Chapter XXVI. Pseudo-Differential
Operators of Principal Type

Summary

In Section10.4 we saw that the strength of a differential operator with
constant coefficients in IR" is determined by the principal part p if and only
if p=0 implies dp+0 in R"~\. 0. Such operators were said to be of principal
type. The purpose of this chapter is to study general operators Pe ¥ (X)
on a manifold X assuming that the condition dp+0 when p=0 is valid in a
suitably strengthened form which makes the properties of P independent of
lower order terms.

At first we assume that the principal symbol p is real valued. In the
constant coefficient case we know then from Section 8.3 that singularities of
solutions of the equation Pu= f travel along bicharacteristic curves, that is,
integral curves of the Hamilton field H, of p with p=0, unless they are
disturbed by singularities of f. In Theorem 23.2.9 and remarks at the be-
ginning of Section24.2 the result was extended to second order differential
operators, and in Section26.1 it is proved for pseudo-differential operators.
After P is reduced to first order by multiplication with an elliptic operator
of order 1 —m we use the homogeneous Darboux theorem in Chapter XX1
to reduce p locally to a coordinate £, by a homogeneous canonical transfor-
mation y. The calculus of Fourier integral operators in Chapter XXV then
shows that conjugation of P by a suitable Fourier integral operator as-
sociated with y reduces p microlocally to the operator D, for which the
propagation of singularities is quite obvious. Thus we obtain the desired
extension of the theorem on propagation of singularities; it is non-trivial
provided that H, is non-radial at the characteristic points which is also
required for the application of the homogeneous Darboux theorem. Exis-
tence theorems for the adjoint operator on a compact subset K of X follow
when K is non-trapping for bicharacteristics of p, that is, no bicharacteristic
remains forever over K. When this is true for every compact subset K of X
we say that P is of principal type in X ; locally this just means that dp is not
proportional to the canonical one form (£,dx) at the characteristic points.
Under appropriate conditions on convexity of X with respect to the bichar-
acteristic flow, related to those in Section 10.8, we can also construct global
two sided parametrices of P.
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The situation is much more complicated when p is complex valued. This
complexity is already seen in the geometry of the characteristic set p~!(0)
which first of all may not be a manifold, and secondly may be complicated
from the symplectic point of view since the rank of the symplectic form
restricted to the characteristic set is variable. Two simple extreme cases are
studied first. In Section 26.2 we assume that p~!(0) is an involutive manifold
of codimension 2, thus {Rep,Imp}=0 when p=0. As in the real case we
can then reduce P microlocally to the Cauchy-Riemann operator D, +iD,.
This commutes with operators with symbol analytic in x, +ix, which leads
to a proof that if Pue C*® then the regularity function

sy(x,&)=sup {s;ueH, at (x, )}

is superharmonic in the leaves of the foliation of the involutive manifold
p~'(0). (These have a natural analytic structure defined by the complex
tangent vector field H; the solutions of H,w=0 are the analytic functions.)

In Section26.3 we study the opposite extreme case where {Rep, Imp}
+0 which implies that p~'(0) is a symplectic manifold of codimension 2. A

famous example is the Lewy operator
P=D,+iD,+i(x,+ix,)D,

in R3. It appears as the tangential Cauchy-Riemann operator on the
boundary of the strictly pseudo-convex domain

Q={(z,,2,)e€?; {z,*+2Imz, <0}.
In fact, 0/0Z, +ad/0Z, is tangential to 022 if and only if on 0Q
0=(0/0z, +ad/0Z,)(z,Z, —iz, +iZ,)=z, +ai.

Writing z, =x, +ix,, z,=x,+1ix, and taking x,,x,,x; as parameters in 0Q
we obtain the Lewy operator multiplied by 3i. The fact that Q is strictly
pseudo-convex implies that for any point in 02 one can find U analytic in
Q except at the given point. Indeed, if aeC then

Re(z,a+z,/i—|al*>/2)SRe(z,a—|z,|*/2—al?/2)£0, zef,
with strict inequality except when z, =a and Im z, = —|a|?/2. Hence, if beR
U@@)=1/(z,a+z,/i—|al*/2 +ib)

is analytic in Q except at z,=a, z,=b—ila|?/2. The boundary value u
satisfies the equation Pu=0 and has a singularity which does not propa-
gate. If (x,&)eWF(u) it is clear that p(x,&)=¢&,+i&,+i(x, +ix,)é;=0, that
is, £, =x,&, and &,= —x,&;, and since u is a boundary value of a function
analytic in z, in a lower half plane we must have ¢, <0. Noting that

{Rep,Imp}={&, —x,&;,&,+x,£3}=2&3,<0

we are led to the result proved in Section 26.3 that for every pseudodifferen-
tial operator P and characteristic point (x, &) with {Rep, Imp}(x, &) <0 one
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can find u with Pue C* and WF(u) equal to the ray through (x,£). An
essentially dual fact, first observed by Hans Lewy for the Lewy operator, is
that the equation Pu= f cannot be solved for most f if there is a character-
istic point with {Rep, Imp}>0; in fact, it is then usually impossible to solve
the equation microlocally at (x, £). In the proofs of these facts we shall use
Fourier integral operators to reduce to the model operator D,+ix,D,,
sometimes called the Mizohata operator, which is somewhat simpler than
the Lewy operator. The existence and regularity of solutions of the equation
(D, +ix,D,)u=f can be studied quite explicitly. At the same time we
discuss the equation (D, +ix¥D,)u=f for every positive integer k. When k
is even the properties are quite close to those of the Cauchy-Riemann
operator (k=0) and for all odd k we have properties similar to those of the
Lewy operator.

The results of Section 26.3 suggest that solvability of the inhomogeneous
equation Pu= f requires that Imp has no sign change from — to + along
bicharacteristics of Re p. This condition was originally conjectured by Niren-
berg and Treves and called condition (¥) by them. Section 26.4 is devoted
to the proof of this conjecture by means of an idea of R. Moyers, after the
functional analytic aspects of various notions of solvability have been dis-
cussed at some length and the condition (¥) has been given an appropriate
global form invariant under multiplication by non-vanishing functions.

It is still unknown if condition (V) is sufficient for solvability. From
Section 26.5 on we therefore assume the stronger condition (P) which rules
out all sign changes of Imp on bicharacteristics of Rep. (For differential
operators this is equivalent to (¥).) Condition (P) leads to considerably
simplified properties of the characteristic set discussed in Section 26.5. The
main point is that the flowout along Hyg,, and H,,, of the set of character-
istic points with dRep and dImp linearly independent is an involutive
manifold N of codimension 2. Thus Nj is foliated by two dimensional
leaves where a degenerate Cauchy-Riemann equation is defined by the
Hamilton field H,. The propagation of singularities along bicharacteristics
of Rep which leave the characteristic set at some time is discussed in
Section 26.6 by means of energy integral estimates. Similar estimates are the
basis of the study in Section 26.7 of degenerate Cauchy-Riemann equations

(D, +ia(x)D,)u=f

with a=0, which implies condition (P). The results show in particular that
there is an analytic structure in the leaves B of N, or rather in the sets B
obtained by collapsing to a point every embedded one dimensional bichar-
acteristic curve, that is, any curve where H, is proportional to the tangent.
In Section 26.9 we show that with this structure the superharmonicity of the
regularity function s¥ proved in Section 26.2 for the non-degenerate case
remains valid in N5. An essential ingredient in the proof is another version
of the energy integral estimates, due to Nirenberg and Treves, which is
given in Section 26.8. This estimate together with the advanced calculus of
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pseudo-differential operators in Section 18.5 leads also to the proof in Sec-
tion 26.10 that when Pue C* then s¥ is quasi-concave on any one dimen-
sional bicharacteristic, that is, the minimum in any interval is taken at an
end point.

All the results on singularities established in Sections 26.6-26.10 are
combined in Section 26.11 to an existence theorem for a pseudo-differential
operator P satisfying condition (P). It states that if no complete one or two
dimensional bicharacteristic is trapped over the compact set K then the
equation Pu=f can be solved in a neighborhood of K for any f which is
orthogonal to the finite dimensional space of solutions ve C3(K) of the
equation P*v=0. When no bicharacteristic is trapped over a compact
subset of X, we say that P is of principal type in X and have semi-global
existence theorems for arbitrary lower order terms.

26.1. Operators with Real Principal Symbols

It was proved in Section 8.3 that the singularities of solutions of differential
equations with constant coefficients and real principal part propagate along
the bicharacteristics. We shall now show how the symplectic geometry and
operator theory developed in Chapters XXI and XXV allow one to extend
the result to variable coefficients. In doing so we shall start from scratch
and do not rely on the results of Section 8.3.

