Chapter 2
Preliminaries

In Section 2.1, we prepare some convention. In Section 2.2, we review basic results
from the geometric invariant theory. In particular, we recall a sufficient condition for
a quotient stack to be Deligne-Mumford and proper. We also recall Mumford-Hilbert
criterion, and look at some easy examples. The results will be used in Chapter 4.

In Section 2.3, we review some basic facts on cotangent complexes. Then, we
recall how to express cotangent complexes of quotient stacks in Subsection 2.3.2,
which will be used in Chapter 5 frequently. We also study some more examples in
Subsection 2.3.3, which will be used in Sections 6.3, 6.4 and 6.6.

In Section 2.4, we review obstruction theory in the sense of K. Behrend-B.
Fantechi [6]. We explain a naive strategy to construct obstruction theories of mod-
uli stacks in Subsection 2.4.2. We recall an obstruction theory of locally free
subsheaves in Subsection 2.4.3. It gives obstruction theories of moduli spaces of
torsion-free quotient sheaves over a smooth projective surface. The result will be
used in Section 5.6. We also obtain the smoothness of moduli spaces of quotient
torsion-sheaves over a smooth projective curve, although we will not use it later. In
Subsection 2.4.4, we recall an obstruction theory of filtrations of a vector bundle on
a smooth projective curve. It will be used to construct a relative obstruction theory
for quasi-parabolic structures.

In Section 2.5, we recall some standard results for equivariant complexes on
Deligne-Mumford stacks with GIT construction, which will be used in Section 5.9.
In Section 2.6, we give some elementary remarks on extremal sets, which are used
in Sections 4.3-4.4. In Section 2.7, we give remarks on the twist of line bundles.

2.1 Some Convention

2.1.1 Product and Projection

Let S be a scheme. Let Y be an algebraic stack over S. Let g : T — U be a
morphism of algebraic stacks over S. The naturally induced morphism 7" xg Y —
U xg Y is denoted by gy or simply by g.
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Let X and U be algebraic stacks over S. We use the symbol px to denote the
projection forgetting the X -component:

px :Uxs X — U, px(u,x)=1u

Similarly, p;; denotes the projection U xg X — X.

2.1.2 Vector Bundles

Let V' be a vector bundle on an algebraic stack Y. The sheaf of local sections of
V' is also denoted by the same symbol V, if there are no risk of confusion. But,
we use some particular notation in the following case: For vector bundles V; (i =
1,2), let Hom(V7,Vs) denote the sheaf of homomorphisms from V; to V5. The
corresponding vector bundle is denoted by N (V7, V5).

Let F' be a vector bundle on Y. The complement of the image of the 0-section in
F is denoted by F*,i.e., F* := F — Y, and the dual bundle of F' is denoted by F'V.
The projectivization of F is denoted by P(F') or Pp.

2.1.3 Coherent Sheaves on a Product

Let X be a flat scheme over S, and let U be an algebraic stack over S. A coherent
sheaf E over U x g X is called a U-coherent sheaf, if it is flat over U. A U-coherent
sheaf F is called a U-torsion free sheaf, if F|(,) x ; x is torsion-free for each u € U.
We will often omit to denote “U-", if there are no risk of confusion.

When we are given a line bundle Ox (1) on X which is relatively ample over S,
we use the symbol E(m) to denote E ® pj;Ox (m) for any coherent sheaf E on
UxgX.

2.1.4 Quotient Stacks

Let Z be an algebraic stack over S provided with an action of a group scheme G
over S. Then, we use the symbols Z¢ or Z/G to denote the quotient stack.

2.1.5 Signature in Complexes

We follow the signature convention in [68]. We recall some of them for later use in
our situation. Let X be an algebraic stack over S. For two bounded O x-complexes
C* and D°, let Hom(C*, D*) denote the complex whose i-th terms are
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@ ')"lom(C’j,Dk)7

k—j=i
and whose differentials are given as follows:
Hom (C?, D*) — Hom (C?, D**') & Hom (C7~1, DF)

ar— (dpoa, (—1)F 7 *aodc)

Let us look at some examples. For a complex C'®, we denote the dual complex
Hom(C*®,Ox) by C*V. The differentials are as follows:

Hom(C™,Ox) — Hom(C™" ', 0x), ar— (=1)""' - aody

For two term complexes C* = (C~! — CY) and D* = (D! — DY), the
differentials of the complex Hom (C*®, D*) are given as follows:

Hom(CO,D_l) — Hom(CO,DO) @Hom(C‘l,D_l)
a— (dpoa7 aOdc)
Hom(C’o, DO) @ Hom(C‘l, D_l) — Hom(C‘l7 DO)
(b1,b2) = —bi odc +dp o bs
We will often use the dual Hom (C*®, D*)Y whose differentials are given as follows:
Hom (D", C’_l) — Hom(D",C°) @ Hom(D~*,C™1h)
a+— (—dcoa,aodp)
Hom(D",C°) & Hom(D~",C~") — Hom(D~*,C")
(b1,bg) [— —bl e} dD — dc e} bz

2.1.6 Filtrations and Complexes on a Curve

Let D be a smooth projective curve over S. Let E, (a = 1,2) be coherent Op-
modules which are flat over S. Assume that we are given a decreasing filtration
F(E,) = (Fi(E,)|i =1,...,1) of E, such that Cok;(E,) := E,/Fi+1(E,) are
flat over S.

Let Vo = (Va,—1 — Va,0) be locally free resolutions of E, (a = 1,2). We set

Va(l) = Va 0 Va(H_l) = Va.fla

VD = Ker (Vo0 — Cok;(E,)), (i=2,...,).
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Let f; : VgH) — Vl()i), t; : Vz()i) — Vlgl) and s; : VI()IH) — V[()i) denote the
inclusions. Let us consider the complex C; (V{*, V5°) given as follows:

I+1 l
-1 . . 0 . .
Hom(vl(l), ‘/'2(1""1)) d;} @ Hom(Vl(Z), ‘/2(1)) L) @ 'Hom(v'l(z""l), ‘/2(1))
i=1 i=1
Here, the first term stands in the degree —1. The differentials d’ are given as follows:
d_l(a):(sioaoti‘izl,...,l—i—l) 2.1

d°(b1,...,by) = (= frobi+bgo f1, — faoba+bsofo,...,— frobi+bip10f1) (2.2)
We have the naturally defined morphism:

Y = (‘pl) : Cl(Vl*a sz*) — Hom(VLn ‘/27.) (23)

More precisely, ¢ is the projection induced by the identifications Vy = V(1) and
Vo, = VD ) is given by v1(a;) =3 sit1 0 a; - t;, and o is the identity. We
can directly check that ¢ is the morphism of complexes. We put

Ca(V7, V) = Cone(¢)[~ 1.

The following lemma is easy to check.

Lemma 2.1.1 The complexes C;(Vy*,V5) and the morphism ¢ : C1(V{*,V5) —
Hom(Vie,Vae) depend only on (E1,F) and (F2, F) in the derived category
D(D). O

Notation 2.1.2 We denote C;(Vy*, V') by RHom/;(E14, Ea.). O

If E, and E,/F;(E,) are locally free sheaves fora = 1,2and j = 1,...,, then
we have vanishings

H' (Hom'|(E1, B»)) =0 (i #0),

and H° (Hom/l(El, EQ)) is isomorphic to the sheaf of homomorphisms of E; to
E5 which preserve the filtrations.

2.1.7 Virtual Vector Bundle

Let G be a group scheme over S. Let Y be an algebraic stack over S provided with a
(possibly trivial) G-action. Let K (Y') denote the K-group of G-equivariant perfect
complexes. Elements of K(Y") are called virtual G-equivariant vector bundles in
this monograph. We often omit to distinguish G.
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2.1.8 Compatible Diagrams

Let A, ; (1=1,2) (j = 1,2,3,4) be objects in some category. Assume that we are
given morphisms ¢; : Ay ; — As ;. We also assume that we are given commuta-
tive diagrams (C'D);:

a;
Ain —— Ao

d;
Ai,3 — Ai,4

We say that (C'D); and (CD), are compatible with respect to the morphisms ¢;
(j = 1,2,3,4), if every face of the naturally obtained cube is commutative. It is
equivalent to the commutativity of the following diagrams:

Ajg —— A1p A —— Az

l . !

Apqg —— Asp Az —— Ao

Ao —— A1g A3 —— Aa

s

! . !

Agg —— Aoy Azs —— Ao

2.2 Geometric Invariant Theory

2.2.1 GIT Quotient and Algebraic Stacks

Let % be an algebraically closed field with characteristic 0. Let G be a linear reduc-
tive group over k. Let Y be a projective variety over k, provided with a G-action p.
Let L be an ample line bundle on Y with a G-action which is a lift of p. The lift is
also denoted by p.

We recall some basic definitions. A point y € Y is semistable with respect to L,
if there exists a G-invariant section s of L®™ for some n > 0 such that s(y) # 0.
A point y € Y is defined to be stable with respect to L, if there exists a G-invariant
section s of L& ™ for some n > 0 such that (i) s(y) # 0, (i) any G-orbits contained
inY —s71(0) are closed. Let Y'* (L) (resp. Y **(L)) denote the set of the stable (resp.
semistable) points with respect to L. The fundamental theorem of D. Mumford is
the following.

Proposition 2.2.1 ([96]) There exists a uniform categorical quotient m : Y —
Y®* //G. Moreover, the following holds:



30 2 Preliminaries

o The map  is affine and universally submersive.

e Y5 //G is a projective variety.

e There exists the open subset Y* /|G of Y ** |/ G, such that (i) 7= (Y* //G) = Y%,
(ii) 7 : Y® — Y® //G is a universal geometric quotient of Y°.

Proof See Proposition 1.9, Theorem 1.10 and Page 40 in [96]. O

We combine it with some results of A. Vistoli in [129]. Let Y5/ denote the set
of the stable points of Y whose stabilizers are finite. In this situation, we obtain the
quotient stack Y*f /G, which is Deligne-Mumford. See Sections 2 and 7 of [129]
for more details on such quotient stacks. We recall one of his results.

Proposition 2.2.2 ([129]) The naturally induced morphismY ¥ |G — Y31 /G is
proper.

