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The Boltzmann Equation and its Formal
Hydrodynamic Limits

The kinetic theory, introduced by Boltzmann at the end of the nineteenth
century, provides a description of gases at an intermediate level between the
hydrodynamic description which does not allow to take into account phenom-
ena far from thermodynamic equilibrium, and the atomistic description which
is often too complex. For a detailed presentation of the various models and
their derivation from the fundamental laws of physics, we refer to the book
of Cercignani, Illner and Pulvirenti [31] or to the survey on the Boltzmann
equation by Villani [106]. Here we will just recall some basic facts which are
useful for the understanding of the problem of hydrodynamic limits.

Kinetic theory aims at describing a gas (or a plasma), that is a system
constituted of a large number N of electrically neutral (or charged) particles
from a microscopic point of view. The state of the gas is therefore modelled
by a distribution function in the particle phase space, which includes both
macroscopic variables, i.e. the position z in physical space, and microscopic
variables, for instance the velocity v. In the case of a monatomic gas,

fEf(t,.I‘,U), t>07$€Q,U€R3.

meaning that, for all infinitesimal volume dadv around the point (z,v) of the
phase space, f(t,z,v)dxdv represents the number of particles, which at time ¢,
have position x and velocity v.

The function f is of course nonnegative, it is not directly observable but
allows to compute all measurable macroscopic quantities which can be ex-
pressed in terms of microscopic averages, namely the local density R, the
local bulk velocity U or the local temperature T'

R(t,x) /ftacvalv7 RUtx:/ftxv)valv7

(2.1)
R(|U* 4 3T)(t,z) = /ftxv)|v| dv.
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The distribution function f can actually be seen as the one-particle
marginal of some probability density f¥) on the space (£2 x R3)N of all mi-
croscopic configurations. Of course such a statistical description makes sense
only if the number N of particles is sufficiently large so that the gas can be
considered as a continuous medium. Kinetic equations are thus obtained in
the thermodynamic limit, i.e. as IV tends to infinity.

From Newton’s principle we can deduce a linear partial differential equa-
tion for fV), the so-called Liouville equation, and then, if we neglect the
interactions between particles, we obtain the following free transport equation
for f:

Orf +v-Vuf =0, (2.2)

meaning that particles travel at constant velocity, along straight lines, and
that the density is constant along characteristic lines

dx dv

—=v, — =0.

dt dt
The operator v-V, is the classical transport operator. Its mathematical prop-
erties are much subtler than it would seem at first sight and will be discussed
later. Complemented with suitable boundary conditions, equation (2.2) is the
right equation for describing a classical gas of noninteracting particles. Many
variants are possible. For instance, in the relativistic case, v should be replaced
in (2.2) by p//m? + (p/c)?, where c is the speed of light and m is the mass
of elementary particles.

Now, if the microscopic interactions between particles are described through
avery long-range potential (namely in the case of electromagnetic interactions),
it is enough to consider only the global effect on each particle of the interaction
forces exerted by all other particles, and we get mean field models of the following
type

Of+v-Vof+F-V,f=0, (2.3)

where the force F' can be computed in terms of the distribution function f. For
instance, in the electrostatic approximation, F' is proportional to the electric
field, which is itself obtained from the density p = [ fdv by the Poisson
equation.

In the case when microscopic interactions are described by some short-
range potential, it is not possible to evaluate the effects of the interacting
forces in a global way, using only some averaged quantities. The interactions
are indeed very sensitive to the exact positions and velocities of the particles :
considering for instance a system of hard spheres, i.e. of particles which collide
bounce on each other like billiard balls, it is indeed easy to see that changing
slightly the position of one particle may modify strongly the dynamics of the
system (see Figure 2.1).

The derivation of collisional kinetic models requires therefore very strong
assumptions to guarantee some “statistical stability” of the dynamics.
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Vi Va Vi

Collision in the future L
(exchange of particles 1 and 2) No collision in the future

In a statistical description (which does not distinguish particles), such a perturbation has a weak
effect on the binary collision.

Fig. 2.1. Instability of trajectories

2.1 Formulation and Fundamental Properties
of the Boltzmann Equation

2.1.1 The Boltzmann Collision Integral

The Boltzmann equation is obtained in the thermodynamic limit N — oo
under the following conditions :

particles interact via binary collisions, meaning that the gas is dilute
enough that the effect of interactions involving more than two particles
can be neglected. Furthermore, collisions are localized both in space and
time, meaning that the typical duration and impact parameter of the in-
teracting processes are negligible compared respectively to the typical time
and space scales of the description.

More precisely, the system has to satisfy the scaling assumption, known
as Boltzmann-Grad scaling

Nd® << L*, Nd&*=O0(L?),

where d denotes the typical range of microscopic interactions, and L is the
typical macroscopic length scale.

collisions are elastic, meaning that momentum and kinetic energy are pre-
served in the microscopic collision process. Denoting by v’, v/, the veloci-
ties before collision, and by v, v, the velocities after collision, the following
equations have to be satisfied

Vv =t P+ P =0 + o (2.4)
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V.

Vi
Fig. 2.2. Parametrization of elastic collisions

so that v’ and v/, can be parametrized by ¢ € S? as shown in Figure 2.2

v4ve  |Jlv—0" v4+ve  |Jv—0"
v = _; +| 5 |07 vl = —; _| 5 ‘0 (2.5)
Note that, as the microscopic dynamics is time-reversible, the probability
that (v,v*) are changed into (v’,v}) in a collision process is the same as
the probability that (v',v.) are changed into (v, v,).

e collisions involve only uncorrelated particles, meaning in particular that
particles which have already collided are expected not to re-collide in the
future. Such a chaos assumption (which implies an asymmetry between
the past and the future) allows to consider that the joint distribution of
velocities of particles which are about to collide is given by a tensor product
(in velocity space) of f with itself.

It has been proved by Lanford in 1978 [69] that chaos is asymptotically
propagated in the Boltzmann-Grad limit (at least for small times), pro-

vided that the initial probability density fl(flv ) is sufficiently close to a
tensor product (f;, ).

The Boltzmann equation reads therefore

OWf+v-Vof =Q(f, f) (2.6)

where @ is a quadratic operator acting only on the v variable (first assump-
tion), and involving tensor products (third assumption).
It is given by

= [ a [ oo~ 11 (2.7

where we have used the standard abbreviations
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=10, fi=f0l), fi=fv)

with (v/,v),) given by (2.5) (second assumption).
The Boltzmann collision operator can therefore be split into a gain term
and a loss term

QUf. 1) =Q"(f. /) —Q (f, /)

The loss term counts all collisions in which a given particle of velocity v will
encounter another particle, of velocity v*, and thus will change its velocity
leading to a loss of particles of velocity v, whereas the gain term measures
the number of particles of velocity v which are created due to some collision
between particles of velocities v" and v/,.

The collisional cross-section B = B(z,0) is a nonnegative function
depending only on |z| and the scalar product z - o (because of the microre-
versibility assumption), which measures in some sense the statistical reparti-
tion of post-collisional velocities given the pre-collisional velocities. It depends
crucially on the nature of the microscopic interactions.

