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Abstract This paper outlines research undertaken to assess the ability of textural
information, from image filters, to be used alongside hyperspectral data for the clas-
sification of broad forest types. The study made use of 2.6 m hyperspectral HyMap
data acquired over the Injune study area, Queensland, Australia, in September 2000.
The HyMap data provided spectral data from the blue to shortwave infrared in
126 wavelengths, all of which were used for classification. A measure of texture
was achieved using a set of 48 image filters including Laplacian of Guassian and
Gaussian smoothing, first and second order derivatives at different scale and where
appropriate different rotations. Analysis took place using an air photo interpreta-
tion to provide regions of interest for areas dominated by Angophora, Callitris, and
Eucalyptus, additionally areas of non-forest were also included. Classification of
the resulting dataset was performed using Multiple Stepwise Discriminant Analysis
where an accuracy of 60% was achieved using the combined reflectance and texture
data compared to accuracies of 55 and 43% using only the reflectance and textural
datasets, respectively.

Introduction

The delineation of woodlands into regions unique in terms of species and structure
composition is important for many applications, including the provision of forest
management units (Leckie et al., 2003), indicators of biodiversity (Bock et al., 2005)
and the interpretation of other remotely sensed data.

The interpretation of aerial imagery is heavily scale dependent, where at high
spatial resolutions interpretation has traditionally required experienced human inter-
preters and is mostly based on structure, context and texture, rather than spectral
qualities (Held et al., 2003). Therefore, a number of studies (Cots-Floch et al.,
2007; Buddenbaum et al., 2005; Coburn and Roberts, 2004; Franklin et al., 2000;
Kushwaha et al., 1994) have started to introduce textural measures alongside the
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spectral values. Franklin et al., 2000, found the addition of textural information,
in the form of homogeneity and entropy calculated through a moving window,
increased the overall classification accuracy of forest stand types by 5–12%, pro-
viding overall accuracy in the order of 60–65%. While, Kushwaha et al., 1994
demonstrated an increase in classification accuracy from 69 to 80% when classi-
fying stand age and levels of degradation when the textural measures entropy and
the inverse difference moment were introduced alongside the spectral data.

Texture is the term used to describe information on the local variability of the
image pixel values. Representation of texture can take a number of forms, one of the
most common are the so called Haralick features (Haralick, 1979; Haralick et al.,
1973) where the statistical properties of the pixels within a moving window are
calculated, representing the homogeneity of the surrounding pixels. Although this
method has demonstrated some success (e.g., Franklin et al., 2000), the results often
vary with scale and application and have, therefore, not been widely adopted within
the field of remote sensing where the pixel values (either reflectance or backscatter)
have tended to be used in isolation. Another representation of texture is that of filter
responses, where through the application of a number of image filters structures
within the scene at different scales and rotations are identified and the composite of
these filter responses forms the texture signature or texton (Leung and Malik, 2001,
Varma, 2004). The texton is identified from the filter responses through a clustering
stage (e.g., K-Means; Varma, 2004; He et al., 2008) where the resulting texton can
be used for segmentation and classification.

Study Site and Datasets

The study was carried out using remote sensing and field data acquired over a
40 × 60 km area near the township of Injune (Lat 25◦ 32′, Long 147◦ 32′),
located within the Southern Brigalow Belt, a biogeographic region of southeast cen-
tral Queensland, Australia (Fig. 1). These woodlands contain forest communities

Fig. 1 The location of the Injune study area, southeast central Queensland, Australia. The shaded
area represents the Southern Brigalow Belt
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existing in varying states of degradation and regeneration as a result of prior distur-
bance (e.g., broad scale clearing, altered fire regimes and spread of exotic species)
and are structurally similar to over 70% of those occurring in Australia. Many
stands are dominated by Callitris glaucophylla, although selective harvesting has
reduced the abundance of larger individuals, therefore, typically forming dense
stands with a large number of small individuals (several trees per m2). Eucalyptus
species are also common across the site with stands dominated by Eucalyptus pop-
ulnea (Poplar Box), Eucalyptus melanophloia (Silver-leaved ironbark), Eucalyptus
microcarpa (Grey Box), Eucalyptus chloroclada (Baradine gum), Angophora leio-
carpa (Smoothed barked apple) and Angophora floribunda (Roughed barked apple).
Additionally, Eremophila mitchelli and a number of Acacia species form dense
understories. While Acacia harpophylla is commonly associated with duplex and
cracking clay soils in the southeast of the study area, it is largely in the form of
regrowth given previous clearing.