Proof The map Y*/ — Y/ //G is a universal geometric quotient. In particu-
lar, it is universally submersive, and the geometric fibers are precisely the orbits of
geometric points of X. Therefore, Y*/ //G is a quotient of Y*/ by G in the sense
of Vistoli. (See Page 630 of [129].) Applying Proposition 2.11 of [129], we can
conclude that the map Y/ /G — Y*/ //G is proper. O

Corollary 2.2.3 Let Z be a variety over k with a G-action. Let ® : Z — Y be a
G-equivariant immersion with the following property:

o The stabilizer groups of any points of Z are finite.
e The image O(Z) is contained in Y*(L).
o &:7Z —Y*5(L) is proper.

Then, Z/G is Deligne-Mumford and proper.

Proof We can regard Z/G as a substack of Y*//G. We can also regard Z//G as
a closed subscheme of Y/ //G C Y**//G. Since Y**//G is projective, Z//G is
also projective. According to the previous lemma, the morphism Z/G — Z//G is
proper. Therefore, Z/G is proper. O

2.2.2 Mumford-Hilbert Criterion and Some Elementary Examples

Let Y, L and G be as above. Let A : GG,,, — G be a one-parameter subgroup. We
put P(X) := lim;_o A(t)-P. Then, A acts on the fiber L|py). The weight is denoted
by pix(P, L).

Proposition 2.2.4 (Mumford-Hilbert criterion, [96]) The point P is semistable
(resp. stable) with respect to L, if and only if puy(P,L) > 0 (resp. ux(P,L) > 0)
for any one-parameter subgroup \. O

Remark 2.2.5 We use the convention to identify a vector bundle and the sheaf of its
sections. Hence, the above definition of . is the same as that given in [96]. O
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For later use, we recall some elementary examples. Let V' be a vector space
over an algebraically closed field k£ of characteristic 0 with a base w1, ..., uy. Take
wi,...,wy € Z such that > w; = 0 and w; < w; 1. Let A be the one-parameter
subgroup of SL(V') given by A(t) - u; = t“¢ - u;. Let V(¥) denote the subspace
generated by uy,...,u;. Let V.= @V, denote the weight decomposition of A,
i.e., A preserves the decomposition, and the action on V,, is the multiplication of t*.
We put G; := @ng V.

We denote a point of P(V'V) by [v] by using a representative v € V — {0}. Let
us consider the right SL(V)-action on P(V') given by g - [v] := [g~}(v)], which
can be lifted to the action on Op(yvy(1).

Lemma 2.2.6 ([96]) 1 ([v], Op(vv) (1)) = min{i ‘ v; € gi}. In other words,
pa([v], O(1)) = Zwl - (dim VO N (@) —dimVE-tn (v))

= j- (dimG; N (v) —dimG,; 1 N (v)). (2.4)
J

Here (v) denotes the subspace generated by v.

Proof According to the weight decomposition V' = @ V;, we have the decompo-
sition v = > v;. InP(V'Y), we have

AP = M) ] = [Zfi .Uz} .
We put ¢ := max{i |v; # 0} = min{i | v € Qi}. It is easy to see

lim A(¢)[v] = [v4,]-

t—0

The weight of A on OP(VV)(l)H%] is ig. Thus, the first claim is obtained. The
second claim follows from the first one. O

Let G;(V') denote the Grassmann variety of [-dimensional subspaces of V'
G(V)={v:WcCV|dimW =1}.

We have the Pliicker embedding G; (V) — IP’(/\I VV) given by W — AW c
A’ V. It induces a polarization Og,(v)(1) of Gy (V). The group SL(V') has the right
action on G(V') given by ¢ — g~* o ¢, which can be lifted to that on O, (v(1).

Lemma 2.2.7 For any point W of G|(V'), we have the following equality:

N
pa(W, Og,v)(1)) =Y _ (rank W N V@ — rank W n VO~V -

i=1
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Proof Forany J = (j1 < jo < --- < j;), we put uy := uj, A -+ Auy, and
wy = 22:1 wy,. Collection of such u; gives a base of A' V. Let X denote the
one-parameter subgroup of SL(/\l V') induced by A. We have ) (uy) = 27 - uy.

Let us take a base vy,...,v; of W of the form v, = u;, + Zj<ih an,j - uj.
Then, z := w1 A -+ A v is expressed as the sum Y ay - uy, where ay = 1 if
J=1= (il < e < il) and a; = 0 if wy > wy. We have ,u)\(W, OGL(V)(U) =
115 (2, Op (1 vy (1)) = wr according to Lemma 2.2.6. Then, it is easy to derive the
claim of the lemma. O

We also have the Grassmann variety G} of [-dimensional quotients:
G(V):={q:V — Q| dimQ =1}
We have the Plucker embedding G (V) — P( /\l V') given by the correspondence
q— (/\l NV — A\ Q). It induces a polarization O (v (1).

Lemma 2.2.8 ([96], [87]) Let g : V — Q be a point of G;(V). We put W :=
Ker(q). Then, we have the following equality:

N
pa (2, Ocyvy (1) = > _w; - (dim VO AW — dim VO N — 1)

=1

N
. . WnNg; ) Q-)
:§ (dim ———22 — 4 7). (2.6)
j:1j ( unngj_l m G,

Proof We put W .= G, N W/g,»_l N W. By using the natural isomorphism
Gi/Gi—1 ~ V;, we regard W) as the subspaces of V;. It is easy to see that the limit
lim; o A(t) - q is given by the quotient g : V — @ V;/W ). The weight of A on
Oci(vy(1)g is —i - dim (V;/W®). Then, it is easy to deduce the claim. O

Remark 2.2.9 We have the obvious isomorphism G;(V') ~ G'y_,;(V). However,
it does not preserve the semistability conditions on the varieties induced by the
Pliicker embeddings. 0O

2.3 Cotangent Complex

2.3.1 Basic Facts

Recall some fundamental property of cotangent complexes from [64], [79] and
[111]. Let X and ) be Deligne-Mumford stacks with étale site. For any morphism
f X — Y of Delinge-Mumford stacks, the cotangent complex was introduced
by L. Tllusie [64] as a complex of Ox-modules. It is denoted by L x/y or Ly. Re-
call that the cotangent complex controls deformations of f in the following sense
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(Secﬁon 3 [64]). Let T be a scheme over ), and let h : T’ 4LX be a YV-morphism.
Let T" be a Y-scheme such that 7" is a closed Y-subscheme of 7" and the correspond-
ing ideal J is square-zero, i.e., J2 = {f - g ‘ frge Jr=0.

Proposition 2.3.1 (Illusie, [64]) We have the obstruction class
O(h) € El'tl (h*Lx/)h J)

with the following property:
o The morphism h can be extended over T, if and only if o(h) vanishes.

In the case o(h) = 0, the set of the extension classes is a torsor over the group
El‘to(h*L_)(/y7J). O

Cotangent complexes have a nice functorial property. For example, we have the
distinguished triangle for a morphism ) — Z,

["Ly)z — Lxjz — Lxjy — f*"Ly,z[1]

in the derived category D(X).

As for general Artin stacks with lisse-étale site, cotangent complexes with some
good functorial property have been introduced by G. Laumon, L. Moret-Bailly and
M. Olsson (Section 17 of [79] and Section 8 of [111]). For any Artin stack X', Olsson

introduced the category Dy, () of the projective systems

K=(+—Ks_ 1 —>Ks = —Ksq)

in D+(X) such that KZ p — TZ—"KZ—VL and > —nKZ —n—1 — T> —nKZ _n
are isomorphisms. Here 7> _,, denotes the canonical n-th truncation functor. See
[111] for the functorial property of Décoh()( ).Let f : X — ) be a quasi-compact
and quasi-separated morphism of Artin stacks. Then, we can associate

L= = (o i = T = Tily) € D)

to each f with the following property (Theorem 8.1 [111]):

e If X and ) are algebraic spaces, Li,/_; are isomorphic to 7> _,Ly,y in
D;rcoh()( ), where the latter Ly /) denotes the usual cotangent complex defined
by Illusie.

e When we are given a 2-commutative diagram of Artin stacks

X’LX

L

h

yl—>y7
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we have the functorial morphism Lf*Ly;y — Ly If the diagram is
2-Cartesian, and if one of g or / is flat, then the morphism Lf* Ly ;y — Ly /y
is an isomorphism.

e Let f: X — )Y be a morphism of Artin stacks. Let g : JJ — Z be another
morphism. Then, we have the distinguished triangle

Lf*Ly/z — Lx;z — Lx/y — Lf"Ly,z[1]

in D’

qcoh (X) .

The following properties can be derived directly from the construction. (See

Section 8 of [111] for the construction of Ly y.)

e Each LE,/B:L is an object in D([;:};l] (X).

e If f is smooth and representable, then Ly /y is quasi-isomorphic to its 0-th co-
homology sheaf, which is isomorphic to the locally free sheaves of Kahler dif-

ferentials {2y /y. In general, if f is smooth, any Lf(/gf is of perfect amplitude
>0

contained in [0, 1]. In particular, they are isomorphic to L3, Jy-

Remark 2.3.2 M. Aoki generalized the deformation theory of lllusie, and showed a
natural generalization of Proposition 2.3.1 for Artin stacks [2]. O

2.3.2 Quotient Stacks

Let S be a variety. Let G be a group scheme smooth over S. Let Y be a smooth
S-scheme with a G-action. The quotient stack is denoted by Y. Let Z be an Artin
stack over S with a morphism F' : Z — Y. We have the corresponding G-torsor
P(F) over Z and the G-equivariant map F' : P(F) — Y

P(F) —E .y

z £ Yo

Let us describe F'* Ly, ;5 on Z. We have a map « : ﬁ*gy/s — 2p(F);/z on

P(F), which is the composite of the differential F* 2y, — 2p(r);s and the
natural projection £2p(ry/s — 2p(r)/z-

Proposition 2.3.3 F* Ly, /g is represented by the descent of Cone(—a)[—1] with
respect to the natural G-action.