If the particles are assumed to interact via a given potential @, the post-
collisional velocities and especially the deviation angle 6 defined by

can be computed in terms of the impact parameter b and relative velocity
z = v—, as the result of a classical scattering problem (see [28] for instance) :

b/s
9(b,z)z7r—2/ 0 du ,
0 \/1—u2—ﬁ¢(%)

where sg is the positive root of

b2 ]
l=—- (—82):0~
50 |2

Then the cross-section B is implicitly defined by

B(|z|,cos6) = M@M

It can be made explicit in the case of hard spheres
B(|z],cos0) = a?|2|,

where a is the (scaled) radius of the spheres, and in the case of Coulomb inter-
action where B is given by Rutherford’s formula. In the important model case
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of inverse-power law potentials, the cross-section cannot be computed explic-
itly, but one can show that

B(|z|,cos ) = b(cos0)|z|"

where v depends on the power occurring in the potential, and b is a lo-
cally smooth function with a nonintegrable singularity at § = 0. The case
of Maxwellian molecules corresponds to the situation when v = 0, which is
not physically relevant but enables one to do many explicit calculations in
agreement with physical observations.

The nonintegrable singularity in the angular cross-section b is an effect of
the huge amount of grazing collisions, i.e. of collisions with a very large impact
parameter so that colliding particles are hardly deviated. Such a singularity
appears as soon as the forces are of infinite range, no matter how fast they
decay at infinity. By the way, it seems strange to allow infinite-range forces,
while we assumed interactions to be localized. Anyhow, in all the sequel we
shall tame the singularity for grazing collisions and replace the cross-section by
a locally integrable one, which is referred to as cut-off process. More precisely,
following Grad [59], we will assume

0 < B(|z|,0) < Cy(1 4 |2])® ae. on R® xS?%, with 3 € [0,1]
1 7|
B do > —
/SZ (Z’O.) 7= Cb1+\z|

a.e.on R> . (28)

In the case of a spatial domain 2 ¢ R* with boundaries, the Boltzmann
equation has to be supplemented with boundary conditions which model the
interaction between the particles and the frontiers of the domain 0f2. These
boundary conditions have to be prescribed only on incoming trajectories, that
is on the set

Y ={(t,z,v) e R" x9N xR’ /v -n(zx) <0} (2.9)

where n(z) stands for the outward unit normal vector at z € 2.
The most natural boundary condition is the specular reflection

flt,x, Ryv) = f(t,x,v), Rzv=v—2w-n(z))n(z), xe€df2. (2.10)

Such a condition expresses the fact that particles bounce back on the wall with
a post-collisional angle equal to the pre-collisional angle. The wall is therefore
considered as a perfect solid with a regular surface whose direction is precisely
known. In particular, the atomistic nature of the solid and the fine details of
the gas-surface interaction are not taken into account.

An alternative consists in modelling the statistical effects of the boundary
irregularities, using a scattering kernel K (see [28] for further details on this
topic) :

flt,x,v) = / K@ v)f(t,x,v")dv', on X_, (2.11)
v’ -n(x)>0
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A particular case is the Mazwellian reflection

f(t,2,0) = ( / » )>0f<t,x,v'>dv’> My (v), on I, (2.12)

where My, is some fixed normalized gaussian distribution depending on the
temperature of the wall. In this model, particles are absorbed and then re-
emitted according to the distribution Myy, corresponding to a thermodynamic
equilibrium between particles and the wall.

Of course one can combine the above conditions, which leads to more
realistic models.

It is important to note that the set of characteristics relying on the singular
set

Yo ={(t,z,v) e R" x02 x R* /v -n(z) =0}

is of zero Lebesgue measure, so that it is not necessary to define the distri-
bution function on it. (We refer for instance to the results - based on Sard’s
Theorem - established by Bardos in [3].)

2.1.2 Local Conservation Laws
The pre-postcollisional change of variable
) Yk

(W' vl o) = (v,v.,0)

is involutive (since the collisions are assumed to be elastic) and has therefore
unit Jacobian. Furthermore, as a consequence of microreversibility, it leaves
the cross-section invariant.

Then, if ¢ is an arbitray continuous function of the velocity v

| QU e
:/ dvdv*/ daB(v—v*7U)(flfi—ff*)<P
x R3 S?

R3
= % ‘ A dvdv*/ doB(v — v, 0)(f'f — [£)(0 + 02
1 R? xR} S2
- 1 /R:‘ % R3 d’UdU* /S"Z dGB(U - U*,O')(flfi - ff*)(<p+ Py — (pl _ (p;)

provided that f satisfies convenient integrability conditions.
As an immediate consequence, whenever ¢ satisfies the functional equation

o(v) + p(vi) = (") + p(v)) Y(v,v4,0) € R® x R* x.5? (2.13)

then, at least formally

QS fe(v)dv = 0.

R3
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An important result in the theory of the Boltzmann equation asserts that all
measurable a.e. finite functions satisfying (2.13) are linear combinations of
the collision invariants
1,01, v9,v3, [0]%
The proof of this result is far from obvious; see for instance [28].
This leads to the formal conservation laws for the Boltzmann equation.

Proposition 2.1.1 Let f = f(t,x,v) be a solution of the Boltzmann equation
(2.6) that is locally integrable and rapidly decaying in v for each (t,x). Then
the following local conservation laws hold :

&g/ de+V:v/ U.de:07
R’ R’
at/ vfdv+Vz~/ v®vfdv =0, (2.14)
R? R’
1, 5 Lo
O | sl fdv+Ve- [ Sl[vfdv=0,
RS 2 R3 2

respectively the local conservation of mass, momentum and energy.

Yet, to this date, no mathematical theory has been able to justify these
simple rules at a sufficient level of generality. Even the corresponding global
conservation laws in the absence of boundaries are not established. The prob-
lem is of course that too little is known about how well behaved are the
solutions to the Boltzmann equation.

With the notations of the introduction for the thermodynamic fields,
namely the local density R, the local bulk velocity U and the local tem-
perature T'

R(t,x) /ftxv v, RUtxz/ftxv)vdv,
ROUP + 37)(t, 2) /f (t, 2, v)[v]2dv,
and the following definition of the pressure tensor

P(t,z) = /(U —U)®?f(t,x,v)dv
these continuity equations are

HR+V, - (RU)=0
O(RU)+ V.- (RU®U + P) =0,
OH(R|U|? + tx(P)) + V- (U(R|U+tr(P)) 4+ 2P - U)

_ v, (/(U _ U)o — U2fdv> ,

where tr(P) denotes the trace of the pressure tensor. Note that these equations
are very similar to the Euler equations for compressible perfect gases.
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2.1.3 Boltzmann’s H Theorem

The other very important feature of the Boltzmann equation comes also from
the symmetries of the collision operator. Without caring about integrabil-
ity issues, we plug ¢ = log f into the symmetrized integral obtained in the
previous paragraph, and use the properties of the logarithm, to find

D) % / Q(f. 1) log fdv

1

S / dvdv,doB(v — vs,0)(f' fi — [ f«)log
R? x R? x 52

I
>
1 0

fre —
(2.15)

The so-defined entropy dissipation is therefore a nonnegative functional, and
it can be proved that its minimizers (in the class of locally integrable func-
tions rapidly decaying and such that log f has at most polynomial growth as
|v| — o0) are Maxwellian densities, i.e. distribution functions of the following
form

R v—Ul?
MRJLT(’U) = W exp <|27_‘) (216)

for some R, T > 0 and U € R®. This result is an easy consequence of the
characterization of the collision invariants provided that f is continuous. In
the general case, it can be proved by a nice argument due to Perthame (see
[16] for instance) using the Fourier transform of the functional equation on f.

