
Chapter 2
One-Band Model

2.1 Overview

Much of the physics of the k · p theory is displayed by considering a single isolated
band. Such a band is relevant to the conduction band of many semiconductors and
can even be applied to the valence band under certain conditions. We will illustrate
using a number of derivations for a bulk crystal.

2.2 k · p Equation

The k · p equation is obtained from the one-electron Schrödinger equation

Hψnk (r) = En(k)ψnk (r) , (2.1)

upon representing the Bloch functions in terms of a set of periodic functions:

ψnk (r) = eik·runk(r). (2.2)

The Bloch and cellular functions satisfy the following set of properties:

〈ψnk|ψn′k′ 〉 ≡
∫

dV ψ∗
nk (r) ψn′k′ (r) = δnn′δ(k − k′), (2.3)

〈unk|un′k〉 ≡
∫

dΩ u∗
nkun′k = δnn′

Ω

(2π )3
, (2.4)

where V (Ω) is the crystal (unit-cell) volume.
Let the Hamiltonian only consists of the kinetic-energy operator, a local periodic

crystal potential, and the spin-orbit interaction term:

H = p2

2m0
+ V (r) + �

4m2
0c2

(σ × ∇V ) · p . (2.5)
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8 2 One-Band Model

Here, we only give the formal exact form for a periodic bulk crystal without external
perturbations.

In terms of the cellular functions, Schrödinger’s equation becomes

H (k) unk = En (k) unk, (2.6)

where

H (k) ≡ H + Hk·p, (2.7)

Hk·p = �

m0
k · π , (2.8)

π = p + �

4m0c2
(σ × ∇V ) , (2.9)

En (k) = En(k) − �
2k2

2m0
. (2.10)

Equation (2.6) is the k · p equation. If the states unk form a complete set of periodic
functions, then a representation of H (k) in this basis is exact; i.e., diagonalization
of the infinite matrix

〈unk|H (k) |umk〉

leads to the dispersion relation throughout the whole Brillouin zone. Note, in par-
ticular, that the off-diagonal terms are only linear in k. However, practical imple-
mentations only solve the problem in a finite subspace. This leads to approximate
dispersion relations and/or applicability for only a finite range of k values. For GaAs
and AlAs, the range of validity is of the order of 10% of the first Brillouin zone [7].

An even more extreme case is to only consider one unk function. This is then
known as the one-band or effective-mass (the latter terminology will become clear
below) model. Such an approximation is good if, indeed, the semiconductor under
study has a fairly isolated band—at least, again, for a finite region in k space. This
is typically true of the conduction band of most III–V and II–VI semiconductors.
In such cases, one also considers a region in k space near the band extremum. This
is partly driven by the fact that this is the region most likely populated by charge
carriers in thermal equilibrium and also by the fact that linear terms in the energy
dispersion vanish, i.e.,

∂ En (k0)

∂ki
= 0.

A detailed discussion of the symmetry constraints on the locations of these extremum
points was provided by Bir and Pikus [1]. In the rest of this chapter, we will discuss
how to obtain the energy dispersion relation and analyze a few properties of the
resulting band.
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2.3 Perturbation Theory

One can apply nondegenerate perturbation theory to the k · p equation, Eq. (2.6), for
an isolated band. Given the solutions at k = 0, one can find the solutions for finite
k via perturbation theory:

En (k) = En (0) + �
2k2

2m0
+ �k

m0
· 〈n0|π |n0〉 + �

2

m2
0

′∑
l

|〈n0|π |l0〉 · k|2
En(0) − El(0)

(2.11)

to second order and where

〈n0|π |l0〉 = (2π )3

Ω

∫
dΩ u∗

n0πul0. (2.12)

This is the basic effective-mass equation.

2.4 Canonical Transformation

A second technique for deriving the effective-mass equation is by the use of the
canonical transformation introduced by Luttinger and Kohn in 1955 [6]. Here, one
expands the cellular function in terms of a complete set of periodic functions:

unk(r) =
∑

n′
Ann′ (k) un′0(r). (2.13)

Then the k · p equation, Eq. (2.6), becomes

∑
n′

Ann′ (k)
[
H + Hk·p

]
un′0(r) =

∑
n′

Ann′ (k)
[
En′ (0) + Hk·p

]
un′0(r)

= En(k)
∑

n′
Ann′ (k) un′0(r). (2.14)

Multiplying by (2π )3/Ω
∫
Ω

d3r u∗
n0 gives

En (0) Ann +
∑

n′

�k
m0

· pnn′ Ann′ (k) = En (k) Ann, (2.15)

where

pnn′ ≡ pnn′ (0) = (2π )3

Ω

∫
dΩ u∗

n0pun′0, (2.16)
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and we have left out the spin-orbit contribution to the momentum operator for
simplicity. Now one can write (dropping one band index)

H (k)A = E(k)A, A =

⎛
⎜⎜⎝

...
An
...

