Chapter 2
One-Band Model

2.1 Overview
Much of the physics of the & - p theory is displayed by considering a single isolated
band. Such a band is relevant to the conduction band of many semiconductors and

can even be applied to the valence band under certain conditions. We will illustrate
using a number of derivations for a bulk crystal.

2.2 k - p Equation

The k - p equation is obtained from the one-electron Schrodinger equation

Hui (r) = E,(K)Y (), 2.1)

upon representing the Bloch functions in terms of a set of periodic functions:

Yk (1) = €T, (1). (2.2)

The Bloch and cellular functions satisfy the following set of properties:

(Vnk|¥ww) = /dV Vi (1) Yo (1) = 8 8(k — k), (2.3)
2

(i) = [[A2 = b 5 (2.4)

where V (£2) is the crystal (unit-cell) volume.
Let the Hamiltonian only consists of the kinetic-energy operator, a local periodic
crystal potential, and the spin-orbit interaction term:

2
p h
H=—+4+V@®)+——(@xVV)-p. 2.5
g HV O F s ) p (2.5)
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Here, we only give the formal exact form for a periodic bulk crystal without external
perturbations.
In terms of the cellular functions, Schrodinger’s equation becomes

H (k) Upk = gn (k) Upk, (26)
where
H (k) = H + Hy.,, 2.7)
h
Hep= —k-m, 2.8)
mo
T=p+ 2((rxVV), (2.9)
dmoc
R2k?
En (k)= E;(K) — — . (2.10)
2m0

Equation (2.6) is the k - p equation. If the states u,x form a complete set of periodic
functions, then a representation of H(K) in this basis is exact; i.e., diagonalization
of the infinite matrix

<unk | H (k) |umk)

leads to the dispersion relation throughout the whole Brillouin zone. Note, in par-
ticular, that the off-diagonal terms are only linear in k. However, practical imple-
mentations only solve the problem in a finite subspace. This leads to approximate
dispersion relations and/or applicability for only a finite range of k values. For GaAs
and AlAs, the range of validity is of the order of 10% of the first Brillouin zone [7].

An even more extreme case is to only consider one u, function. This is then
known as the one-band or effective-mass (the latter terminology will become clear
below) model. Such an approximation is good if, indeed, the semiconductor under
study has a fairly isolated band—at least, again, for a finite region in k space. This
is typically true of the conduction band of most III-V and II-VI semiconductors.
In such cases, one also considers a region in k space near the band extremum. This
is partly driven by the fact that this is the region most likely populated by charge
carriers in thermal equilibrium and also by the fact that linear terms in the energy
dispersion vanish, i.e.,

aEn (kO) -0
ok;

A detailed discussion of the symmetry constraints on the locations of these extremum
points was provided by Bir and Pikus [1]. In the rest of this chapter, we will discuss
how to obtain the energy dispersion relation and analyze a few properties of the
resulting band.
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2.3 Perturbation Theory

One can apply nondegenerate perturbation theory to the k - p equation, Eq. (2.6), for
an isolated band. Given the solutions at K = 0, one can find the solutions for finite
k via perturbation theory:

B2k Bk 12 S [(n0]7|10) - k|2
E,kKky=E,0)+ — + — 0 0)+ — 2.11
(k) = E, )+ 3= + = - (n0lx|n méZ so—5o &0
to second order and where
@2n)? .
(n0|x|10) = 7 d2 uygmug. (2.12)

This is the basic effective-mass equation.