This leads to Boltzmann’s H theorem, also known as second principle of
thermodynamics, stating that the entropy is (at least formally) a Lyapunov
functional for the Boltzmann equation :

Proposition 2.1.2 Let f = f(t,x,v) be a solution of the Boltzmann equation
(2.6) that is locally integrable and such that f is rapidly decaying in v and log f
has at most polynomial growth as |v] — oo for each (t,x). Then the following
local entropy inequality holds :

8t/flogfdv+vw~/vflogfdv =-D(f) <0. (2.17)

Again this differential inequality is formally reminiscent of the Lax-
Friedrichs criterion that selects admissible solutions of the compressible Euler
equations. In particular, it demonstrates that the Boltzmann model has some
irreversibility built in. However a considerable difference with the theory of
hyperbolic system of conservations laws is that Boltzmann’s H theorem pro-
vides an expression for the entropy dissipation rate in terms of the distribution
function, which is local in (¢, z).
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2.2 Orders of Magnitude and Qualitative Behaviour
of the Boltzmann Equation

The aim of this section is to give an overview of the dynamics associated with
the Boltzmann equation, depending on the relative sizes of the various physical
parameters. Roughly speaking, the convection phenomena are governed by the
transport operator, whereas the diffusion phenomena are ruled by the collision
operator. The main features of the macroscopic flow should then depend on
the balance between these two terms, and especially of the ratio between the
various typical length (or time) scales arising in the system.

2.2.1 Nondimensional Form of the Boltzmann Equation

Choose some observation (macroscopic) length scale [, and time scale ¢,, and
a reference temperature 7T,. This defines two velocity scales :

e one is the speed at which some macroscopic portion of the gas is trans-
ported over a distance [, in time t,, i.e.

lo

to’

e the other one is the thermal speed of the molecules with energy %kTO,
where k is the Boltzmann constant; in fact, it is more natural to define

this velocity scale as
15 kT,
c=1/z
3 m

m being the molecular mass, which is the speed of sound in a monatomic
gas at the temperature T,.

Define next the dimensionless variables involved in the Boltzmann equa-
tion, i.e. the dimensionless time, space and velocity variables as

~ t
=2 =2 ando="2
to lo
Define also the dimensionless number density
. B 3
flE.2.9) = = f(tz0) L f(t0),

3

0

where IV is the total number of gas molecules in a volume [, meaning that
R, is the average macroscopic density.
Finally, since the Boltzmann kernel B has units of the reciprocal product

of density by time, it determines a timescale 7 by

N
/M(RO,O,TO)(U)M(RO70,TO)(U*)B(U — Uy, 0)dodv.dv = B

oT
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The finiteness of the above integral is ensured by Grad’s cutoff assumption
(2.8) on B, so that 0 < 7 < 4o0. This is the scale of the average time that
particles in the equilibrium density Mg, o7, spend traveling freely between
two collisions, the so-called mean free time. It is related to the length scale of
the mean free path A

A=crT.

Define the dimensionless Boltzmann kernel B by the relation

B(0 — 04,0) = Ryt B(v — vy, 0)

and set the corresponding dimensionless collision operator to be

QF.) = [[ d0.doBo - 5..0) (7. - 1.5
Then, the Boltzmann equation

Of +v-Vaof =Q(f. ),

can be reformulated in terms of dimensionless variables
lo ~ ~  _ P R
aatf +0-Vif = XQ(faf)~

The factor multiplying the collision integral is the inverse Knudsen number

(by analogy with the notion of Strouhal number used in the dynamics of vor-
tices). Hence the dimensionless form of the Boltzmann equation is (dropping
all tildas)

St0Lf + - Vaf = QU f). (218)

Before discussing the qualitative behaviour of the solution to the
Boltzmann equation in terms of the relative sizes of the parameters Kn and St,
let us comment a little bit on the choice of the reference scales, and introduce
another dimensionless parameter which allows to compensate the arbitrariness
of this choice.

A rather natural thing to do is to choose the length, time and temperature
scales [, t,, T, in a way that is consistent with the geometry of the domain
where the gas motion takes place, the time necessary to observe significant
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gas motion, and the distribution function at the initial instant of time. In this
case, the ratio l,/t, corresponds to the bulk velocity u, of the flow and the
Strouhal number is nothing else than the Mach number

U

Ma = 2.
c
However, considering small fluctuations around some reference flow, it may

happen that the bulk velocity u, to be studied is very small compared to the
ratio [, /t, (which leads to some “linearized” hydrodynamics), so it makes
sense to consider situations such that

Ma << St.

2.2.2 Hydrodynamic Regimes

All hydrodynamic limits of the Boltzmann equation correspond to situations
where the Knudsen number Kn satisfies

Kn<<1.

Indeed, in view of Boltzmann’s H theorem, one expects the distribution func-
tion to resemble more and more a local Maxwellian when Kn — 0. In other
words, the collision mechanism holds on a time scale which is very small
compared to the observation time scale, so that one can consider that local
thermodynamic equilibrium is reached almost instantaneously. This means
that the Knudsen number Kn governs the transition from kinetic theory to
hydrodynamics.

But there is no universal prescription for the Strouhal number in this
context; as we shall see below, various hydrodynamic regimes can be derived
from the Boltzmann equation by appropriately tuning the Strouhal number St.

The Compressible Euler Limit

is the easiest of all hydrodynamic limits of the Boltzmann equation at the
formal level, as can be expected from the previously mentioned analogy be-
tween the system of conservation laws (2.14) associated with the Boltzmann
equation, and the compressible Euler system. Indeed, as Kn — 0, solutions of
the Boltzmann equation behave as local Maxwellians, namely

R(t,z) o - Ut,2)P
s~ e (o)

for some R(t,x),T(t,x) > 0 and U(t,z) € R®.
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Therefore, passing to the limit in the local conservation laws (2.14), we get

Sto, R+ V.. - (RU) = 0,
Sto,(RU) + V. - (RU @ U + RTId) = 0, (2.19)
Std(R|U|* + 3RT) + V- (U(R|U|* + 5RT)) =0,

which are the equations of hydrodynamics for perfect gases, satisfying in par-
ticular the state relation
P =RTId.

That there is no excluded volume in this state relation is strongly linked with
the Boltzmann-Grad scaling assumption Nd* << I3, which expresses the fact
that the volume occupied by the particles is negligible compared with the
volume of the domain.

Furthermore, taking limits in the local entropy inequality (2.17), we obtain

R R
Sto: (Rlog T3/2> + V- <RU log T3/2> <0, (2.20)

which is exactly the Lax admissibility condition, characterizing among the
solutions of (2.19) those which are physically relevant, i.e. which satisfied the
second principle of thermodynamics.

In other words, we expect the moments of the solution f to the Boltzmann
equation to be approximated at order O(Kn) by the solution to the compress-
ible Euler equations.

A natural question is then to determine higher order hydrodynamic cor-
rections to the compressible Euler system.

Higher Order Hydrodynamic Approximations

can be obtained by using asymptotic expansions of the distribution function
in terms of the Knudsen number Kn, or in other words by seeking solutions
of the scaled Boltzmann equation (2.18) as formal power series in Kn

f(t,z,v) = Z(Kn)kfk(t,m,v),

£>0

with coefficients fj that are smooth in (f,z,v) and rapidly decaying as
|v] — oo. Of course the leading order approximation f; is expected to be
the limiting hydrodynamic distribution function, that is the local Maxwellian
with thermodynamic fields satisfying the compressible Euler equations (2.19),
while the successive corrections f account for finite Knudsen effects. Note
that, depending on the exact form of the Ansatz, this process will lead to
different hierarchies of PDEs.
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Hilbert’s expansion

flt,zv) = fo(t,z,0) | 1+ Z(Kn)kgk(t,amv)

E>1

is historically the older and goes back to Hilbert’s fundamental paper [65] on
the kinetic theory of gases. Plugging this Ansatz in the scaled Boltzmann equa-
tion (2.18), and balancing the resulting coefficients of the successive powers of
Kn, one gets, as compatibility conditions to solve the hierarchy, that at each
order k > 1, the hydrodynamic part of g satisfies the linearized compressible
Euler equations (with source terms depending on gx—_;, for j =1,...,n—1). It
seems then natural to collect all the contributions to the local thermodynamic
equilibrium at leading order.