Proof We recall the construction of Ly, /s in this case. We set

m—+1
———
Y =Y xy, - Xy, Y.
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We have the natural morphisms Y™ — Y; — S. We obtain complexes
cm = (Qy<m)/s — me)/yc) on Y (™) where 2y (m) s stands in the
degree 0. We have the strictly simplicial structure given by the naturally defined
quasi-isomorphisms 7*C™~1) — C(™ (i = 0,1,...,m), where 7; denote
the projections V(") — Y (m=1) forgetting the i-th components. By definition,
Ly, /s € D}.on(Ya) is represented by (O(m) f m=0,1,...).

m—+1

We put P(F)("™) := P(F) x  --- x z P(F). We have the naturally defined mor-
phisms F(™) : P(F)(™) — Y™ Then, F*Ly, s € D! ,.(Z) is represented

qcoh
by (F (m)x(m) | m=0,1,.. ) We have the following commutative diagram:

FO* vy g ——— FO* Q) )y,

| |

. b
FO Oy myjg ——  2ppyom /2

Here, b is the composite of the differential F'("™) 2y m) )5 — 2p(p)om /g and the
natural projection 2ppym) 15 — 2p(pyom) /7-
Letg;: Y xg G™ — Y (i =0,1,...,m) be the morphism given by

(Y915 Gm) =Y g1 Gi-

They induce an isomorphism Y x s G™ — Y (™) Under the identification, ¢; is the
projection onto the i-th component. Similarly, we have the identification P(F') x g
G™ ~ P(F)(™), under which F("™) is given by

F(m)(yvgh?gm) = (F(y)7gla"'ag'rn)-

Let p,, denote the projection of P(F') x s G™ onto G™. We have the subcomplex
(pfn Qcm 1, o QG) of F*C("™) 1t is compatible with the simplicial structure.

The quotient complexes are denoted by C (m) and (6 (m) | m=0,1,.. ) also repre-

sents F™* Ly, /s in D} ,;,(Z). Then, it follows that /' Ly, /5 is given as the descent

of CO) = (F*Qy ;s %> Qp(r)z) with respect to the natural G-action. O

Example 2.1. Let k be a field. Let GL(R) denote the R-th general linear group
over k. Let kgp,(r) denote the quotient stack of Spec(k) with the trivial GL(R)-
action. Let E be a vector bundle on a k-variety X of rank R, and let f : X —
kcr(r) be the classifying map. Then, we have f* Ly, . /k ~ End(E)[-1]. O

Let H denote the composite of F' and the canonical map Yo — S¢. Let P(H)
denote the G-torsor over Z corresponding to /. Since we have the natural isomor-
phism P(H) ~ P(F'), we do not distinguish them. Let H : P(F) — S be the lift
of H. Let  denote the projection P(F) — Z. We have the canonical isomorphism
T*H*Lg/s[l] ~ H* 25/5 =~ £2p(F),z- We also have the canonical isomorphism
T F* Ly, /s =~ F* 2y 5. We obtain the following corollary.
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Corollary 2.3.4 The morphism F* Ly, /s, — H*Lg/s[1] on Z is obtained as
the descent of « : ﬁ*Qy/S — pr)/z-

Proof We have the distinguished triangle
H*LSG/S E— F*LYG/S — F*LYG/SG E— H*LSG/S[1]~

By Proposition 2.3.3, we understand the morphism H* Lg, /s — F* Ly, s. Then,
we understand the morphism F* Ly, /g, — H*Lg,/s[1]. O

Let us argue the naturality of the expression in Proposition 2.3.3. Let G; (i =
1,2) be smooth S-group schemes with a homomorphism a : G; — Gs. Let Y;
(i = 1,2) be S-schemes provided with G-actions. For simplicity, we assume that Y;
are smooth. Let g : Y7 — Y5 be an equivariant morphism through the morphism
a.Let [g] : Y16, — Y2, denote the induced morphism. Let by : Z — Y7 ¢, be
a morphism. The composite [g] o h is denoted by ho. We would like to obtain an
expression of the morphism h3 Ly, ., /s — hiLy, , /s-

We have corresponding G;-torsors P; over Z with G-equivariant morphisms D -
P — Y;. We can identify P, = (P, xg G2)/G1, where the G;-action on P} X g
G is given by ¢1(y,92) = (yg; ', 9192). Let ¢ : P, — P, denote the natural
inclusion. We have the following commutative diagram:

plL>y1

Ll

P2L>}/2

It induces the following commutative diagram of (G;-equivariant sheaves on P :

o L an
L*h;Qy2/S _— L*.sz/z

l l

hy v, —— 0pz

Note that the descent of Cone(—:*az) with respect to the G-action is naturally
isomorphic to the descent of Cone(—az) with respect to the G-action.

Lemma 2.3.5 The morphism ¢ : h3Ly, Gy/S T hiLy, o /s is the descent of the
induced morphism Cone(—t*as)[—1] — Cone(—aq)[—1].

Proof According to the functorial construction of Proposition 2.3.3, we have only
to consider the case Y7 = Y, =: Y. Let us consider the case Y = S. Since
hiLs,, /s are isomorphic to the H'-cohomology sheaves H' (h Ls, /s), we have
only to identify the pull back of H!(c) via the pull back P, — Z, which can
be done easily. Let us consider the general case. Let k; : Z — S¢, denote the
naturally defined morphism. We have the distinguished triangles k; L Sa, /s —
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hiLy,. /s — hiLy, . /s - By the above argument, we know the induced mor-
phism k;Lscz/S — k{Lscl/S. The isomorphism h;LYQ‘%/SGz o~ hTLYLGl/SGI
is easy to understand. Hence, we can identify h5 Ly, ., /s ~ hiLy, o /s. O

Remark 2.3.6 Let Gy be a smooth group scheme over S. Assume that Y is pro-
vided with a G1-action, which commutes with the G-action. It induces a G1-action
on Yg. Moreover, assume that Z is also provided with a G1-action such that F
is Gy-equivariant. Then, we have the naturally induced G1-action on the complex
Cone(—a)[—1], which commutes with the G-action. It induces a G1-action on the
descent of Cone(—a)[—1] on Z. In particular, we obtain a G1-equivariant repre-
sentative of F* Ly, /s. O

Letm : Y — Y denote the canonical projection. By Proposition 2.3.3, Ly, /s

on Y is the descent of (Qy/ s — (Zy/yc) given on Y with respect to the natural
G-action, where {2y /g stands in the degree 0.

Lemma 2.3.7 Let g denote the tangent space of G at the unit, or equivalently the
vector space of the right invariant vector fields, and let gV denote the dual. Then,
QY/YG >~ gV (39 OY.

Proof Let p1,p2 : Y Xg G — Y be given by the natural projection and the
G-action. Let r1,79,73 : Y x5 G> — Y xg G be given by 71 (y,9,h) = (y,9),
r2(y, g, h) = (y,gh) and r3(y, g, h) = (yg, h). We have the following commutative
diagram:

Yxg G2 22, yxeG -2 v

Tgl p2l ‘ﬂ'l
Y xgG 22,y Y,

Then, {2, is obtained as the descent of {2, by the identification ]2, ~ 752,,.
Hence, the claim of the lemma follows. O

Let Oy, s denote the relative tangent bundle of Y/.S. The G-action on Y induces
the map A : g ® Oy — Oy /5. The dual of A is denoted by A".

Lemma 2.3.8 The map o : 2y ;s — g¥ @Oy is given by the dual of — A. Namely,
we have 7 Ly, /s ~ Cone(AY)[-1].

Proof Letp;:Y xy,Y — Y denote the projection onto the i-th component. We
have the following factorization of pja:

Pif2yss — vy vis — 2y 2 P10y )y,

Each morphism is induced by the natural differential. Let us take the identification
Y Xy, Y ~Y xg G, for which p; and p, correspond to the natural projection onto
Y and the G-action, respectively.

Let y be any closed point of Y, and let e be the unit of G. We have p; (y,e) =
p2(y,e) = y. We denote the differential of p; at (y,e) by T{, .)p;. Let us consider



38 2 Preliminaries

the specialization of the dual of pj« at (y, ¢). Then, it is the composite of the inclu-
sion Ker (T, yp2) C 1(y,e) (Y X sG) and the natural projection T, o) (Y X sG) —
T,Y . Since we have Ker(T(, o)p2) ~ {(—Av,v) ‘ v € g} ~ g, the map is —A.
Since « can be recovered from pj v, the claim of the lemma is proved. O

Remark 2.3.9 Since F'* Ly, /5 is obtained as the descent of F* Cone(AY)[—1] for
a morphism F : Z — Yq, Lemma 2.3.8 is useful for calculation. 0O

Example 2.2. Let k be a field. Let W; (i = —1,0) be R;-dimensional vector spaces
over k. Let N(W_1, Wy) denote the vector space of linear maps from W_; to Wy
We have the right GL(W_1) x GL(W})-action on N(W_1, W;) given by

(9-1,90) - f =gy 0 fog_1.

Hence, we obtain the quotient stack Y (W) := N(W_1, Wo)qrw_,)xGL(wy)-

Let X and U be algebraic stacks over k. Let V; (¢ = —1, 0) be vector bundles on
U x X whose ranks are R;. Let f : V_1 — V{, be a morphism of Oy « x-modules.
Then, we obtain a morphism @; : U x X — Y (W,). We claim that D% Ly (w,)/k
is represented by the following complex:

Hom (Vo, V_1) = Hom(Vo, Vo) & Hom(V_1,V_1).
Here Hom (Vp, V_1) stands in degree 0, and the map o is given by
ala) = (foa, faof).

We remark that it is isomorphic to Hom (Vs Va) ZO[—H. (See Subsection 2.1.5.)

To show the claim, we have only to be careful on signatures. We can argue it
formally. Let f be an element of N(W_q, Wy). The differential of the action of
GL(W_1) x GL(Wy) gives the map:

End(W,l) D EHd(W()) — TfN(Wfl, Wo) = N(Wfl, Wo), (27)
(a—1,a0) — —ago f+ foa

If we regard W_4 N Wy as a complex, (2.7) can be regarded as Hom (W, Ws)> 0.

