
Chapter 2
Preliminaries

In Section 2.1, we prepare some convention. In Section 2.2, we review basic results
from the geometric invariant theory. In particular, we recall a sufficient condition for
a quotient stack to be Deligne-Mumford and proper. We also recall Mumford-Hilbert
criterion, and look at some easy examples. The results will be used in Chapter 4.

In Section 2.3, we review some basic facts on cotangent complexes. Then, we
recall how to express cotangent complexes of quotient stacks in Subsection 2.3.2,
which will be used in Chapter 5 frequently. We also study some more examples in
Subsection 2.3.3, which will be used in Sections 6.3, 6.4 and 6.6.

In Section 2.4, we review obstruction theory in the sense of K. Behrend-B.
Fantechi [6]. We explain a naive strategy to construct obstruction theories of mod-
uli stacks in Subsection 2.4.2. We recall an obstruction theory of locally free
subsheaves in Subsection 2.4.3. It gives obstruction theories of moduli spaces of
torsion-free quotient sheaves over a smooth projective surface. The result will be
used in Section 5.6. We also obtain the smoothness of moduli spaces of quotient
torsion-sheaves over a smooth projective curve, although we will not use it later. In
Subsection 2.4.4, we recall an obstruction theory of filtrations of a vector bundle on
a smooth projective curve. It will be used to construct a relative obstruction theory
for quasi-parabolic structures.

In Section 2.5, we recall some standard results for equivariant complexes on
Deligne-Mumford stacks with GIT construction, which will be used in Section 5.9.
In Section 2.6, we give some elementary remarks on extremal sets, which are used
in Sections 4.3–4.4. In Section 2.7, we give remarks on the twist of line bundles.

2.1 Some Convention

2.1.1 Product and Projection

Let S be a scheme. Let Y be an algebraic stack over S. Let g : T −→ U be a
morphism of algebraic stacks over S. The naturally induced morphism T ×S Y −→
U ×S Y is denoted by gY or simply by g.
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Let X and U be algebraic stacks over S. We use the symbol pX to denote the
projection forgetting the X-component:

pX : U ×S X −→ U, pX(u, x) = u

Similarly, pU denotes the projection U ×S X −→ X .

2.1.2 Vector Bundles

Let V be a vector bundle on an algebraic stack Y . The sheaf of local sections of
V is also denoted by the same symbol V , if there are no risk of confusion. But,
we use some particular notation in the following case: For vector bundles Vi (i =
1, 2), let Hom(V1, V2) denote the sheaf of homomorphisms from V1 to V2. The
corresponding vector bundle is denoted by N(V1, V2).

Let F be a vector bundle on Y . The complement of the image of the 0-section in
F is denoted by F ∗, i.e., F ∗ := F −Y , and the dual bundle of F is denoted by F∨.
The projectivization of F is denoted by P(F∨) or PF .

2.1.3 Coherent Sheaves on a Product

Let X be a flat scheme over S, and let U be an algebraic stack over S. A coherent
sheaf E over U ×S X is called a U -coherent sheaf, if it is flat over U . A U -coherent
sheaf E is called a U -torsion free sheaf, if E|{u}×SX is torsion-free for each u ∈ U .
We will often omit to denote “U -”, if there are no risk of confusion.

When we are given a line bundle OX(1) on X which is relatively ample over S,
we use the symbol E(m) to denote E ⊗ p∗UOX(m) for any coherent sheaf E on
U ×S X .

2.1.4 Quotient Stacks

Let Z be an algebraic stack over S provided with an action of a group scheme G
over S. Then, we use the symbols ZG or Z/G to denote the quotient stack.

2.1.5 Signature in Complexes

We follow the signature convention in [68]. We recall some of them for later use in
our situation. Let X be an algebraic stack over S. For two bounded OX -complexes
C• and D•, let Hom(C•,D•) denote the complex whose i-th terms are



2.1 Some Convention 27

⊕

k−j=i

Hom
(
Cj ,Dk

)
,

and whose differentials are given as follows:

Hom
(
Cj ,Dk

)
−→ Hom

(
Cj ,Dk+1

)
⊕Hom

(
Cj−1,Dk

)

a �−→
(
dD ◦ a, (−1)k−j+1a ◦ dC

)

Let us look at some examples. For a complex C•, we denote the dual complex
Hom(C•,OX) by C•∨. The differentials are as follows:

Hom(Cn,OX) −→ Hom(Cn−1,OX), a �−→ (−1)n+1 · a ◦ dX

For two term complexes C• = (C−1 → C0) and D• = (D−1 → D0), the
differentials of the complex Hom

(
C•,D•) are given as follows:

Hom
(
C0,D−1

)
−→ Hom

(
C0,D0

)
⊕Hom

(
C−1,D−1

)

a �−→
(
dD ◦ a, a ◦ dC

)

Hom
(
C0,D0

)
⊕Hom

(
C−1,D−1

)
−→ Hom

(
C−1,D0

)

(b1, b2) �−→ −b1 ◦ dC + dD ◦ b2

We will often use the dual Hom(C•,D•)∨ whose differentials are given as follows:

Hom
(
D0, C−1

)
−→ Hom(D0, C0) ⊕Hom(D−1, C−1)

a �−→ (−dC ◦ a, a ◦ dD)

Hom(D0, C0) ⊕Hom(D−1, C−1) −→ Hom
(
D−1, C0

)

(b1, b2) �−→ −b1 ◦ dD − dC ◦ b2

2.1.6 Filtrations and Complexes on a Curve

Let D be a smooth projective curve over S. Let Ea (a = 1, 2) be coherent OD-
modules which are flat over S. Assume that we are given a decreasing filtration
F (Ea) = (Fi(Ea) | i = 1, . . . , l) of Ea such that Coki(Ea) := Ea/Fi+1(Ea) are
flat over S.

Let Va,• = (Va,−1 → Va,0) be locally free resolutions of Ea (a = 1, 2). We set

V (1)
a := Va,0, V (l+1)

a = Va,−1,

V (i)
a := Ker

(
Va,0 −→ Coki(Ea)

)
, (i = 2, . . . , l).
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Let fi : V
(i+1)
D −→ V

(i)
D , ti : V

(i)
D −→ V

(1)
D and si : V

(l+1)
D −→ V

(i)
D denote the

inclusions. Let us consider the complex C1(V ∗
1 , V ∗

2 ) given as follows:

Hom
(
V

(1)
1 , V

(l+1)
2

) d−1

−→
l+1⊕

i=1

Hom
(
V

(i)
1 , V

(i)
2

) d0

−→
l⊕

i=1

Hom
(
V

(i+1)
1 , V

(i)
2

)

Here, the first term stands in the degree −1. The differentials di are given as follows:

d−1(a) =
(
si ◦ a ◦ ti

∣
∣ i = 1, . . . , l + 1

)
(2.1)

d0(b1, . . . , bl) =
(
−f1◦b1+b2◦f1,−f2◦b2+b3◦f2, . . . ,−fl◦bl+bl+1◦fl

)
(2.2)

We have the naturally defined morphism:

ϕ = (ϕi) : C1(V ∗
1 , V ∗

2 ) −→ Hom
(
V1,•, V2,•

)
(2.3)

More precisely, ϕ0 is the projection induced by the identifications V0 = V (1) and
V−1 = V (l+1), ϕ1 is given by ϕ1(ai) =

∑
si+1 ◦ ai · ti, and ϕ2 is the identity. We

can directly check that ϕ is the morphism of complexes. We put

C2(V ∗
1 , V ∗

2 ) := Cone(ϕ)[−1].

The following lemma is easy to check.

Lemma 2.1.1 The complexes Ci(V ∗
1 , V ∗

2 ) and the morphism ϕ : C1(V ∗
1 , V ∗

2 ) −→
Hom(V1 •, V2 •) depend only on (E1, F ) and (E2, F ) in the derived category
D(D). ��

Notation 2.1.2 We denote Ci(V ∗
1 , V ∗

2 ) by RHom′
i(E1∗, E2∗). ��

If Ea and Ea/Fj(Ea) are locally free sheaves for a = 1, 2 and j = 1, . . . , l, then
we have vanishings

Hi
(
Hom′

1(E1, E2)
)

= 0 (i 
= 0),

and H0
(
Hom′

1(E1, E2)
)

is isomorphic to the sheaf of homomorphisms of E1 to
E2 which preserve the filtrations.

2.1.7 Virtual Vector Bundle

Let G be a group scheme over S. Let Y be an algebraic stack over S provided with a
(possibly trivial) G-action. Let KG(Y ) denote the K-group of G-equivariant perfect
complexes. Elements of KG(Y ) are called virtual G-equivariant vector bundles in
this monograph. We often omit to distinguish G.
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2.1.8 Compatible Diagrams

Let Ai,j (i = 1, 2) (j = 1, 2, 3, 4) be objects in some category. Assume that we are
given morphisms ϕj : A1,j −→ A2,j . We also assume that we are given commuta-
tive diagrams (CD)i:

Ai,1
ai−−−−→ Ai,2

bi

⏐
⏐
! ci

⏐
⏐
!

Ai,3
di−−−−→ Ai,4

We say that (CD)1 and (CD)2 are compatible with respect to the morphisms ϕj

(j = 1, 2, 3, 4), if every face of the naturally obtained cube is commutative. It is
equivalent to the commutativity of the following diagrams:

A1,1 −−−−→ A1,2
⏐
⏐
!

⏐
⏐
!

A2,1 −−−−→ A2,2

A1,1 −−−−→ A1,3
⏐
⏐
!

⏐
⏐
!

A2,1 −−−−→ A2,3

A1,2 −−−−→ A1,4
⏐
⏐
!

⏐
⏐
!

A2,2 −−−−→ A2,4

A1,3 −−−−→ A1,4
⏐
⏐
!

⏐
⏐
!

A2,3 −−−−→ A2,4

2.2 Geometric Invariant Theory

2.2.1 GIT Quotient and Algebraic Stacks

Let k be an algebraically closed field with characteristic 0. Let G be a linear reduc-
tive group over k. Let Y be a projective variety over k, provided with a G-action ρ.
Let L be an ample line bundle on Y with a G-action which is a lift of ρ. The lift is
also denoted by ρ.

We recall some basic definitions. A point y ∈ Y is semistable with respect to L,
if there exists a G-invariant section s of L⊗n for some n > 0 such that s(y) 
= 0.
A point y ∈ Y is defined to be stable with respect to L, if there exists a G-invariant
section s of L⊗n for some n > 0 such that (i) s(y) 
= 0, (ii) any G-orbits contained
in Y −s−1(0) are closed. Let Y s(L) (resp. Y ss(L)) denote the set of the stable (resp.
semistable) points with respect to L. The fundamental theorem of D. Mumford is
the following.

Proposition 2.2.1 ([96]) There exists a uniform categorical quotient π : Y −→
Y ss//G. Moreover, the following holds:
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• The map π is affine and universally submersive.
• Y ss//G is a projective variety.
• There exists the open subset Y s//G of Y ss//G, such that (i) π−1(Y s//G) = Y s,

(ii) π : Y s −→ Y s//G is a universal geometric quotient of Y s.

Proof See Proposition 1.9, Theorem 1.10 and Page 40 in [96]. ��

We combine it with some results of A. Vistoli in [129]. Let Y sf denote the set
of the stable points of Y whose stabilizers are finite. In this situation, we obtain the
quotient stack Y sf/G, which is Deligne-Mumford. See Sections 2 and 7 of [129]
for more details on such quotient stacks. We recall one of his results.

Proposition 2.2.2 ([129]) The naturally induced morphism Y sf/G −→ Y sf//G is
proper.

Proof The map Y sf −→ Y sf//G is a universal geometric quotient. In particu-
lar, it is universally submersive, and the geometric fibers are precisely the orbits of
geometric points of X . Therefore, Y sf//G is a quotient of Y sf by G in the sense
of Vistoli. (See Page 630 of [129].) Applying Proposition 2.11 of [129], we can
conclude that the map Y sf/G −→ Y sf//G is proper. ��

Corollary 2.2.3 Let Z be a variety over k with a G-action. Let Φ : Z −→ Y be a
G-equivariant immersion with the following property:

• The stabilizer groups of any points of Z are finite.
• The image Φ(Z) is contained in Y s(L).
• Φ : Z −→ Y ss(L) is proper.