Such a variant of Hilbert’s expansion was found independently by
Chapman and Enskog, and is known today as Chapman-Enskog’s expan-
sion [33]

f(t,z,v) = Myt z,0) [ 1+ > (Kn)¥ge(t, z,v)

k>1

where M is the local Maxwellian with same moments as f

~ R(t,z) v - Ut z))”
Mi(tov) = oo oy &P (_2T(tw)> 7
R(t,x) _ /f(t,x,v)du RU(t,x) = /Uf(t,x,v)d'U, (221)

R(UP + 37)(t,2) = / WPt 2, v)do,

and the fluctuations g, are functions of v depending on (¢, ) through R(t, z),
U(t,z) and T(t,x) and their partial a-derivatives evaluated at (¢,z). Note
that, at variance with Hilbert’s expansion, Chapman-Enskog’s Ansatz requires
knowing in advance that the successive corrections to the compressible Euler
system (2.19) within any order in Kn are systems of local conservation laws.
The first correction to the compressible Euler equations is then given by

Stath +uv- vaf = _Mf‘CMf (gl)a
or equivalently

3 1 , 3 1 ,
Stat(logR—2logT—2T|v—U|> +V, <logR—210gT—2T|v—U| >-v

where Ly, denotes the linearization of the collision operator at the local
Maxwellian M. Then, using the properties of the linearized collision oper-
ator L, (to be studied in the next chapter), namely the fact that it is a
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Fredholm operator, one obtains the compressible Navier-Stokes system with
O(Kn) dissipation terms :

StotR+ V, - (RU) =0,
Std(RU) + V, - RU® U + RTId) = KnV, - (u(R, T)DU) + O(Kn?),
Sty (R|U|* +3RT) + V- (U(R|U|* + 5RT)) = KnV, - (k(R,T)V,T)
+KnV, - (u(R,T)DU -U) + O(Kn?),
(2.22)
where DU denotes the traceless part of the deformation tensor

1 1
DU = (V.U + (V.U)T) — (Ve - U)14,

and the diffusive coefficients, namely the viscosity u = p(R,T) and the heat
conductivity k = k(R,T), are defined in terms of the linearized collision op-
erator Ly, .

We then deduce formally that the solution to the Navier-Stokes equations
is close to the moments of the solution f to the Boltzmann equation at order
O(Kn?).

Such a process can be iterated in order to get further corrections to the
Navier-Stokes system, which leads to a hierarchy of hydrodynamic models
(note however that their well-posedness requires a convenient truncation al-
gorithm, as that proposed recently by Bobylev and Levermore [13]).

The Main Qualitative Features of the Hydrodynamic Flows

governed by the Boltzman equation can therefore be characterized in terms
of the nondimensional parameters introduced at the beginning of this section,
namely the Knudsen, Strouhal and Mach numbers Kn, St and Ma.

The previous results are summarized in Figure 2.3.

2.2.3 Corrections to Hydrodynamic Approximations

Furthermore we are also able to estimate by how much the solutions to the
scaled Boltzmann equation deviate from their hydrodynamic approximations,
at least inside the domain {2 (see Figure 2.4).

The adiabaticity of the gas is indeed measured in terms of the Knudsen
number Kn. In a gas close to local thermodynamic equilibrium, the deviation
from the hydrodynamic approximation is given by an entropic relaxation on
a time scale of order Kn.

The compressibility of the fluid is then measured in terms of the Mach
number Ma. In a weakly compressible fluid, the deviation from the incom-
pressible approximation is given by compression/decompression waves, also
called acoustic waves, oscillating on a period of order Ma.

The wiscosity of a perfect gas is measured in terms of the Reynolds number
Re = Ma/Kn. In a weakly viscous fluid, the deviation from the hyperbolic
approximation is given by a small diffusion which smoothes the shock profiles
on length scales of order 1/v/Re.
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1
Madif +v-Vif = 2 Q(f. )

DN LIMIT Kn<<1

Mad,R +V, - (RU) =0
Mad:RU+V, - (RU® U + RT) = O(Kn)

Mad, <%R|U\2 + gRT) +V. <%R|U\2U + gRTU) = 0(Kn)

AROUND A GLOBAL EQUILIBR
NCOMPRESSIBLE LIMIT Ma<<

Ou+ (u-Vy)u+ Vep =vAu
0:0 + (u- V)0 = A0

Ou+ (u-V)u+Vyp=0
00+ (u-Vy)0 =0

Fig. 2.3. Hydrodynamic models for rarefied gases

Fig. 2.4. Corrections to hydrodynamic approximations
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2.2.4 Taking into Account the Boundary

It remains then to understand what happens in the vicinity of the boundaries
0f2, which can be either exterior boundaries or obstacles.

Let us first recall that, at the microscopic level, the interaction between
the gas and the boundaries is modelized phenomenologically by Maxwell’s
condition. If the boundary is perfectly smooth, the reflection is specular. If
the boundary is rough, one further introduces some diffusion by a scattering
operator, which is a relevant approximation when considering large length
scales compared to the boundary irregularities. The roughness of the boundary
is then measured by a supplementary non-dimensional parameter « € [0, 1],
called the accommodation coefficient. More precisely the balance between the
outgoing and incoming part of the trace of f states

fis. =0 —a)Lfis, +aK(fjx,) on X_ (2.23)

where we recall that the outgoing/incoming sets X', and X_ at the boundary
012 are defined by

Yo ={(z,v) €02 xR +n(z)-v >0} (2.24)

denoting by n the outward normal on 0f2.
The local reflection operator L is given by

Lf(z,v) = f(x, Ryv) (2.25)

where Ryv = v — 2(v - n(z))n(z) is the velocity before the collision with the
wall. The diffuse reflection operator K is given by

Kf(x,v) = Mw(’l))/ [z, ") (v - n(z))dv (2.26)
v’.n(x)>0

where My, is some Maxwellian distribution characterizing the state of the

wall and such that

/ (v - n(x)) My (v)do = / v - (@) My (v) do = 1,
v.n(x)>0

v.n(x)<0

which expresses the conservation of mass at the boundary.

At the macroscopic level, one can obtain two types of behaviours at the
boundary : either a braking (represented by the Dirichlet boundary condition)
or a slipping (represented by the Navier boundary condition), or a combination
of these two phenomena (expressed by some mized Robin boundary condition).
This behaviour will depend of course on the nature of the boundary, but also
on the viscosity of the fluid.

If the fluid is viscous, one can characterize the fluid/boundary interaction
in terms of the ratio a/Ma (full braking if o/Ma — +o0, perfect slipping if
a/Ma — 0).
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If the fluid is inviscid, the braking condition is not mathematically admis-
sible. This means that the flow inside the domain will not depend (at least
formally) on the nature of the boundary. The fluid/boundary interaction ap-
pears only on a thin layer (of size 1/v/Re), called Prandtl layer. Nevertheless
this layer is generally unstable (see [61] for instance) and may give rise to
turbulent effects (reflected back inside the domain).

2.3 Mathematical Theories for the Boltzmann Equation

In this section, we will introduce the main existing mathematical frameworks
dealing with the Cauchy problem for the Boltzmann equation, which can
be useful for the study of hydrodynamic limits. In particular, we will discuss
neither the numerous results concerning the spatially homogeneous Boltzmann
equation, nor the local existence results.