Then, the cotangent complex is represented by (Hom(W,, We)> o) N [—1], accord-
ing to Lemma 2.3.8. 0O

Example 2.3. Let X be an algebraic stack. Let F, (a = —1,0) be vector bundles
on X with a morphism f : E_; — FEy. We regard E_; as a group scheme over
X, which acts on Ej through f. The quotient stack is denoted by Q(Ey, E_1). For
simplicity, we assume that f is an injection as a morphism of O x-modules.

Let Ey/E_; denote the quotient Ox-module. A section of g of Fy/E_; corre-
sponds to a morphism @(g) : X — Q(Ey, E_1). The correspondence is given as
follows: From a section g, we obtain an extension) — E_1 — G I, 0x — 0.
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We obtain a £_;-torsor P = 7! (1) with an equivariant morphism P — Fj, i.e.,
a morphism @(g) : X — Q(Ey, E_1). The pull back of the cotangent complex
D(9)*Lo(py,E_1)/x is denoted by (E_; — Ep)Y. O

Let us consider the following diagram:

y 4
1l
Yo —%— Sq

We have the natural isomorphisms:

™ Ly 56 = Lyss, m 9% Lsgs[l] ~9*Lsyse ~ Ly vg-

Lemma 2.3.10 Under the isomorphisms above, ©* Ly, /s, — 79" Lgg[1] is
the same as the natural morphism Ly ;s — Ly vy, .

Proof We have the natural isomorphisms:
™ Ly, s =~ Cone(Ly;s — Ly yg)[=1], 7 %"Ls,s ~ " L/sq[—1]

The natural morphism 7*¢*Lg_ /¢ — 7" Ly, g is induced by @Z*LS/SG —
Ly v, - The distinguished triangle 7*¢* L, /g — 7" Ly, /s — 7" Ly, /55 —
m*Y* Lg, /s[1] is identified with the following:

V" Ls/sg[~1] — Cone(Ly,s — Ly/vg)[=1] — Ly;s — ¢"Lg/sq

Then, the claim of the lemma follows. O

2.3.3 Some More Examples

The technical results in this subsection will be used in Sections 6.3-6.6. The author
recommends the reader to skip here.

Let X be a smooth connected projective surface, and let U; be a quasi-compact
algebraic stack. Let Uy be a substack of U;. Let F be a U;-coherent sheaf with a
section ¢ over U; x X. We assume the following:

(A):  px «F islocally free, and Uy is contained in the induced section ¢ of px .F.
Assume we are given a data as follows:

e A commutative diagram on U; x X:
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Vo,—l — V1,71

l l

Voo —— Vip

l l

EO —_— E1 — F

Here, E; are U;-coherent sheaves, V,; are locally free sheaves, and the se-
quences 0 — V4 4 — V0 — E; — O0and 0 — Ey — E; —
F — 0 are exact.

e A section ¢ of E; such that the composite O — E; — F is .

In this subsection, such a data is called a resolution of (F, ¢). Note that the restric-
tion of ¢ to Uy x X induces a section ¢ of Fj.

Note that there always exists such a resolution. For example, we have the follow-
ing construction. Take a sufficiently large integer m, and we put

B = pXx (px+F(mo)) @ pr, Ox(—mg), E1r:= E} @ Oy, xx.

The natural morphism Ej — F and ¢ induce a morphism 7; : 1 — F. We set
FEy := Ker 7;. We take a sufficiently large m4, and we put

Vo 1= picpxs (Ba(m1)) @ piy, Ox(=ma), Va1 = Ker (Voo — Ea).

Then, we obtain a diagram with the desired property.

Let us return to the general situation. Let Z, (a = 0,1) be the quotient stacks
of N(Ou, xx,Va,0) via the natural actions of N(Oy, xx, Va,—1). We obtain the
following commutative diagram:

U1><X&>Z1

leT T
UO x X —>¢(¢O) Zo

By using an argument in Subsection 2.3.2, &(¢)* Lz, ,z, is represented by the fol-
lowing:

E(Ee, Ve o, ¢) := ji x Cone (HOm(OU1 xxVie)" — Hom(Op, xx, Vo.)v)

Here, j1x : Uy x X — U; x X denotes the inclusion. We have the induced
morphism t(E,, Vs o, @) : €(Ee, Ve e, ¢) — Lyyxx/u, x x - We set

Ob(Ey, Va.u,d) = Rpx. (%(E., Vee,d) ® wX).
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Then, we have the induced morphism:
Ob(EO7 ‘/07°a ¢) : Ob(EO’ V’J’ (b) - LUO/UI

Lemma 2.3.11 ¢(E,,V, ., ®) and t(Es, Vs e, ) depend only on (F,p) in the de-
rived category D(Uy x X). In particular, Ob(Es, Ve o, ¢) and ob(E, Vs e, ¢) de-
pend only on (F,p) in the derived category D(Uy). Hence, we denote them by
EF, ), t(F, ), Ob(F, ) and ob(F, p), respectively.

Proof It is standard that ¢(F,, Vs o, ¢) and Ob(FE,, V, o, ¢) are independent of the
choice of resolutions. We would like to show the independence of t(F,, Vs o, ¢) and
ob(F,, Vs e, ¢). Assume we are given another (E,, V, ,,¢’). We set

E! =E, 0 E, E!:= Ker<E1’ — f),

"o / nooo._ / o 17 1"
Vl,O = VL() D Vl,O? 1,—1 = V17_1 &) V17—1 = Ker(VLO — El)'

Let 7 : V{’y — EY’ denote the natural morphism. We can take a locally free sheaf
A with a surjection A — 7~ 1(E}/). We set

Vil =Yoo @ Vio® A, Vi i=Ker(Vgly — EY).

Then, (E], V,',, ¢"") with a naturally defined diagram gives a resolution of 7. More-
over, we have the natural inclusions £, C E/ and V,;, C Va” .
Let Z;/ (a = 0,1) be the quotient stacks of N(Ox,V,’y) via the naturally in-

duced actions of N(Ox, V,’ ;). We obtain the following diagram:

2(¢)

Uy x X Z, —= gV
T T T (2.8)
Uy x X P(¢0) Zo co Zél

The morphisms ¢; are naturally induced ones. The composites ¢ o &(¢) and ¢ o
(¢ ) are the morphisms induced by ¢ and ¢, respectively. Hence, we obtain the
following:

LU()XX/U1 xX S E(Eta ‘/;,07 ¢) (i E(E£l7 Vo/f.7 (b”)
Hence, we obtain the following factorization of ob(Ey, V', ¢"):
LUO/Ul A Ob(E.,‘/.’.,(;S) ; Ob(E:/,V./f.,gﬁH)

Similarly, we can compare Ob(E,, V], ¢') and Ob(E], V,’,,¢"). Thus, we are
done. O
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Lemma 2.3.12 Let (F;, ;) (¢ = 1,2) satisfy Condition (A). If we are given a
morphism g : F1 — Fo such that oo = g o 1, we have the factorization of
Ob(JT27 La02)

Ob(F2,¢2) —— Ob(F1,¢1) —— Ly, v,

Proof We take sufficiently large integers m;, and apply the above construction of
resolutions to F;. Then, the claim is clear. O

Now, we assume Ripx F = 0 fori > 0. We put U := px .F. A section P of
*J is induced by . We have the following commutative diagram:

Uo =, Ui
al i| 29
U, —2— 0
Here ¢ is the O-section, and j, are the natural inclusions.

Proposition 2.3.13 Ob(F, ) is isomorphic to j5 Ly, jo =~ UV [1], and ob(F, p)
is the same as the morphism « : j3 Ly, 5 — Ly, v, induced from the diagram

2.9).

Proof We have the naturally defined morphism a; : p%0 — F, for which we
have ¢ = a; o pkx®. By Lemma 2.3.12, we have the following factorization of
ob(F, ¢):

b . .\ Ob(PXxVpxP)
Ob(F, ) —2— Ob(pyD,p5%P) 222 Luw s

Let us look at ob(p% U, p%®) more closely. In the construction for (p% Y, p?),
we may choose

E,=Vig=pxD0, Eo=Vi_1=Vyo=V,-1=0.

Then, Zy = Uy x X and Z; = p%*U. The diagram (2.8) is given as follows:

Upx X — 1 7, Uy x X

jgl l l (2.10)

Uy x X X%, 7, P50

PXP

Here i denotes the O-section. We have ¢ = jiLz,/z, =~ pxD, . x[l], and the
morphism v : € — Ly, « x/u, x x is the same as the pull back of . In particular,

we have the following factorization of ob(p% U, p ®):

* * — * b ]
Ob(pX‘B,nga) = mv[l] ® Rpx*(onwx) — mv[l] - LUO/U1
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It is easy to see that the composite by oby is an isomorphism, under the assumption
Ripx +F =0 (i > 0). Thus, the proof of Proposition 2.3.13 is finished. O

We have a similar result for a smooth projective curve. Since the argument is
similar and simpler, we explain only the statement. Let D be a smooth projective
curve. Let F be a Uj-coherent sheaf on U; x D with a section . Assume the
following:

(A’) pp«Fislocally free, and U; is contained in the 0-set of the induced section
wof pp.F.

Let (Ey — E4) be a locally free resolution of F on U; x D with a sec-
tion of ¢ of E; such that the composite O — E; — F is ¢. It is called a
resolution of (F, ). A section ¢g of V| y,xp is induced. We put €(E,, ) :=
Hom(Ovyxp, Vo\onD)v-

Let us construct a morphism t(E,, @) : €(Ee,9) — Ly,xp/u, xp- We put
Zs = N(O,E,) for a = 0,1. Then, we have the naturally defined morphism
Zy — Z;. The sections ¢ and ¢, induce the following commutative diagram:

Uyx D —1— Z,

! !

U1XD—>Z1

It induces a morphism t(F,, ) : &(F,, ) =~ j* Lz, /7, — Lu,xp/u,xp- It can
be shown that v(E,, ¢) and ¢(E,, ¢) depend only on (F, ¢), as in Lemma 2.3.11.
Therefore, we use the symbols t(F, ) and €(F, ¢) to denote them. We set

Ob(f7 (P) = RPD*(E(}—, 99) ®WD)

We have the induced morphism ob(F, ¢) : Ob(F, ) — Ly, v, It is functorial
as in Lemma 2.3.12.