Then, Z/G is Deligne-Mumford and proper.

Proof We can regard Z/G as a substack of Y sf/G. We can also regard Z//G as
a closed subscheme of Y sf//G ⊂ Y ss//G. Since Y ss//G is projective, Z//G is
also projective. According to the previous lemma, the morphism Z/G −→ Z//G is
proper. Therefore, Z/G is proper. ��

2.2.2 Mumford-Hilbert Criterion and Some Elementary Examples

Let Y , L and G be as above. Let λ : Gm −→ G be a one-parameter subgroup. We
put P (λ) := limt→0 λ(t)·P . Then, λ acts on the fiber L|P (λ). The weight is denoted
by μλ(P,L).

Proposition 2.2.4 (Mumford-Hilbert criterion, [96]) The point P is semistable
(resp. stable) with respect to L, if and only if μλ(P,L) ≥ 0 (resp. μλ(P,L) > 0)
for any one-parameter subgroup λ. ��

Remark 2.2.5 We use the convention to identify a vector bundle and the sheaf of its
sections. Hence, the above definition of μλ is the same as that given in [96]. ��
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For later use, we recall some elementary examples. Let V be a vector space
over an algebraically closed field k of characteristic 0 with a base u1, . . . , uN . Take
w1, . . . , wN ∈ Z such that

∑
wi = 0 and wi ≤ wi+1. Let λ be the one-parameter

subgroup of SL(V ) given by λ(t) · ui = twi · ui. Let V (i) denote the subspace
generated by u1, . . . , ui. Let V =

⊕
Vw denote the weight decomposition of λ,

i.e., λ preserves the decomposition, and the action on Vw is the multiplication of tw.
We put Gj :=

⊕
w≤j Vw.

We denote a point of P(V ∨) by [v] by using a representative v ∈ V − {0}. Let
us consider the right SL(V )-action on P(V ∨) given by g · [v] := [g−1(v)], which
can be lifted to the action on OP(V ∨)(1).

Lemma 2.2.6 ([96]) μλ

(
[v],OP(V ∨)(1)

)
= min

{
i
∣
∣ vi ∈ Gi

}
. In other words,

μλ

(
[v],O(1)

)
=
∑

i

wi ·
(
dim V (i) ∩ 〈v〉 − dim V (i−1) ∩ 〈v〉

)

=
∑

j

j ·
(
dimGj ∩ 〈v〉 − dimGj−1 ∩ 〈v〉

)
. (2.4)

Here 〈v〉 denotes the subspace generated by v.

Proof According to the weight decomposition V =
⊕

Vi, we have the decompo-
sition v =

∑
vi. In P(V ∨), we have

λ(t)[v] =
[
λ(t)−1v

]
=
[∑

t−i · vi

]
.

We put i0 := max
{
i | vi 
= 0

}
= min

{
i
∣
∣ v ∈ Gi

}
. It is easy to see

lim
t→0

λ(t)[v] = [vi0 ].

The weight of λ on OP(V ∨)(1)|[vi0 ] is i0. Thus, the first claim is obtained. The
second claim follows from the first one. ��

Let Gl(V ) denote the Grassmann variety of l-dimensional subspaces of V :

Gl(V ) :=
{
ι : W ⊂ V

∣
∣ dim W = l

}
.

We have the Plücker embedding Gl(V ) −→ P
(∧l

V ∨) given by W �−→
∧l

W ⊂
∧l

V . It induces a polarization OGl(V )(1) of Gl(V ). The group SL(V ) has the right
action on Gl(V ) given by ι �−→ g−1 ◦ ι, which can be lifted to that on OGl(V )(1).

Lemma 2.2.7 For any point W of Gl(V ), we have the following equality:

μλ

(
W,OGl(V )(1)

)
=

N∑

i=1

(
rankW ∩ V (i) − rankW ∩ V (i−1)

)
· wi

=
∑

j∈Z

j · dim
W ∩ Gj

W ∩ Gj−1
. (2.5)
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Proof For any J = (j1 < j2 < · · · < jl), we put uJ := uj1 ∧ · · · ∧ ujl
and

wJ :=
∑l

i=1 wji
. Collection of such uJ gives a base of

∧l
V . Let λ̃ denote the

one-parameter subgroup of SL
(∧l

V
)

induced by λ. We have λ̃(t)(uJ ) = twJ · uJ .
Let us take a base v1, . . . , vl of W of the form vh = uih

+
∑

j<ih
ah,j · uj .

Then, z := v1 ∧ · · · ∧ vl is expressed as the sum
∑

aJ · uJ , where aJ = 1 if
J = I = (i1 < · · · < il) and aJ = 0 if wJ > wI . We have μλ

(
W,OGl(V )(1)

)
=

μλ̃

(
z,O

P(
∧ l V ∨)(1)

)
= wI according to Lemma 2.2.6. Then, it is easy to derive the

claim of the lemma. ��

We also have the Grassmann variety G′
l of l-dimensional quotients:

G′
l(V ) :=

{
q : V −→ Q

∣
∣ dim Q = l

}

We have the Plucker embedding G′
l(V ) −→ P

(∧l
V
)

given by the correspondence
q �−→

(∧l
q :
∧l

V −→
∧l

Q
)
. It induces a polarization OG′

l(V )(1).

Lemma 2.2.8 ([96], [87]) Let q : V −→ Q be a point of G′
l(V ). We put W :=

Ker(q). Then, we have the following equality:

μλ

(
q,OG′

l(V )(1)
)

=
N∑

i=1

wi ·
(
dim V (i) ∩ W − dim V (i−1) ∩ W − 1

)

=
N∑

j=1

j ·
(

dim
W ∩ Gj

W ∩ Gj−1
− dim

Gj

Gj−1

)
. (2.6)

Proof We put W (i) := Gi ∩ W
/
Gi−1 ∩ W . By using the natural isomorphism

Gi/Gi−1 � Vi, we regard W (i) as the subspaces of Vi. It is easy to see that the limit
limt→0 λ(t) · q is given by the quotient q̂ : V −→

⊕
Vi/W (i). The weight of λ on

OG′
l(V )(1)|q̂ is −i · dim

(
Vi/W (i)

)
. Then, it is easy to deduce the claim. ��

Remark 2.2.9 We have the obvious isomorphism Gl(V ) � G′
N−l(V ). However,

it does not preserve the semistability conditions on the varieties induced by the
Plücker embeddings. ��

2.3 Cotangent Complex

2.3.1 Basic Facts

Recall some fundamental property of cotangent complexes from [64], [79] and
[111]. Let X and Y be Deligne-Mumford stacks with étale site. For any morphism
f : X −→ Y of Delinge-Mumford stacks, the cotangent complex was introduced
by L. Illusie [64] as a complex of OX -modules. It is denoted by LX/Y or Lf . Re-
call that the cotangent complex controls deformations of f in the following sense
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(Section 3 [64]). Let T be a scheme over Y , and let h : T −→ X be a Y-morphism.
Let T be a Y-scheme such that T is a closed Y-subscheme of T and the correspond-
ing ideal J is square-zero, i.e., J2 = {f · g

∣
∣ f, g ∈ J} = 0.

Proposition 2.3.1 (Illusie, [64]) We have the obstruction class

o(h) ∈ Ext1(h∗LX/Y , J)

with the following property:

• The morphism h can be extended over T , if and only if o(h) vanishes.

In the case o(h) = 0, the set of the extension classes is a torsor over the group
Ext0

(
h∗LX/Y , J

)
. ��

Cotangent complexes have a nice functorial property. For example, we have the
distinguished triangle for a morphism Y −→ Z ,

f∗LY/Z −→ LX/Z −→ LX/Y −→ f∗LY/Z [1]

in the derived category D(X ).
As for general Artin stacks with lisse-étale site, cotangent complexes with some

good functorial property have been introduced by G. Laumon, L. Moret-Bailly and
M. Olsson (Section 17 of [79] and Section 8 of [111]). For any Artin stack X , Olsson
introduced the category D′

qcoh(X ) of the projective systems

K = (· · · → K≥−n−1 → K≥−n → · · · → K≥ 0)

in D+(X ) such that K≥−n −→ τ≥−nK≥−n and τ≥−nK≥−n−1 −→ τ≥−nK≥−n

are isomorphisms. Here τ≥−n denotes the canonical n-th truncation functor. See
[111] for the functorial property of D′

qcoh(X ). Let f : X −→ Y be a quasi-compact
and quasi-separated morphism of Artin stacks. Then, we can associate

LX/Y = Lf =
(
· · · → L≥−n−1

X/Y → L≥−n
X/Y → · · · → L≥ 0

X/Y
)
∈ D′

qcoh(X )

to each f with the following property (Theorem 8.1 [111]):

• If X and Y are algebraic spaces, L≥−n
X/Y are isomorphic to τ≥−nLX/Y in

D+
qcoh(X ), where the latter LX/Y denotes the usual cotangent complex defined

by Illusie.
• When we are given a 2-commutative diagram of Artin stacks

X ′ f−−−−→ X

g

⏐
⏐
!

⏐
⏐
!

Y ′ h−−−−→ Y,
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we have the functorial morphism Lf∗LX/Y −→ LX ′/Y′ . If the diagram is
2-Cartesian, and if one of g or h is flat, then the morphism Lf∗LX/Y −→ LX ′/Y′

is an isomorphism.
• Let f : X −→ Y be a morphism of Artin stacks. Let g : Y −→ Z be another

morphism. Then, we have the distinguished triangle

Lf∗LY/Z −→ LX/Z −→ LX/Y −→ Lf∗LY/Z [1]

in D′
qcoh(X ).

The following properties can be derived directly from the construction. (See
Section 8 of [111] for the construction of LX/Y .)

• Each L≥−n
X/Y is an object in D

[−n,1]
qcoh (X ).

• If f is smooth and representable, then LX/Y is quasi-isomorphic to its 0-th co-
homology sheaf, which is isomorphic to the locally free sheaves of Kahler dif-
ferentials ΩX/Y . In general, if f is smooth, any L≥−n

X/Y is of perfect amplitude

contained in [0, 1]. In particular, they are isomorphic to L≥ 0
X/Y .

Remark 2.3.2 M. Aoki generalized the deformation theory of Illusie, and showed a
natural generalization of Proposition 2.3.1 for Artin stacks [2]. ��

2.3.2 Quotient Stacks

Let S be a variety. Let G be a group scheme smooth over S. Let Y be a smooth
S-scheme with a G-action. The quotient stack is denoted by YG. Let Z be an Artin
stack over S with a morphism F : Z −→ YG. We have the corresponding G-torsor
P (F ) over Z and the G-equivariant map F̃ : P (F ) −→ Y :

P (F ) F̃−−−−→ Y
⏐
⏐
! π

⏐
⏐
!

Z
F−−−−→ YG

Let us describe F ∗LYG/S on Z. We have a map α : F̃ ∗ΩY/S −→ ΩP (F )/Z on
P (F ), which is the composite of the differential F̃ ∗ΩY/S −→ ΩP (F )/S and the
natural projection ΩP (F )/S −→ ΩP (F )/Z .

Proposition 2.3.3 F ∗LYG/S is represented by the descent of Cone(−α)[−1] with
respect to the natural G-action.

Proof We recall the construction of LYG/S in this case. We set

Y (m) :=

m+1
︷ ︸︸ ︷
Y ×YG

· · · ×YG
Y .
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We have the natural morphisms Y (m) −→ YG −→ S. We obtain complexes
C(m) :=

(
ΩY (m)/S −→ ΩY (m)/YG

)
on Y (m), where ΩY (m)/S stands in the

degree 0. We have the strictly simplicial structure given by the naturally defined
quasi-isomorphisms π∗

i C(m−1) −→ C(m) (i = 0, 1, . . . ,m), where πi denote
the projections Y (m) −→ Y (m−1) forgetting the i-th components. By definition,
LYG/S ∈ D′

qcoh(YG) is represented by
(
C(m)

∣
∣m = 0, 1, . . .