Let us first describe briefly the most apparent problems in trying to con-
struct a general, good theory. In the full, general situation, known a priori
estimates for the Boltzmann equation are only those which are associated
to the basic physical laws, namely the formal conservation of mass and en-
ergy, and the bounds on entropy and entropy dissipation. Note that, when the
physical space is unbounded, the dispersive properties of the free transport
operator allow to further expect some control on the moments with respect
to z-variables. Yet the Boltzmann collision integral is a quadratic operator
that is purely local in the position and time variables, meaning that it acts
as a convolution in the v variable, but as a pointwise multiplication in the ¢
and x variables : thus, with the only a priori estimates which seem to hold
in full generality, the collision integral is even not a well-defined distribution
with respect to x-variables. This major obstruction is one of the reasons why
the Cauchy problem for the Boltzmann equation is so tricky, another reason
being the intricate nature of the Boltzmann operator.

2.3.1 Perturbative Framework : Global Existence of Smooth
Solutions

Historically the first global existence result for the spatially inhomogeneous
Boltzmann equation is due to Ukai [103], who considered initial data that
are fluctuations around a global equilibrium, for instance around the reduced
centered Gaussian M :

He proved the global existence of a solution to the Cauchy problem for (2.6)
under the assumption that this initial perturbation g;, is smooth and small
enough in a norm that involves derivatives and weights so as to ensure decay
for large v.
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The convenient functional space to be considered is indeed

Hi = {9 = g(,v)| |gllix = sup(L + [o[")[|M'2g(-,0) | gy < +o0} .

Theorem 2.3.1 Assume that the collision kernel satisfies Grad’s cutoff as-
sumption (2.8) for some € [0,1]. Let gin, € Hyy for 1 > 3/2 and k > 5/2
such that

ginllik < ao (2.27)

for some aq sufficiently small.
Then, there exists a unique global solution f = M(1 + g) with g €
L>®(R", H; ,)NC(R", Hy 1) to the Boltzmann equation (2.6) with initial data

9jt=0 = Yin -

Remark 2.3.2 The classical theory of the Boltzmann equation close to equi-
librium, started with the works of Ukai, has been developed in the framework
of hard potentials. Many such ezistence results, based on linearization and
spectral estimates, have been proved, considering initial data which are small
and very smooth perturbations of a global (Mazwellian) equilibrium.

Using some “nonlinear energy method” instead of the spectral study of the
linearized problem, and the decomposition of the solution into a “hydrody-
namic” part and a “purely kinetic” part, Guo [62] was then able to extend the
theory of Boltzmann’s equation close to equilibrium, to cover basically all the
physically meaningful range of decays of the cross-section.

Sketch of proof of Theorem 2.5.1. Such a global existence result is based on
Duhamel’s formula and on Picard’s fixed point theorem. It requires a very
precise study of the linearized collision operator Ly, defined by

2
Lyg = —MQ(M7M9)7

and more precisely of the semi-group U generated by

1 1
St Ve +SKn£M'

e The first step consists actually in reducing the Boltzmann equation to
the integral equation

9= Nlgl, (2.28)
where the functional N is defined by
N[g}(t) gzn+¢g g]()
vlg.g / Ut - )= Qg Mg)(syds. PP

The global well-posedness of the Cauchy problem for (2.6) will then be es-
tablished by proving that N is a contraction in a ball of L®(R"*, H; ;) N
CR", Hy ).
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e The second step is to prove the continuity of the linear semi-group U. Us-
ing its spectral representation and spectral estimates due to Ellis and Pinsky
[45], one obtains the continuity of U in H!(L?*(Mdv)).

In order to obtain refined estimates, and especially to gain integrability
with respect to the v-variable, one has to use more about the structure of
the linearized collision operator, namely the following decomposition due to
Hilbert [65] (see also section 2 in Chapter 3)

,CM =v—-K
where the frequency part satisfies the lower bound
v(jol) = v >0,

and the integral part IC improves integrability in the v variable (as proved by
Caflisch [23]) :

K: HLLY) — Hio, and K : Hyj — Hypqr

From the explicit formula for the semi-group U generated by

1 1
eV
Stv =t StKnV

and Duhamel’s formula

_ 1 t_
U =0 + gem /0 Ut — s)KU(s)ds,
we deduce that
v_ ¢ v_
U )ally < exp(~gimt) ol +Cxy [ exp(—greem(t = ) Ul xds

where I maps X into Y.
Iterating the process shows that, if k& >
constant C (depending on [ and k) such that

3

5, there exists a nonnegative

1U®)gllie < Cillgl

Lk -

e The continuity of the bilinear operator v is obtained in a very similar
way.
Standard continuity estimates for @ shows that

1
—1

v < Cllgllirlbllig -

L (da,(L2(Mdv))

1
—Q(Mg,Mh
e

for k > 3/2,1> 3/2.
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Then, starting from the spectral estimates on U and using Hilbert’s de-
composition to gain integrability in the v variable as previously, we obtain the
expected continuity property, namely

19, hlllik < CallglikllPlli g »

where C3 is a nonnegative constant depending on [ and k, provided that
H; C vHL(L*(Mdv)), or equivalently k > 5/2.

e Equipped with these preliminary results, we get immediately the global
existence of a unique solution to (2.6). Indeed, we have

IN[glllik < Cillginllin + Callglli

and
IN[g] = N[b]llie < Co(llgllik + Rllk) lg — R

Choosing ag and a; such that

|1,k

2C5a; < 1 and Chag + Cga% <ay,
we get that N is a contraction on the ball of radius a; as soon as

lginllie < ao,

We then conclude by Picard’s fixed point theorem. O

The first disadvantage inherent to that strategy is the need for a deep result
of spectral theory. In particular, this approach fails to provide a real under-
standing of the coupling between relaxation and hydrodynamic modes in the
full nonlinear Boltzmann equation.

For the purpose of deriving incompressible hydrodynamic limits, it would
seem that Ukai’s result is exactly what is needed. The difficulty is that it
cannot be used as a black box, because of the potential lack of uniformity
with respect to the Knudsen number Kn on the critical size of the initial
perturbation that guarantees global existence. Let us mention however that
Bardos and Ukai [7] have obtained the first mathematical derivation of the
incompressible Navier-Stokes equations in that framework.

Nevertheless one cannot expect to extend such a result to classes of initial
data with less regularity.

2.3.2 Physical Framework : Global Existence
of Renormalized Solutions

For those reasons, we will use a global existence theory for the Boltzmann
equation that holds for physically admissible initial data of arbitrary sizes.
This theory goes back to the late 80s and is due to DiPerna and Lions [44].
For the sake of completeness, we shall sketch here the main arguments leading
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to that result, most of which will be detailed in the next chapter since they
are also fundamental tools to study hydrodynamic limits.

Our presentation of the subject incorporates later developments of the
theory of renormalized solutions :

- we will indeed consider solutions of the Boltzmann equation that converge
at infinity to some uniform Maxwellian, for instance the reduced centered
Gaussian M (following Lions in [73]);

- we will further present a simplification of the original proof based on
compactness properties of the gain term in the collision operator (established
by Lions in [72]);

- we will give moreover a weak version of the global conservation of energy
and of the local conservation of momentum, involving some defect measure
which characterizes the possible loss of energy at large velocities in the ap-
proximation scheme (introduced by Lions and Masmoudi in [75]);

- we will also take into account the boundary effects (modelized by
Maxwell’s boundary condition) (using some refined results of functional anal-
ysis due to Mischler [84][85]).

The DiPerna-Lions theory does not yield solutions that are known to solve
the Boltzmann equation in the usual weak sense. Rather, it gives the exis-
tence of a global weak solution to a class of formally equivalent initial-value
problems.