2.4 Canonical Transformation

A second technique for deriving the effective-mass equation is by the use of the
canonical transformation introduced by Luttinger and Kohn in 1955 [6]. Here, one
expands the cellular function in terms of a complete set of periodic functions:

k() = A (K) t(r). (2.13)

Then the k - p equation, Eq. (2.6), becomes

D A ) [H + Hip] o) =D Apw () [Ex(0) + Hyp] no(r)

= Eu(K) Y Ay (K) t(r). (2.14)
Multiplying by (27)%/£2 f o d’r ur, gives
hk
E, (0) Apn + Z — pnn’Ann’(k) = gn (k) Anns (215)
n' mo
where
Q2n)’ .
P = pnn’(o) = Q dse2 U,oPUno, (216)
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and we have left out the spin-orbit contribution to the momentum operator for
simplicity. Now one can write (dropping one band index)

HKA = A, A=]|a,|. (2.17)

The linear equations are coupled. The solution involves uncoupling them. This can
be achieved by a canonical transformation:

A =TB, (2.18)
where T is unitary (in order to preserve normalization). Then
H(K)B = £(k)B, (2.19)
where
HK)=T"'HT. (2.20)

Writing T =eS, T '=e 5 =TT,

_ 1 1
H:<1—S+5Sz—~-~>H(k)<l+S+5S2+-~->

1
= H(k) + [H(k), S] + o ([H(K), S|, ST+ ---
=H + Hk-p + [H3 S] + [Hk~p’ S]

1 1
+5[[H, S],S]+§[[HkAp,S],S]+~-~ (2.21)
Since H., induces the coupling, one would like to remove it to order S by
Hy., +[H, 5] =0, (2.22)

or, with |n) = |uug),

(nlHepln') + 3 [l HIn"y "SI’y = (ulSIn"yn”| ') | =,

n

h
K P E,(0)(n|S|n") — (n|S|n') Ex(0) = 0,
0

giving, for n # n’,
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h k- nn’
(n|S|n’) = — P

K Pw (2.23)
no [En(o) - En’(o)]

Now, Eq. (2.21) becomes

_ 1 1

H((k)=H + E[Hk-pv ST+ E[[Hkps ST, ST+ ---
and, to second order,

I / / l 7" " / " " /
nl H Qln') ~ (nHin') + 5 3 [0l Hicpln") "SI’y = (nISIn") (0" Hep ) ]

n"

hz k : pnn” k : pn”n’ k N pnn” k N pn”n’
= E (0)8,y + —
" O ¥ 2t Z [[Em» — E(0)] " [E,0) - En~<0>J

n? 1
= | E,(0)+ — Z ky (—) kg | 8 + interband terms of order k2,
2 o My /) o

which is, of course, the same as Eq. (2.11).
We now restrict ourselves to zincblende and diamond crystals for whichn = s =
Iy (see Appendix B for the symmetry properties), p,, = 0, and

R2k2 K2 ! k|2
EM) = Ep, + o— + — Ipry kI
2m0 my ] Erl - El

(2.24)
Note that, for conciseness, we are also only using the group notation for the elec-
tron states in a zincblende crystal. The standard state ordering for zincblende and
diamond is given in Fig. 2.1. There are exceptions to these such as the inverted band
structure of HgTe [9] and the inverted conduction band of Si. Thus, the interaction
of the I state with other states via pp,; changes the dispersion relation from that of
a free-electron one. The new inverse effective-mass tensor is

7B DM
lise ——p s —r+—vp
Ii, —+—s Iy ———s
sy ——p L ——p
L, —+— s Lt s

Fig. 2.1 Zone-center states for typical zincblende (ZB) and diamond (DM) crystals
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!/

1 2 Pnzl’m
— 2.25
(m* )ij Xl: Er — (229

)
mo

Equation (2.11) or Egs. (2.24) and (2.25) define the one-band, effective-mass model.
The band dispersion can be calculated given the momentum matrix elements and
band gaps. Note that Eq. (2.24) is only approximate, giving the parabolic approxi-
mation. Constraints on the effective mass can now be written from Eq. (2.25).

2.5 Effective Masses

One can write down simple expressions for the effective masses of nondegenerate
bands.

2.5.1 Electron

Because of the energy denominator, distant bands are expected to be less important.
The two closest bands to the I, state for cubic semiconductors are the I'5 states
~ X,Y, Z.Since I, ~ §, and

(SIpx|X) = (SIpy|Y) = (S|p:1Z),
the conduction mass m, is isotropic:

1 L2 [(SIpedXo)P 2 [(SIpxlXo) P

2 2
me mo mg Erlc - Erlsv mg Eﬂc - EF]S(-

1 2pP2 2p?