)
.

We put P (F )(m) :=

m+1
︷ ︸︸ ︷
P (F ) ×Z · · · ×Z P (F ). We have the naturally defined mor-

phisms F (m) : P (F )(m) −→ Y (m). Then, F ∗LYG/S ∈ D′
qcoh(Z) is represented

by
(
F (m)∗C(m)

∣
∣m = 0, 1, . . .

)
. We have the following commutative diagram:

F (m) ∗ΩY (m)/S −−−−→ F (m) ∗ΩY (m)/YG

=

⏐
⏐
! �

⏐
⏐
!

F (m) ∗ΩY (m)/S
b−−−−→ ΩP (F )(m)/Z

Here, b is the composite of the differential F (m) ∗ΩY (m)/S −→ ΩP (F )(m)/S and the
natural projection ΩP (F )(m)/S −→ ΩP (F )(m)/Z .

Let qi : Y ×S Gm −→ Y (i = 0, 1, . . . , m) be the morphism given by

qi(y, g1, . . . , gm) = y · g1 · · · · · gi.

They induce an isomorphism Y ×S Gm −→ Y (m). Under the identification, qi is the
projection onto the i-th component. Similarly, we have the identification P (F ) ×S

Gm � P (F )(m), under which F (m) is given by

F (m)(y, g1, . . . , gm) =
(
F̃ (y), g1, . . . , gm

)
.

Let ρm denote the projection of P (F ) ×S Gm onto Gm. We have the subcomplex
(
ρ∗mΩGm

id−→ ρ∗mΩGm

)
of F ∗C(m). It is compatible with the simplicial structure.

The quotient complexes are denoted by Ĉ(m), and
(
Ĉ(m)

∣
∣m = 0, 1, . . .

)
also repre-

sents F ∗LYG/S in D′
qcoh(Z). Then, it follows that F ∗LYG/S is given as the descent

of Ĉ(0) =
(
F̃ ∗ΩY/S

α−→ ΩP (F )/Z

)
with respect to the natural G-action. ��

Example 2.1. Let k be a field. Let GL(R) denote the R-th general linear group
over k. Let kGL(R) denote the quotient stack of Spec(k) with the trivial GL(R)-
action. Let E be a vector bundle on a k-variety X of rank R, and let f : X −→
kGL(R) be the classifying map. Then, we have f∗LkGL(R)/k � End(E)[−1]. ��

Let H denote the composite of F and the canonical map YG −→ SG. Let P (H)
denote the G-torsor over Z corresponding to H . Since we have the natural isomor-
phism P (H) � P (F ), we do not distinguish them. Let H̃ : P (F ) −→ S be the lift
of H . Let π denote the projection P (F ) −→ Z. We have the canonical isomorphism
π∗H∗LSG/S [1] � H̃∗ΩS/SG

� ΩP (F )/Z . We also have the canonical isomorphism
π∗F ∗LYG/SG

� F̃ ∗ΩY/S . We obtain the following corollary.
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Corollary 2.3.4 The morphism F ∗LYG/SG
−→ H∗LSG/S [1] on Z is obtained as

the descent of α : F̃ ∗ΩY/S −→ ΩP (F )/Z .

Proof We have the distinguished triangle

H∗LSG/S −→ F ∗LYG/S −→ F ∗LYG/SG
−→ H∗LSG/S [1].

By Proposition 2.3.3, we understand the morphism H∗LSG/S −→ F ∗LYG/S . Then,
we understand the morphism F ∗LYG/SG

−→ H∗LSG/S [1]. ��

Let us argue the naturality of the expression in Proposition 2.3.3. Let Gi (i =
1, 2) be smooth S-group schemes with a homomorphism a : G1 −→ G2. Let Yi

(i = 1, 2) be S-schemes provided with G-actions. For simplicity, we assume that Yi

are smooth. Let g : Y1 −→ Y2 be an equivariant morphism through the morphism
a. Let [g] : Y1 G1 −→ Y2 G2 denote the induced morphism. Let h1 : Z −→ Y1 G1 be
a morphism. The composite [g] ◦ h1 is denoted by h2. We would like to obtain an
expression of the morphism h∗

2LY2,G2/S −→ h∗
1LY1,G1/S .

We have corresponding Gi-torsors Pi over Z with G-equivariant morphisms h̃i :
P −→ Yi. We can identify P2 = (P1 ×S G2)/G1, where the G1-action on P1 ×S

G2 is given by g1(y, g2) = (yg−1
1 , g1g2). Let ι : P1 −→ P2 denote the natural

inclusion. We have the following commutative diagram:

P1
h̃1−−−−→ Y1

ι

⏐
⏐
! g

⏐
⏐
!

P2
h̃2−−−−→ Y2

It induces the following commutative diagram of G1-equivariant sheaves on P1:

ι∗h̃∗
2ΩY2/S

ι∗α2−−−−→ ι∗ΩP2/Z
⏐
⏐
!

⏐
⏐
!

h̃∗
1ΩY1/S

α1−−−−→ ΩP1/Z

Note that the descent of Cone(−ι∗α2) with respect to the G1-action is naturally
isomorphic to the descent of Cone(−α2) with respect to the G2-action.

Lemma 2.3.5 The morphism c : h∗
2LY2 G2/S −→ h∗

1LY1 G1/S is the descent of the
induced morphism Cone(−ι∗α2)[−1] −→ Cone(−α1)[−1].

Proof According to the functorial construction of Proposition 2.3.3, we have only
to consider the case Y1 = Y2 =: Y . Let us consider the case Y = S. Since
h∗

i LSGi
/S are isomorphic to the H1-cohomology sheaves H1

(
h∗

i LSGi
/S

)
, we have

only to identify the pull back of H1(c) via the pull back P1 −→ Z, which can
be done easily. Let us consider the general case. Let ki : Z −→ SGi

denote the
naturally defined morphism. We have the distinguished triangles k∗

i LSGi
/S −→
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h∗
i LYi,Gi

/S −→ h∗
i LYi,Gi

/SGi
. By the above argument, we know the induced mor-

phism k∗
2LSG2/S −→ k∗

1LSG1/S . The isomorphism h∗
2LY2,G2/SG2

� h∗
1LY1,G1/SG1

is easy to understand. Hence, we can identify h∗
2LY2,G2/S � h∗

1LY1,G1/S . ��

Remark 2.3.6 Let G1 be a smooth group scheme over S. Assume that Y is pro-
vided with a G1-action, which commutes with the G-action. It induces a G1-action
on YG. Moreover, assume that Z is also provided with a G1-action such that F
is G1-equivariant. Then, we have the naturally induced G1-action on the complex
Cone(−α)[−1], which commutes with the G-action. It induces a G1-action on the
descent of Cone(−α)[−1] on Z. In particular, we obtain a G1-equivariant repre-
sentative of F ∗LYG/S . ��

Let π : Y −→ YG denote the canonical projection. By Proposition 2.3.3, LYG/S

on YG is the descent of
(
ΩY/S

α−→ ΩY/YG

)
given on Y with respect to the natural

G-action, where ΩY/S stands in the degree 0.

Lemma 2.3.7 Let g denote the tangent space of G at the unit, or equivalently the
vector space of the right invariant vector fields, and let g∨ denote the dual. Then,
ΩY/YG

� g∨ ⊗OY .

Proof Let p1, p2 : Y ×S G −→ Y be given by the natural projection and the
G-action. Let r1, r2, r3 : Y ×S G2 −→ Y ×S G be given by r1(y, g, h) = (y, g),
r2(y, g, h) = (y, gh) and r3(y, g, h) = (yg, h). We have the following commutative
diagram:

Y ×S G2 r1,r2−−−−→ Y ×S G
p1−−−−→ Y

r3

⏐
⏐
! p2

⏐
⏐
! π

⏐
⏐
!

Y ×S G
p1,p2−−−−→ Y −−−−→ YG

Then, Ωπ is obtained as the descent of Ωp2 by the identification r∗1Ωp2 � r∗2Ωp2 .
Hence, the claim of the lemma follows. ��

Let ΘY/S denote the relative tangent bundle of Y/S. The G-action on Y induces
the map A : g ⊗OY −→ ΘY/S . The dual of A is denoted by A∨.

Lemma 2.3.8 The map α : ΩY/S −→ g∨⊗OY is given by the dual of −A. Namely,
we have π∗LYG/S � Cone(A∨)[−1].

Proof Let pi : Y ×YG
Y −→ Y denote the projection onto the i-th component. We

have the following factorization of p∗1α:

p∗1ΩY/S −→ ΩY ×YG
Y/S −→ Ωp2 � p∗1ΩY/YG

Each morphism is induced by the natural differential. Let us take the identification
Y ×YG

Y � Y ×S G, for which p1 and p2 correspond to the natural projection onto
Y and the G-action, respectively.

Let y be any closed point of Y , and let e be the unit of G. We have p1(y, e) =
p2(y, e) = y. We denote the differential of pi at (y, e) by T(y,e)pi. Let us consider
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the specialization of the dual of p∗1α at (y, e). Then, it is the composite of the inclu-
sion Ker(T(y,e)p2) ⊂ T(y,e)(Y ×SG) and the natural projection T(y,e)(Y ×SG) −→
TyY . Since we have Ker

(
T(y,e)p2

)
�
{
(−Av, v)

∣
∣ v ∈ g

}
� g, the map is −A.

Since α can be recovered from p∗1α, the claim of the lemma is proved. ��

Remark 2.3.9 Since F ∗LYG/S is obtained as the descent of F̃ ∗ Cone(A∨)[−1] for
a morphism F : Z −→ YG, Lemma 2.3.8 is useful for calculation. ��

Example 2.2. Let k be a field. Let Wi (i = −1, 0) be Ri-dimensional vector spaces
over k. Let N(W−1,W0) denote the vector space of linear maps from W−1 to W0.
We have the right GL(W−1) × GL(W0)-action on N(W−1,W0) given by

(g−1, g0) · f = g−1
0 ◦ f ◦ g−1.

Hence, we obtain the quotient stack Y (W•) := N(W−1,W0)GL(W−1)×GL(W0).
Let X and U be algebraic stacks over k. Let Vi (i = −1, 0) be vector bundles on

U ×X whose ranks are Ri. Let f : V−1 −→ V0 be a morphism of OU×X -modules.
Then, we obtain a morphism Φf : U × X −→ Y (W•). We claim that Φ∗

fLY (W•)/k

is represented by the following complex:

Hom
(
V0, V−1

) α−→ Hom
(
V0, V0

)
⊕Hom(V−1, V−1).

Here Hom
(
V0, V−1

)
stands in degree 0, and the map α is given by

α(a) =
(
f ◦ a,−a ◦ f

)
.

We remark that it is isomorphic to Hom
(
V•, V•

)∨
≤0

[−1]. (See Subsection 2.1.5.)
To show the claim, we have only to be careful on signatures. We can argue it

formally. Let f be an element of N(W−1,W0). The differential of the action of
GL(W−1) × GL(W0) gives the map:

End(W−1) ⊕ End(W0) −→ TfN(W−1,W0) = N(W−1,W0), (2.7)

(a−1, a0) �−→ −a0 ◦ f + f ◦ a−1

If we regard W−1
f−→ W0 as a complex, (2.7) can be regarded as Hom(W•,W•)≥ 0.

Then, the cotangent complex is represented by
(
Hom(W•,W•)≥ 0

)∨[−1], accord-
ing to Lemma 2.3.8. ��

Example 2.3. Let X be an algebraic stack. Let Ea (a = −1, 0) be vector bundles
on X with a morphism f : E−1 −→ E0. We regard E−1 as a group scheme over
X , which acts on E0 through f . The quotient stack is denoted by Q(E0, E−1). For
simplicity, we assume that f is an injection as a morphism of OX -modules.