Definition 2.3.3 A renormalized solution of the Boltzmann equation(2.6)
(2.23) relatively to the global equilibrium M s a function

f € C(R', Lj, (2 x RY))
which satisfies in the sense of distributions

M (Std, +v-V,)I' <AJ;) = %F’ (]{4) Q(f.f) on R"x2xR?,

flico=fin =0 on 2 xR’
(2.30)

Jor any I € C*(RY) such that |I"(2)| < C/V/1+ z.
We further require that for every ¢ € CL(2 x R*) and every [t1,t:] C RY,
we have

St/Q/MgoF <J\f4) (tg,z,v)dvd:cfSt/Q/MgoF <J\f4> (t1, z,v)dvdx

_/tltz/Q/M(v.vm@)F (X;) (t, 2, v)dvdadt
+/t1t2/69/M<pF (AJ;) (t, 2, v)(v.n(z))dvdodt

_ Kln/tltz/g/@r’ (]{4) Qf, f)(t, 2, v)dvdadt
(2.31)
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with the renormalized boundary condition

r <%) e ((1 — o)L(fz,) +a\/§7/}Mff|g> (von(a)ede)
(2.32)

With the above definition of renormalized solution relatively to M, the
following existence result holds :

Theorem 2.3.4 Assume that the collision kernel satisfies Grad’s cutoff as-
sumption (2.8) for some [ € [0,1]. Given any initial data f;, satisfying

H(fin| M) d:@f/ / (fm log an — fin + M) (¢,0) dvdz < +00,  (2.33)
Q
there exists a renormalized solution f € C(R', L}, (2 x R?)) relatively to M
to the Boltzmann equation (2.6)(2.23) with initial data f,.

Moreover, f satisfies
- the continuity equation

Stat/fdv +V, - /fvdv = 0; (2.34)
- the momentum equation with defect measure
St&g/fvdv—&—vaC - /fv@vdv—i—vm -m =20 (2.35)

where m is a Radon measure on RY x 2 with values in the nonnegative sym-
metric matrices;
- the entropy inequality

1 t
H(M)) +a/ () + Sk J, [, DU (2.36)
+§/0 /BQ E(fIM)(s,z)dsdoy < H(fm|M)

where tr(m) is the trace of the nonnegative symmetric matriz m, the entropy
dissipation D(f) is defined by (2.15) and the boundary term E(f|M), referred
to as the Darrozes-Guiraud information is defined by

B = [ (s =74 0r) (wentai

- (/f(x,v) (v-n(:r))+dv> log (/f(m) \/%(v-n(w)hdv) (2.37)

([ e @ena) - =
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Sketch of proof of Theorem 2.3.4. We recall here the main arguments leading
to that existence result, following the presentation of Golse and the author in
[58] for the convergence of the approximation scheme inside the domain (2,
and the proof of Mischler in [85] for the convergence at the boundary.

Because our goal is to point out similarities between these arguments and
those used in the framework of hydrodynamic limits, we focus on the weak sta-
bility of sequences (f,,) of renormalized solutions to (2.6), and do not present
the underlying approximation scheme. Note that, in any case, the parameters
Kn and St are fixed.

Step 1 : weak compactness results.

We have first to obtain some weak compactness on ( f,,) using the (physical)
a priori bounds.

From the uniform bound on the relative entropy

sup H(f.|M)(t) < C.
teR*

we deduce by Young’s inequality (see (3.4) in Chapter 3) and pointwise esti-
mates that

(fZ\Z> is bounded in Loo(dtleloc(dI7Ll(M(1 + |U|2)d’U)))7

f

(2.38)
(ﬁ) is weakly compact in L}, .(dtdzdv)

(see Lemma 3.1.2 in Chapter 3 for a detailed proof of that statement), and

& 1 fl 3 oo + 71 1 . .
AR log [ 1+ 5]\/[ —0in LR, Lj,.(dz, L (Mdv))) uniformly in n
(2.39)
as 0 — 0. In particular, for fixed § > 0,
(W) is weakly compact in L], (dtdzdv).

Then, from the uniform bound on the entropy dissipation

/Um/ﬁp(fn)(t,m)dxdtgc,

we deduce, using a convenient splitting of the integral according to the tail of
(frtfns)/(f] 1l ), that for fixed 6 > 0,

(CM> is weakly compact in L], (dtdzdv). (2.40)

1+ 4f,/M

In particular, the sequence 3 log(1 + 6%) (which is uniformly bounded in
L>*(R", L} (dz, L*(M(1+ |v|)dv))) by the relative entropy bound) satisfies

loc
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fn _ 1 Q(fn7f7l) _
M) T Knl+of,/M 0<1>L%M<dtfiv;41)

M(Stoy + v - Vx)%log (1 +0

By interpolation (see [74] for instance), we eventually arrive at

1 ny\ . . .
(5 log(1 + 6£/[)> is relatively compact in C([0,T],w — L}, .(dxMdv)),

which, coupled with (2.38) and (2.39), leads to
fn — f weakly in Lj, (dx, L' (dv)) locally uniformly in t as n — oo (2.42)

modulo extraction of a subsequence.

Step 2 : strong compactness results.

In order to take limits in the renormalized Boltzmann equation, we have
further to obtain some strong compactness, which is the matter of the second
step. The crucial idea here is to use the velocity averaging lemma due to
Golse, Lions, Perthame and Sentis [53] (and detailed in the third section of
Chapter 3), stating that the moments in v of the solution to some transport
equation are more regular than the function itself.

From the uniform bound on  log(1 + 6%) and the estimate (2.41) on the
transport, we deduce in particular that, for all ¢ € C’I(R3) with subquadratic
growth at infinity,

1 n . . .
5 /Mlog (1 + 5§4> ©(v)dv is strongly relatively compact in L}, (dtdz),

and thus by (2.39) that

/fngo(v)dv is strongly relatively compact in L7 (dt, L} .(dz)).  (2.43)

This convergence statement allows to take limits in the Boltzmann collision
integral, once it is renormalized by some convenient macroscopic quantity.
This average renormalization is here only to guarantee that all the quantities
considered are at least locally integrable. Using a variant of Egorov’s Theorem
(namely the Product Limit theorem established in [44] and recalled in
Appendix A), we are actually able to establish that, modulo extraction of a
subsequence, for all ¢ € C.(R* x2 x R?)

Q* (fa: fn) Q(f.f)

1+ [ fudv 15[ a0t Ljp(dtdz). (2.44)

¢dv —

Step 3 : limiting macroscopic equations.
From the previous steps, one can easily obtain the entropy inequality and
the variants of the conservation laws satisfied by f.
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y (2.38), we have

/ fndv — / fdv
weakly in L], (dtdx)

/ Fovdo — / fudv

which allows to take limits in the local conservation of mass. Furthermore, by
the Banach-Alaoglu theorem, up to extraction of a subsequence, for each i, j

/fnvivjdv — wi; weakly-* in L= (R™, M(£2)). (2.45)
By monotone convergence, one can then prove that
Hij = /fijdv + My ,
where m;; is a nonnegative symmetric element of L>(R*, M(£2, M3(R))).

Taking limits in the local conservation of momentum leads then to (2.35).
By weak limits

fn — fin Lj, (dtde, L' (1 + |v])dv)

/fn|v|2dv — /f|v|2dv+tr(m) in L (R*, M(£2))

and
JnJnx s ) . )
- L}, (dtdz, L' (Bdvdv.d
146 [ fodv  1+6 ] fdv loe(dtdz, L' (Bdvdv.do))

f/ / f/f/ X 1
1+6 [ fndv 1+6 [ fdv in L;,.(dtdx, L' ( Bdvdv.do))

(obtained similarly as (2.44)), using the convexity of the functionals defining
the relative entropy and the entropy dissipation, we get

H(fIM) (1) + / tx(m)(¢) < liminf H(f,|M)(0),

n—00

t
/ /D (s,z)dxds < hmmf/ /D(fn)(s,x)dmds

thus passing to the limit in the entropy inequality leads to (2.36) in the absence
of boundary.