⎞
⎟⎟⎠ . (2.17)

The linear equations are coupled. The solution involves uncoupling them. This can
be achieved by a canonical transformation:

A = T B, (2.18)

where T is unitary (in order to preserve normalization). Then

H (k)B = E(k)B, (2.19)

where

H (k) = T −1 H T . (2.20)

Writing T = eS, T −1 = e−S = T †,

H =
(

1 − S + 1

2!
S2 − · · ·

)
H (k)

(
1 + S + 1

2!
S2 + · · ·

)

= H (k) + [H (k), S] + 1

2!
[[H (k), S], S] + · · ·

= H + Hk·p + [H, S] + [Hk·p, S]

+ 1

2!
[[H, S], S] + 1

2!

[
[Hk·p, S], S

] + · · · (2.21)

Since Hk·p induces the coupling, one would like to remove it to order S by

Hk·p + [H, S] = 0, (2.22)

or, with |n〉 ≡ |un0〉,

〈n|Hk·p|n′〉 +
∑

n′′

[
〈n|H |n′′〉〈n′′|S|n′〉 − 〈n|S|n′′〉〈n′′|H |n′〉

]
= 0,

�

m0
k · pnn′ + En(0)〈n|S|n′〉 − 〈n|S|n′〉En′ (0) = 0,

giving, for n 	= n′,
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〈n|S|n′〉 = − �

m0

k · pnn′

[En(0) − En′ (0)]
. (2.23)

Now, Eq. (2.21) becomes

H (k) = H + 1

2
[Hk·p, S] + 1

2
[[Hk·p, S], S] + · · ·

and, to second order,

〈n| H (k)|n′〉 ≈ 〈n|H |n′〉 + 1

2

∑
n′′

[
〈n|Hk·p|n′′〉〈n′′|S|n′〉 − 〈n|S|n′′〉〈n′′|Hk·p|n′〉

]

= En(0)δnn′ + �
2

2m2
0

∑
n′′

[
k · pnn′′ k · pn′′n′

[En′(0) − En′′ (0)]
+ k · pnn′′ k · pn′′n′

[En(0) − En′′ (0)]

]

=
⎡
⎣En(0) + �

2

2

∑
αβ

kα

(
1

mn

)
αβ

kβ

⎤
⎦ δnn′ + interband terms of order k2,

which is, of course, the same as Eq. (2.11).
We now restrict ourselves to zincblende and diamond crystals for which n = s =

Γ1 (see Appendix B for the symmetry properties), pnn = 0, and

E(k) = EΓ1 + �
2k2

2m0
+ �

2

m2
0

′∑
l

|pΓ1l · k|2
EΓ1 − El

. (2.24)

Note that, for conciseness, we are also only using the group notation for the elec-
tron states in a zincblende crystal. The standard state ordering for zincblende and
diamond is given in Fig. 2.1. There are exceptions to these such as the inverted band
structure of HgTe [9] and the inverted conduction band of Si. Thus, the interaction
of the Γ1 state with other states via pΓ1l changes the dispersion relation from that of
a free-electron one. The new inverse effective-mass tensor is

ZB

Γ1v

Γ15v

Γ1c

Γ15c

s

p

s

p

DM

Γ +
1

Γ +
25

Γ2

Γ15

s

p

s

p

Fig. 2.1 Zone-center states for typical zincblende (ZB) and diamond (DM) crystals
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(
1

m∗

)
i j

= 1

m0
δi j + 2

m2
0

′∑
l

pi
Γ1l p j

lΓ1

EΓ1 − El
. (2.25)

Equation (2.11) or Eqs. (2.24) and (2.25) define the one-band, effective-mass model.
The band dispersion can be calculated given the momentum matrix elements and
band gaps. Note that Eq. (2.24) is only approximate, giving the parabolic approxi-
mation. Constraints on the effective mass can now be written from Eq. (2.25).

2.5 Effective Masses

One can write down simple expressions for the effective masses of nondegenerate
bands.