Now, we assume RipD*}' = 0 fori > 0. We put ‘U := px.F. We have
the induced section . We obtain the diagram (2.10). It induces a morphism
K mv[l} — LUO/U1'

Proposition 2.3.14 Under the assumption Ripp ,F = 0 for i > 0, we have the
following commutative diagram:

ob(F,¢)
-

Ob(F,») Ly, v,
mv[l} — LUO/U1

Proof It can be shown by an argument used in the proof of Proposition 2.3.13. O



44 2 Preliminaries

2.4 Obstruction Theory

2.4.1 Definition and Fundamental Theorems

In the study of Gromov-Witten theory, M. Kontsevich, J. Li-G. Tian, K. Behrend-
B. Fantechi and K. Fukaya-K. Ono introduced the notion of virtual fundamental
classes of moduli stacks with some good structure. (See [71], [82], [6] and [40]. See
also the recent work of I. Ciocan-Fontanine and M. Kapranov [15].) In this paper,
we follow the framework of Behrend-Fantechi. See [6] for more details and precise.
The paper [55] of T. Graber-R. Pandharipande is also very useful, in which they
studied localization of virtual fundamental classes.

Definition 2.4.1 Let S be an algebraic stack, and let X be an algebraic stack
over S. Let E® be an object in D(X) such that H(E*®) are coherent (i = —1,0,1).
A homomorphism ¢ : E® — Ly g is called an obstruction theory for X /S, if
Hi(¢) (i > 0) are isomorphic and H~ () is surjective. In that case, E® is also
called an obstruction theory for X/S. O

Because H'(Ly) = 0 for i > 1, the condition implies H*(E®) = 0 fori > 1. If
X is Deligne-Mumford, we also have H!(E*) = H!(Ly) = 0.
We will often use the following theorem of Behrend-Fantechi.

Proposition 2.4.2 (Theorem 4.5, [6]) Let X be a Deligne-Mumford stack over S.
Let ¢ : E* — Lyx;5 be a morphism in D(X). The following conditions are
equivalent.

e ¢ is an obstruction theory. B
o Let T and T be S-schemes such that T is a closed subscheme of T whose ideal
sheaf J is square-zero. Let g : T — X be a morphism over S.

(Al) g can be extended to a morphism g : T — X over S, if and only if
¢*(o(g)) = 0 in Extl(g*E', J), where o(g) is the obstruction class of g.
(See Proposition 2.3.1.)

(A2) If o* (o(g)) = 0, the set of the extension classes of g is a torsor over the
group Exto(g*E', J). a

We recall the notion of perfect obstruction theory in the sense of Behrend-
Fantechi with a minor generalization.

Definition 2.4.3 Let ¢ : E* — Ly g be an obstruction theory of an algebraic
stack X over S. It is called perfect, if it is quasi-isomorphic to a complex of locally
free sheaves F~1 — F° — F in the derived category D(X). O

In that case, the number — rank F'' + rank FO — rank F~! is well defined on
each connected component of X. It is called the expected dimension of X" over S
with respect to ¢.
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If X is Deligne-Mumford, we have H!(E®) = H!(Lx) = 0 for any obstruction
theory E°. Hence, a perfect obstruction theory is quasi-isomorphic to a two-term lo-
cally free complex F'~! — F°. The important and foundational theorem of Behrend
and Fantechi is the following. (See also [82].)

Proposition 2.4.4 (Section 5 [6]) Let X' be a Deligne-Mumford stack over a smooth
scheme S. Let A.(X) denote the Chow group of X with rational coefficient. A per-
fect obstruction theory ¢ : E®* — Ly /g induces an element [X,¢] € Ag(X)
called virtual fundamental class, where d is the expected dimension with respect
to ¢.

If X is smooth, [X, §] is the Euler class of the vector bundle H* (E®*Y). O

We often use the notation [X] instead of [X, ¢)], if there are no risk of confusion.

Remark 2.4.5 In Definition 2.4.3, E*® is assumed to be quasi-isomorphic to a com-
plex F* of locally free sheaves. According to A. Kresch [15], the existence of such
a global complex is not necessary for construction of virtual fundamental class.
Namely, Proposition 2.4.4 holds, if E*® is locally quasi-isomorphic to a two-term
locally free complex. O

Let S, X, ¢ : E* — Lyx/g be as in Proposition 2.4.4. Let S’ be a smooth
scheme, and let ¢+ : 8" — S be a morphism. We set X’ := X xg S’ with the
natural morphism ¢ : X/ — X.

Proposition 2.4.6 (Proposition 7.2, [6]) The induced morphism 1*¢ : (*E® —
L x5 is also a perfect obstruction theory.

Let [X',1*@] denote the associated virtual fundamental class. Assume that o
is either (i) a closed regular immersion, or (ii) flat. Then, we have the relation
X, 0] = (X707 gl O

Let X; (i = 1,2) be algebraic stacks over S provided with obstruction theories
¢; » B — Ly, 5. Assume we have the following commutative diagram:

Xl%.)fg

d |
R ) S

Recall the following definition in [6].

Definition 2.4.7 We say that ¢; are compatible over h, if we have the following
morphism of distinguished triangles on X;:

B3 —— B} —— g'Ly,y, —— [TE3[1]
9*Lx,)s — Lx,;)s —— Lx,jx, — 9" Lx,/s[l]

We will use the following theorem for comparison of virtual fundamental classes.
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Proposition 2.4.8 (Proposition 7.5, [6]) Assume X; are Deligne-Mumford, and the
obstruction theories ¢; are perfect. If ¢; are compatible over h, then we have the
equality

h'[Xo, do] = [X1, ¢1]

at least if h is smooth or Y; are smooth over S. 0O

2.4.2 Easy Example

Let X be a smooth variety over k. We would like to construct an obstruction theory
of the moduli spaces M of some objects on X. A naive strategy is summarized as
follows (See [6], for example):

1. Take a classifying stack Y of such objects over X. It means that such objects
over U x X bijectively correspond to morphisms ¢ : U x X — Y over X.
For example, recall that vector bundles of rank R over U x X correspond to
morphisms U x X — Xqr,(g) over X.

2. Any classifying maps @ : U x X — Y induce morphisms

Q" Ly;x — Luxx/x

on U x X. Let wx denote the dualizing complex on X, i.e., it is the canonical line
bundle shifted by the dimension of X. Then, we obtain the following morphisms
on U:

Oby := Rpx« (@*Ly/x ®WX) — Rpx. (p;(LU/k ®WX) I LU/k~

In particular, a morphism Ob x4 — L4 on M is induced by a universal object.

3. We hope that the morphism Obys — L is an obstruction theory, in some
cases. Note that the property is local, once the morphism is given globally. Thus
we have only to check the claim for sufficiently small étale open subsets of M.
Proposition 2.4.2 provides us with a useful tool to check it.

Remark 2.4.9 In general, we need some modification in construction of Obp to
obtain a good obstruction theory. 0O

Let us look at the easiest example. Let F' and V' be vector bundles on X. Let U
be any scheme over k, and let f : p};(F) — p;;(V) be a morphism of Oy x-
modules over U x X. It is easy to see that such a morphism f corresponds to a
morphism @ : U x X — N(F, V) over X. We obtain a complex

a(f) = Q}LN(F,V)/X

and a morphism g(f) — Ly x/x in the derived category D(U x X).
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Lemma 2.4.10 g(f) is represented by p{; Hom(V, F).

Proof Let7 : N(F,V) — X denote the natural projection. Since the morphism
N(F,V) — X is smooth, the cotangent complex L y(r,v,x is quasi-isomorphic
to 2n(pvy/x =~ 7 Hom(V, F), and thus PLN(F V)X ™ piHom(V, F). O

We set Ob(f) := Rpx.(g(f) ® wx ). Then, we obtain morphisms
Ob(f) — Rpx«(Luxx/x ®wx) — Ly

in the derived category D(U). The composite is denoted by ob(f).

Now, let M (F, V') denote a moduli scheme of morphisms F' — V/, i.e., maps
U — M(F,V) bijectively correspond to f : pj;(F) — p;(V)on U x X. It is
easy to see that M (F, V) is isomorphic to the vector space H° (X, Hom(F,V)).
We have the universal morphism

e p*M(F,V)(F) - p*M(F,V)(V)
over M (F,V) x X.Itinduces a morphism ob(f*) : Ob(f") — Las(r,v).
Lemma 2.4.11 ob(f“) gives an obstruction theory of M (F, V).

Proof It is almost obvious from the universal properties of N(F, V) and M (F, V).
However, we give a rather detailed argument as an explanation. We have only to
check the conditions (A1) and (A2) in Proposition 2.4.2.

Since the claim is local, we can check the claim for any sufficiently small open
subset U of M (F, V). Let T be an affine scheme over k. A morphism g : T — U
induces morphisms gx : 7' x X — U x X and

Gx =Ppuogy : T x X — N(F,V)

over X. Let T denote a scheme such that 7" is embedded in 7' whose ideal .J is
square-zero. Deformations of the morphisms g and gy is controlled by the groups
Ext’(g* Ly, J) and Ext’ (§% Ly (r,v)/x, Jx ), respectively. We have the follow-
ing commutative diagram:

Ext'(¢" Lok, J)  —= Ext(g* Ob(f*), J)
! ~7
Ext' (g% Luxx/x,Jx) — BExt'(9%(9),Jx) — Bxt'(§xLnrvy/x,JIx)

‘We have the obstruction classes
o(g) € Ext! (g*LU/;67 J), o(gx) € Ext! (g}k{g, JX)

of the morphisms g and gx respectively. By the functoriality of the cotangent com-
plex, the obstruction class o(g) is mapped to the obstruction class o(gx ) in the above
diagram.
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If the image h(0(g)) is 0, the class o(gx) is 0. Hence, gx can be extended to a
morphism 7' x X — N(F, V), which induces a morphism of p2(F) — px(V)
onT x X. By the universal property of M (F, V'), we obtain a morphism

T — M(F,V)

which is an extension of g. Therefore, the condition (A1) is satisfied.