(2.46)

Step 4 : limiting renormalized kinetic equation.
The most technical step of the proof is then to take limits in the renor-
malized equation (2.30). With the information at our disposal, and although
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the previous step provides useful information on the nonlinear term, this con-
vergence is not trivial, in particular because the only source of compactness
in the problem, i.e. velocity averaging, does not give any information on the
distribution f,, itself.

e Using pointwise estimates on I5(2) = 1757 and on its derivative, we
deduce from the weak compactness statements established in Step 1 that, for
all 6 > 0,

fn

(2.47)
I} (M) QF (fu, fn) — QF weakly in L] (R" x2 x R?).

Furthermore, from the relative entropy bound and the uniform convergence
(2.42) we deduce that

f—]&(t) — T <§Z) (t) — 0 in L}, .(dz, L*(dv)) uniformly in t,n as § — 0,

and thus that

fs — fasd—0 in L, (dr, L*(dv)) uniformly in ¢,

and a.e. on RT x2 x R?. (2.48)

The idea is then to take limits in

o
M (Std; +v - V) log (1 T fd) B Klnm

M
Jsjt=0 = Ls(fin)-

e By the strong compactness statements (2.43) established in Step 2, and
the Product Limit theorem, we have, for all § > 0,

Qi(fnafn) - fn
(14+6fn/M)? o (1+0f,/M)? //sz*BdU*dU

— fs // f«Bdv.do in L}, (R x02 x R?)

with f5 < f5 and

fs — fasd — 0 in L}, (dz, L'(dv)) uniformly in t,
and a.e. on R x2 x R?,

using the same arguments as for (2.48). We then obtain the convergence of
the loss term (up to extraction of a subsequence)

Qs |
1+ fs/M

1+J}/M //f*de*da as d — 0 a.e. on R" x2x R* (2.49)
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and thus in L], (R* x2 x R*) by Lebesgue’s theorem.

e The convergence of the gain term is more complicated to establish. Start-

ing from
o fn\ @ (fns fr) fn\ Q7 (fn, fn)
il | —F—F <\ |7
M) 1+ [ fodv M) 1+ [ fodv
then integrating against some ¢ = ¢(v) > 0 and taking limits as n — oo, we
get
Qf <Q'(f,f) ae.on R" x2 x R?

using the convergence (2.44) obtained in Step 2, and the Product Limit
theorem.

Then, introducing some suitable decomposition according to the tail of
(fL 11/ (fafns), and using the convergence (2.44) and the Product Limit
theorem, we establish that, for all A > 0,

Q Ut) QLS
L+ A [ foido, 1+ A [ fudo,

weakly in L}, (R" x2 x R?).

loc

Starting from a refined decomposition, and using the convergence of the en-
tropy dissipation in the vague sense of measures, we then obtain that, for all

A>0,
Q (. [) et
<1 fQr.
TN fodv, = R
Finally, we get

Qy QL))
1+ fs/M 14+ f/M

as & — 0 a.e. on R" x2 x R? (2.50)

and thus in L}, (R" x 2 x R?) by Lebesgue’s theorem.

e Combining all results leads to

f) 7LQ+(f,f)_Q7(faf)
M

M(St8t+v~Vm)log<1+ = Ra L TN ,

with initial condition fj;—g = fi, (since the convergence is uniform in t).
It remains then to check that the same identity holds for any admissible
renormalization I'

f 1

M(Stat-H).vI)p() :F/<f

M) Kn M>(Q+(f,f)—62‘(f,f))7 (2.51)

which is done by composition if [I7(z)| < C(1 + z)~!, and else by approxi-
mation, using the fact that Q(f, f)/+/1+ f/M is controlled by the entropy
dissipation and the relative entropy (see the proof of Proposition 4.3.1 in
Chapter 4 for an analogous result).
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Step 5 : limiting boundary conditions.

In the case of a spatial domain with boundary, it remains then to take
limits in Mazwell’s boundary condition. This requires powerful tools of func-
tional analysis, which are consequences of Chacon’s Biting Lemma and are
stated in Appendix C.

Let us first note that the boundary term obtained formally in the entropy
inequality

/ /an/ (o 108 2025 = fo- 40 ) (5, 0)(0 - ) s
/ L./ (f”'ﬂ oy 42— g5 +M) (5,2, Rov)(v - n(x)) dvdo,ds

controls the Darrozes-Guiraud information

oz/0 o E(fn)(s,x)dozds

defined by (2.37) (by a simple convexity argument), and so we start from a
sequence (fy,) such that the Darrozes-Guiraud information E(f,,) is uniformly
bounded in L'(R" x992).

The trace is then defined by some Green’s formula written on the renor-
malized equation. The main difficulty to take limits in the renormalized form
(2.32) of Maxwell’s boundary condition, is therefore the lack of an a priori
bound on the trace, giving in particular some local equi-integrability in v.

e We first establish the following renormalized convergence (see
Appendix C for a precise definition of this notion)

fnjo2 — foo in renormalized sense on R™ x912 x R?, (2.52)

using the a priori estimates coming from the inside, and the weak formulation
(2.31) of the renormalized Boltzmann equation.
Starting from (2.31) with

v-n(x)
T Wx(w)

where x € C2°(R?, R") and n denotes some vector field of W (£2) which
coincides with the outward unit normal vector at the boundary, we get

/ /an/ 1 + |v|2 e (ﬁ}\jn) (t,z,v)dvdo,dt

—St/ /M T v2( )F(f">(t1,x v)dvdx

—St /M (@)x <f> to, 2, v)dvdz (2.53)
x(@

p(z,v) =

1+ |v|2

/://Mv Ve ( 14(_|))|2 ) ( )(txv)dvdxdt

tz/ / 1 + |U|2 )F <fn) Q(fn, f)(t, z,v)dvdzdt.
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Thus from the uniform bounds obtained in Step 1 and Cauchy-Schwarz in-
equality, we deduce that

fn|8!)

Mr ( ) is weakly compact in L}, (dtdo,, L' (Jv - n(z)|dv)) .

Using the convergence results stated in Step 4, we can take limits as n — oo
in the right-hand side of (2.53), and then identify the limit writing Green’s
formula for the limiting kinetic equation (2.51). We thus obtain

MT (%) —~MI (%) weakly in L, (dtdo, L ([v - n(z)|dv)).

which implies the renormalized convergence (2.52). Note that, up to extraction
of a subsequence, we also get the pointwise convergence

fn\BQ — f|a_Q a.e. on RT x902 x RS.

e Then, using the uniform bound on the Darrozés-Guiraud information,
we prove that

/fn‘ag(’l) -n(z))sdv — f‘ag in renormalized sense on R" x00,  (2.54)

for some measurable, almost everywhere finite function f|a 0-
Indeed, remarking that

1 5 — ul?
(zlogz—2z+4+1)— (ylogy —y+1)— (2 —y)logy :/0 #{ﬂmcﬁ
> (V=)
and that
[ (5= vERM [0 n(o)) 0[50 nte)a) 0 ) =0
we get

/ (& - \/ [ e n<m>>+dv>2M<v () dv < 2B(f,| M)

which, coupled with the uniform bound on the Darrozes-Guiraud information,
shows that

\/ZZ\Z_\/ faV2rm(v-n(x)), dv is weakly compact in L*(dt(v-n(x)),do, Mdv),
(2.55)



2.3 Mathematical Theories for the Boltzmann Equation 43

and thus converges a.e. on X up to extraction of a subsequence.
Therefore, from the decomposition

\/ / fn\/ﬂ(v-n(x)hdv:\/ [ /B0 nla) o - gy

the renormalized convergence (2.52) and the weak compactness (2.55), we
deduce that (2.54) holds up to extraction of a subsequence.

e [t remains then to characterize the limit f'IaQ in terms of fjp0, which
requires a variant of Chacon’s Biting Lemma giving some partial equiintegra-
bility on f,j9 with respect to the v variables.