Theorem 26.1.1. Let X be a C® manifold and let PeW™(X) be properly
supported and have a principal symbol p which is real and homogeneous of
degree m. If ueP'(X) and Pu=f, it follows that WFu)~ WF(f) is con-
tained in Char(P)=p~'(0) and is invariant under the flow defined there by
the Hamilton vector field H,.

By Theorem 18.1.28 we have
WF(u)c WF(f)uChar (P)

so only the invariance under the Hamilton flow has to be proved. At a
point where H,=0 or H, has the radial direction this invariance is also
obvious, so in the proof we may assume that H, and the radial direction are

linearly independent. We shall prove the thegrem by reducing it to the
special case P=D, in R" where it follows by explicit solution of the
equation Pu=f. The study of this special case as well as the reduction will
at the same time prepare for the construction of a parametrix later on in
this section, so we shall also include some material which will be required
then.

By E{f and E;f we denote the forward and backward fundamental
solutions of the operator D, the kernels of which are defined by

ET =iH(x, —y)®d(x'—y), Ej=—iH(y,—x,)®6(x'—y).
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Here H is the Heaviside function, H(t)=1 for t>0 and H(t)=0 for t<0,
and we have used the notation x=(x,,x") and y=(y,, )’) for points in R"
Note that Ef —E] =id(x’ —)’) or, in Fourier integral form,

(26.1.1) (Ef —E7)(x, y)=Q2m)~ "D [ -7 49,

This is a conormal distribution with respect to {(x, y); x'=y'}, and the order
is —1 since there are n—1 phase variables and (2n—2(n—1))/4=41. Thus we
have E} —E; eI~ }(R"x R", C') where

(26.1.2) Ci={(x, & pm); x'=y, &' =n"+0,{;=n,=0}

is the corresponding canonical relation. It follows that yEf belongs to
I"*R"xR", C)) if ye C*(R" x R") vanishes in a neighborhood of the diag-
onal, for if x#y then either E} or E; vanishes in a neighborhood of (x, y).
In particular, we conclude that WF'(E}) is contained in C, except over the
diagonal in R" xR". Since (D,‘J+DyJ_)E1i =0 for j=1,...,n we have {=# in
WF'(E$) (see also (8.2.15)), and

WF(E£)>WF(D, Ef)=WF'(5(x —y)).

The right hand side is the diagonal in (T*(R")~0)x(T*(R")~0) (Theo-
rem 8.1.5) so we have proved

Proposition 26.1.2. Let Ef and E] be the forward and the backward funda-
mental solutions of D, = —id/0x, in R". Then we have

(i) WF'(E{) is the union of the diagonal in (T*(R")~0)x (T*(IR")~.0)
and the part of the canonical relation C, defined by (26.1.2) where x, 2 y,.

(i) Ef —Ey eI }(R"xR", C)), and yEf el *(R"xR", C\) if y is in
C*(R" x R" and vanishes near the diagonal. '

The statement (i) is a more elementary analogue of Theorem 8.3.7 for the
operator D,. It is all that is needed to prove Theorem 26.1.1 for P=D, by
repeating the proof of Theorem 8.3.3; this is left for the reader to do.

In the general proof of Theorem 26.1.1 we may assume that P is a first
order operator, for if Q is an elliptic pseudo-differential operator with
positive principal part, homogeneous of degree 1—m, then Pu=f implies
(QP)u=Qf where QP has the same characteristics and bicharacteristics as
P, and WF(Qf)=WF(f). As already pointed out it is also sufficient to
consider characteristics (x,, ;) of P where H, does not have the radial
direction. This makes Theorem 21.3.1 applicable so we can find a homo-
geneous canonical transformation y from an open conic neighborhood of
(0, ¢,)e T*(IR")~0 to an open conic neighborhood of (x,, &,) such that y*p
=¢,. This geometrical construction can be lifted to the operator level:

Proposition 26.1.3. Let Pe W!(X) have real and homogeneous principal part p,
let p(xq,&)=0 and assume that the Hamilton field H, at (x,, {,) and the
radial direction are linearly independent. Let y be any homogeneous canonical
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transformation from an open conic neighborhood of (0,¢,)e T*(R")\0 to a
conic neighborhood of (x,, £,) such that y*p=¢&,. For any peR one can then
find properly supported Fourier integral operators Ael*(X xR", I') and
Bel *(R"x X, (I'"'Y), where I is the graph of y, such that

(i) WF'(A) and WF'(B) are in small conic neighborhoods of (x,, &,,0,¢,)
and (0, ¢,, x4, £,) respectively.

(i) (%o, o> Xo» Eo)¢ WF'(AB—1); (0,5,,0, 8, ¢ WF'(BA ~I).

(iii) (xg» Eo» Xo» Eg) WF'(AD,B—P); (0,5,,0,5,)¢ WF'(BPA—D,).
Thus D, and P are microlocally conjugate to each other.

Proof. Choose any A,el*(X xR" I") such that WF'(4,) is close to
(x0, €0, 0, ¢,) and A, is non-characteristic there. As observed after Definition
25.3.4 we can then choose B, el *(R"x X, (I'"')) so that (ii) is fulfilled.
Then it follows from Theorem 25.3.5 that

©,¢,)¢ WF(B,PA, ~D, -0Q)

for some Qe ¥P°(R"). We shall prove in a moment that there exist elliptic
pseudo-differential operators 4,, B, € P°(R") such that
(26.1.3) B,A,—-1e¥~*, B,(D,+Q)A,—D,e¥~™.
Admitting this for a moment we set A=4,4, and B=B, B,. Then
©,6)¢ WF(B,(B, 4, —1)A;)=WF(BA-1I),

0,&,)¢ WF(B,(B,PA, —D,—~Q)A,)=WF(BPA-D,)
which proves the second half of (ii) and (iii). The first half follows at once if
we multiply left and right by 4 and by B.

To solve (26.1.3) we observe that by Theorem 18.1.24 one can for every
elliptic A, of order 0 find B, € ¥° with B,4,—Ie ¥~ * and 4,B,—Ie¥~~,
s0 (26.1.3) is equivalent to the condition (D, +Q)4,—A4,D,€ ¥~ for some
elliptic 4,, that is,

(26.1.3y [D,, 4,]+QA,e ¥~

If ¢q° is a principal symbol of Q and a° is a principal symbol of 4,, then the
principal symbol of (26.1.3)' vanishes if

i1 (€4, 0% +4°a°=0,

that is, da°/0x, = —iq®a®. This equation is solved by

a’(x, )=exp (——ixfl q°(t, x', C)dt)
)

which is an element of S° by Lemma 18.1.10. Choosing 4° with principal
symbol a® we can now successively choose 47e ¥ /(IR so that for every j

[Dy,A°+...+ A1+ Q(A°+...+ A)=R,e ¥~ 1.
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In fact, this only requires that a principal symbol a/ of A’ satisfies the
equation
i~tod)ox,+q°a’=~r)_,

where r{_, is a principal symbol of R;_,. The solution
Xy
@(x,&)=a’(x, &) | —ir)_,(t, X', §)/a’(x', ¢, &)dt
0

is in S~ since r9_,/a® is. If the symbol of A4, is chosen as the asymptotic
sum of the symbols of 4% 4%, ... we have satisfied (26.1.3)..

Proof of Theorem 26.1.1. First recall that we have reduced the proof to the
case m=1 and that the theorem has been proved for the operator D,. So
suppose that m=1 and let (x,, £;)e WF(u)~ WF(f), hence p(x,, £,)=0. As
already pointed out we may assume that H,(x,, {,) and the radial direction
are linearly independent. We then choose A4, B according to Proposition
26.1.3 and set v=Bue2'(R"). Since

D,v=(D,—~BPA)Bu+BP(AB—I)u+Bf

it follows from (ii) and (iii) in Proposition 26.1.3 that (0, ¢,)¢ WF(D,v). On
the other hand, (0, ¢,) € WF(v) since (x,, £,) € WF(u) and

u=(I—AB)u+Av, (x,, )¢ WF((I~AB)u).

Thus (x,,0,¢,)e WF(v) for small |x,|, and since WF(v)cy~' WF(u) it fol-
lows that WF(u) contains the image of this curve under y. Now the defini-
tion of the Hamilton field is symplectically invariant so this means that
WF(u) contains a neighborhood of (x,, £,) on the bicharacteristic curve
through (x4, £,) which completes the proof.

