € ALro, then there exists
p=p(B,\) € (0,1), such that

Ph ((i,1) < (4:5)) = p(B,2)* (L +o(1)), (4.12)

also uniformly in ¢,s € Sg and 7 # j.

As in the classical Erdés-Rényi case the short/long range order transi-
tion for § < oo is related to an emergence of a unique giant connected
component. In fact, the number p(3,\) in (4.12) is precisely the limit-
ing space-time density of the latter. More precisely, let us use (4.8) to
measure sizes of random connected components of {1,..., N} xSg. Let
M and M®*t be the largest and the next to the largest sizes of these
connected components (of course, these definitions make sense only for
B < 00). Then,

1. If (8, \) € Agro, then for every xk > 0 there exists ¢ = ¢(5,\, k) <
oo, such that

Py v (I (1)) > clog N) = O(Ni) (4.13)

where C((¢, 1)) is the connected component containing (,¢). Clearly,
the distribution of }C ((1, t))’ is the same for all i € {1,..., N} and
t € Sg (by definition So, = R). Furthermore, if 5 < oo, then

1

2. If, however, 8 < oo and (3, \) € A ro then there exists a sequence
of positive numbers ey (3, A\) — 0 such that,

Pl (|G =) <) = st o), s

where p(3,\) is the same probability as in (4.12). Furthermore, in
the 3 < oo case, there exists a constant ¢ = ¢(f3, \) < oo such that

Py (E(pyeny ) = 1 — o(1), (4.16)

where the event £(p, en, ¢) is defined via

E(p,en,c) = { é\]/l\f - p’ < EN} NAM™ < clogN}. (4.17)
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The original proof of the above results appeared in [15]. Afterwards, the
statements related to the 3 < oo case were re-proven using somewhat
different methods in [16].

We finish this Subsection by indicating how the expression (4.10)
comes into play. As in the classical case one couples a construction of
a single connected component with a Galton-Watson process. In the
quantum case descendant of a point (i,t) € {1,..., N} are generated
in the following fashion:

1. First generate a random interval I C Sg around (i,t),so that the
end-points of I would imitate two successive holes. Since the holes
arrive with intensity A the length |I| should be distributed as
min {I"(2, ), 8}.

2. Given a realization of I 3 ¢, the number of all links to ¢ which ar-
rive during I is distributed Poisson(252|1]). In the Galton-Watson
approximation we take it to be exactly Poisson(|I|).

Accordingly, if we denote the number of descendants in the Galton-
Watson approximation by X, then E(X|I) = |I]. Let V ~ I'(2,)\)
Then,

E(1]) = E(V;V <B)+6P(V = 5),

Now, -
P(V>p) = / Mte Mdt = (A\G+ 1)e .
3

In the same fashion,

E(V;V <) = g(1 - e*Aﬂ) — (B2A+28) e

A
Consequently,

E(1) = 3 (1) — ge,

which is precisely the expression in (4.10).

4.3 Critical Curve for Quantum Curie-Weiss Model
via Large Deviations

Large deviation representation of the CW model in transverse field is
obtained via partial linearization in the Lie-Trotter product formula
(or partial Poissonization of the CW Hamiltonian). Namely,

_5HCW B/A
= lim (HeN “TIHa —AA)1+AA(&§+1)}> . (4.18)

er A0 A
(4,3) (
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. Asz52 . . .
Note that matrices eN %% are diagonal in the z-basis,

(@, [N, = RV, (4.19)

Let ]P’g be the distribution of the Poisson point process (of holes) on
the circle Sg with arrival intensity A. We shall use ®IP’g for the product
distribution of N independent copies & = (&1,...,&y). Given a real-
ization of £ let us say that a classical piece-wise constant trajectory
v:SP— {jzl}N is compatible with & v ~ &, if for every : = 1,..., N
jumps of v;(+) occur only at arrival times of ;. Passing to the limit in
(4.18) we, in view of (4.19), infer

Tr(eN) /®P5dg Zexp{/ = wit)y(t dt} (4.20)

(4,9)

For every i let #(&;) be the number of connected components of Sg\ ;.
Evidently, the number of all compatible v ~ £ equals to 22 #(&)_ Define

_ #EOPX (dE)
_ B

This is just the one-circle FK measure. Consider probability distri-
bution Qg on piece-wise constant classical one-circle spin trajectories
v : Sg — {£1} which is generated by the following two step procedure:
First sample & from @A, and then paint connected components of Sg\ £
into 1, independently and with probability 1/2 each. Let ®Qg be the
corresponding product measure. It is straightforward to check that the
righthand side of (4.20) equals to

[@g(e#(ﬁ))] ®Qp exp/ Zyl v;(t dt})

(4,9)

Consequently, an analysis of phase diagram of the CW model in trans-
verse filed boils down to an investigation of asymptotic properties for
weighted measures