Similarly, we can show that Ext’ (¢* Ly, J) — Ext® (g% Ly (rv)/x,J) is
an isomorphism by the universality of M (F, V') and N (F, V). Hence, the condition
(A2) is also satisfied. Thus we are done. O

2.4.3 Locally Free Subsheaves

Let X be a smooth projective variety over k with an ample line bundle Ox (1). Let
V be alocally free sheaf on X. Let W denote an R-dimensional k-vector space. We
denote W @ Ox by Wx. We have the natural right GL(W)-action on N(Wx, V).
The quotient stack is denoted by Yo,0(We).

We consider deformations of locally free subsheaves of V' with rank R. Let U
be any k-scheme. Any locally free subsheaf f : F' — p;;V on U x X with
rank F' = R induces a morphism @(F, f) : U x X — Yqu0(W,) over X. We put

o(F, f) == 2(F, f)*Lqu,(W.)/X

Ob(F, f) := Rpx«(a(F, f) ® wx)

Then, we obtain morphisms g(F, f) — Lyxx/x on U x X, and ob(F, f) :
Ob(F, f) — Ly on U. The following lemma can be shown by using the argument
explained in Subsection 2.3.2.

Lemma 2.4.12 g(F, f) is represented by Cone(«)[—1] of the morphism
a: Hom(py;V, F) — Hom(F, F)

givenby a(a) =ao f. O

Remark 2.4.13 We put V_y = F and Vo = p;;V, and we regard V, =
(Vo1 — Vy) as a complex, where Vy stands in the degree 0. Then, Cone(«) is
naturally isomorphic to Hom(V_1[1],Va)"[-1]. O

Let H be a polynomial. We have a moduli scheme of quotients (¢ : V — Q)
of V' such that the Hilbert polynomials of ) are H. Let M (V, H) denote the open
subscheme which consists of the points (¢ : V. — Q) such that Ker(q) are locally
free. Then, we have the universal family f* : F* — pL(V, H)(V) defined over

M(V, H) x X. A morphism ob(F*", f*) : Ob(F*", f*) — Ly, is induced.
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Proposition 2.4.14 ob(F™, f*) is an obstruction theory of M (V, H).

Proof Let N be a sufficiently large number satisfying the condition Oy for the
family F“, i.e., we have H'(X, F"“(N)|(q}xx) = 0 for any ¢ € M(V, H) and
¢ > 0, and Fﬁq}xx(N) are globally generating for any ¢ € M (V, H). We put
Fv = pipx«(F“(N)) ® O(—N). We have the natural surjection g : F* — Fu,

We put F = O(—N)®<, where d = rank F*. We have the Grassmaniann bundle
T GT(F7 R) — X associated to the vector bundle F, i.e., the fiber of 7 over a
point x € X is the Grassmann variety of R-dimensional quotient spaces of the
vector space Ez' We denote the universal quotient bundle over Gr(F, R) by Q.
Then, we have the vector bundle ffquo == N(Q, V) over Gr(F, R), which is a
variety smooth over X. We have the natural morphism 7 : ?quo — Youo (We).

We would like to check the conditions (A1) and (A2) in Proposition 2.4.2. Let U
be any sufficiently small open set of M (V, H), on which we can assume that there
exists an isomorphism Fu ~ p?}?. Thus, the surjection ~y : p*UF — F"is given
on U x X.From ~ and f*, we obtain a morphism

By, F*, f*) : U x X — Yauo

over X. By the argument in Subsection 2.3.2, we can show that the complex
D(y, F*, f*)* Ly /x is represented by the cone Cone(3)[—1] for the morphism

B : Hom(pi;V, F") @ Hom(F", pj; F) — Hom(F", F")

ﬂ(bl,bg) == b1 o fu — fu (e] b2.

We can also show that the natural morphisms

Cone(a)[-1] — Cone(B)[-1] — Luxx/x
is the same as the factorization:

Q(F", f*) Ly,,.)x — ®(v, F", f“)*Lf/quo/X — Lyxx/x
associatedto U x X — f’quo — Yquo(We). We set
g0y, B f*) i= @, F*, f*) Ly, /x
Ob(y, F*, f*) := Rpx.(a(v, F*, f*) ® wx).
Let 7" be an affine scheme. Let g : 7" — U be a morphism, which induces gx :

TxX —UxX.Weputgx :=P(F*, f*)ogx and gx := P(v, F“, f*) o gx.
For any coherent sheaf J on 7', we have the following commutative diagram:
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Ext'(g*Lyk, J) ——  EBExt'(9%Luxx/x,JIx)

il |

il |

Ext’(¢* Ob(F, f*),J) ——— Ext’(g%a(F", f*),Jx)

Let T be an affine scheme into which 7' is embedded closedly such that the
corresponding ideal J is square-zero. According to the deformation theory of
Illusie, we have the obstruction classes of the morphisms g and gx in the groups
Ext'(¢* Ly, J) and Ext' (g% g(v, F*, f*), J) respectively. The classes are de-
noted by o(g) and o(gx ). By functoriality, o(g) is mapped to o(gx ) in the diagram
(2.11). If hi(o(g)) is 0, then the morphism gy can be extended.

Note that the cohomology sheaves R'px. (Hom(F",p}, F') @wx ) vanish unless
i = 0, because of our choice of N. Thus, we have the isomorphisms

Ext’ (9" Ob(y, F*, f*), J) ~ Ext'(g" Ob(F", f*), ])

for any ¢ > 0 and for any coherent sheaf .J on T'. Hence, hj o hi(0(g)) = 0 implies
hi(o(g)) = 0. Then, the morphism gx can be extended over T’ x X, and hence gx

can also be extended over T x X. Therefore, we obtain a locally free subsheaf F
of p*T(V) on T' x X, which is an extension of g% F™. By the universal property of
M (V, H), the morphism g can be extended over T'. Therefore, the condition (A1) is
satisfied.

Let us check the condition (A2). We set

Hy := Ext’ (px* (gxHom(F",p;;F) @ wx), J)
= HO(T,g*End(px*(F“(m))) ® J)

Hy :=Ext’(g* Ob(g, F'*, f*), J) = Ext’ (§§{L,~fquo Jx0Ix)

Hy = Ext’(g* Ob(F", f*),J)

We obtain an exact sequence 0 — Ho — H; — Hz — 0. According to the
theory of Illusie, H; parameterizes the set of the extensions g : T x X — Yquo
of gx. The natural action of Hy on H; determines the equivalence relation on Hy,
and it is easy to see that g’y ~ g% if and only if m; o g%y = m o g, because H
parameterizes the deformations of the morphism F© — F“. Thus the set of the
extensions of the morphism 7" x X — Yquo(Wa) over T' x X is a torsor over the
group Ho.

By the universal property of M (V, H) and Y uo(W,), the set of the extensions
of g over T is also a torsor over H,. Namely the condition (A2) is satisfied. O
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Usually, we consider deformations of quotients of V. Let H be a polyno-
mial, and let Quot(V, H) denote a quot scheme which parameterizes the quotient
sheaves of V' whose Hilbert polynomials are . We have the universal quotient
q : pauot(V’H)(V) — Q" on Quot(V, H) x X. We denote the kernel of ¢* by
F*", and the inclusion F'* — pgy v ) (V) is denoted by f*.

Let us consider the case dim X = 1. Let Hy denote the Hilbert polynomial
of V. Then, Quot(V, H) parameterizes the locally free subsheaves of V' whose
Hilbert polynomials are Hy — H. Therefore, we have obtained an obstruction theory
Ob(Fu, fu) : ()b(_Fu7 fu) I LQuot(V,H)-

Proposition 2.4.15 In the case dim(X) = 1, the obstruction theory ob(f") is per-
fect. The scheme Quot(V, H) is smooth, if H is a constant, i.e., H is a Hilbert
polynomial of sheaves of finite length.

Proof To show the perfectness of Ob(F™", f*), we have only to show that

Rpx «(g(F", f*)")

is perfect of amplitude contained in [0, 1]. Let ¢ be any point of Quot(V, H). We
put F':= F{ b v and Q := V/F. The complex g(F"™, f“)l\f{q}xx is Cone(y)[—1]
for the natural morphism v : Hom(F,F) — Hom(F,V), which is quasi-
isomorphic to Hom(F, Q). Hence, H' (X, g(F*, f*)\,.x) = 0 for any point
g € Quot(V, H) unless i = 0, 1. Then, the desired perfectness easily follows.

Let us show the second claim. If [ is a constant, we have

HY (X, 0(F", f"){yxx) =0

for any ¢ € Quot(V, H). Let T be any affine scheme over k, and let g : T —
Quot(V, H) be a morphism. Then, Ext’ (g* Ob(F™, f*), J) = 0 for any coher-
ent Op-module J, and hence any obstruction classes vanish. Thus we obtain the
smoothness. O

Remark 2.4.16 Let us consider the case diim X = 2. Let Q' (V, H) denote the
open subset of Q(F, H) corresponding to torsion-free quotient sheaves. It gives an
open subset of a moduli stack of locally free subsheaves of V. Then, Fﬁq}x  are

locally free for any q € Q'Y (V, H). Therefore, we obtain an obstruction theory
ob(F*, f*) : Ob(F™, f*) — Lgts(v,m)/k from Proposition 2.4.14. O

2.4.4 Filtrations of a Vector Bundle on a Curve

Let S be a scheme over k, and let D be a smooth projective curve over S provided
with an ample line bundle O(1). The projection D — S is denoted by p. Let V and
F be locally free sheaves on D provided with an injective morphism f : ' — V.
Assume that the quotient is S-flat.
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Let H; be polynomials. Let g : T — S be an S-scheme. We have the induced
curve Dy := D x g T over T. The induced morphism D — D is denoted by g.
We obtain a morphism g*F — ¢g*V on Dyp. Let F(T, g) denote the set of the
filtrations V* of ¢*V on Dr,

g*V — V(l) D V(2) DS V(l) D) V(H‘l) = g*F7

with the following property:

e The quotients Cok; := V1) /V(+1) are T-flat.
e The Hilbert polynomials of Cok;|p, are H; forany i = 1,...,landt € T.