Theorem 26.1.1 can be given a more precise form if we take into account
the H, classes of u and f. First recall that fe H{ at (x,, {,) means that
Afel? _for some A€ ¥* which is non-characteristic at (x,, £,). If f = Pu this

loc

means that ue H{® ., at (x,, &) if (xo, £o)¢ Char(P). The H, regularity in
the characteristic set propagates along the bicharacteristics:

Theorem 26.1.4. Let P satisfy the hypotheses in Theorem 26.1.1, let I be an
interval on a bicharacteristic curve where f=Pu is in Hi> If ue HS, _,, at
some point on I it follows that this is true on all of I

Proof. The H, continuity properties of pseudo-differential and Fourier
integral operators allow us to reduce the proof to the case m=1 and then,
using Proposition 26.1.3 as before with u= —s, to the case P=D,, s=0 and

(X0» £o)=(0, &,). Since Ef maps 12 to I, the proof works as before in

comp
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this situation if the wave front set of a distribution is replaced throughout
by the set of points in T*(IR*)~ 0 where it is not in L2,

We shall now prove that bicharacteristics do carry the singularities of
some solutions provided that they do not close on the cosphere bundle.

Theorem 26.1.5. Assume that P& W™(X) is properly supported and has a real
principal part p which is homogeneous of degree m. Let I be a compact
interval on a bicharacteristic of p which has an injective projection to the
cosphere bundle of X, let I be the cone generated by I in T*(X)\0 and let
I"" be the cone generated by the end points of 1. For any seR one can then
find ue 2'(X) so that ueH},",‘(X) for every t<s and

WF(Pw=I", WFu=I, u¢Hat (x,8) if (x,&)el.
If X=R", P=D,, I={(x,,0,¢,), x, R} then we can simply take
u(x)=(x2+...+x2_,+0—ix,) "
Since the measure of {x'eR""!, |xI+.. +x2_ —ix,|St} is Crn-2/2+1
=Ct"? for reasons of homogeneity, and }t“‘d(t"/z)<oo if and only if
(1]

a<n/2, we have uel?  if and only if p<2. Hence it follows from Theorem

loc

7.1.13 that (g;)eL“ for every q>2 if ¢€Cg, so ue H\ if t<0. It is clear
that D,u=0, and WF(u)c{(x, te,), x' =0, t>0} by Theorem 8.1.6. Since the
projection sing supp u of WF(u) in R” is equal to the x, axis this inclusion
is an equality and u is not in L? at any point on 1.

If as in Theorem 26.1.5 we have a finite interval I={(x,,0,¢,);
a<x,<b} we shall cut off the function u at a and b with some care so that
the wave front set does not grow. To do so we choose functions

00

¥ € C§°((a,b) x R*™ ") with }- 9; =1 in a neighborhood of (a,b) x {0} and
—00

supp ¥ ;—{a} resp. {b} as j— —oo resp. +c0. We can choose a regulariza-

tion v; of u;=y;u such that if U;=u;—v; then supp U;~{a} or {b} as j—
+00 or — 00, |Ujll_y,S2” ¥ and

1TISU+IENY when |&|+...+¢,_ |2 &Ml
In fact, UJ&)=i,(¢)(1 —1(8;¢)) where xe C3, 7(0)=1. We have
flE&OPA+IEYdé<o, t<0,

and |i,(&)|(1+|£D¥' -0 at oo outside any conic neighborhood of ,, so we
just have to take d; small enough. Now we obtain U=y U;e H, for every
t<0, WF(U)<I and U —ueC® at (x,,0) if a<x, <b, so U is not in H, at
any point on I. Since D,U is only singular at (a,0) and (b,0) and since
WF(D,U)ycWF(U)=1, it follows that U has the properties required in
Theorem 26.1.5.
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To prove Theorem 26.1.5 in general we need a global version of Theo-
rem 21.3.1 and of Proposition 26.1.3 allowing us to conjugate P to D,.

Proposition 26.1.6. Let X be a C® manifold and p a real valued C* function
in T*(X)~0 which is homogeneous of degree 1. Let I be a compact interval
on R and y: I-T*(X)~\0 a bicharacteristic, thus

pey=0, y=Hyey.

We assume that the composition of y and the projection n: T*(X)\ 0—-S*(X)
on the cosphere bundle is injective. Then one can find a conic neighborhood V
of {(x,,0,¢,); x, €I} and a C* homogeneous canonical transformation y from
V to an open conic neighborhood y(V)<T*(X)~0 of y(I) such that
x(x;,0,8)=7(x,) and x*p=¢,.

Proof. Assume to simplify notation that 0el. We can use Theorem 21.3.1 to
find a homogeneous canonical transformation y from a convex conic neigh-
borhood ¥, of (0, ¢,) to a conic neighborhood of y(0) such that y*p=¢, and
x(0, &,)=7(0). Then y, maps the Hamilton field 8/0x, of £, to H,, so

(26.1.4) 0x(x, 8)/0x, =H,(x(x, £)).

When x'=0 and ¢ =¢, we also have the solution y(x,), x, €I, with the same
initial value when x,=0. Hence we can uniquely extend y to a conic
neighborhood V of I x {(0, ¢,)}, which is convex in the x, direction, so that
(26.1.4) remains valid. The projected curves x,nyx(x, £) are the integral
curves of the vector field induced by H, on §*(X). (Functions on $*(X) can
be identified with homogeneous functions f of degree 0 on T*(X)~\0, and
H,f={p,f} is then also homogeneous of degree 0.) Since y is also homo-
geneous it follows from the hypothesis on noy that x is a difffomorphism if
V is small enough. If we write

=Xy, .. X, B, LB,
then the fact that x, ' maps H, to d/0x, means that
H,X,=1, H,X;=0 ifj>1, H,E,=0 forall k.
Hence the Poisson brackets {X;, X}, {X;, Z,}, {&,, E,} are constant along
the orbits of the Hamilton field H,, by the Jacobi identity. They vanish at

some point since we started from a canonical transformation, so they vanish
identically, which proves that also the extended map y is canonical.

The following extension of Proposition 26.1.3 follows with the same
proof:

Proposition 26.1.3. Let Pe W!(X) have real and homogeneous principal part
p, and let y: I-T*(X)~ 0 be a bicharacteristic with the properties assumed in
Proposition 26.1.6. If T is the graph of a canonical transformation y from a
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conic neighborhood of J=1Ix(0, ¢,) to a conic neighborhood of y(I), satisfying
the conclusion in Proposition 26.1.6, then one can for any ueR find properly
supported Fourier integral operators Ael*(X xR", I'") and Bel " "(R"x X,
(I~ 'Y) such that

(i) WF'(A) and WF'(B) lie in small conic neighborhoods of the graph of y
restricted to J and its inverse respectively,

(i) y)NnWF(AB—I)=0, JAnWEF(BA—I)=0.
(iii) )N WF(AD,B—P)=0, JAWF(BPA—D,)=9.

Proof of Theorem 26.1.5. We may again assume in the proof that m=1.
Changing notation in Theorem 26.1.5 so that I is replaced by y(I), IcR,
we have precisely the situation in Proposition 26.1.3'. Choose 4 and B
according to Proposition 26.1.3" with y= —s. We have already constructed a
distribution U in R" with WF(U) generated by J, WF(D, U) generated by
the end points of J, U EH(‘,")c for every t<0 and U¢ HgS at (x, £) for every
(x,6ed. If we set u=AU then U=Bu mod C*, Pu=PAU=ABPAU
=AD, U mod C®, so u has the required properties.

We shall now discuss existence theorems for the equation Pu= f which
follow from Theorems 26.1.4 and 26.1.5 applied to the adjoint P* combined
with abstract functional analysis. At first we shall only consider solvability
on compact sets. All operators will tacitly be assumed to act on half
densities so that the adjoints are well defined and of the same kind.

Theorem 26.1.7. Assume that Pe ¥™(X) is properly supported and has a real
principal part p which is homogeneous of degree m. Let K be a compact
subset of X such that no complete bicharacteristic curve is contained in K.
Then it follows that

N(K)={ve&'(K), P*v=0}

is a finite dimensional subspace of CZ(K) orthogonal to PZ'(X). If
feH{F(X) for some seR (resp. fe C*(X)) and if f is orthogonal to N(K),
then one can find ue H}%, _,(X) (resp. ue C*(X)) so that Pu=f in a
neighborhood of K.

Proof. The principal part of P* is also p. Hence N(K)c C® by Theorem
26.1.1, for if ve N(K) and (x, £)e WF(v) then the bicharacteristic starting at
(x, &) would have to remain over K. By the closed graph theorem the L?
topology in N(K) is equivalent to the C* topology, which shows that the
unit ball in the I? topology is compact. Thus dim N (K) < co.

The hypotheses of the theorem are also fulfilled if K is replaced by a
sufficiently small compact neighborhood K'. To prove this we may assume
that m=1 and can then consider the bicharacteristics as curves in the
cosphere bundle. Since this is compact over K’, we would obtain a bicharac-
teristic staying over K for all values of the parameter if there is one over K’



64 XXVI. Pseudo-Differential Operators of Principal Type

for every compact neighborhood K’ of K. This proves the assertion. Since
dim N(K") decreases with K’ and is finite, it is also clear that N(K")=N(K)
if K' is sufficiently close to K.