2 8% (exp { ;) (@)t} 5 av)
2@} (exp (X J7 w7 at})

2Q}3(dv) (4.21)
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where,

_ 1
UN(t) = N ZVz‘(t)-
(2
This problem belongs to the realm of theory of large deviations. For-
mally, the measures (4.21) are asymptotically concentrated around so-

lutions of
1 /8
Sup{2/0 m?2(t)dt — I(m)} 2 sup &(m), (4.22)

where [ is the large deviation rate function for the average v under the
product measures ®Qg. If we formulate the large deviation principle in
L2(Sp), then, using (-,-)g for the corresponding scalar product,

I(m) = St}llp{(h,m)ﬁ — A(h)}  where A(h) = logQ}(e™)s).

(4.23)
A detailed analysis of the variational problem (4.22) and of the weighted
measures @g n will appear in the forthcoming [9]. Here we shall try to
give a brief sketch of the results and techniques, in particular, we shall
explain how the critical curve of the CW model in the transverse field
could be read from (4.22).
The critical curve is implicitly given by

Al 1
f(A B) = BVarA (8) (v, Mp) = + tanh(AF) = 1, (4.24)
where Vary (/) is the variance under the one-circle spin measure Qg. As
we show in [9], the variational problem (4.22) has constant maximizers
+m*(\, 3), where the spontaneous z-magnetization m* satisfies:

1. If (A, B) < 1, then m* = 0.
2. If (A, B) > 1, then m* > 0, and, consequently there are two distinct
solutions to (4.22).

Furthermore, away from the critical curve the solutions +m*1 are sta-
ble in the following sense: There exists ¢ = ¢(), 5) > 0 and a strictly
convex symmetric function U with U(r) ~ rlogr growth at infinity
such that

B
&(km* 1)~ (m) > emin { |m — m* 1|, Hm+m*11|y%}+/0 U (m! (1)) L.
(4.25)

The second term above is important in the super-critical regime
(f(A\,B) > 1) since it rules out trajectories of vy (-) with rapid transi-
tions between the optimal values =m*.
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Properties of One-circle Spin Measures

The following properties of Qg are crucial for the analysis of (4.22):

1. Qg possesses the FKG property.

2. Qg satisfies the following qualitative version of the GHS inequality:
Given h € Ry define the tilted measure

@)\( h(v,D)g . dl/)
@A( h(v, D)5 5)

Then, there exists ¢; = ¢1(A, 3) > 0, such that

Q3" (dv) =

d

7, Varan (8) (v, M) < —crhe 2Pk, (4.26)

3. Qg is reflection positive: Let n € N, 0 < ¢ < -+ < t,, < /2 and
let f:{+1}" — C. Set s, = 3 — t;. Then,

Qg (f(l/tl,...,utn)f(z/sl,...,usn)) > 0. (4.27)

Properties 1. and 3. are more or less immediate since Qg could be
viewed in terms of an approximation by ferromagnetic nearest neigh-
bour one-dimensional Ising models. Namely, let us approximate & by
Bernoulli point process of arrivals ¢4, exactly as in (2.21). Modify
Bernoulli weights by 2#(E%) and paint connected components of S\ £
into +1, independently and with probability 1/2 each. Then, the re-
sulting measure Qg, A approximates Qg. Of course Qﬁ A charges only
trajectories v which jump at times jA. For such trajectories,

B/A-1
Qi a(v) ~ H (Opiay=v(i+1)4)} + AN (u(A)=p(it1)A}) -
1=0
Set J = J(A,\) = —log v A\. Since

IV A(i41)2)
O(ia)=v((i+1) )} T AN a)=(@a)y =~

we recognize ng A as a scaling of the nearest neighbour Ising model on
discrete circle Sg/A at unit temperature and with interaction strength
J(AN).

Inequality (4.26) is proved in [9] using the same approximation (by
1D Ising models) with an additional care being paid to limits of random
current representation of third semi-invariants (based on [2]).
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Dual Variational Problem

In order to explain the implications of the properties of Qg listed
above, it is convenient to consider the dual variational problem,

1 [P A .
sgp{/l(h) - 2/0 hQ(t)dt} = SI}leQS (h). (4.28)

Any solution A of (4.28) is also a solution to (4.22). This is a general fact
from convex analysis: Let F' and G be two proper lower-semicontinuous
convex functionals (on say Lo(Sg)) and let F* and G* be their convex
conjugates. Assume that

F*(h) = G*(h) = max {F"(h) = G"(h)},

and assume that both F* and G* are Gateaux differentiable (in fact

sub-differentiability would be enough) at h. Let m = VF*(h) =

VG*(h). Then,

F*(h) — G*(h) = G(m) — F(m).
Consequently, for each couple of functions m and h,
{(m,h)s = G*(h)} = {(m,h)g — F*(h)} < G(m) — F(mn).