The functor F is representable by an S-scheme, which can be shown by the
standard technique using quot schemes. Let g,y @ M(H.) — S denote a
moduli S-scheme. We have the universal filtration on M (H,.) xg D:

g}k\/l(H*)V = V(l) o V(Q) e D V(l) ) V(H’l) = g}k\/‘[(H*)F

To construct an obstruction theory of M (H, ), we introduce some stacks. Take
vector spaces W; (i = 2,...,1) over k such that rank W; = rank V() =: r;. We
put WO = W, @ Op (i = 2,...,1). We set W) := V and WD .= F.
We define Yy := N(WEHD WOy and Ry = [[\_, N(WUHD w@). We put
G(W,) = Hé:z GL(W;). We have the natural right G(W,.)-action on R;. Let
Y7 denote the quotient stack of Ry by the G(W,)-action. By composition of the
maps, we obtain a morphism ¢ : Ry — Y[, which induces Y7 — Y. We put
Y, := D. Then, the morphism F' — V induces a morphism Yo — Y. We put
Y :=Y] Xy, Y.

Let V* denote a filtered vector bundle on Dt as above. We obtain morphisms
&, (V*) : Dy — Y;. We have the naturally defined morphism:

G(V*) : QO(V*)*LYD/D N @ jS(V*)*LYq/D

i=1,2

We use the notation in Subsection 2.1.6. We put g(V*) := Cy(V*, V*)V[—1]. By
the argument in Subsection 2.3.2, the cone of G(V*) is represented by the complex
g(V'*). Thus, we have the naturally defined morphism g(V*) — Lp,. /p. We put
Ob(V*) := Rp. (9(V*) ® wp, /7). Then, we obtain a morphism

ob(V*) : Ob(V*) — Ly/s.

Applying the construction to the universal filtered bundle V* on M (H,) xs D, we
obtain

Lemma 2.4.17 The morphism ob(V*) gives an obstruction theory of M (H..).

Proof In the following, we will shrink S without mention. Take locally free sheaves
J@ (i = 2,...,1) on D such that (i) there exist surjections J() — V()
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(ii) R'p,Hom(J®,V®) = 0. For any S-scheme g : T — S, let F(T') denote
the set of (V*, .) on Dy as follows:

e V* denotes a filtration of g*V as above.
e o, denotes a tuple of surjections of §*.J () onto V(*).

The functor F is representable by a scheme which is denoted by M (H.). We have
the locally free sheaves N; := Hom (EX/I(H*)J@), V(i)) on M(H,) xgD.Letp:
M(H,) x D — M(H,) denote the projection. Then, M (H., ) is isomorphic to an
open subset of the vector bundle € p, N;. On M (H,) x s D, we have the universal
filtration V* with the tuple of surjective morphisms @Y.

Let Gr(J, r;) be the Grassmannian bundles of r;-dimensional quotient spaces
associated to the vector bundles .J(?). We have the universal quotient bundle Q;.
We put Z := Hé:g Gr(J@ r;), where the fiber product is taken over D. The
pull back of Q; via the projection Z — Gr(J®, r;) are denoted by W®
(i = 2,...,1). The pull back of V and F via the projection Z — D are de-
noted by W1 and W(+D respectively. Then, we put Yy = N(W(l“)7 W(l)),
Yy = I, NWGHD W@) and Y, := Z. We have the natural morphisms
ﬁ — }70 (i = 1,2) as above. The fiber product }71 Xy, 172 is denoted by Y.
The inclusions Y — }71 are denoted by 7;. On Y, we have the natural morphism
JoLy, jp — Di=1,2J; Ly, jp» Whose cone is denoted by Ob(Y'). Then, we have
the naturally defined morphism ob(Y') : Ob(Y) — Ly /- and it gives an obstruc-
tion theory for Y over D. (Basic example in [6]).

Let g : T — S be an S-scheme. From (V*, ¢.) on Dy, we obtain morphisms
O;(V* ) : Dp — 37; Therefore, we obtain

B(V*,0.)* Ob(Y) — Lp, 7.

We put &)(V*, ) = Rp. (Ob(f’) ® wp/s), and then we obtain a morphism
ob(V*,¢.) : Ob(V", ¢u) — Lays.
Let us describe the complex Ob(V™*, ¢..). We have the morphisms
Hom(V(i), J(i)) — 'Hom(V(i)7 V(i)), a; — ©; 0 Q.
It induces a morphism of the complexes
l . .
a: @Hom(V(Z), J(Z))[—l] — g(V™)
i=2

We put g(V*) := Cone(a). By using the argument in Subsection 2.3.2, we can
show that g(V*) represents @(V*, p.)* Ob(Y).
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Applying the above construction to (V*, %), we obtain a morphism

ob(V*, %) : Ob(V*, %) — Liz s

Lemma 2.4.18 The morphism ;)Vb(V*, ©¥) gives an obstruction theory of M(H*)
over S.

Proof Leth:T — M (H.) be a morphism, and let J be a coherent sheaf on 7T'.
The pull back of J via Dy — T is denoted by Jp. We have the induced morphism
h: Dy — M(H,) xg D. We set hp := &(V*, o%) o hp. We have the following
commutative diagram:

Ext' (B Ly 50 /) ——  Ext!(h*Ob, J)

l al

Ext' (hp Lz, )xop/p I0) — Ext' (hpg(V*), Jp)

Let T be an S-scheme such that 7" is embedded as a closed subscheme and that
the corresponding ideal J is square-zero. We have the obstruction classes o(h) and
o(hp) in Ext! (h*LJ\z/(H*)/S’ J) and Extl(h%Lg//S, Jx). It is easy to see that
¥(o(h)) € Ext' (h*Ob, J) is the same as the image of o(hp) via the composite of
the following morphisms:

Ext! ( Ly g, Jp) —— Ext!(hpa(V*), Jp) —2— Ext'(h*Ob,.J)

Hence, the vanishing of 1(o(h)) implies by (o(ﬁp)) = 0. Since Ob gives an ob-
struction theory for Y, it implies that T can be extended to a morphism T x g
D — Y. Then, we obtain an extension of / to a morphism 7" — M (H.,) by the

universal property of M (H.). Therefore, the condition (A1) of Proposition 2.4.2 is
checked. The condition (A2) can also be checked easily, and the proof of Lemma
2.4.18 is finished. O

Let 7 denote the projection M (H.) — M (H.,), which is smooth. We have the
following commutative diagram:

M(H*) xg D RN Y;

-] !

M(H) xsD Y,y
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We obtain the following morphism of the distinguished triangles on M (H.) xs D:

mpa(V7) —— BV, ¢4)" Ob(Y) ——

! l

TpLln(H)xsD/D = Lipgyxsp/p

P@._, Hom(V®, Ji) — mha(VH[1]

l l (2.12)

Litmyxsoyraayxsp — ToLlm)xsp/pll]

Hence, we obtain the following morphism of the distinguished triangles:

™ Ob(V*) —— évb(V*,cp*) —

! l

™ Lyg,y —— L —_—

M(H.)/S

B, (pHom(JD, V) —— 7 Ob(V*)[1]

s@l l (2.13)

L —— m L,y sl

M (H.)/M(H.)
Itis easy to see that both Lz, /o) and @, (pHom(JD, V(z‘)))V are isomorphic

to their 0-th cohomology sheaves, and that ¢ is an isomorphism. Then, the claim of
Lemma 2.4.17 immediately follows from Lemma 2.4.18. O

2.5 Equivariant Complexes on Deligne-Mumford Stacks
with GIT Construction

The results in this section will be used when we consider equivariant obstruction
theory of master spaces in Section 5.8.
2.5.1 Locally Free Resolution

Let G; (i = 1,2) be linear reductive groups over k. Let U be a quasi-projective
variety over k provided with an action of GG; x G2. We assume that there exists a
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G x Gy-equivariant embedding into a projective space PV, The closure of U in
PY is denoted by U. The G x Ga-equivariant polarization is denoted by O(1).
We assume that U is contained in the open subset of the stable points of U with
respect to the polarization O(1) and the G2-action. We assume that M = U/Gj is
a separated Deligne-Mumford stack. The projection U — M is denoted by 7.

Lemma 2.5.1 Let F be a G1-equivariant coherent sheaf on M. Then, there exists
a G1-equivariant locally free sheaf V on M with a G1-equivariant surjection ¢ :
Y — F.

Proof There exists a coherent sheaf G on U such that Q|U = 7*F. There ex-
ists a large number N such that G(N) is globally generating. Then, 7*F(N) is
also globally generating. We may take a (G; X G-equivariant subspace W of
H°(U,7*F(N)) such that W @ O(—=N) — 7*F is surjective. We have only
to take descent of W ® O(—N) and the morphism. O

Corollary 2.5.2 Let Fo be a bounded G1-equivariant complex of coherent sheaves
on M. Assume that there exist integers My and Mo such that the following holds:

e For any point of M, there exists a neighbourhood U such that Fq)y is isomorphic
to a coherent locally free complex GY in D(U) where G¥ = 0 unless M; <
1 < Mo.

Then, there exists a global G1-equivariant coherent locally free complex Go ~ F in

D(M), where G; = O unless My <i < M,. O

2.5.2 Equivariant Representative

We recall that the morphism of M to the coarse scheme is finite (Proposition 2.2.2).

Lemma 2.5.3 Let C;q (i = 1,2) be G1-equivariant bounded complexes of co-
herent sheaves on M. We assume that C1 o is perfect. Let @ be an element of the
G1-invariant part of Ext®(C1 ., Co o). Then, we can take a G1-equivariant perfect
complex 5’1 « With a G1-equivariant morphism 1) : él o — (O, such that (i) 61 N
is G1-equivariantly quasi-isomorphic to C1 ., (ii) 1 represents .

Proof We give only an indication. We may assume that C ; = 0 unless |i| < N.
We take a sufficiently large number N1, and we replace C'  with a G'1-equivariant
quasi-isomorphic complex C, with the property Ext” (Cl,h Cgvj) = 0 for any
k > 0and ¢ > — Ny, and for any j. Then, ExtO(C’l,., Coe) Exto(éL., Cs) is
isomorphic to the first cohomology of the following:

@ EXtO(CVYl’i,OQ’j) — @ExtO(CN’Li,C’QJ) — @Exto(éLi,CQJ)

—itj=—1 —i4j=0 —itj=1

Since (G is assumed to be reductive, the claim is clear. O
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Let B® (i = 1,2) be G';-equivariant bounded complexes on M. We assume that
B is perfect. Let ¢ be an element of the G-invariant part of Ext’ (B W, B (2)).