Let E0/E−1 denote the quotient OX -module. A section of g of E0/E−1 corre-
sponds to a morphism Φ(g) : X −→ Q(E0, E−1). The correspondence is given as
follows: From a section g, we obtain an extension 0 −→ E−1 −→ G π−→ OX −→ 0.
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We obtain a E−1-torsor P = π−1(1) with an equivariant morphism P −→ E0, i.e.,
a morphism Φ(g) : X −→ Q(E0, E−1). The pull back of the cotangent complex
Φ(g)∗LQ(E0,E−1)/X is denoted by (E−1 −→ E0)∨. ��

Let us consider the following diagram:

Y
ψ̃−−−−→ S

π

⏐
⏐
! π1

⏐
⏐
!

YG
ψ−−−−→ SG

We have the natural isomorphisms:

π∗LYG/SG
� LY/S , π∗ψ∗LSG/S [1] � ψ̃∗LS/SG

� LY/YG
.

Lemma 2.3.10 Under the isomorphisms above, π∗LYG/SG
−→ π∗ψ∗LSG/S [1] is

the same as the natural morphism LY/S −→ LY/YG
.

Proof We have the natural isomorphisms:

π∗LYG/S � Cone
(
LY/S −→ LY/YG

)
[−1], π∗ψ∗LSG/S � ψ̃∗LS/SG

[−1]

The natural morphism π∗ψ∗LSG/S −→ π∗LYG/S is induced by ψ̃∗LS/SG
−→

LY/YG
. The distinguished triangle π∗ψ∗LSG/S −→ π∗LYG/S −→ π∗LYG/SG

−→
π∗ψ∗LSG/S [1] is identified with the following:

ψ̃∗LS/SG
[−1] −→ Cone

(
LY/S → LY/YG

)
[−1] −→ LY/S −→ ψ̃∗LS/SG

Then, the claim of the lemma follows. ��

2.3.3 Some More Examples

The technical results in this subsection will be used in Sections 6.3–6.6. The author
recommends the reader to skip here.

Let X be a smooth connected projective surface, and let U1 be a quasi-compact
algebraic stack. Let U0 be a substack of U1. Let F be a U1-coherent sheaf with a
section ϕ over U1 × X . We assume the following:

(A): pX ∗F is locally free, and U0 is contained in the induced section ϕ of pX ∗F .

Assume we are given a data as follows:

• A commutative diagram on U1 × X:
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V0,−1 −−−−→ V1,−1
⏐
⏐
!

⏐
⏐
!

V0,0 −−−−→ V1,0
⏐
⏐
!

⏐
⏐
!

E0 −−−−→ E1 −−−−→ F

Here, Ei are U1-coherent sheaves, Va,b are locally free sheaves, and the se-
quences 0 −→ Va,−1 −→ Va,0 −→ Ea −→ 0 and 0 −→ E0 −→ E1 −→
F −→ 0 are exact.

• A section φ of E1 such that the composite O −→ E1 −→ F is ϕ.

In this subsection, such a data is called a resolution of (F , ϕ). Note that the restric-
tion of φ to U0 × X induces a section φ0 of E0.

Note that there always exists such a resolution. For example, we have the follow-
ing construction. Take a sufficiently large integer m0, and we put

E′
1 := p∗X

(
pX∗F(m0)

)
⊗ p∗U1

OX(−m0), E1 := E′
1 ⊕OU1×X .

The natural morphism E′
1 −→ F and ϕ induce a morphism π1 : E1 −→ F . We set

E0 := Ker π1. We take a sufficiently large m1, and we put

Va,0 := p∗XpX∗
(
Ea(m1)

)
⊗ p∗U1

OX(−m1), Va,−1 := Ker
(
Va,0 −→ Ea

)
.

Then, we obtain a diagram with the desired property.
Let us return to the general situation. Let Za (a = 0, 1) be the quotient stacks

of N(OU1×X , Va,0) via the natural actions of N(OU1×X , Va,−1). We obtain the
following commutative diagram:

U1 × X
Φ(φ)−−−−→ Z1

j1 X

-
⏐
⏐

-
⏐
⏐

U0 × X
Φ(φ0)−−−−→ Z0

By using an argument in Subsection 2.3.2, Φ(φ)∗LZ0/Z1 is represented by the fol-
lowing:

k(E•, V•,•, φ) := j∗1 X Cone
(
Hom(OU1×X , V1•)∨ −→ Hom

(
OU1×X , V0•

)∨)

Here, j1X : U0 × X −→ U1 × X denotes the inclusion. We have the induced
morphism r(E•, V•,•, φ) : k(E•, V•,•, φ) −→ LU0×X/U1×X . We set

Ob(E•, V•,•, φ) := RpX∗
(
k(E•, V•,•, φ) ⊗ ωX

)
.
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Then, we have the induced morphism:

ob(E•, V•,•, φ) : Ob(E•, V•,•, φ) −→ LU0/U1

Lemma 2.3.11 k(E•, V•,•, φ) and r(E•, V•,•, φ) depend only on (F , ϕ) in the de-
rived category D(U0 × X). In particular, Ob(E•, V•,•, φ) and ob(E•, V•,•, φ) de-
pend only on (F , ϕ) in the derived category D(U0). Hence, we denote them by
k(F , ϕ), r(F , ϕ), Ob(F , ϕ) and ob(F , ϕ), respectively.

Proof It is standard that k(E•, V•,•, φ) and Ob(E•, V•,•, φ) are independent of the
choice of resolutions. We would like to show the independence of r(E•, V•,•, φ) and
ob(E•, V•,•, φ). Assume we are given another (E′

•, V
′
•,•, φ

′). We set

E′′
1 = E1 ⊕ E′

1, E′′
0 := Ker

(
E′′

1 −→ F
)
,

V ′′
1,0 := V1,0 ⊕ V ′

1,0, V ′′
1,−1 := V1,−1 ⊕ V ′

1,−1 := Ker
(
V ′′

1,0 −→ E′′
1

)
.

Let π : V ′′
1,0 −→ E′′

1 denote the natural morphism. We can take a locally free sheaf
A with a surjection A −→ π−1(E′′

0 ). We set

V ′′
0,0 := V0,0 ⊕ V ′

0,0 ⊕ A, V ′′
0,−1 := Ker

(
V ′′

0,0 −→ E′′
0

)
.

Then, (E′′
• , V ′′

•,•, φ
′′) with a naturally defined diagram gives a resolution of F . More-

over, we have the natural inclusions Ea ⊂ E′′
a and Va,b ⊂ V ′′

a,b.
Let Z ′′

a (a = 0, 1) be the quotient stacks of N(OX , V ′′
a,0) via the naturally in-

duced actions of N(OX , V ′′
a,−1). We obtain the following diagram:

U1 × X
Φ(φ)−−−−→ Z1

c1−−−−→ Z ′′
1

-
⏐
⏐

-
⏐
⏐

-
⏐
⏐

U0 × X
Φ(φ0)−−−−→ Z0

c0−−−−→ Z ′′
0

(2.8)

The morphisms ci are naturally induced ones. The composites c1 ◦ Φ(φ) and c0 ◦
Φ(φ0) are the morphisms induced by φ′′ and φ′′

0 , respectively. Hence, we obtain the
following:

LU0×X/U1×X ←−−−− k(E•, V•,•, φ) �←−−−− k(E′′
• , V ′′

•,•, φ
′′)

Hence, we obtain the following factorization of ob(E′′
• , V ′′

•,•, φ
′′):

LU0/U1 ←−−−− Ob(E•, V•,•, φ) �←−−−− Ob(E′′
• , V ′′

•,•, φ
′′)

Similarly, we can compare Ob(E′
•, V

′
• , φ

′) and Ob(E′′
• , V ′′

•,•, φ
′′). Thus, we are

done. ��
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Lemma 2.3.12 Let (Fi, ϕi) (i = 1, 2) satisfy Condition (A). If we are given a
morphism g : F1 −→ F2 such that ϕ2 = g ◦ ϕ1, we have the factorization of
ob(F2, ϕ2):

Ob(F2, ϕ2) −−−−→ Ob(F1, ϕ1) −−−−→ LU0/U1

Proof We take sufficiently large integers mj , and apply the above construction of
resolutions to Fi. Then, the claim is clear. ��

Now, we assume RipX ∗F = 0 for i > 0. We put V := pX ∗F . A section ϕ of
V is induced by ϕ. We have the following commutative diagram:

U0
j2−−−−→ U1

j1

⏐
⏐
! i

⏐
⏐
!

U1
ϕ−−−−→ V

(2.9)

Here i is the 0-section, and ja are the natural inclusions.

Proposition 2.3.13 Ob(F , ϕ) is isomorphic to j∗2LU1/V � V∨[1], and ob(F , ϕ)
is the same as the morphism κ : j∗2LU1/V −→ LU0/U1 induced from the diagram
(2.9).

Proof We have the naturally defined morphism a1 : p∗XV −→ F , for which we
have ϕ = a1 ◦ p∗Xϕ. By Lemma 2.3.12, we have the following factorization of
ob(F , ϕ):

Ob(F , ϕ) b0−−−−→ Ob(p∗XV, p∗Xϕ)
ob(p∗

XV,p∗
Xϕ)−−−−−−−−−→ LU0/U1

Let us look at ob(p∗XV, p∗Xϕ) more closely. In the construction for (p∗XV, p∗Xϕ),
we may choose

E1 = V1,0 = p∗XV, E0 = V1,−1 = V0,0 = V0,−1 = 0.

Then, Z0 = U1 × X and Z1 = p∗XV. The diagram (2.8) is given as follows:

U0 × X
j1−−−−→ Z0 U1 × X

j2

⏐
⏐
! i

⏐
⏐
!

⏐
⏐
!

U1 × X
p∗

Xϕ−−−−→ Z1 p∗XV

(2.10)

Here i denotes the 0-section. We have k = j∗1LZ0/Z1 � p∗XV∨
|U0×X [1], and the

morphism r : k −→ LU0×X/U1×X is the same as the pull back of κ. In particular,
we have the following factorization of ob(p∗XV, p∗Xϕ):

Ob(p∗XV, p∗Xϕ) = V∨[1] ⊗ RpX ∗
(
p∗U0

ωX

) b1−−−−→ V∨[1] κ−−−−→ LU0/U1
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It is easy to see that the composite b1◦b0 is an isomorphism, under the assumption
RipX ∗F = 0 (i > 0). Thus, the proof of Proposition 2.3.13 is finished. ��

We have a similar result for a smooth projective curve. Since the argument is
similar and simpler, we explain only the statement. Let D be a smooth projective
curve. Let F be a U1-coherent sheaf on U1 × D with a section ϕ. Assume the
following:

(A’) pD ∗F is locally free, and U1 is contained in the 0-set of the induced section
ϕ of pD ∗F .

Let (E0 → E1) be a locally free resolution of F on U1 × D with a sec-
tion of φ of E1 such that the composite O −→ E1 −→ F is ϕ. It is called a
resolution of (F , ϕ). A section φ0 of V0 |U0×D is induced. We put k(E•, ϕ) :=
Hom(OU0×D, V•|U0×D)∨.

Let us construct a morphism r(E•, ϕ) : k(E•, ϕ) −→ LU0×D/U1×D. We put
Za := N(O, Ea) for a = 0, 1. Then, we have the naturally defined morphism
Z0 −→ Z1. The sections φ and φ0 induce the following commutative diagram:

U0 × D
j−−−−→ Z0

⏐
⏐
!

⏐
⏐
!

U1 × D −−−−→ Z1

It induces a morphism r(E•, ϕ) : k(E•, ϕ) � j∗LZ0/Z1 −→ LU0×D/U1×D. It can
be shown that r(E•, ϕ) and k(E•, ϕ) depend only on (F , ϕ), as in Lemma 2.3.11.
Therefore, we use the symbols r(F , ϕ) and k(F , ϕ) to denote them. We set

Ob(F , ϕ) := RpD ∗
(
k(F , ϕ) ⊗ ωD

)
.

We have the induced morphism ob(F , ϕ) : Ob(F , ϕ) −→ LU0/U1 . It is functorial
as in Lemma 2.3.12.