From (2.54) and the uniform bound on the Darrozés-Guiraud information,
we deduce by Proposition C.4 in Appendix that for every £ > 0 and every
compact K C R" xdf2, one can find some A C K with

/K\A dtdo, < € and fpj90 — floo weakly in LY A x R dt(v - n(z)),do,dv).
In particular,

ﬁag = /f‘ag(’U -n(x))+dv on every such A,
and thus a.e. on R" x992.

We are then able to take limits in the renormalized form of Maxwell’s
boundary condition (2.32), which leads to

p(Le) - p (Ul plin)y

M M

Furthermore, using the convexity of the Darrozes-Guiraud information
(also established in Proposition C.4), we get

/ / (fIM)(s,z)dod s<hm1nf/ / (fn]lM)(s,z)do,ds,
a9 n—o0 a0

which concludes the proof of the entropy inequality (2.36) studied in Step 3,
in the case of a spatial domain with boundary. O

2.3.3 Further Results in One Space Dimension

In the one spatial dimensional case, the previous result has actually been
improved by Cercignani [29], who established the global existence of weak
solutions to (2.6) satisfying in particular the global conservation of energy.

The key idea of that theory is to introduce the weak form of the collision
term, and the corresponding suitable notion of weak solution. For the sake
of simplicity, we will restrict our attention to the case of a spatial domain
without boundary, for instance the periodic box T.
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Definition 2.3.5 A weak solution to the one-dimensional Boltzmann equa-
tion (2.6) is a function

feCR", LYT xR?))

such that, for every test function ¢ € CLR' x T x R*) which is twice dif-
ferentiable as a function of v with second derivatives uniformly bounded with
respect to x and t, we have

/// F(StOrp + v10,9)(t, x, v)drdudt —l—/ fine(0, 2, v)dxdv

1

- // (// P+ pn— i — o) Bo — v*,o)dvdv*d0> (t, @) dedt
(2.56)

With the above definition of weak solution, the following existence result
holds :

Theorem 2.3.6 Assume that the collision kernel B is bounded and satisfies
Grad’s cutoff assumption (2.8) as well as

/ (1+cos@)B(v —vy,0)do > r/ B(v —wv.,0)do (2.57)
52 52

or some r > 0. Given any initial data f;, € L (T x R?) satisfyin
Y ying

loc

H(fin| M) ‘i:@f// (fm log J;\; — fin + M) (z,0) dvdz < +00,  (2.58)

there exists a weak solution f € C(RY, LT x R*)) to (2.6) with initial data
fin'

Furthermore this solution satisfies the continuity equation (2.34), the mo-
mentum equation (2.35) without defect measure and the entropy inequality
(2.36) without defect measure, as well as the energy conservation

//f(t,x,v)\m?dvdx:/ fin(,v)|v|*dvdz.

Sketch of Proof of Theorem 2.3.6. The idea is to use the knowledge that there
is a renormalized solution in the sense of DiPerna-Lions, and to establish es-
timates which entail that this solution is indeed a weak solution in the sense
defined above. As usual these estimates will be obtained by formal compu-
tations, which can be justified for approximate solutions to the Boltzmann
equation (2.6), and then established for any renormalized solution by passing
to the limit.
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The crucial tool to establish these estimates, which is specific to the one-
dimensional case, is the functional

) def / /m y / / (1 — o) (s 2, 0) (s, v )dvsdvodady — (2.59)

which extends the potential for interaction introduced by Bony in the one-
dimensional discrete velocity context. No functional with similar pleasant
properties is known, at this time, in more than one dimension. Note indeed
that, because of the bounds on the total mass [[ f(¢,z,v)dvdz and on the to-
tal momentum f f f(t, z,v)vidvdx in z-direction, we have the following control
over the functional I(f)(t)

vteR, [I(f)®)] < Cin,

where C,, is a constant depending only on the initial data.

e The first step of the proof consists then in using that bound to establish
the following basic estimates

/Ot///(vl —uy(s,2))f(s,2,0) f(s, 2,0, )dv.dvdads < Cy,

t
/ // |v — v |2 f (5, 2,0) f(5,2,0.) B(v — vy, 0)dodv,.dvdzds < Cyy,
0
(2.60)

where C},, is as previously some constant depending only on the initial data,
and wu; is the bulk velocity defined by

Jvif(s,z,v)dv
[ f(s,z,v)dv

A short calculation with proper use of the collision invariants of the Boltz-
mann collision operator shows that

I(f)(t) —I(f)(0) = —/Ut///(v1 — )2 f(s,2,0) f (5, x, v, ) dv,dvudadt.

which immediately gives the first estimate in (2.60), remarking that

up(s,x) =

/(’Ul — 1) f (8, 2,0, )dv, > /(vl — )’ f (s, 2,0, )dvy .

From the weak form of the Boltzmann equation, we deduce using the
conservation of mass and momentum that

fvidvdz — 2Kn // finvidvdr =

////ff* v1 —u1) 2+ (v — w1)? — (V] —uy)? = (v), — u1)?)Bdvdv,dodzdt
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The loss term is bounded because of the bound on the collision frequency and
the first estimate in (2.60), and the left hand side is bounded because of the
energy bound. We therefore deduce that the gain term is also bounded. Then
by explicit computations based on symmetries and assumption (2.57), we get
the second estimate in (2.60).

e Equipped with these preliminary estimates, we are now able to prove
that the integral defining the weak form of the collision operator is bounded
in terms of constants depending on the initial data, for any test function
¢ = p(t,z,v) which is twice differentiable as a function of v with second
derivatives uniformly bounded with respect to x and t.

The result follows from Taylor’s formula at second order, remarking that
the expression multiplying the first derivatives is zero because of momentum
conservation. We indeed have, using the second estimate in (2.60),

// (// ff*|90+50*50/<P;|B(’UU*,0)d’udv*da> dadt

= C///// Fre (o= + o =02 + [o = oL P) B — v., 0)dvdv.doddt

<6C ///// v — v *B(v — vy, 0)dvdv,dodzdt < 6CCy,

which shows that the weak form of Q(f, f) is well-defined. O

Remark 2.3.7 The present result can actually be extended to slightly more
general situations.

e FEasy modifications, presented for instance in the paper [30] by Cercignani
and Illner, allow to deal with the case of different boundary conditions, namely
to consider the case of a slab with diffusive boundary conditions.

e Let us now discuss the assumptions on the collision kernel B. In prin-
ciple, solutions for inverse power potentials might be considered without in-
troducing Grad’s cutoff (2.8) : this would require considering approximate
solutions of the Boltzmann equation without cutoff, and study precisely the
convergences, instead of using the knowledge that there is a renormalized
solution.

On the other hand, the present version of the result does not allow a growth
for large values of the relative velocity |v — v.|, i.e. excludes hard spheres and
potentials harder than the inverse fifth power. This is an important simplifi-
cation, which perhaps might be removed by much harder work.

This particular structure of the Boltzmann equation in one space dimen-
sion is reminiscent of the specificity of the one dimensional hyperbolic systems
of conservation laws. In particular the functional referred to as the potential
for interaction, and obtained by doubling the space variable, has to be com-
pared with Glimm’s functional for systems of conservation laws, which could
be a track to investigate the compressible hydrodynamic limits.
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