Let || ||, denote a norm which defines the H, topology for distributions
with support in an arbitrary fixed compact subset of X. Since ved&’'(K),
P*veH,, implies veH,,,,,_,, by Theorem 26.1.4, it follows from the closed
graph theorem that

(26.1.5) 190 sm-1yS CUP* 0l g+ 0Ny m-2))s  vE CF(K).

Let V be a supplementary space of N(K) in H,,_,,n&(K). Then there is
another constant C, such that

(26.1.6) holgsmy S CiIP*0ll,, veVNCF(K).
In fact, if this were false we could select a sequence v;e V' with
!Ivjll(:+m_1)=19 ‘"P*vj”(g)_‘)()'

A weakly convergent subsequence must converge strongly in H,,,_, to a
limit veV with P*v=0 and 1=Cllvl,,,_,) by (26.1.5). Hence v is a non-
zero element of N(K) belonging to V, which is a contradiction.

If feH}¥(X) is orthogonal to N(K) we set t=1—m—s and have by
(26.1.6) for some C

(26.1.7) I, )I=ClIP*vly, veCF(K),

for this is true. if ve V¥V CY(K) and neither side changes if an element of
N(K) is added to v. By the Hahn-Banach theorem it follows that the anti-
linear form P*v—(f, v), ve Cy(K), can be extended to an anti-linear form
on Hy™ which is continuous for || [|,. Thus there is a distribution ueH("f,,

=H{%%,,_, such that

(f, )=, P*v), veC3(K),

which implies that Pu=f in the interior of K. If we apply this conclusion
to a suitable neighborhood K’ of K, we obtain Pu=f in a neighborhood of
K.

To prove the C® case of the theorem we denote by C*(K) the quotient
of C*(X) by the subspace of functions vanishing of infinite order on K. The
dual space of this Fréchet space is 8'(K) (Theorem 2.3.3). To show that the
range of the map C®(X)— C*(K) defined by P is the orthogonal space of
N(K) we have to show that P*¢&'(K) is weakly closed in &'(X), or equiva-
lently that the intersection of P*#'(K) and the unit ball in H,n&'(K,) is
weakly closed for every real ¢t and compact K, = X. (See Lemmas 16.5.8 and
16.5.9.) Now ve&'(K), P*ve H,, implies ve H,,,,_,, by Theorem 26.1.4, and
by (26.1.6) we have v=v,+v, where v, e N(K) and |v,ll;,,_;)SC. Since
the set of such v, e '(K) is weakly compact and P*v=P*vp,, the assertion is
proved.
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Remark 1. When K consists of a point x, we conclude that for every fe C®
one can choose ue C* so that Pu=f in a neighborhood of x,, provided
that H, does not have the radial direction at any characteristic point (xo, £).

Remark 2. The condition on the bicharacteristics made in Theorem 26.1.7 is
merely sufficient and in no way necessary for the conclusion to be valid. For
example, if P is a differential operator with constant coefficients our as-
sumption means that P is of principal type (Definition 10.4.11) but the
conclusion is always valid in the C* case and holds in the H, spaces also
for example if P is the heat operator, which has multiple characteristics.
Even when the characteristics are simple the condition is not necessary in
the variable coefficient case. For example, the conclusions of Theorem 26.1.7

are valid for P=x,0/0x, —x,0/0x,+c

in X={(x,,x,); 1<x?+x2<2} if ¢ is a real constant #0, although (the
normals of) the circles x%+x2=r? are bicharacteristics. Thus the lower
order terms may in general be essential. However, they are irrelevant when
the hypotheses of Theorem 26.1.7 are fulfilled, and just as in Definition
10.4.11 we introduce a terminology which refers to this fact:

Definition 26.1.8. Let Pe ¥™(X) be a properly supported pseudo-differential
operator. We shall say that P is of real principal type in X if P has a real
homogeneous principal part p of order m and no complete bicharacteristic
strip of P stays over a compact set in X.

We shall now discuss global solvability of the equation Pu=f modulo
C®. The results should be compared with Sections 10.6 and 10.7 in the
constant coefficient case.

Theorem 26.1.9. Let P be of real principal type in the manifold X. Then the
following conditions are equivalent:

(a) P defines a surjective map from 2'(X) to 2'(X)/C*(X).

(b) For every compact set K = X there is another compact set K'< X such
th

at ued’'(X), singsupp P*ucK =>sing suppucK'.

(c) For every compact set K =X there is another compact set K' < X such
that every bicharacteristic interval with respect to P having endpoints over K
must lie entirely over K'.

Proof. (b)=>(c) with the same K’ by Theorem 26.1.5. Using Theorem 26.1.1
we shall also prove that (c)= (b). In doing so we may assume that P is of
order 1 since we can multiply P by an elliptic operator of order 1 —m
without affecting these conditions. When the degree is 1 the bicharacteristic
strips can be considered as integral curves of a vector field on the cosphere
bundle which is an advantage since the fibers are then compact.
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Assuming that (c) is valid, that ued’'(X), sing supp P*ucKk,
(x, £ )e WF(u), we shall show that there is a contradiction if x¢K'
By Theorem 26.1.1 the bicharacteristic through (x, ) stays in WF(u) until it
reaches a point lying over K. In view of (c) and the assumption that x¢ K’
at least one half ray y of the bicharacteristic starting at (x, £) contains no
point above K, so yc WF(u). Choose (x,, {,) so that its projection in the
cosphere bundle is a limit point of y at infinity, which is possible since y lies
over the compact set suppu. Then the entire bicharacteristic strip with
initial data (x,, £,) must stay over supp u, which contradicts the hypothesis
that P is of principal type.

Since P is of principal type we know that ue C* if ueé’ and PueC®.
Combined with the purely functional analytic arguments in the proof of
Theorem 10.7.8 this gives that (b) = (a).

It remains to show that (a)=>(c). Assume that (c) is not valid. For some
compact set KcX we can then find a sequence of compact intervals
I,,1,, ... on bicharacteristic strips with end points lying over K and points
(x;, &)el; with x;—» o0 in X, that is, only finitely many contained in any
compact subset. We may assume that the intervals I; are disjoint even when
considered in the cosphere bundle. Let (y;, n;) be one end point of I; and let
I'; be the cone < T*(X)~\0 generated by the bicharacteristic between (y;, 1)
and (x;, £;) while I consists of the rays through these points. Now use
Theorem 26.1.5 to determine u; € 8'(X) such that

WF(u)=I,, WF({Pu)=I], u;¢H_; atany pointin I;.

We can write Pu;=f;+g; where WF(f)) and WF(g) are the rays through
(x;, ;) and (y;, n,) respectively. In doing so we can take the suppwt of f; so
close to x; that the supports of the distributions f; are locally finite. We can

then form
f=x/

Now we shall prove that Pu—f is not in C® for any ue2'(X), which
means that (a) is not valid. To do so we choose s so large negative that
ueH:;’f in a neighborhood of K. When —j<s it follows that u—u; is not in
H(';’,‘ at any point on I; close to (y;, n;) whereas u—ujeH(‘ff at the other end
point of I;. By Theorem 26.1.4 this shows since m=1 that P(u—u)) is not in
H,, at every point in the interior of I;. However,

Pu—u)=Pu—f+7Y fi—g;
k#j
and the interior of [ f does not meet the wave front set of the sum nor that

of g;. Hence Pu—f is not in Hy, at every point on I;, which completes the
proof.

When convexity conditions similar to those of Section 10.6 are fulfilled
one can improve Theorem 26.1.9 to existence of genuine solutions. However,
this does not differ very much from the discussion in Section 10.6 so we
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leave for the reader to contemplate such results or consult the references at
the end of the chapter. Instead we shall study global parametrices for
operators satisfying the condition in Theorem 26.1.9, for which it is con-
venient to introduce a name:

Definition 26.1.10. If P is of real principal type in X we shall say that X is
pseudo-convex with respect to P when condition (c) in Theorem 26.1.9 is
fulfilled.

To clarify the geometric properties of the Hamilton field on the charac-
teristic set we need two lemmas on vector fields satisfying conditions like
(c) in Theorem 26.1.9.

Lemma 26.1.11. Let M be a C* manifold and v a C*® vector field on M.
Then the following conditions are equivalent:

(@) No complete integral curve of v is relatively compact, and for every
compact set K in M there is another K' containing every compact interval on
an integral curve of v with end points in K.

(b) v has no periodic integral curves, and the relation R consisting of all
(1, ¥y )M xM with y, and y, on the same integral curve of v is a closed
C® submanifold of M x M.

(c) There exists a manifold M, an open neighborhood M, of My x0 in
M, xR which is convex in the R direction, and a diffeomorphism M — M, which
carries v into the vector field 8/0t if points in My xR are denoted by (y,, t).