Now, we assume RipD ∗F = 0 for i > 0. We put V := pX ∗F . We have
the induced section ϕ. We obtain the diagram (2.10). It induces a morphism
κ : V∨[1] −→ LU0/U1 .

Proposition 2.3.14 Under the assumption RipD ∗F = 0 for i > 0, we have the
following commutative diagram:

Ob(F , ϕ)
ob(F,ϕ)−−−−−→ LU0/U1

�
⏐
⏐
! =

⏐
⏐
!

V∨[1] κ−−−−→ LU0/U1

Proof It can be shown by an argument used in the proof of Proposition 2.3.13. ��
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2.4 Obstruction Theory

2.4.1 Definition and Fundamental Theorems

In the study of Gromov-Witten theory, M. Kontsevich, J. Li-G. Tian, K. Behrend-
B. Fantechi and K. Fukaya-K. Ono introduced the notion of virtual fundamental
classes of moduli stacks with some good structure. (See [71], [82], [6] and [40]. See
also the recent work of I. Ciocan-Fontanine and M. Kapranov [15].) In this paper,
we follow the framework of Behrend-Fantechi. See [6] for more details and precise.
The paper [55] of T. Graber-R. Pandharipande is also very useful, in which they
studied localization of virtual fundamental classes.

Definition 2.4.1 Let S be an algebraic stack, and let X be an algebraic stack
over S. Let E• be an object in D(X ) such that Hi(E•) are coherent (i = −1, 0, 1).
A homomorphism φ : E• −→ LX/S is called an obstruction theory for X/S, if
Hi(φ) (i ≥ 0) are isomorphic and H−1(φ) is surjective. In that case, E• is also
called an obstruction theory for X/S. ��

Because Hi(LX ) = 0 for i > 1, the condition implies Hi(E•) = 0 for i > 1. If
X is Deligne-Mumford, we also have H1(E•) = H1(LX ) = 0.

We will often use the following theorem of Behrend-Fantechi.

Proposition 2.4.2 (Theorem 4.5, [6]) Let X be a Deligne-Mumford stack over S.
Let φ : E• −→ LX/S be a morphism in D(X ). The following conditions are
equivalent.

• φ is an obstruction theory.
• Let T and T be S-schemes such that T is a closed subscheme of T whose ideal

sheaf J is square-zero. Let g : T −→ X be a morphism over S.

(A1) g can be extended to a morphism g : T −→ X over S, if and only if
φ∗(o(g)

)
= 0 in Ext1

(
g∗E•, J

)
, where o(g) is the obstruction class of g.

(See Proposition 2.3.1.)
(A2) If φ∗(o(g)

)
= 0, the set of the extension classes of g is a torsor over the

group Ext0
(
g∗E•, J

)
. ��

We recall the notion of perfect obstruction theory in the sense of Behrend-
Fantechi with a minor generalization.

Definition 2.4.3 Let φ : E• −→ LX/S be an obstruction theory of an algebraic
stack X over S. It is called perfect, if it is quasi-isomorphic to a complex of locally
free sheaves F−1 → F 0 → F 1 in the derived category D(X ). ��

In that case, the number − rankF 1 + rankF 0 − rankF−1 is well defined on
each connected component of X . It is called the expected dimension of X over S
with respect to φ.
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If X is Deligne-Mumford, we have H1(E•) = H1(LX ) = 0 for any obstruction
theory E•. Hence, a perfect obstruction theory is quasi-isomorphic to a two-term lo-
cally free complex F−1 → F 0. The important and foundational theorem of Behrend
and Fantechi is the following. (See also [82].)

Proposition 2.4.4 (Section 5 [6]) Let X be a Deligne-Mumford stack over a smooth
scheme S. Let A∗(X ) denote the Chow group of X with rational coefficient. A per-
fect obstruction theory φ : E• −→ LX/S induces an element [X , φ] ∈ Ad(X )
called virtual fundamental class, where d is the expected dimension with respect
to φ.

If X is smooth, [X , φ] is the Euler class of the vector bundle H1
(
E•∨). ��

We often use the notation [X ] instead of [X , φ], if there are no risk of confusion.

Remark 2.4.5 In Definition 2.4.3, E• is assumed to be quasi-isomorphic to a com-
plex F • of locally free sheaves. According to A. Kresch [75], the existence of such
a global complex is not necessary for construction of virtual fundamental class.
Namely, Proposition 2.4.4 holds, if E• is locally quasi-isomorphic to a two-term
locally free complex. ��

Let S, X , φ : E• −→ LX/S be as in Proposition 2.4.4. Let S′ be a smooth
scheme, and let ι : S′ −→ S be a morphism. We set X ′ := X ×S S′ with the
natural morphism ι : X ′ −→ X .

Proposition 2.4.6 (Proposition 7.2, [6]) The induced morphism ι∗φ : ι∗E• −→
LX ′/S′ is also a perfect obstruction theory.

Let [X ′, ι∗φ] denote the associated virtual fundamental class. Assume that ι
is either (i) a closed regular immersion, or (ii) flat. Then, we have the relation
ι∗1[X , φ] = [X ′, ι∗φ]. ��

Let Xi (i = 1, 2) be algebraic stacks over S provided with obstruction theories
φi : E•

i −→ LXi/S . Assume we have the following commutative diagram:

X1
f−−−−→ X2

g

⏐
⏐
!

⏐
⏐
!

Y1
h−−−−→ Y2 −−−−→ S

Recall the following definition in [6].

Definition 2.4.7 We say that φi are compatible over h, if we have the following
morphism of distinguished triangles on X1:

f∗E•
2 −−−−→ E•

1 −−−−→ g∗LY1/Y2 −−−−→ f∗E•
2 [1]

⏐
⏐
!

⏐
⏐
!

⏐
⏐
!

⏐
⏐
!

g∗LX2/S −−−−→ LX1/S −−−−→ LX1/X2 −−−−→ g∗LX2/S [1]

We will use the following theorem for comparison of virtual fundamental classes.
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Proposition 2.4.8 (Proposition 7.5, [6]) Assume Xi are Deligne-Mumford, and the
obstruction theories φi are perfect. If φi are compatible over h, then we have the
equality

h![X2, φ2] = [X1, φ1]

at least if h is smooth or Yi are smooth over S. ��

2.4.2 Easy Example

Let X be a smooth variety over k. We would like to construct an obstruction theory
of the moduli spaces M of some objects on X . A naive strategy is summarized as
follows (See [6], for example):

1. Take a classifying stack Y of such objects over X . It means that such objects
over U × X bijectively correspond to morphisms Φ : U × X −→ Y over X .
For example, recall that vector bundles of rank R over U × X correspond to
morphisms U × X −→ XGL(R) over X .

2. Any classifying maps Φ : U × X −→ Y induce morphisms

Φ∗LY/X −→ LU×X/X

on U×X . Let ωX denote the dualizing complex on X , i.e., it is the canonical line
bundle shifted by the dimension of X . Then, we obtain the following morphisms
on U :

ObU := RpX∗
(
Φ∗LY/X ⊗ ωX

)
−→ RpX∗

(
p∗XLU/k ⊗ ωX

)
−→ LU/k.

In particular, a morphism ObM −→ LM on M is induced by a universal object.
3. We hope that the morphism ObM −→ LM is an obstruction theory, in some

cases. Note that the property is local, once the morphism is given globally. Thus
we have only to check the claim for sufficiently small étale open subsets of M.
Proposition 2.4.2 provides us with a useful tool to check it.

Remark 2.4.9 In general, we need some modification in construction of ObM to
obtain a good obstruction theory. ��

Let us look at the easiest example. Let F and V be vector bundles on X . Let U
be any scheme over k, and let f : p∗U (F ) −→ p∗U (V ) be a morphism of OU×X -
modules over U × X . It is easy to see that such a morphism f corresponds to a
morphism Φf : U × X −→ N(F, V ) over X . We obtain a complex

g(f) := Φ∗
fLN(F,V )/X

and a morphism g(f) −→ LU×X/X in the derived category D(U × X).
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Lemma 2.4.10 g(f) is represented by p∗UHom(V, F ).

Proof Let π : N(F, V ) −→ X denote the natural projection. Since the morphism
N(F, V ) −→ X is smooth, the cotangent complex LN(F,V )/X is quasi-isomorphic
to ΩN(F,V )/X � π∗Hom(V, F ), and thus Φ∗

fLN(F,V )/X � p∗UHom(V, F ). ��

We set Ob(f) := RpX∗
(
g(f) ⊗ ωX

)
. Then, we obtain morphisms

Ob(f) −→ RpX∗
(
LU×X/X ⊗ ωX

)
−→ LU

in the derived category D(U). The composite is denoted by ob(f).
Now, let M(F, V ) denote a moduli scheme of morphisms F −→ V , i.e., maps

U −→ M(F, V ) bijectively correspond to f : p∗U (F ) −→ p∗U (V ) on U × X . It is
easy to see that M(F, V ) is isomorphic to the vector space H0

(
X,Hom(F, V )

)
.

We have the universal morphism

fu : p∗M(F,V )(F ) −→ p∗M(F,V )(V )

over M(F, V ) × X . It induces a morphism ob(fu) : Ob(fu) −→ LM(F,V ).

Lemma 2.4.11 ob(fu) gives an obstruction theory of M(F, V ).

Proof It is almost obvious from the universal properties of N(F, V ) and M(F, V ).
However, we give a rather detailed argument as an explanation. We have only to
check the conditions (A1) and (A2) in Proposition 2.4.2.

Since the claim is local, we can check the claim for any sufficiently small open
subset U of M(F, V ). Let T be an affine scheme over k. A morphism g : T −→ U
induces morphisms gX : T × X −→ U × X and

g̃X = Φfu ◦ gX : T × X −→ N(F, V )

over X . Let T denote a scheme such that T is embedded in T whose ideal J is
square-zero. Deformations of the morphisms g and g̃X is controlled by the groups
Exti

(
g∗LU/k, J

)
and Exti

(
g̃∗XLN(F,V )/X , JX

)
, respectively. We have the follow-

ing commutative diagram:

Exti
(
g∗LU/k, J

) h−→ Exti
(
g∗ Ob(fu), J

)

↓ �↑
Exti

(
g∗XLU×X/X , JX

)
−→ Exti

(
g∗X(g), JX

) =−→ Exti
(
g̃∗XLN(F,V )/X , JX

)

We have the obstruction classes

o(g) ∈ Ext1
(
g∗LU/k, J

)
, o(g̃X) ∈ Ext1

(
g∗Xg, JX

)

of the morphisms g and g̃X respectively. By the functoriality of the cotangent com-
plex, the obstruction class o(g) is mapped to the obstruction class o(g̃X) in the above
diagram.
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If the image h
(
o(g)

)
is 0, the class o(g̃X) is 0. Hence, g̃X can be extended to a

morphism T × X −→ N(F, V ), which induces a morphism of p∗
T
(F ) −→ p∗

T
(V )

on T × X . By the universal property of M(F, V ), we obtain a morphism

T −→ M(F, V )

which is an extension of g. Therefore, the condition (A1) is satisfied.
Similarly, we can show that Ext0

(
g∗LU/k, J

)
−→ Ext0

(
g̃∗XLN(F,V )/X , J

)
is

an isomorphism by the universality of M(F, V ) and N(F, V ). Hence, the condition
(A2) is also satisfied. Thus we are done. ��

2.4.3 Locally Free Subsheaves

Let X be a smooth projective variety over k with an ample line bundle OX(1). Let
V be a locally free sheaf on X . Let W denote an R-dimensional k-vector space. We
denote W ⊗OX by WX . We have the natural right GL(W )-action on N(WX , V ).
The quotient stack is denoted by Yquo(W•).

We consider deformations of locally free subsheaves of V with rank R. Let U
be any k-scheme. Any locally free subsheaf f : F −→ p∗UV on U × X with
rankF = R induces a morphism Φ(F, f) : U ×X −→ Yquo(W•) over X . We put

g(F, f) := Φ(F, f)∗LYquo(W•)/X

Ob(F, f) := RpX∗
(
g(F, f) ⊗ ωX

)

Then, we obtain morphisms g(F, f) −→ LU×X/X on U × X , and ob(F, f) :
Ob(F, f) −→ LU on U . The following lemma can be shown by using the argument
explained in Subsection 2.3.2.