It follows that for every m, G(m)—F(m) < G(m)—F (/). Furthermore,
assume that we can quantify stability property of the dual variational
problem in the following way: There exists a non-negative functional
D, such that D = 0 only on the solutions of the dual problem, and for
any function h,

F*(h) — G*(h) + D(h) < F*(h) — G*(h). (4.29)

Then such stability bound is transferable to the direct problem: Assume
that h = VG(m). Then,

G(m) — F(m) + D(h) +{F(m) + F"(h) — (m,h)g} < G(m) — F(m).

(4.30)
In particular, G(m) — F(m) < G(m) — F(m), whenever VG(m) is not
a solution of the dual problem or whenever h & OF (m).

Let us now go back to (4.22) and (4.28). In the above notation:
F(m) = I(m) and G(m) = HmH%/Q Accordingly, F*(h) = A(h) and
G*(h) = Hh||%/2 In particular, G, G* and F* are everywhere Gateaux
differentiable. Of course, VG(m) = m. Consequently, once we derive a
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stability bound of the type (4.29) for the dual problem, we immediately
recover a stability bound

1 [P
2/0 m?(t)dt — I(m) + D(m) + {I(m) + A(m) — [m|2} < &(m)
(4.31)

for the original problem (4.22). In particular, any solution of (4.22) is
a solution of (4.28).
We, therefore, proceed to study the dual variational problem (4.28).

Reduction to a One-dimensional Problem

Reflection positivity property (4.27) implies that for any h € La(Sp),

1 8
<3 /0 A(h(H)T) dt. (4.32)

Note that (4.32) has been originally proved in a somewhat more general
context in [11]. As a result,

B*(h) < /B{l/l(h(t)]l) - 1h2(t)}dt < 5sup{ A(RT) — th}
~Jo \B 2 her \ B
We claim that the maximizers of the one-dimensional variational
problem

%ﬁ({ﬂ/l(hﬂ) - th} (4.33)

are of the form +h*, where h* > 0 if and only if f(\, 3) > 1.
The critical curve (4.24). Compute,

d (1 1 1
E{EA(M) -5} = 595" (@ 1)g) = b

The latter expression is evidently negative for A large enough, hence
the maximum in (4.33) is attained at a critical point. Furthermore,

Q" (1, 1)s) = Vary (8) (1))

Since by symmetry at h = 0 the expectation Qg ((r,1)g) = 0, and since

by (4.26) the function h — @g’h ((v,1)p) is strictly concave on [0, c0),
we infer that:

Either Vary (3) ((v, )ﬁ(

< 3, and then A = 0 is the only critical
point of the function in (4.33 (8)

)
4.33). Or, Vary (8) ((v ) ) > [, and then
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there are exactly three critical points; 0 and £hA*, the latter inevitably
being the global maxima.

Stability of the one-dimensional problem. We claim, furthermore, that
whenever (A, 3) is away from the critical curve, the problem (4.33) is
stable,

{;A (hT) — %hQ} +d(h) < ;A (+£h*T) — %(h*)Q, (4.34)

where d satisfies the following bound: There exists ¢; = ¢1(\, 3) > 0,
such that,

d(h) > cae M min {(h — h*)2, (h + 1*)?}. (4.35)

Proof of (4.34). Follows from (4.26).

Stability of the original variational problem. It follows that the dual
variational problem (4.28) (recall that in our case F*(-) = A(-) and
G*(-)=1/2] - H%) satisfies (4.29) with

B
D(h) = ; /0 d(h(1))dL.

Of course, the bound (4.34) could be improved for large values of |h/,
however since we are primarily interested in transferring stability to the
direct variational problem (4.22), the values of |h| > 1 are, in view of
(4.31), irrelevant. In particular D(m) clearly dominates (with h* = m*
and ¢ chosen appropriately small) the first term on the right hand side
of (4.25).

The second term foﬁ U(m/(t))dt on the right hand side of (4.25)

is related to a more careful analysis of {I(m) + A(m) — HmH%} term

in (4.31), which is unfortunately beyond the scope of these lectures.
We, therefore, refer the reader to [9].

Behaviour Near the Critical Curve

The GHS-type bound (4.26) implies that the 4-th semi-invariant

A d*A(RT
—s4(\, B) = df(L4) heo’

is locally uniformly negative. Let f(\, ) > 1 and assume that (\, ()
is close to the critical curve, in particular that h*(A, ) is small. Then,
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- 54(A7 ﬂ)(h*)s
66

follows that in the vicinity of the critical curve spontaneous magne-

(1+O(h*). (4.36)

tization m*(\, ) = h*(\, 3) scales like

R

10.

11.

12.

13.

m*(\, §)
VBBGN, B) — 1) /sa(\, B)

= 1+o0(1).
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