Proof. Let us first show that the first part, of (a) implies

(a") No integral curve of v defined for all positive or all negative values
of the parameter is relatively compact.

In fact, suppose that R 3t y(t) is an integral curve of v with compact
closure K. Then we can find a sequence t;—+ oo such that x=lim y(¢;)
exists. Since ty(t;+1) is an integral curve for te(—¢;, o) it follows that K
contains a complete relatively compact integral curve starting at x, which
contradicts the first part of (a). (This argument was already used to prove
that (c) = (b) in Theorem 26.1.9.)

Next we prove that (a) == (b). Denote the v flow by ¢ so that t—=¢(y, 1) is
the solution of the equation dx/dt=uv(x) with x(0)=y, defined on a maximal
open interval <. If D is the domain of ¢, then

R={(¢(y, 1), y); (y, )€ D,}.

The map (y, )= (d(y, ), y} is injective since there are no closed integral
curves, and it is clear that the differential is injective. To prove that R is a
closed C® submanifold it suffices therefore to show that the map is proper.
Let (y;,t)eD, and assume that y,—y, ¢(y;,t)—x as jooo. We have to
show that (y;,t;) has a limit point in D,. In doing so we may assume that
t;-»Te[ — o0, c0]. By the second part of condition (a) there is a compact set
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K' such that ¢(y;,t)eK’ when te[0,¢;]. If T=+o0 it follows that
¢(y,5)eK’ for s=0 or for s<0. But this contradicts (a') so T is finite and
(v}, t)=(, T)e D,

(b)=>(c). It follows from (b) that the quotient space M;=M/R is a
Hausdorff space, and identifying a neighborhood of the equivalence class of
y with a manifold transversal to v at y we obtain a structure of C*®
manifold in M,. The map M—M, has a C® cross section M,—M. This is
obvious locally and using a partition of unity in M, we can piece local
sections together to a global one, for only an affine structure is required to
form averages. We can now take

M, ={(,1); ye M, (,1)€ D}

and the map M,—M given by ¢. Since the implication (c)=>(a) is trivial,
this completes the proof.

In our applications of Lemma 26.1.11 we shall have a conic manifold M
and a vector field v commuting with multiplication by positive scalars as is
the case for the Hamilton field of a function which is homogeneous of
degree 1. Thus vu is homogeneous of degree m if u is. In particular, if M, is
the quotient of M by multiplication with R _, then v induces a vector field
v, on M_, as already observed in the proof of Proposition 26.1.6.

Lemma 26.1.12. Let M be a conic manifold and v a C* vector field on M
commuting with multiplication by positive scalars, such that the vector field v,
induced on M, has the properties in Lemma 26.1.11. Then there exists a C*
manifold My, an open neighborhood M’ of M, x0 in My xR which is convex
in the direction of R, and a diffeomorphism M—-M' xR ,, commuting with
multiplication by positive scalars (defined as identity in M’ and standard
multiplication in R ) such that v is mapped to the vector field 0/0t if (y,,t, 1)
denotes the variables in My x R xR | .

Proof. First note that by a partition of unity we can construct a positive C*
function r(y) on M which is homogeneous of degree 1. If = is the projection
of M on M_ we obtain a diffeomorphism

M>3ye(n(y), r(yDeM, xR,

commuting with multiplication by IR _. From condition (c) in Lemma
26.1.11 applied to v, we now obtain a diffeomorphism M—>M’ xR, with M’
as in that lemma, which transforms v to a vector field of the form

v, =0/0t+a(y,,t)ro/or

since it is equal to 8/dt for functions independent of r. Now solve the

equation
ab(yO’ t)/at+a(y0’ t)=0
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with initial condition b=0 when t=0 for example. Then be C*(M’), and if
R=rexpb(y,,t) we have v, R=0. If we take R as a new radial variable
instead of r, there will be no term d/0R in the new expression of v so the
lemma is proved.

Remark 1. Under the hypotheses in Lemma 26.1.12 the vector field (v, 0) on
M xM defines a vector field & on the relation manifold R (see
Lemma 26.1.11(b)) which satisfies the same conditions. This is obvious when
the vector field is put in the form given by Lemma 26.1.12.

Remark 2. Let v satisfy the conditions in Lemma 26.1.12 and let ce C*(M)
be homogeneous of degree 0. Then the equation (v+c)u=f has a solution
ueS™(M) for every feS™(M). In fact, if c=0 we just have to integrate f
with respect to t from t=0 with the coordinates given by Lemma 26.1.12.
For a general ¢ we first obtain in this way a homogeneous function C with
v C=c, and mulitiplication by € reduces to the case c=0.

Let us now return to an operator Pe Y™ (X) of real principal type, with
principal symbol p, assuming that X is pseudo-convex with respect to P.
Denote by N the set of zeros of p in T*(X)~0. This is a conic manifold,
and the Hamilton field H, is tangential to N. The integral curves are the

p
bicharacteristics of P, and we define the bicharacteristic relation C of P by

(26.1.8) C={((x, &), (y,m)eNxN; (x,£) and (y,1)
lie on the same bicharacteristic}.

The construction is invariant under the action of canonical transformations
on p since the definition of the Hamilton field is. Multiplication of p by a
non-vanishing function will change the parameter on the bicharacteristics
but not affect C. Note that the set C, defined by (26.1.2) is the bicharacter-
istic relation of D,.

By the preceding remarks we may assume that P is of degree 1 when
studying C. By hypothesis the vector field induced by H, on N, satisfies
condition (a) in Lemma 26.1.11 so Lemma 26.1.12 is applicable. It follows at
once that C is a closed conic submanifold of N x N, and since the positive
homogeneous function r is constant along the bicharacteristics it is clear
that C is also closed in T*(X x X)~0. Since C, is a canonical relation, that
is, the product symplectic form vanishes in C,, it follows in view of
Proposition 26.1.6 that C is a canonical relation. In fact, if ((x, &), (y,n)e C
we can by a canonical transformation reduce p to ¢, in a neighborhood of
the bicharacteristic between (x, &) and (y, 7). Thus we have proved:

Proposition 26.1.13. Assume that P is of real principal type in X and that X
is pseudo-convex with respect to P. Then the bicharacteristic relation C of P
is a homogeneous canonical relation from T*(X)~0 to T*(X)~0 which is
closed in T*(X x X)\0.
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If 4y is the diagonal in N, then C\ 4, is the disjoint union C* U C~ of
the forward (backward) bicharacteristic relations C* and C~ defined as the
set of all ((x, &), (v, n))e N x N such that (x, &) lies after (resp. before) (y, ) on
a bicharacteristic. These are open subsets of C and inverse relations. The
definition is invariant under multiplication of p by positive functions but
C* and C~ are interchanged if we multiply by a negative function. The
importance of these sets is suggested by Proposition 26.1.2 which we shall
now extend as follows:

Theorem 26.1.14. Let Pe'P™(X) be of real principal type in X and assume
that X is pseudo-convex with respect to P. Then there exist parametrices E*
and E~ of P with

(26.1.9) WF'(E*)=4*uC*, WF(E")=4*uC"

where A* is the diagonal in (T*(X)~0)x(T*(X)~0). Any left or right para-
metrix E with WF'(E) contained in A¥U C* resp. 4* U C~ must be equal to
E* resp. E- modulo C®. For every seR the parametrices E* and E~ define
continuous maps from HiJ™(X) to H(’;"j,m_”(X ). Finally

(26.1.10) Et—E e} "X xX,C(C),

and E* —E~ is non-characteristic at every point of C'.

Before the proof we recall that a continuous operator E: C¥(X)—~2'(X)
is called a right parametrix if

PE=I+R

where [ is the identity and R has a C® kernel. If instead EP=I+R’ with
R'eC® then E is called a left parametrix. We shall say that £ is a
parametrix if E is both a right and a left parametrix. Note that the theorem
is an extension of Theorem 8.3.7 also.

Proof of Theorem 26.1.14. We begin with a proof of the uniqueness. Assume
for example that E, is a right and E, a left parametrix with
WF'(E)c4* 0 C*, which implies that they map C§ to C®. To prove that
E,—E,eC® we would like to argue that E,PE, is congruent both to E,
and to E, mod C® (cf. the proof of Theorem 18.1.9), but this is in no way
obvious since E,; and E, are not properly supported. However, we do know
that E,BE, is defined if B is a pseudo-differential operator with kernel of
compact support in XxX, for B maps 2'(X) to &'(X) then. If
(x, & y,m)e WF'(E,BE,) but (x, ¢) and (y, ) are both in the complement of
WF(B) it follows that (x, &,z {)eC* and that (z,{,y,n)e C* for some
(z, {)e WF(B). This implies that (x, &), (v, n), (z, {) are on the same bicharac-
teristic strip, with (z, {) between the other points. Let K and K’ be as in
condition (c) in Theorem 26.1.9. If WF(B) has no point over K’ it follows
that WF'(E,BE,) has no point in K x K. Now choose ¢ € Cy(X) equal to 1
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near K’ and form
E,¢PE, —E,PpE =E,(pP—PP)E,.