Lemma 2.4.12 g(F, f) is represented by Cone(α)[−1] of the morphism

α : Hom(p∗UV, F ) −→ Hom(F, F )

given by α(a) = a ◦ f . ��

Remark 2.4.13 We put V−1 := F and V0 := p∗UV , and we regard V• =
(V−1 → V0) as a complex, where V0 stands in the degree 0. Then, Cone(α) is
naturally isomorphic to Hom(V−1[1], V•)∨[−1]. ��

Let H be a polynomial. We have a moduli scheme of quotients (q : V −→ Q)
of V such that the Hilbert polynomials of Q are H . Let M(V,H) denote the open
subscheme which consists of the points (q : V −→ Q) such that Ker(q) are locally
free. Then, we have the universal family fu : Fu −→ p∗M(V,H)(V ) defined over
M(V,H) × X . A morphism ob(Fu, fu) : Ob(Fu, fu) −→ LM(V,H) is induced.
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Proposition 2.4.14 ob(Fu, fu) is an obstruction theory of M(V,H).

Proof Let N be a sufficiently large number satisfying the condition ON for the
family Fu, i.e., we have Hi

(
X,Fu(N)|{q}×X

)
= 0 for any q ∈ M(V,H) and

i > 0, and Fu
|{q}×X(N) are globally generating for any q ∈ M(V,H). We put

F̃u := p∗XpX∗
(
Fu(N)

)
⊗O(−N). We have the natural surjection g : F̃u −→ Fu.

We put F = O(−N)⊕ d, where d = rank F̃u. We have the Grassmaniann bundle
π : Gr(F ,R) −→ X associated to the vector bundle F , i.e., the fiber of π over a
point x ∈ X is the Grassmann variety of R-dimensional quotient spaces of the
vector space F |x. We denote the universal quotient bundle over Gr(F ,R) by Q.
Then, we have the vector bundle Ỹquo := N(Q, π∗V ) over Gr(F ,R), which is a
variety smooth over X . We have the natural morphism π1 : Ỹquo −→ Yquo(W•).

We would like to check the conditions (A1) and (A2) in Proposition 2.4.2. Let U
be any sufficiently small open set of M(V,H), on which we can assume that there
exists an isomorphism F̃u � p∗UF . Thus, the surjection γ : p∗UF −→ Fu is given
on U × X . From γ and fu, we obtain a morphism

Φ(γ, Fu, fu) : U × X −→ Ỹquo

over X . By the argument in Subsection 2.3.2, we can show that the complex
Φ(γ, Fu, fu)∗LỸquo/X is represented by the cone Cone(β)[−1] for the morphism

β : Hom(p∗UV, Fu) ⊕Hom(Fu, p∗UF ) −→ Hom(Fu, Fu)

β(b1, b2) = b1 ◦ fu − fu ◦ b2.

We can also show that the natural morphisms

Cone(α)[−1] −→ Cone(β)[−1] −→ LU×X/X

is the same as the factorization:

Φ(Fu, fu)∗LYquo/X −→ Φ(γ, Fu, fu)∗LỸquo/X −→ LU×X/X

associated to U × X −→ Ỹquo −→ Yquo(W•). We set

g(γ, Fu, fu) := Φ(γ, Fu, fu)∗LỸquo/X

Ob(γ, Fu, fu) := RpX∗
(
g(γ, Fu, fu) ⊗ ωX

)
.

Let T be an affine scheme. Let g : T −→ U be a morphism, which induces gX :
T ×X −→ U ×X . We put g̃X := Φ(Fu, fu) ◦ gX and ĝX := Φ(γ, Fu, fu) ◦ gX .
For any coherent sheaf J on T , we have the following commutative diagram:
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Exti(g∗LU/k, J) −−−−→ Exti(g∗XLU×X/X , JX)

hi
1

⏐
⏐
!

⏐
⏐
!

Exti
(
g∗ Ob(γ, Fu, fu), J

)
−−−−→ Exti

(
g∗Xg(γ, Fu, fu), JX

)

hi
2

⏐
⏐
!

⏐
⏐
!

Exti(g∗ Ob(Fu, fu), J) −−−−→ Exti
(
g∗Xg(Fu, fu), JX

)

(2.11)

Let T be an affine scheme into which T is embedded closedly such that the
corresponding ideal J is square-zero. According to the deformation theory of
Illusie, we have the obstruction classes of the morphisms g and ĝX in the groups
Ext1(g∗LU/k, J) and Ext1

(
g∗Xg(γ, Fu, fu), J

)
respectively. The classes are de-

noted by o(g) and o(ĝX). By functoriality, o(g) is mapped to o(ĝX) in the diagram
(2.11). If h1

1(o(g)) is 0, then the morphism ĝX can be extended.
Note that the cohomology sheaves RipX∗

(
Hom(Fu, p∗UF )⊗ωX

)
vanish unless

i = 0, because of our choice of N . Thus, we have the isomorphisms

Exti
(
g∗ Ob(γ, Fu, fu), J

)
� Exti

(
g∗ Ob(Fu, fu), J

)

for any i > 0 and for any coherent sheaf J on T . Hence, h1
2 ◦ h1

1(o(g)) = 0 implies
h1

1

(
o(g)

)
= 0. Then, the morphism ĝX can be extended over T ×X , and hence g̃X

can also be extended over T × X . Therefore, we obtain a locally free subsheaf F̂
of p∗

T
(V ) on T × X , which is an extension of g∗XFu. By the universal property of

M(V,H), the morphism g can be extended over T . Therefore, the condition (A1) is
satisfied.

Let us check the condition (A2). We set

H0 := Ext0
(
pX∗

(
g∗XHom(Fu, p∗UF ) ⊗ ωX

)
, J
)

= H0
(
T, g∗End

(
pX ∗

(
Fu(m)

))
⊗ J

)

H1 := Ext0
(
g∗ Ob(g, Fu, fu), J

)
= Ext0

(
ĝ∗XLỸquo/X , JX

)

H2 := Ext0
(
g∗ Ob(Fu, fu), J

)

We obtain an exact sequence 0 −→ H0 −→ H1 −→ H2 −→ 0. According to the
theory of Illusie, H1 parameterizes the set of the extensions ĝ′X : T × X −→ Ỹquo

of ĝX . The natural action of H0 on H1 determines the equivalence relation on H1,
and it is easy to see that ĝ′X ∼ ĝ′′X if and only if π1 ◦ ĝ′X = π1 ◦ ĝ′′X , because H0

parameterizes the deformations of the morphism F −→ Fu. Thus the set of the
extensions of the morphism T × X −→ Yquo(W•) over T × X is a torsor over the
group H2.

By the universal property of M(V,H) and Yquo(W•), the set of the extensions
of g over T is also a torsor over H2. Namely the condition (A2) is satisfied. ��



2.4 Obstruction Theory 51

Usually, we consider deformations of quotients of V . Let H be a polyno-
mial, and let Quot(V,H) denote a quot scheme which parameterizes the quotient
sheaves of V whose Hilbert polynomials are H . We have the universal quotient
qu : p∗Quot(V,H)(V ) −→ Qu on Quot(V,H) × X . We denote the kernel of qu by
Fu, and the inclusion Fu −→ p∗Quot(V,H)(V ) is denoted by fu.

Let us consider the case dim X = 1. Let HV denote the Hilbert polynomial
of V . Then, Quot(V,H) parameterizes the locally free subsheaves of V whose
Hilbert polynomials are HV −H . Therefore, we have obtained an obstruction theory
ob(Fu, fu) : Ob(Fu, fu) −→ LQuot(V,H).

Proposition 2.4.15 In the case dim(X) = 1, the obstruction theory ob(fu) is per-
fect. The scheme Quot(V,H) is smooth, if H is a constant, i.e., H is a Hilbert
polynomial of sheaves of finite length.

Proof To show the perfectness of Ob(Fu, fu), we have only to show that

RpX ∗
(
g(Fu, fu)∨

)

is perfect of amplitude contained in [0, 1]. Let q be any point of Quot(V,H). We
put F := Fu

|{q}×X and Q := V/F . The complex g(Fu, fu)∨|{q}×X is Cone(γ)[−1]
for the natural morphism γ : Hom(F, F ) −→ Hom(F, V ), which is quasi-
isomorphic to Hom(F,Q). Hence, Hi

(
X, g(Fu, fu)∨|{q}×X

)
= 0 for any point

q ∈ Quot(V,H) unless i = 0, 1. Then, the desired perfectness easily follows.
Let us show the second claim. If H is a constant, we have

H1
(
X, g(Fu, fu)∨|{q}×X

)
= 0

for any q ∈ Quot(V,H). Let T be any affine scheme over k, and let g : T −→
Quot(V,H) be a morphism. Then, Ext1

(
g∗ Ob(Fu, fu), J

)
= 0 for any coher-

ent OT -module J , and hence any obstruction classes vanish. Thus we obtain the
smoothness. ��

Remark 2.4.16 Let us consider the case dim X = 2. Let Qtf (V,H) denote the
open subset of Q(F,H) corresponding to torsion-free quotient sheaves. It gives an
open subset of a moduli stack of locally free subsheaves of V . Then, Fu

|{q}×X are
locally free for any q ∈ Qtf (V,H). Therefore, we obtain an obstruction theory
ob(Fu, fu) : Ob(Fu, fu) −→ LQtf (V,H)/k from Proposition 2.4.14. ��

2.4.4 Filtrations of a Vector Bundle on a Curve

Let S be a scheme over k, and let D be a smooth projective curve over S provided
with an ample line bundle O(1). The projection D −→ S is denoted by p. Let V and
F be locally free sheaves on D provided with an injective morphism f : F −→ V .
Assume that the quotient is S-flat.
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Let Hi be polynomials. Let g : T −→ S be an S-scheme. We have the induced
curve DT := D ×S T over T . The induced morphism DT −→ D is denoted by g̃.
We obtain a morphism g̃∗F −→ g̃∗V on DT . Let F(T, g) denote the set of the
filtrations V ∗ of g̃∗V on DT ,

g̃∗V = V (1) ⊃ V (2) ⊃ · · · ⊃ V (l) ⊃ V (l+1) = g̃∗F,

with the following property:

• The quotients Coki := V (1)/V (i+1) are T -flat.
• The Hilbert polynomials of Coki| Dt

are Hi for any i = 1, . . . , l and t ∈ T .

The functor F is representable by an S-scheme, which can be shown by the
standard technique using quot schemes. Let gM(H∗) : M(H∗) −→ S denote a
moduli S-scheme. We have the universal filtration on M(H∗) ×S D:

g̃∗M(H∗)V = V(1) ⊃ V(2) ⊃ · · · ⊃ V(l) ⊃ V(l+1) = g̃∗M(H∗)F.

To construct an obstruction theory of M(H∗), we introduce some stacks. Take
vector spaces Wi (i = 2, . . . , l) over k such that rankWi = rankV(i) =: ri. We
put W (i) := Wi ⊗ OD (i = 2, . . . , l). We set W (1) := V and W (l+1) := F .
We define Y0 := N(W (l+1),W (1)) and R1 :=

∏l
i=1 N(W (i+1),W (i)). We put

G(W∗) :=
∏l

i=2 GL(Wi). We have the natural right G(W∗)-action on R1. Let
Y1 denote the quotient stack of R1 by the G(W∗)-action. By composition of the
maps, we obtain a morphism φ : R1 −→ Y0, which induces Y1 −→ Y0. We put
Y2 := D. Then, the morphism F −→ V induces a morphism Y2 −→ Y0. We put
Y := Y1 ×Y0 Y2.