We take a Gi1-equivariant perfect complex B® with (i1-equivariant morphisms
a; : BM — B guch that (i) ay is a quasi-isomorphism, (ii) the diagram

B 2L ) o2, @)

represents ¢. We have the natural G;-equivariant structure on the cone Cone(as).
Assume we have another G1-equivariant complex B (1) with G;-equivariant mor-
phisms @; : B — B such that the diagram

B AL Q) A2, p2)

represents ¢. Then, there exists a G1-equivariant complex F(l) with G -equivariant
morphisms with morphisms f : BY . BW and g: BY . BO such that the
following diagrams are commutative up to homotopy for i = 1, 2:

E(l) f B
QJ( ail
B % . g

By an argument used in the proof of Lemma 2.5.3, we may assume that the homo-
topy is also G1-equivariant. Then, we have the G;-equivariant quasi-isomorphisms:

Cone(asz) «— Cone(ag o g) ~ Cone(az o f) — Cone(as)

In this sense, the GG1-equivariant complex Cone(az) is uniquely determined up to
(G1-equivariant quasi-isomorphisms. We denote it by Cone(¢p).

2.6 Elementary Remarks on Some Extremal Sets

The results in this section will be used when we study geometric invariant theory
for enhanced master spaces in Sections 4.3—4.4.

2.6.1 Preparation for a Proof of Proposition 4.3.3

Let us consider a vector space U = @f\;l Q - e;. We put

f=0=N)) e+ e

1<j >3
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The following lemma is well known and easy to prove.

Lemma 2.6.1 Take any element p = Zi\; a; - e; € U satisfying Zjvzl a; = 0and
ay < ay < --- < an. Then, there exist non-negative rational numbers b; such that

p=>2bj-f;. O

Let r1,...,7rs be positive integers such that Z;:l rj = N. We put R; :=

> i< Ti- We set
vj = Z e (1=1,...,s).

Rj_1<i<R;
For an integer j € {1,..., s}, we put
y(j) = —(N — R]) th + R, th.
h<j h>j

For a pair of integers (i1, ¢2) such that 1 < iy < i < s, we define

x(il,ig) = —(N - RiQ) Z Vh, +Ri1 Z Vh -

h<iy i2<h

For an integer ig € {1,..., s}, we set
S(Zo) = {(il,ig) € ZQ ’ 1< <ig<ig < S}.

Lemma 2.6.2 Letv ="

j=1aj - vj be an element of U satisfying the following:

a1 <as < - <ag, er~aj:0. (2.14)
j=1

Take an integer ig such that 1 < iy < s.

o Assume a;, > 0. Then, there exist the non-negative rational numbers b(iy,i2)
for (i1,12) € S(ig) and the non-negative rational numbers c; (1 < j < ig) such
that the following equality holds:

io—1
v= > bind)x(inia) + Y ¢ y(h). (2.15)
j=1

(i1,42) €S (o)

o Assume a;, = 0. Then, there exist the non-negative rational numbers b(i1,1i2) for
(i1,42) € S(ig) such that the following holds:

v = Z b(il,ig)'fﬂ(il,ig).
(il,iz)es(io)

o Assume a;, < 0. Then, there exist the non-negative rational numbers b(iy,i2) for
(i1,1i2) € S(ig) and the non-negative rational numbers c; (ip < j < N) such
that the following holds:
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N
v = Z b(il,i2)~aﬁ(i1,i2)+ Z Cj y(])
(il,ig)es(ig) J=to+1

Proof We use an induction on the number d(v) := #{i ‘ a; # ai+1}. In the case
d(v) = 0, the claim is obvious. Let v be as in the lemma such that d(v) = m + 1.
Take the integers h; and h satisfying the following:

a; = az = -+ = Qp, < Ahy+1, As = As—1 = *+* = Apy41 > Apy -

We remark the following:

e In the case a;, > 0, we have hy < 7p.
o In the case a;, = 0, we have hy < ig < hs.
o In the case a;, < 0, we have iy < hs.

Let us argue the case a;, > 0. If we have 19 < hg, we put as follows:

. Qhy41 Qap Gho41 ap
/ 2 : / 1 1 2 2
’UI—’U*"LL‘hl hg = a; - v; [ := min
( ’ ) ¢ v IN — ha ’ Rhl

If we have ig > ho + 1, we put as follows:

Ay — Apy,

!
=v—g-ylh =
vii=v—g-ylh), g T

It is easy to see that the numbers a) satisfy the condition (2.14), and that we have
d(v") < d(v) — 1. By the hypothesis of the induction, we have the expression for v’
as in (2.15) with the non-negative coefficients. Then, we obtain the desired expres-
sion for v.

The cases a;, = 0 or a;, < 0 can be argued similarly. O

2.6.2 Preparation for a Proof of Proposition 4.4.4

Let N(® (a = 1,2) be positive integers. Let us consider a vector space as follows:

N ()

U=uYou®, u=@agaq .
i=1

Let rga), ce ri‘(xi) (o« = 1,2) be positive integers such that Zj(zo‘l) r](.a) = N,
We put Rga) =2 n<j rga). We set 2(0) =Y ega). We also put

(@) ;e pla)
R <i<RY"
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For each integer j € {1,...,s(2)}, we set

y(Q)(j) — —(N—R;Q)) ) Z”i(LQ) +R§-2) ) ZUI(LQ)’

h<j h>j

For each integer j € {1,...,s(1)}, we put

z1(j) = —-N®. Zv}(:) + Rél) 0@

h<j

= N@) . Z (1) R§1_)1 —~NWY). @),

h>j
Lemma 2.63 Letv = >, ,);a; a'™ . (a) be any element of U satisfying the
following conditions:

o <’ <<y 3D =00 16

a=1,2 j

Take an integer ig such that 1 < iy < s(1). Then, there exist non-negative rational
numbers ¢(j) > 0 (j = 1,...,8(2)), di(3) > 0 (i = 1,...,4p), d2(i) > 0 (i =
to+1,...,8(1)) and a ranonal number A such that the followmg holds:

v=">c(i) yPG) + D di(i)-21() + Y da(i) - 22(i)

Jj=1 i<ig i>io

+ A (N®W _NO . 0@ (2.17)

(2 _

Proof By Lemma 2.6.1, we may assume a; ( ) from the beginning.

We use an induction on the number d(v #{z | a(l) # ag_l‘_)l} If d(v) = 0, we

havev = A - (N(z) M N@) Q(l)) for some A, and hence the claim is clear.

Let v be an element as in the lemma such that d(v) = m + 1 > 0. Let us take the
1 _ (1) (1)

integer h; satisfying a; < ay, /- Inthe case ig > hy, we put as follows:
(1) 1)
A e B TR
v o= N(Q) 1( 1)

In the case ig < hy, we put as follows:

(1) (1)
a —a
Vv hlJ}\lf(z) " aa(ha).

Then, v’ satisfies the conditions (2.16) and d(v") < d(v). By the hypothesis of the
induction, we have the expression for v’ as in (2.17). Hence, we obtain the desired
expression forv. 0O
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2.7 Twist of Line Bundles

This subsection is a preparation for Section 4.6.

2.7.1 Construction

Let Y be an algebraic stack over a field k. Let G,,, denote the one dimensional
algebraic torus Spec k[t,t~!]. Let I denote the trivial line bundle on Y. A point of
I is denoted by (y,u) where y € Y and u € I},,. For each integer n, 7 (n) denote
the line bundle I with the G,,-action by t - (y, u) := (y, t"-u).

Let L be any line bundle on Y. Let L* denote the complement of the image of
the O-section, i.e., L* := L —Y.Let7 : L* — Y denote the naturally defined
projection. A point of L* is also denoted by (y, v), where y € Y and v € 7 1(y).

Let us fix an integer 7. We consider the G,,,-action on L* given by ¢ - (y,v) :=
(y,t"v). We have the naturally defined G.,,-action on 7*7 (n). It induces a line bun-
dle Z,, on the algebraic stack L*/G,,. Let ¢ : L*/G,, — Y denote the naturally
induced morphism.

Lemma 2.7.1 We have canonical isomorphisms L, L, ~ Ty and T, ~ I *
and Lo ~ Op«q,,. We also have a canonical isomorphismZ_,. >~ ¢* L.

Proof The first claim is obvious. Let us show the second claim. Let us denote a
point of 7L by (y,v,u’), wherey € Y, v € 7~ (y) and v’ € Ly,. The trivial G,,-
action on L induces the G ,,-action on 7* L over L*, which is given by ¢- (y, v, u') =
(y,tr . v,u’).

On the other hand, let us denote a point of 7*7 (—r) by (y,v,u) wherey € Y,
v e m '(y)andu € T (—r),. The action is denoted by ¢-(y, v, u) = (y,t"v,t~"u).

We have the naturally defined isomorphism 7*7 (—r) — #*L given by
(y,v,u) — (y,v,u - v), which is G,,-equivariant. Therefore, we obtain the iso-
morphismZ_, ~ o*L. 0O

2.7.2 Weight of the Induced Action

We use the notation in the previous subsection. Let el (i = 1,2) denote one-
dimensional tori Spec k[t;,t; *]. Let us consider the action of G x G onL
given by (t1,t2) - (y,v) := (y,t1~t2~v).

Let 7 (n1,n2) denote the trivial line bundle I with the Gﬁ}) X G%)-action given
by (t1,t2) - (y,u) = (y,t7" -5 -u). Then, we have the G x G{P-line bundle
7*T (n1,n2) on L*. We obtain the line bundle Z,,, on L*/Gg), and we have the
induced G%)—action onZ,,.
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Lemma 2.7.2 The weight of the Gg,ll)-action onZy, isni — na.

Proof We put és,? := Spec k[s;]. Let us consider the morphism GS}J X éﬁ? —
G%) X Gg) given by (s1, s2) — (51, sfl . 82). The induced G%) X G%)-action
on L* and 7 (ny,ng) is given by (s1, s2) - (y,v) = (y, s5-v) and (s, s2) - (y,u) =

ni—ng no
(A

ny —ne. O

. u). Therefore, the weight of the G%)-action on Z,, is given by
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