The wave front set of the right-hand side contains no point over K x K, so
the same is true of E,¢—¢E,. Since K is arbitrary it follows that
E,—-E, eC™.

Since PE=I1+R is equivalent to E*P*=I+R* and P* has the same
principal symbol as P, the existence of left parametrices with the properties
listed in the theorem follows from the existence of right parametrices for P*.
To prove the theorem it is therefore sufficient to construct a right para-
metrix with the required regularity properties. In doing so we may assume
that the order of P is 1, for P can otherwise be replaced by the product with
an elliptic operator Q of degree 1 —m with positive homogeneous principal
symbol; Q has a pseudo-differential parametrix by Theorem 18.1.24.

The first step in the construction is local in the cotangent bundie near
the diagonal.

Lemma 26.1.15. Let Pe ¥'(X) satisfy the hypotheses of Theorem 26.1.14 and
let (x4, ¢g)e T*(X)N0, p(xq, €g)=0. Choose A and B according to Proposi-
tion 26.1.3 with u=0 and set Ft =y E} where y € C*(R?") is equal to 1 in a
neighborhood of the diagonal. If  wvanishes outside a sufficiently small
neighborhood of the diagonal, Te Y°(X) has its wave front set in a suf-
ficiently small conic neighborhood of (x4, £,), and F* = AF* BT, then

(i) WF'(Ff)c4*u CH,

(i) PFf=T+R* where Rtel ¥ X xX,C) and WF'(R*)c C?,

(iti) F*-F- el }XxX, C).

Proof. Conditions (i) and (iii) follow immediately from the corresponding
conditions in Proposition 26.1.2. To prove (ii) we form

(26.1.11) PF*=PAF*BT=(PA—AD, F*BT+AD F*BT.
By (iii) in Proposition 26.1.3 we have
(x9, €0, 0,6,)¢ WF(PA—AD,)<T.

It follows that there is a conical neighborhood V of (0,¢,) such that
(PA—AD,)ve C*® if WF(v)< V. Since WF'(F) can be made arbitrarily close
to the diagonal in (T*(IR")~\0) x (T*(IR")~\ 0) by choosing the support of ¥
close to the diagonal in R"xR", we can choose ¥ and a conic neigh-
borhood W of (0, ¢,) such that WF(FEv)cV if WF(v)c W. If WF(T)< (W)
it follows that the first term in the right-hand side of (26.1.11) is in- C*. To
study the last term in (26.1.11) we note that D, F;f =1+ R{ where

Rf=(D, ¥(x, )Efel;*R"xR", C}), WF(R})=Cf.

Since ABT —T=(AB—-1)Te C* if WF(T) is sufficiently close to (x,, &), it
follows that PF* =T+R* where R* —AR{ BTe C®, which proves (ii).
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End of Proof of Theorem 26.1.14. If (x,, &,)e T*(X)~0 and p(x,, ;) %0
then Theorem 18.1.24° gives a stronger result than Lemma 26.1.15: we can
find a pseudo-differential operator F such that PF=T+R where Re C*®
and WF(F)=WF(T). Now choose a locally finite covering {V;} of T*(X)~\0
by open cones V, such that either Lemma 26.1.15 or the preceding obser-
vation is applicable when WF(T)cV,. We can choose V; so that the pro-
jections W, in X are also locally finite and can then write I=) T, where
WF(T) <V, and the support of the kernel of T, belongs to W, x W.. For every
i we choose Fii according to Lemma 26.1.15 or as indicated above, with
supp F¥f = W, x W,. Then the sum

is defined, (26.1.9) and (26.1.10) are satisfied by these operators, and F*
maps H{3"*(X) continuously into H(‘;’f(X ) for every s. In fact, this is true for
E*=yET if ¢ is taken as a function of x —y, for the operator F* is then
convolution by a measure of compact support. All other factors are H,
continuous by Corollary 25.3.2.

So far we just have

PFf=I+R* where RieI;*(XxX, C), WF(RYHccCE
However, by Lemma 26.1.16 below we can choose Gfel~*(X x X, C') so
that PG* ~R*eC®(X xX), WF(G*)cCtoWF(R?).

Since corank 6.=2 it follows from Theorem 25.3.8 that G* is continuous
from H{™(X) to HiY'(X) for every s, so E* =F* —G* is a right parametrix
which has this continuity property. The construction shows that F* —F~
and therefore E* —E~ is non-characteristic at the diagonal of N (cf.
(26.1.1)). Since P(E* —E")eC™ it follows from Theorem 2524 that the
principal symbol satisfies a first order homogeneous differential equation
along the bicharacteristics starting there. Hence E* —E~ is non-characteris-
tic everywhere. (Using Proposition 26.1.3' instead of Proposition 26.1.3 we
could in fact have computed the principal symbol directly at any point in
C.) This implies that WF'(E* —~E~)=C, and since WF'(E¥)c4*UC* we
conclude that WF'(E¥)> C*. Since

A*=WF' ()=WF (PE*)c WF'(E¥)
the proof of Theorem 26.1.14 will be completed by the following

Lemma 26.1.16. If FeI*(X x X, C') and WF'(F)c= C%, then one can find Ae
X x X, C) with
PA-FeC®, WF(A)cC*eWF (F)cC*.

Proof. If a, and f are the principal symbols of 4, and of F, then it follows
- from Theorem 25.2.4 that PA,—FeI*~! if

i—1
i~ Py, a9+cag=1,
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where ceS°. Let w be a non-vanishing section of M ® Q¢ which is homo-
geneous of degree n/2. (As a complex vector bundle M ® Q¢ is trivial,) If
we set a,=wu and f=wg, the equation is of the form

i1 .
i""Hyut+c'u=g

where ¢’ is homogeneous of degree 0 and u, g are scalar symbols of degree s.
It follows from the remarks after Lemma 26.1.12 that this equation has a
unique solution u€S$*® vanishing on the diagonal in N, and the support is
contained in C* o WF'(F). The same argument can be applied to PA,—F.
Hence we obtain a sequence A;€ I°~/(X x X, C') with

WF'(4,)= C* - WF'(F)

and

P(Ag+...+4)—FeF~-Y(X x X, C).
If we choose A4 so that A—Ay—...—A;el*~/=! for every j, the lemma is
proved.

Theorem 26.1.14 can be generalized when the characteristic set N is not
connected. In fact, if N=N, uUN_ with N, and N_ disjoint and open, then
we can find E* and E- as in Theorem 26.1.14 with (26.1.9) replaced by

(2619  WF'(E*)=4*U(C*A(N, xN,))U(C¥A(N_xN_)).

The very slight modification of the proof is left as an exercise for the reader.
Important examples of this situation are the advanced and retarded funda-
mental solutions of the wave operator.

The most noteworthy feature of Theorem 26.1.14 is that a two sided
parametrix is obtained. In the following sections we shall prove far reaching
extensions of Theorem 26.1.4 concerning the propagation of singularities,
and this will lead to existence theorems similar to Theorem 26.1.7. However,
we do not have any general methods for constructing two-sided parame-
trices.

26.2. The Complex Involutive Case

The study of pseudo-differential operators P e ¥™(X) with homogeneous prin-
cipal symbol p is far more intricate when p is complex valued than in the
real case discussed in Section 26.1. Already the geometry of the characteris-
tic set N=p~!(0) may then be very complicated even if dp+0. At first we
shall therefore only consider the subset

(26.2.1) N,={(x, §)e T*(X)~0; p(x, {)=0, d Rep(x, {)
and dImp(x, &) are linearly independent}
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which is a conic manifold of codimension 2. Section 26.3 will be devoted to
the open subset

(26.22) N,,={(x,&)e T*(X)~0; p(x, £)=0, {Rep, Im p}(x, {)+0}

which is a symplectic manifold. The purpose of the present section is to
study the interior N,; of N,\N,, which is an involutive manifold. We
recall from Section 21.2 that as involutive manifold N,; is foliated by 2
dimensional leaves I'. In analogy with the real case we shall call them
bicharacteristics of P. The Hamilton vector field

H,=Hg,,+iHy,,

is tangential to any leaf I' and has linearly independent real and imaginary
parts so it defines an analytic structure in I where the analytic functions are
the solutions of the equation H,u=0. By Theorem 21.2.7 a leaf I is either
conic or else the radial direction is never tangential to I. We shall postpone
the discussion of the first case until Section 26.7 and only discuss here the
open subset NJ; of N,; where

(26.2.3) Hg,,, H

ep» Himp, and the radial direction are linearly independent.