During July 2000, Large Scale (1:4000) stereo aerial photography (LSP) were
acquired over a grid of one hundred and fifty 500 × 150 m Primary Sampling
Units (PSUs), with each separated by 4 km in the north-south and east-west direc-
tions (Lucas et al., 2004). Across the site, 1 km wide strips of Hyperspectral
Mapper (HyMap) data were acquired along six of the PSU columns, at 2.6 m
spatial resolution with 126 bands in the VIS, NIR and SWIR parts of the electro-
magnetic spectrum. The HyMap data were subsequently atmospherically corrected
and geo-referenced by HyVista Corporation (who acquired the data) using the
HyCorr atmospheric correction software. The algorithm, developed by CSIRO as an
extension to the ATREM atmospheric correction software (Gao and Goetz, 1990),
retrieves information on atmospheric gases from wavebands operating in the water
absorption regions and uses these to correct the image bands.

Methods

Airphoto Interpretation

Using the LSP, an aerial photography interpreter delineated the extent of broad
forest communities and described each in terms of the dominant species (Tickle
et al., 2006). It was observed that the woodlands were dominated by a number of
broad forest communities that were often texturally different as much as they were
spectrally different. Angophora dominated woodlands were distinct due to the large
size of the trees where the textures presented were very course with large areas of
ground and shadow being present between the crowns (Fig. 2aa). Callitris dom-
inated stands were found to contain relatively smooth textures due to the dense
number of stems and homogenous canopy cover (Fig. 2b). While Eucalypts (e.g.,
Silver-leaved Ironbark and Poplar Box) were often found to be only a few pixels (at
a pixel resolution of 2.6 m) across but with small areas of soil and shadow visible
between the crowns (Fig. 2c).
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Fig. 2 Examples of the broad forest types (a) Angophora, (b) Callitris, and (c) Eucalyptus

Fig. 3 The filter bank used to identify texture

Image Filtering

To identify the textures within the images a filtering technique similar to that of
Varma (2004) was used where a series of image filters (Fig. 3) were applied to
the image and the normalised filter responses were used to characterise the texture.
For this study the Leung-Malik filter bank (Leung and Malik, 2001), consisting
of 48 filters, including 8 Laplacian of Gaussian, 4 Gaussian smoothing filters and
6 Gaussian first and second order derivative filters at 3 scales, was used. For the
Laplacian of Gaussian filters scales of 1,
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while the Gaussian smoothing used scales of 1,
√

2, 2 and 2
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2. For the Gaussian
first and second order derivative filters scales of σx, σy, (1,3), (

√
2, 3
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2) and (2,6)

were used, where each scale was rotated by 0, 30, 60, 90, 120 and 150 degrees.

Remotely Sensed Data and Association to Forest Types

Filtering all 126 wavelengths available from the HyMap sensor would prove imprac-
tical due to the data size (48 × 126 output bands), therefore a subset of 3 bands was
selected. The selected bands were in the blue channel (446.1 nm), on the red edge
(716.2 nm) and the NIR (891.2 nm). These wavelengths were selected as they have
been shown by Bunting and Lucas (2006) to provide the optimum visualisation of
these woodlands for the differentiation of tree crowns and species.

Following the application of image filters to each of the image bands the poly-
gons identified from the LSP by the airphoto interpreter were attributed with the
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mean filter response for each of the 3 input bands along with the mean spectral
response for each of the 126 bands.