Let V ∗ denote a filtered vector bundle on DT as above. We obtain morphisms
Φi(V ∗) : DT −→ Yi. We have the naturally defined morphism:

G(V ∗) : Φ0(V ∗)∗LY0/D −→
⊕

i=1,2

Φi(V ∗)∗LYi/D

We use the notation in Subsection 2.1.6. We put g(V ∗) := C2(V ∗, V ∗)∨[−1]. By
the argument in Subsection 2.3.2, the cone of G(V ∗) is represented by the complex
g(V ∗). Thus, we have the naturally defined morphism g(V ∗) −→ LDT /D. We put
Ob(V ∗) := Rp∗

(
g(V ∗) ⊗ ωDT /T

)
. Then, we obtain a morphism

ob(V ∗) : Ob(V ∗) −→ LT/S .

Applying the construction to the universal filtered bundle V∗ on M(H∗) ×S D, we
obtain

ob(V∗) : Ob(V∗) −→ LM(H∗)/S .

Lemma 2.4.17 The morphism ob(V∗) gives an obstruction theory of M(H∗).

Proof In the following, we will shrink S without mention. Take locally free sheaves
J (i) (i = 2, . . . , l) on D such that (i) there exist surjections J (i) −→ V(i),
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(ii) R1p∗Hom(J (i),V(i)) = 0. For any S-scheme g : T −→ S, let F̃(T ) denote
the set of (V ∗, ϕ∗) on DT as follows:

• V ∗ denotes a filtration of g̃∗V as above.
• ϕ∗ denotes a tuple of surjections of g̃∗J (i) onto V (i).

The functor F̃ is representable by a scheme which is denoted by M̃(H∗). We have
the locally free sheaves Ni := Hom

(
g̃∗M(H∗)J

(i),V(i)
)

on M(H∗) ×S D. Let p :

M(H∗)×S D −→ M(H∗) denote the projection. Then, M̃(H∗) is isomorphic to an
open subset of the vector bundle

⊕
p∗Ni. On M̃(H∗)×S D, we have the universal

filtration V∗ with the tuple of surjective morphisms ϕu
∗ .

Let Gr(J (i), ri) be the Grassmannian bundles of ri-dimensional quotient spaces
associated to the vector bundles J (i). We have the universal quotient bundle Qi.
We put Z :=

∏l
i=2 Gr(J (i), ri), where the fiber product is taken over D. The

pull back of Qi via the projection Z −→ Gr(J (i), ri) are denoted by W̃ (i)

(i = 2, . . . , l). The pull back of V and F via the projection Z −→ D are de-
noted by W̃ (1) and W̃ (l+1) respectively. Then, we put Ỹ0 := N

(
W̃ (l+1), W̃ (1)

)
,

Ỹ1 :=
∏l

i=1 N(W̃ (i+1), W̃ (i)) and Ỹ2 := Z. We have the natural morphisms
Ỹi −→ Ỹ0 (i = 1, 2) as above. The fiber product Ỹ1 ×Ỹ0

Ỹ2 is denoted by Ỹ .

The inclusions Ỹ −→ Ỹi are denoted by ji. On Ỹ , we have the natural morphism
j∗0LỸ0/D −→

⊕
i=1,2 j∗i LỸi/D, whose cone is denoted by Ob(Ỹ ). Then, we have

the naturally defined morphism ob(Ỹ ) : Ob(Ỹ ) −→ LỸ /D, and it gives an obstruc-

tion theory for Ỹ over D. (Basic example in [6]).
Let g : T −→ S be an S-scheme. From (V ∗, ϕ∗) on DT , we obtain morphisms

Φi(V ∗, ϕ∗) : DT −→ Ỹi. Therefore, we obtain

Φ(V ∗, ϕ∗)∗ Ob(Ỹ ) −→ LDT /T .

We put Õb(V ∗, ϕ∗) := Rp∗
(
Ob(Ỹ ) ⊗ ωD/S

)
, and then we obtain a morphism

õb(V ∗, ϕ∗) : Õb(V ∗, ϕ∗) −→ LT/S .
Let us describe the complex Õb(V ∗, ϕ∗). We have the morphisms

Hom
(
V (i), J (i)

)
−→ Hom

(
V (i), V (i)

)
, ai �−→ ϕi ◦ ai.

It induces a morphism of the complexes

α :
l⊕

i=2

Hom
(
V (i), J (i)

)
[−1] −→ g(V ∗)

We put g̃(V ∗) := Cone(α). By using the argument in Subsection 2.3.2, we can
show that g̃(V ∗) represents Φ(V ∗, ϕ∗)∗ Ob(Ỹ ).
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Applying the above construction to (V∗, ϕu
∗), we obtain a morphism

õb(V∗, ϕu
∗) : Õb(V∗, ϕu

∗) −→ L
M̃(H∗)/S

.

Lemma 2.4.18 The morphism õb(V∗, ϕu
∗) gives an obstruction theory of M̃(H∗)

over S.

Proof Let h : T −→ M̃(H∗) be a morphism, and let J be a coherent sheaf on T .
The pull back of J via DT −→ T is denoted by JD. We have the induced morphism
h̃ : DT −→ M̃(H∗) ×S D. We set ĥD := Φ(V∗, ϕu

∗) ◦ hD. We have the following
commutative diagram:

Ext1
(
h∗L

M̃(H∗)/S
, J
) ψ−−−−→ Ext1

(
h∗Õb, J

)

⏐
⏐
! �

-
⏐
⏐

Ext1
(
h∗
DL

M̃(H∗)×SD/D, JD
)
−−−−→ Ext1

(
h∗
Dg̃(V∗), JD

)

Let T be an S-scheme such that T is embedded as a closed subscheme and that
the corresponding ideal J is square-zero. We have the obstruction classes o(h) and
o(ĥD) in Ext1

(
h∗L

M̃(H∗)/S
, J
)

and Ext1
(
ĥ∗
DLỸ /S , JX

)
. It is easy to see that

ψ
(
o(h)

)
∈ Ext1

(
h∗Õb, J

)
is the same as the image of o(ĥD) via the composite of

the following morphisms:

Ext1
(
ĥ∗
DLỸ /S , JD

) b1−−−−→ Ext1
(
h∗
Dg̃(V∗), JD

) b2−−−−→ Ext1
(
h∗Õb, J

)

Hence, the vanishing of ψ
(
o(h)

)
implies b1

(
o(ĥD)

)
= 0. Since Õb gives an ob-

struction theory for Ỹ , it implies that ĥ can be extended to a morphism T ×S

D −→ Ỹ . Then, we obtain an extension of h to a morphism T −→ M̃(H∗) by the
universal property of M̃(H∗). Therefore, the condition (A1) of Proposition 2.4.2 is
checked. The condition (A2) can also be checked easily, and the proof of Lemma
2.4.18 is finished. ��

Let π denote the projection M̃(H∗) −→ M(H∗), which is smooth. We have the
following commutative diagram:

M̃(H∗) ×S D Φi(V∗,ϕu
∗ )−−−−−−−→ Ỹi

πD

⏐
⏐
!

⏐
⏐
!

M(H∗) ×S D Φi(V∗)−−−−→ Yi
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We obtain the following morphism of the distinguished triangles on M̃(H∗) ×S D:

π∗
Dg(V∗) −−−−→ Φ(V∗, ϕu

∗)∗ Ob(Ỹ ) −−−−→
⏐
⏐
!

⏐
⏐
!

π∗
DLM(H∗)×SD/D −−−−→ L

M̃(H∗)×SD/D −−−−→

⊕l
i=2 Hom(V(i), J (i)) −−−−→ π∗

Dg(V∗)[1]
⏐
⏐
!

⏐
⏐
!

L
M̃(H∗)×SD/M(H∗)×SD −−−−→ π∗

DLM(H∗)×SD/D[1]

(2.12)

Hence, we obtain the following morphism of the distinguished triangles:

π∗ Ob(V∗) −−−−→ Õb(V∗, ϕ∗) −−−−→
⏐
⏐
!

⏐
⏐
!

π∗LM(H∗) −−−−→ L
M̃(H∗)/S

−−−−→

⊕
i

(
p∗Hom(J (i),V(i))

)∨ −−−−→ π∗ Ob(V∗)[1]

ϕ

⏐
⏐
!

⏐
⏐
!

L
M̃(H∗)/M(H∗)

−−−−→ π∗LM(H∗)/S [1]

(2.13)

It is easy to see that both L
M̃(H∗/S)

and
⊕

i

(
p∗Hom(J (i),V(i))

)∨
are isomorphic

to their 0-th cohomology sheaves, and that ϕ is an isomorphism. Then, the claim of
Lemma 2.4.17 immediately follows from Lemma 2.4.18. ��

2.5 Equivariant Complexes on Deligne-Mumford Stacks
with GIT Construction

The results in this section will be used when we consider equivariant obstruction
theory of master spaces in Section 5.8.

2.5.1 Locally Free Resolution

Let Gi (i = 1, 2) be linear reductive groups over k. Let U be a quasi-projective
variety over k provided with an action of G1 × G2. We assume that there exists a
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G1 × G2-equivariant embedding into a projective space PN . The closure of U in
PN is denoted by U . The G1 × G2-equivariant polarization is denoted by O(1).
We assume that U is contained in the open subset of the stable points of U with
respect to the polarization O(1) and the G2-action. We assume that M = U/G2 is
a separated Deligne-Mumford stack. The projection U −→ M is denoted by π.

Lemma 2.5.1 Let F be a G1-equivariant coherent sheaf on M. Then, there exists
a G1-equivariant locally free sheaf V on M with a G1-equivariant surjection φ :
V −→ F .

Proof There exists a coherent sheaf G on U such that G|U = π∗F . There ex-
ists a large number N such that G(N) is globally generating. Then, π∗F(N) is
also globally generating. We may take a G1 × G2-equivariant subspace W of
H0

(
U, π∗F(N)

)
such that W ⊗ O(−N) −→ π∗F is surjective. We have only

to take descent of W ⊗O(−N) and the morphism. ��

Corollary 2.5.2 Let F• be a bounded G1-equivariant complex of coherent sheaves
on M. Assume that there exist integers M1 and M2 such that the following holds:

• For any point of M, there exists a neighbourhood U such that F•|U is isomorphic
to a coherent locally free complex GU

• in D(U) where GU
i = 0 unless M1 ≤

i ≤ M2.

Then, there exists a global G1-equivariant coherent locally free complex G• � F in
D(M), where Gi = 0 unless M1 ≤ i ≤ M2. ��

2.5.2 Equivariant Representative

We recall that the morphism of M to the coarse scheme is finite (Proposition 2.2.2).

Lemma 2.5.3 Let Ci • (i = 1, 2) be G1-equivariant bounded complexes of co-
herent sheaves on M. We assume that C1 • is perfect. Let ϕ be an element of the
G1-invariant part of Ext0(C1 •, C2 •). Then, we can take a G1-equivariant perfect
complex C̃1 • with a G1-equivariant morphism ψ : C̃1 • −→ C2, such that (i) C̃1 •
is G1-equivariantly quasi-isomorphic to C1 •, (ii) ψ represents ϕ.

Proof We give only an indication. We may assume that C2,i = 0 unless |i| < N .
We take a sufficiently large number N1, and we replace C1 • with a G1-equivariant
quasi-isomorphic complex C̃1 • with the property Extk

(
C̃1,i, C2,j

)
= 0 for any

k > 0 and i > −N1, and for any j. Then, Ext0(C1,•, C2,•) � Ext0(C̃1,•, C2,•) is
isomorphic to the first cohomology of the following:

⊕

−i+j=−1

Ext0(C̃1,i, C2,j) −→
⊕

−i+j=0

Ext0(C̃1,i, C2,j) −→
⊕

−i+j=1

Ext0(C̃1,i, C2,j)

Since G1 is assumed to be reductive, the claim is clear. ��
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Let B(i) (i = 1, 2) be G1-equivariant bounded complexes on M. We assume that
B(1) is perfect. Let φ be an element of the G1-invariant part of Ext0

(
B(1), B(2)

)
.