Whereas Theorem 26.1.4 reflects the fact that the equation H,u=0 in the
real case has only constant solutions on a bicharacteristic, we shall now
have to take into account that this equation has a large solution space in
the two dimensional bicharacteristic I'. To state an analogous result we
recall from Section 18.1 that if ue 2'(X) then the regularity of u at (x, £) can
be measured by the function

silx, =sup{t; ueHy, at (x,0)}, (x, e THX)0,

which is lower semi-continuous and positively homogeneous of degree 0.
We have by (18.1.38)

(26.2.4) sh.2s¥—u

if A is a pseudo-differential operator of order u, and by (18.1.39) there is
equality in (26.2.4) where A is non-characteristic. If more generally 4 is a
Fourier integral operator of order p belonging to a canonical transfor-
mation y then (26.2.4) is just modified to

(26.2.4y xSk st —u,

with equality at the non-characteristic points.
The following is an analogue Theorem 26.1.4:

Theorem 26.2.1. Let ue9'(X), Pu=f, and let '« T*(X)~0 be an open
subset of a leaf in the foliation of N2;. If s is a superharmonic function in T
such that s} 2s then

min(s¥, s+ m—1)

is superharmonic in I
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When I'nWF(f)=0 we can take s=+o0 and conclude that s* is
superharmonic. Since a superharmonic function in an open connected set is
identically + oo if it is + o0 in an open subset, we obtain by applying
Theorem 26.2.1 to all leaves close to a given one:

Corollary 26.2.2. If ue 2'(X) and Pu= f, then
(NZnWF ()~ WF(f)

is invariant under the bicharacteristic foliation in N2, ~ WF(f).

Proof of Theorem 26.2.1. Choose a homogeneous function a of degree 1 —m
with a(x,, £,)+0 at a given point in NJ; and a homogeneous canonical
transformation yx as in Theorem 21.3.2 such that

X*(ap)=§1 +i€2
in a conic neighborhood of (0,¢,). If Q€ ¥*'~™ has principal symbol a, we
can now repeat the proof of Proposition 26.1.3 to construct Fourier integral
operators A and B of order 0 satisfying the conditions (i), (ii) there as well
as (iii) with D, replaced by D,+iD, and P replaced by QP. The only
change is that to construct 4, we must solve a Cauchy-Riemann equation
in each step, and this can be done by Cauchy’s integral formula. If v=Bu
and (D, +iD,)v=g we obtain using (26.2.4) as in the proof of Theorem
26.1.1 or (26.1.4) that
sy=x*s¥, sy=x*sf+m-—1

in a neighborhood of (0,¢,). This reduces the proof to the special case P
=D, +iD, and the leaf through (0, ¢,). It will then be made in three steps.

a) If ue&'(R" and (D, +iD,)u=feL? then ueL?. This is a very special
case of Theorem 10.3.2. A direct proof follows from the fact that u=E=f
where the fundamental solution E=(2m)~'(x,+ix;)"!d(x5,...,X,) is a
measure.

b) (Localization) Let ueé&'(R"), (D,+iD,)u=f, and assume that for
some compact set K cIR? we have, 0 denoting the origin in R"~2,

uel? at 0Kx{0}xe, fel? at Kx{0}xe,
Then ueL? at K x {0} x ¢,. For the proof we set
=000, X3) xz(X3, ..., X,) x3(D)u
where x,eCY(R? is equal to 1 in K, x,eCY(R"?) and x,(0)=1,
x3€S°(R") and y;(te,)=1 when t> 1. Then (D, +iD,)v=g where
8=X1X2X3(D)f +(Dyxy +iD; 1) X2 x3(D)u.

If suppy, is sufficiently close to K, suppy, is sufficiently close to 0 and
suppy, is in a sufficiently small conic neighborhood of ¢, then gel? so
ve L2, by a), which proves the assertion.
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c) Let ue2’'(R"), (Dy+iD,)u=f and assume that for a compact set
K <R? and an entire function ¢ in z=x, +ix, we have

min(sy,s)>Re¢ at 0K x{0}xe, and s}=s at Kx{0}xe,

where s(x,, x,) is superharmonic in a neighborhood of K. Hence s>Re ¢ in
K, and by Proposition 16.1.4 the superharmonicity of min (s¥, s) will follow
if we show that s*>Re¢ at K x {0} x¢,. Choose ye C3Y(R") equal to 1 in a
neighborhood of K x {0}, and set U =a(x, D)(xu) where

a(x, &)=y (x)(1 +|&[?) @2,

If Re¢<p at x, then aeS* in a neighborhood since differentiation with
respect to z can only give factors log(1+|¢|%). We have (D, +iD,)U=F,

F=a(x,D)yf +[D,+iD,, a(x, D)x]u.

The commutator is of order —oo in a neighborhood of K x {0} since y=1
there and ¢ is analytic. Hence

Uel? at 0Kx{0}xe, and Fel? at Kx{0}xg,
so b) gives that UeL? at K x {0} x ¢,. Set

b(x, &)=x(x)(1 +|£]?)~ #@2,
Then
V=b(x,D)U=yu+c(x, D)u

where ceS°~! for any ¢>0 in the neighborhood of K x {0} where x=1.
Since x* + c¢(x, D) is non-characteristic there we obtain s*=s}, hence

s*ZRe¢p—0d in Kx{0}xs,

for any 6>0. This completes the proof.

For the operator D, +iD, in R", n23, we shall now prove an analogue
of Theorem 26.1.5 which proves that the superharmonicity in Theorem
26.2.1 is exactly the right condition. The result can immediately be carried
over locally to the leaves of NJ; for a general P, by the argument used to
prove Theorem 26.1.5 with Proposition 26.1.3’ replaced by the modification
of Proposition 26.1.3 at the beginning of the proof of Theorem 26.2.1. A
global form of the result can be proved by working more directly with the
operator P, but for this we refer to the literature indicated at the end of the
chapter.

Theorem 26.2.3. Let Q be an open connected subset of R? with boundary 0%,
and set T=RQx {0} xR ¢, I'=0Qx {0} xR, ¢, where O is the origin in
R"-2 Let s be a lower semi-continuous function in R*® with values in
(—o0, + 001 which is + o0 in I:Q, superharmonic and not identically + oo in
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Q. Then one can find ue 9'(R") with WF(u)=T", WF((D,+iD)uy<I" and
(26.2.5) sf=m*s in I'\I", s}zn*s inI"
Here = is the projection I'-.

The proof is similar to that of Theorem 8.3.8, although more technical,
so the reader may wish to recall that proof first. Using a functional analytic
argument we shall show that u can be found so that s¥*=n*s with equality
in a countable subset E of I'. This will give (26.2.5) if E is suitably chosen:

Lemma 26.2.4. For every lower semi-continuous function s in an open set
QcRY there is a countable subset E of Q such that for every lower semi-
continuous function s’ in Q with s'<s in E we have s'<s in Q.

Proof. Let V; be an enumeration of the closed balls with rational center and
radius which are contained in Q. Choose x;eV; such that s(x j)=miny s
which is possible since s is lower semi-continuous, and let E={x;}. If now s’
is lower semi-continuous and s'(x) > s(x) for some x e, we can find V; with
x€eV; such that s'(y)>s(x) for every yeV, Hence §'(x)>s(x)=s(x;). This

proves the lemma.

Remark. The choice of E here can be quite unique. For example, if N=1
and s(x)=0 for irrational x, s(p/q)= —1/|q| when p/q is a reduced fraction,
then s/2<s at all irrational points but not at the rational ones. It is easily
seen that E must in fact contain all rational points in this case.

We shall also need an analogue of Theorem 15.1.1 for open subsets of €.
(In Section 15.1.1 we only considered the whole of €" to avoid technical
difficulties which occur otherwise when n>1.)

Lemma 26.2.5. Let w be an open set in C and ¢pe C*(w) a strictly subhar-
monic function, that is, A¢>0. If fe*(w,e~*(4¢)"'dA), where dJ is the
Lebesgue measure, then one can find ue L*(w, e~ *dA) with du/07= f and

(26.2.6) flul?e®dA<4f|f1? e ¢(4¢) 1 dA.

Proof. As in the proof of Theorem 15.1.1 we set

(,0),=fuve ?dl; uvell=1*(w,e %dl).

The equation du/0Z= f means that
(fiwy=—(u, 6W)¢, we Cg(w),
dw=e?d(e *w)/0z=0w/dz—wd¢/iz.
Now
6wl = —(0/0z5w, w),=(0*$/0z0Zw, w),+ |Ow/d 21|}
247 (4w, w),, weCF(w)
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Hence
I(f, Wl SM6wll,, weCF; M*=4{|fi*e %(4¢) 'dA,

so the lemma follows from the Hahn-Banach theorem if we extend the
map dw(f, w), to an antilinear map on Lf,, without increasing the norm.