Classification

Classification was performed on the data extracted for the LSP polygons using
Multiple (stepwise) Discriminant Analysis (MDA), from within the SPSS software
package. MDA was selected due to its success in the previous studies (Clark et al.,
2005, Lucas et al., 2008), where hyperspectral data from individual crowns, from
high resolution 1 m imagery, were extracted and classified to species, resulting in
accuracies > 70% where 10 species were compared. The algorithm was parame-
terised such that the stepwise method was applied using the Rao’s V metric, with
the probability of F being 0.05 for entry and 0.1 for removal of data bands in the
forward and backward steps (Galvao et al., 2005).

Results

To test the method the polygons identified through the LSP interpretation for 4 of the
6 HyMap strips were select and attributed with the mean reflectance for each of the
HyMap bands and mean filter responses providing 270 variables and 252 samples
of the 4 ground cover types (Table 1).

To generate overall accuracy values for the 4 classes each set of samples was
randomly split into training and testing datasets, using a Bernoulli distribution with
a probability of 0.5. The split was made 25 times where for each split the results of
the classification were recorded and the mean and standard deviations calculated. To
test the significance of the texture and reflectance data the experiments were carried
out individually on the reflectance and texture data as well as the combined data
(Table 2).

Table 1 The number of samples for each ground cover type

Species Number of samples

Angophora (ANG) 10
Callitris (CP-) 82
Eucalyptus (EUC) 130
Non Forest (NF) 30

Table 2 Results for the experiments using both the datasets individual and in combination

Combined Reflectance only Texture only

Training Testing Training Testing Training Testing

Mean 61.79 60.21 60.98 55.31 50.18 43.31
Std Dev 0.67 0.86 1.10 1.04 1.74 1.51
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The results show a modest, 5%, improvement for the testing datasets when the
combined data was used over the reflectance data while a significant, 17%, increase
from the results using only the texture data. Also, by combining the reflectance and
textural data the standard deviation of the classification results have been reduced,
demonstrating a more robust classification, less sensitive to the training and testing
samples used.

Discussion

From these initial results it is clear that the introduction of textural information has
increased the classification accuracy and robustness to a similar extent as previ-
ous studies (e.g., Coburn and Roberts, 2004 and Franklin et al., 2000). The use of
textural information at this scale is viewed as an important additional (Held et al.,
2003) as it more closely corresponds with the methods used by human interpreters
and allows the forestry environment to be more fully understood at this resolution.
Alternative methods (Bunting and Lucas, 2009) have concentrated on the aggre-
gation of high-resolution results, for example delineated tree crowns classified to
species. These methods provide an advantage in that the resulting classification can
be attributed with information from high-resolution analysis (e.g., crown area, num-
ber of individuals) useful for estimating attributes such as biomass and indicators of
biodiversity (e.g., Shannon or Simpson indexes) but require significant effort in the
production of intermediate data products to allow the analysis to take place. While
the method outlined in this paper and those following on from this method, allow
the regions to be directly selected from the imagery without intermediate products.

Limitations of the work mainly centered around the testing and training dataset,
derived from the LSP, as although providing a good overview of the study area to
guide further remote sensing acquisitions and field surveys, as originally intended,
they do not accurately delineate the forest types leading to noise in the training and
testing data. Additionally, the low number of Angophora samples has limited the
reliability of the classification for this forest type which occurs in many parts of
the imagery, although often outside the areas for which the LSP data was available,
forms a very texturally distinct forest type. Therefore, further samples and more for-
est types (e.g., Acacia) and forest structures (e.g., regrowth, burnt) are to be selected
for future study.

Future work on the algorithm will concentrate on data reduction meth-
ods to reduce the complexity of the input data, while allowing further vari-
ables (e.g., max response, min response and standard deviation) to be used
alongside the mean filter responses. In addition, further classification methods
(e.g., K-Means clustering, K-Nearest Neighbor and support vector machines)
will be investigated with the possibility of further increasing the classification
accuracy.
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Conclusions

This research has demonstrated the use of a filter based texture measure in addition
to spectral data for the classification of forest structural types from the 2.6 m HyMap
data where the addition of the textural information contributed to a 5% increase in
overall accuracy and robustness of the selected samples. Moving forward this study
recommends the use of textural measures alongside reflectance data for studies of
this type where large regions (> 1000 pixels) with significant spectral variation are
of interest.
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