= —t S5 T o 2.26
mo + MEy, hE) (2.26)
where
W 2
pPe = _2|<S|px|Xu)| > 2.27)
m
0
2 hZ 2
P = —(SIp«|Xe)”. (2.28)
m
0

For diamond,

PP=0 = 0<m,<my.
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For zincblende, typically

P/2 P2
E " E
0 0

= 0 <m, < my.

Hence, the electron effective mass is usually smaller than the free-electron mass.

2.5.2 Light Hole

Of the three-fold degenerate I's, states, only one couples with . along a given
A direction, giving rise to the light-hole (/) mass. Consider k = (k,, 0, 0). Then,
since the /A state can now be assumed nondegenerate, again m;y, is isotropic (though
a more accurate model will reveal them to be anisotropic):

1 1 2 1S pel X )P 1 2pP? 1 E
___+_2M=__2___(1__P)’ (2.29)
my, — mo  my Epg, —Ep,  mo  WEy  mg

with

Ep = (2.30)

known as the Kane parameter. Typically, £, ~ 20eV, Eq ~ 0-5¢eV. Hence, —mg <
my, < 0. Note that, contrary to the electron case, the /4 mass does not contain the
P’ term.

To compare the /4 and e masses,

me nmip my FLZE(,) ny

72
11 2 2P 1( E’,,).

For diamond, E}, = 0, giving

1 1
— + — >0 (always), (2.31)
me mip

and
lmyp| > me. (2.32)
For zincblende, E}, ~1-10eV, E ~3-5 eV, and the masses are closer in magnitude.

The qualitative effect of the e~/ interaction on the effective masses is sketched in
Fig. 2.2. This is also known as a two-band model.
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Fig. 2.2 Two-band model. The k - p interaction changes the curvatures

2.5.3 Heavy Hole

One may define the heavy-hole (hh) states as the partners in the 75, representation
which do not couple to the conduction s electron. In so far as the s, states are
not considered, the hh state has the free-electron mass. Including the 5. state and
again assuming that the I'|s, states are nondegenerate, the isotropic mass is

I 1 2 [(NIpdZ)P 1 (1 Eg )
Mpp un) m% E0+E6 ny ’

—_—=— - (2.33)
Ey+ E|
Typically, Eg ~20-25¢V, Eg + Ej ~ 10eV, and 0 > my;, > —my.

We have seen how the simple one-band model can provide a semi-quantitative
description of various bands for zincblende and diamond semiconductors, particu-
larly the sign and relative magnitudes of the associated effective masses. The neces-
sity of describing the band structure quantitatively and more accurately (such as
nonparabolicity and anisotropy) leads to the consideration of multiband models.

2.6 Nonparabolicity

So far, we have presented the simplest one-band model in order to illustrate the
theory; it does allow for anisotropy via an anisotropic effective mass. Still, a one-
band model can be made to reproduce more detailed features of a real band including
nonparabolicity, anisotropy and spin splitting. An example of such a model is the k*
dispersion relation given by Rossler [23]:

E®k) =22 1ok* + 8 (k3k? + K2k, + K2K3)

2m*

+ oy (K (K2R K2+ K2KY) — ka2 7L (234
The first term on the right-hand side is the familiar isotropic and parabolic effective-
mass term. The remaining terms give nonparabolicity, warping and spin splitting,
respectively. We will derive them later in the book.
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2.7 Summary

We have set up the fundamental k - p equation and shown, using a variety of tech-
niques, how a one-band model (the so-called effective-mass model) can be obtained
from it. This model was then used to derive a semi-quantitative understanding of
the magnitude of the effective masses of band-edge states for cubic semiconductors.
In particular, it was shown that the simplest effective-mass model for electrons and
light holes gives isotropic masses.
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