2.5.1 Electron

Because of the energy denominator, distant bands are expected to be less important.
The two closest bands to the Γ1c state for cubic semiconductors are the Γ15 states
∼ X, Y, Z . Since Γ1c ∼ S, and

〈S|px |X〉 = 〈S|py |Y 〉 = 〈S|pz|Z〉,

the conduction mass me is isotropic:

1

me
= 1

m0
+ 2

m2
0

|〈S|px |Xv〉|2
EΓ1c − EΓ15v

+ 2

m2
0

|〈S|px |Xc〉|2
EΓ1c − EΓ15c

≡ 1

m0
+ 2P2

�2 E0
− 2P ′2

�2 E ′
0

, (2.26)

where

P2 = �
2

m2
0

|〈S|px |Xv〉|2, (2.27)

P ′2 = �
2

m2
0

|〈S|px |Xc〉|2. (2.28)

For diamond,

P ′ = 0 =⇒ 0 < me < m0.
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For zincblende, typically

P ′2

E ′
0

<
P2

E0
=⇒ 0 < me < m0.

Hence, the electron effective mass is usually smaller than the free-electron mass.

2.5.2 Light Hole

Of the three-fold degenerate Γ15v states, only one couples with Γ1c along a given
Δ direction, giving rise to the light-hole (lh) mass. Consider k = (kx , 0, 0). Then,
since the lh state can now be assumed nondegenerate, again mlh is isotropic (though
a more accurate model will reveal them to be anisotropic):

1

mlh
= 1

m0
+ 2

m2
0

|〈S|px |Xv〉|2
EΓ15v

− EΓ1c

= 1

m0
− 2P2

�2 E0
≡ 1

m0

(
1 − EP

E0

)
, (2.29)

with

EP ≡ 2m0 P2

�2
(2.30)

known as the Kane parameter. Typically, E p ∼ 20 eV, E0 ∼ 0–5 eV. Hence, −m0 <

mlh < 0. Note that, contrary to the electron case, the lh mass does not contain the
P ′ term.

To compare the lh and e masses,

1

me
+ 1

mlh
= 2

m0
− 2P ′2

�2 E ′
0

= 1

m0

(
2 − E ′

P

E ′
0

)
.

For diamond, E ′
P = 0, giving

1

me
+ 1

mlh
> 0 (always), (2.31)

and

|mlh| > me. (2.32)

For zincblende, E ′
P ∼1–10 eV, E ′

0 ∼3–5 eV, and the masses are closer in magnitude.
The qualitative effect of the e–lh interaction on the effective masses is sketched in
Fig. 2.2. This is also known as a two-band model.
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mlh

me

m0

m0

Fig. 2.2 Two-band model. The k · p interaction changes the curvatures

2.5.3 Heavy Hole

One may define the heavy-hole (hh) states as the partners in the Γ15v representation
which do not couple to the conduction s electron. In so far as the Γ15c states are
not considered, the hh state has the free-electron mass. Including the Γ15c state and
again assuming that the Γ15v states are nondegenerate, the isotropic mass is

1

mhh
= 1

m0
− 2

m2
0

|〈Yv|px |Zc〉|2
E0 + E ′

0

= 1

m0

(
1 − EQ

E0 + E ′
0

)
. (2.33)

Typically, EQ ∼20–25 eV, E0 + E ′
0 ∼ 10 eV, and 0 > mhh > −m0.

We have seen how the simple one-band model can provide a semi-quantitative
description of various bands for zincblende and diamond semiconductors, particu-
larly the sign and relative magnitudes of the associated effective masses. The neces-
sity of describing the band structure quantitatively and more accurately (such as
nonparabolicity and anisotropy) leads to the consideration of multiband models.

2.6 Nonparabolicity

So far, we have presented the simplest one-band model in order to illustrate the
theory; it does allow for anisotropy via an anisotropic effective mass. Still, a one-
band model can be made to reproduce more detailed features of a real band including
nonparabolicity, anisotropy and spin splitting. An example of such a model is the k4

dispersion relation given by Rössler [23]:

E (k) = �
2k2

2m∗ +αk4 + β
(
k2

yk2
z + k2

z k2
x + k2

x k2
y

)
± γ

{
k2
(
k2

yk2
z + k2

z k2
x + k2

x k2
y

) − 9k2
x k2

yk2
z

}1/2
. (2.34)

The first term on the right-hand side is the familiar isotropic and parabolic effective-
mass term. The remaining terms give nonparabolicity, warping and spin splitting,
respectively. We will derive them later in the book.
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2.7 Summary

We have set up the fundamental k · p equation and shown, using a variety of tech-
niques, how a one-band model (the so-called effective-mass model) can be obtained
from it. This model was then used to derive a semi-quantitative understanding of
the magnitude of the effective masses of band-edge states for cubic semiconductors.
In particular, it was shown that the simplest effective-mass model for electrons and
light holes gives isotropic masses.
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