We take a G1-equivariant perfect complex B̃(1) with G1-equivariant morphisms
ai : B̃(1) −→ B(i) such that (i) a1 is a quasi-isomorphism, (ii) the diagram

B(1) a1←− B̃(1) a2−→ B(2)

represents φ. We have the natural G1-equivariant structure on the cone Cone(a2).
Assume we have another G1-equivariant complex B̂(1) with G1-equivariant mor-
phisms âi : B̂(1) −→ B(i) such that the diagram

B(1) â1←− B̂(1) â2−→ B(2)

represents φ. Then, there exists a G1-equivariant complex B
(1)

with G1-equivariant
morphisms with morphisms f : B

(1) −→ B̃(1) and g : B
(1) −→ B̂(1) such that the

following diagrams are commutative up to homotopy for i = 1, 2:

B
(1) f−−−−→ B̃(1)

g

⏐
⏐
! ai

⏐
⏐
!

B̂(1) âi−−−−→ B(i)

By an argument used in the proof of Lemma 2.5.3, we may assume that the homo-
topy is also G1-equivariant. Then, we have the G1-equivariant quasi-isomorphisms:

Cone(â2) ←− Cone(â2 ◦ g) � Cone(a2 ◦ f) −→ Cone(a2)

In this sense, the G1-equivariant complex Cone(a2) is uniquely determined up to
G1-equivariant quasi-isomorphisms. We denote it by Cone(ϕ).

2.6 Elementary Remarks on Some Extremal Sets

The results in this section will be used when we study geometric invariant theory
for enhanced master spaces in Sections 4.3–4.4.

2.6.1 Preparation for a Proof of Proposition 4.3.3

Let us consider a vector space U =
⊕N

i=1 Q · ei. We put

fj := (j − N)
∑

i≤j

ei + j ·
∑

i>j

ei.
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The following lemma is well known and easy to prove.

Lemma 2.6.1 Take any element ρ =
∑N

i=1 ai · ei ∈ U satisfying
∑N

j=1 aj = 0 and
a1 ≤ a2 ≤ · · · ≤ aN . Then, there exist non-negative rational numbers bj such that
ρ =

∑
bj · fj . ��

Let r1, . . . , rs be positive integers such that
∑s

j=1 rj = N . We put Rj :=∑
i≤j ri. We set

vj :=
∑

Rj−1<i≤Rj

ei (j = 1, . . . , s).

For an integer j ∈ {1, . . . , s}, we put

y(j) := −(N − Rj)
∑

h≤j

vh + Rj

∑

h>j

vh.

For a pair of integers (i1, i2) such that 1 ≤ i1 < i2 ≤ s, we define

x(i1, i2) := −(N − Ri2)
∑

h≤i1

vh + Ri1

∑

i2<h

vh.

For an integer i0 ∈ {1, . . . , s}, we set

S(i0) :=
{

(i1, i2) ∈ Z2
∣
∣
∣ 1 ≤ i1 < i0 < i2 ≤ s

}
.

Lemma 2.6.2 Let v =
∑s

j=1 aj · vj be an element of U satisfying the following:

a1 ≤ a2 ≤ · · · ≤ as,

s∑

j=1

rj · aj = 0. (2.14)

Take an integer i0 such that 1 ≤ i0 ≤ s.

• Assume ai0 > 0. Then, there exist the non-negative rational numbers b(i1, i2)
for (i1, i2) ∈ S(i0) and the non-negative rational numbers cj (1 ≤ j < i0) such
that the following equality holds:

v =
∑

(i1,i2)∈S(i0)

b(i1, i2) · x(i1, i2) +
i0−1∑

j=1

cj · y(j). (2.15)

• Assume ai0 = 0. Then, there exist the non-negative rational numbers b(i1, i2) for
(i1, i2) ∈ S(i0) such that the following holds:

v =
∑

(i1,i2)∈S(i0)

b(i1, i2) · x(i1, i2).

• Assume ai0 < 0. Then, there exist the non-negative rational numbers b(i1, i2) for
(i1, i2) ∈ S(i0) and the non-negative rational numbers cj (i0 < j ≤ N) such
that the following holds:
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v =
∑

(i1,i2)∈S(i0)

b(i1, i2) · x(i1, i2) +
N∑

j=i0+1

cj · y(j).

Proof We use an induction on the number d(v) := #
{
i
∣
∣ ai 
= ai+1

}
. In the case

d(v) = 0, the claim is obvious. Let v be as in the lemma such that d(v) = m + 1.
Take the integers h1 and h2 satisfying the following:

a1 = a2 = · · · = ah1 < ah1+1, as = as−1 = · · · = ah2+1 > ah2 .

We remark the following:

• In the case ai0 > 0, we have h1 < i0.
• In the case ai0 = 0, we have h1 < i0 < h2.
• In the case ai0 < 0, we have i0 < h2.

Let us argue the case ai0 > 0. If we have i0 ≤ h2, we put as follows:

v′ := v − f · x(h1, h2) =
∑

a′
i · vi, f := min

{
ah1+1 − ah1

N − Rh2

,
ah2+1 − ah2

Rh1

}

If we have i0 ≥ h2 + 1, we put as follows:

v′ := v − g · y(h2), g :=
ai0 − ah2

2Rh2

It is easy to see that the numbers a′
i satisfy the condition (2.14), and that we have

d(v′) ≤ d(v)− 1. By the hypothesis of the induction, we have the expression for v′

as in (2.15) with the non-negative coefficients. Then, we obtain the desired expres-
sion for v.

The cases ai0 = 0 or ai0 < 0 can be argued similarly. ��

2.6.2 Preparation for a Proof of Proposition 4.4.4

Let N (α) (α = 1, 2) be positive integers. Let us consider a vector space as follows:

U = U (1) ⊕ U (2), U (α) =
N(α)
⊕

i=1

Q · e(α)
i .

Let r
(α)
1 , . . . , r

(α)
s(α) (α = 1, 2) be positive integers such that

∑s(α)
j=1 r

(α)
j = N (α).

We put R
(α)
j =

∑
h≤j r

(α)
h . We set Ω(α) =

∑
i e

(α)
i . We also put

v
(α)
j :=

∑

R
(α)
j−1<i≤R

(α)
j

e
(α)
i

(
j = 1, . . . , s(α)

)
.
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For each integer j ∈ {1, . . . , s(2)}, we set

y(2)(j) := −(N − R
(2)
j ) ·

∑

h≤j

v
(2)
h + R

(2)
j ·

∑

h>j

v
(2)
h .

For each integer j ∈ {1, . . . , s(1)}, we put

x1(j) := −N (2) ·
∑

h≤j

v
(1)
h + R

(1)
j · Ω(2),

x2(j) := N (2) ·
∑

h≥j

v
(1)
h + (R(1)

j−1 − N (1)) · Ω(2).

Lemma 2.6.3 Let v =
∑

α=1,2

∑
j a

(α)
j · v

(α)
j be any element of U satisfying the

following conditions:

a
(α)
1 ≤ a

(α)
2 ≤ · · · ≤ a

(α)
s(α),

∑

α=1,2

∑

j

r
(α)
j · a(α)

j = 0. (2.16)

Take an integer i0 such that 1 ≤ i0 ≤ s(1). Then, there exist non-negative rational
numbers c(j) ≥ 0 (j = 1, . . . , s(2)), d1(i) ≥ 0 (i = 1, . . . , i0), d2(i) ≥ 0 (i =
i0 + 1, . . . , s(1)) and a rational number A such that the following holds:

v =
s(2)∑

j=1

c(j) · y(2)(j) +
∑

i<i0

d1(i) · x1(i) +
∑

i>i0

d2(i) · x2(i)

+ A ·
(
N (2)Ω(1) − N (1) · Ω(2)

)
. (2.17)

Proof By Lemma 2.6.1, we may assume a
(2)
1 = · · · = a

(2)
s(2) from the beginning.

We use an induction on the number d(v) = #
{
i | a(1)

i 
= a
(1)
i+1

}
. If d(v) = 0, we

have v = A ·
(
N (2) · Ω(1) − N (1) · Ω(1)

)
for some A, and hence the claim is clear.

Let v be an element as in the lemma such that d(v) = m + 1 > 0. Let us take the
integer h1 satisfying a

(1)
1 = a

(1)
h1

< a
(1)
h1+1. In the case i0 > h1, we put as follows:

v′ := v −
a
(1)
h1+1 − a

(1)
h1

N (2)
x1(h1)

In the case i0 ≤ h1, we put as follows:

v′ = v −
a
(1)
h1+1 − a

(1)
h1

N (2)
· x2(h1).

Then, v′ satisfies the conditions (2.16) and d(v′) < d(v). By the hypothesis of the
induction, we have the expression for v′ as in (2.17). Hence, we obtain the desired
expression for v. ��
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2.7 Twist of Line Bundles

This subsection is a preparation for Section 4.6.

2.7.1 Construction

Let Y be an algebraic stack over a field k. Let Gm denote the one dimensional
algebraic torus Spec k[t, t−1]. Let I denote the trivial line bundle on Y . A point of
I is denoted by (y, u) where y ∈ Y and u ∈ I|y . For each integer n, T (n) denote
the line bundle I with the Gm-action by t · (y, u) := (y, tn ·u).

Let L be any line bundle on Y . Let L∗ denote the complement of the image of
the 0-section, i.e., L∗ := L − Y . Let π : L∗ −→ Y denote the naturally defined
projection. A point of L∗ is also denoted by (y, v), where y ∈ Y and v ∈ π−1(y).

Let us fix an integer r. We consider the Gm-action on L∗ given by t · (y, v) :=
(y, trv). We have the naturally defined Gm-action on π∗T (n). It induces a line bun-
dle In on the algebraic stack L∗/Gm. Let ϕ : L∗/Gm −→ Y denote the naturally
induced morphism.

Lemma 2.7.1 We have canonical isomorphisms In⊗Im � In+m and I−n � I−1
n

and I0 � OL∗/Gm
. We also have a canonical isomorphism I−r � ϕ∗L.

Proof The first claim is obvious. Let us show the second claim. Let us denote a
point of π∗L by (y, v, u′), where y ∈ Y , v ∈ π−1(y) and u′ ∈ L|y . The trivial Gm-
action on L induces the Gm-action on π∗L over L∗, which is given by t·(y, v, u′) =(
y, tr · v, u′).

On the other hand, let us denote a point of π∗T (−r) by (y, v, u) where y ∈ Y ,
v ∈ π−1(y) and u ∈ T (−r)|y . The action is denoted by t·(y, v, u) =

(
y, trv, t−ru

)
.

We have the naturally defined isomorphism π∗T (−r) −→ π∗L given by
(y, v, u) �−→ (y, v, u · v), which is Gm-equivariant. Therefore, we obtain the iso-
morphism I−r � ϕ∗L. ��

2.7.2 Weight of the Induced Action

We use the notation in the previous subsection. Let G
(i)
m (i = 1, 2) denote one-

dimensional tori Spec k[ti, t−1
i ]. Let us consider the action of G

(1)
m × G

(2)
m on L

given by (t1, t2) · (y, v) :=
(
y, t1 ·t2 ·v

)
.

Let T (n1, n2) denote the trivial line bundle I with the G
(1)
m × G

(2)
m -action given

by (t1, t2) · (y, u) =
(
y, tn1

1 · tn2
2 ·u

)
. Then, we have the G

(1)
m × G

(2)
m -line bundle

π∗T (n1, n2) on L∗. We obtain the line bundle In2 on L∗/G
(2)
m , and we have the

induced G
(1)
m -action on In2 .
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Lemma 2.7.2 The weight of the G
(1)
m -action on In2 is n1 − n2.

Proof We put G̃
(i)
m := Spec k[si]. Let us consider the morphism G̃

(1)
m × G̃

(2)
m −→

G
(1)
m × G

(2)
m given by (s1, s2) �−→

(
s1, s

−1
1 · s2

)
. The induced G̃

(1)
m × G̃

(2)
m -action

on L∗ and T (n1, n2) is given by (s1, s2) · (y, v) =
(
y, sr

2 · v
)

and (s1, s2) · (y, u) =
(
y, sn1−n2

1 · sn2
2 · u

)
. Therefore, the weight of the G

(1)
m -action on In2 is given by

n1 − n2. ��
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