Just as in Section 15.1 we can use Lemma 26.2.5 to construct analytic
functions with appropriate bounds:

Lemma 26.2.6. Let ¢, w be as in Lemma 26.2.5, and let zjew,€w. If t is a
large positive number we can then find an analytic function f, in w such that

(26.2.7) fizg) =%, |£,(2)|£21%?,  zew,.
There are constants C,, such that for all non-negative integers o
(26.2.8) IDEf(2)| S C, (logr)® t*9), zew,.

. Proof. Taylor’s formula shows that

$(2)=Reg(2)+ 0’ ¢(20)/020Z|z—z,|* +0(|z —2,|?)
where g is the analytic polynomial

8(2)=(20) +2(2 —25) 0¢(20)/0z+(z —20)* 0 P(20)/0 2.
If b and ¢ are sufficiently small positive numbers it follows that
$()ZReg(D)+blz—zo%, |2~z <5.
Now choose ye Cy ({z; |z —z,| < d}) with x(z)=1 when |z —z,| <d/2, and set
LD =1(2) #® —(z —z¢) u(2).
£, is analytic if
(26.2.9) 0u/dz=18"(z ~2,)~10y/0Z=h,.
With ¢=b5%/4>0 we have
fIn2e72%dasCe 2"

Shrinking o if necessary we may assume that 4¢ is bounded from below in
o and conclude, using Lemma 26.2.5 with ¢ replaced by 2¢logt, that
(26.2.9) has a solution with

(lul?t=2%dage— 2
An application of Lemma 15.1.8 with r=1/logt now gives
lu@) £ C'logtt=*+%e),  zew,

where w,€w'€w. This implies (26.2.7) for large t and zew’. Cauchy’s in-
equality in discs with radius 1/logt and center in @, then proves (26.2.8).
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Proof of Theorem26.2.3. Let F be the Fréchet space of all ue2'(R") with
WFu)cI' and s¥=n*s in I'; the topology is the weakest one making the
maps
Fau Buel?
continuous for every properly supported Be'P* with u<n*s in WF(B)nT. (It
suffices to use countably many operators B, so the topology is metrizable,
and it is a routine exercise to verify the completeness.) By Lemma 26.2.4 we
can choose a countable subset E of I'\I" such that ueF and s*<=*s in E
implies s¥=n*s in '\I"".

The subset F, of F where WF((D,+iD,)u)cI" is also a Fréchet space
with the weakest topology making the inclusion F,— F and the map

Fy2au (D, +iD,)ue C*(Q x R"~?)

continuous. We shall prove that if yeE and Te¥*™” is properly supported,
with homogeneous principal symbol which does not vanish at y, then

(26.2.10) {ueF,, Tuel?}

is of the first category. If we use this fact for a countable number of operators
T with WF(T) shrinking to y it follows that

(26.2.11) {ueF,, si(y)>s(ny)} -

is of the first category. Hence s¥<n*s in E for all ueF, except a set of the
first category, and this will prove Theorem 26.2.3.

Suppose now that (26.2.10) is not of the first category. Then it follows
from the closed graph theorem that the map

Fyaue> Tuel?

is continuous. Let x,=(n7,0) be the projection of y in R" and let K be a
compact neighborhood of x,. Then we have

(26.2.12) 1 Tull Ly S N2(Dy +iD3)ull gy + 3 I1B;ull Loy,

where yeC3(2xR""?%), M is a large integer, B,e'¥P* is properly supported,
p;<n*s in [=WF(B)T, and the sum is finite. Let K, be the union of ny
and the projection of suppy in . We shall choose u carefully near K, so
that the first term on the right-hand side drops out.

Choose open sets » and w, in R? with

Kocw,cweR
and then choose ¢ C*w) with 4¢>0 and
(26.2.13) ¢>—sin o, ¢<-—yp;in onnl;

As in the proof of Theorem15.1.6, for example, we can achieve this by
regularizing —s and adding a small multiple of x}+x32, for —s< —y; in nl}
and —s is semi-continuous from above. Choose x,eCx(w) equal to 1 in a
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neighborhood of K, e C3(R"~?) with #(0)=1, and set
(262.14)  axy,x5,8") = xo(x5, %) f(2) 272 H((&" [t — ) log ).

Here &' =(¢,,...,¢,), z=x,+ix, and f, is given by Lemma 26.2.6 with z,=mxy.
Thus |¢"/t —¢,| < C/logt in supp a,, and since differentiation with respect to &’
will give a factor logt/t, we obtain in view of (26.2.8)

(26.2.15) |DEDEa(x x5 &) S C,glog (2 +|EN)+A1 (1 4] |)#E+ 2 -mi2—lal,

If t=2" where v is an integer > N, say, the supports are disjoint so
N
Ay=Y a,
No

also has the bound (26.2.15). Note that any conic neighborhood of suppy,
x g, contains the supports of all terms except a finite number. Thus Ay is
uniformly of order —pu outside such a neighborhood, for any u.

We shall prove that (26.2.12) is not valid for the corresponding conormal
distributions (with respect to the x,x, plane)

uN(x)=jAN(x1’x2’ £y e dg
when N —oo. First of all we have y(D,+iD,)uy=0 since y,=1 in supp y.
This means that the first term in the right hand side of (26.2.12) vanishes
when u=uy. By (26.2.13) we have ¢+pu;< —¢;<0 in wnnl; so (26.2.15)
implies that A, is bounded in S~%- i+ “M2 in a nelghborhood of
supp xoNnl;. Using (18.2.16) we now conclude that

Bjuy={By(x;,%,, ") "¢ dg”

where B,y is bounded in §-%*?-"2 as N—oco. If 4 is the conormal bundle
of the x,x, plane this means that Bju, is bounded in I~%~"%(R" A)
(Proposition 25.1.5). Hence B;uy in bounded in °°H:§°, which proves that
||B uNIILz(K) is bounded. From (26.2.12) it follows now that Tuy is bounded
in L(K), so Tu el? in a nexghborhood of x,. Now Tu, can also be
calculated by (182 16). If t(x,¢) is the principal symbol of T, which is
homogeneous of degree s(ny), then the symbol of Tu_ is

t(x 12 xz; 0, 6") Auo(x 1s x2’ é")

plus lower order terms. At (n7,2"¢)) the symbol is thus asymptotically equal to
t(y)(2")""” +y)+(2-n)2

However, since Tu,€”H, in a neighborhood of x, it follows from Theo-

rem25.1.4 that the symbol must be in $**2-"2 for every £¢>0 in a neigh-

borhood of ny. This contradicts that ¢ +s>0 by (26.2.13). The proof is now
complete.
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26.3. The Symplectic Case

In this section we shall study the pseudo-differential operator P with prin-
cipal symbol p in the symplectic characteristic manifold N,, defined by
(26.2.2). By Theorem21.3.3 we can locally in N,, reduce p to &, +ix. &, by
multiplication with a non-vanishing factor and composition with a canoni-
cal transformation. In Theorem21.3.5 we have also given an invariant
description of a more general situation where we can reduce p to the form
&, +ixkE, where k is a positive integer. As in Proposition26.1.3 we can lift
these transformations to the operator level; in doing so we only consider
the polyhomogeneous case for the sake of simplicity.

Proposition 26.3.1. Let Pe ¥y (X) have principal symbol p with p(x°,£%)=0,
and assume that there is a homogeneous function a of degree 1 —m in a conic
neighborhood of (x°, &%) with a(x°, %) %0, and a homogeneous canonical trans-
formation y from a conic neighborhood of (0, +¢,)eT*(R")~0 to a conic
neighborhood of (x°,&E%)e T*(X)\ 0 such that y*(ap)=¢, +ixk&,. Then we can
find properly supported Fourier integral operators AeI;,;;"'(X xR"TI") and
BelID, (R" x X,(I'~'Y), where I is the graph of y, such that

(1) WF'(A) and WF'(B) are in small conic neighborhoods of (x° &°,0, +e¢,)
and (0, +¢,,x° &°) respectively.

(ii) BAe¥!~™(R" is non-characteristic at (0, +e¢,)

(iii) (0,=xe,) ¢ WF(BPA — Dy — ixt D).
Proof. Choose any A,el,.™(X xR",I") and B, el (R"xX,(I'")) such
that the principal symbol of 4,B, is equal to a in a neighborhood of
(x% £%. Then the principal symbol of BiPA; is equal to & + ixf&, in a
neighborhood of (0, +¢,). Replacing P by B,PA, it is then as in the proof of
Proposition 26.1.3 sufficient to prove the theorem when X =R", m=1 and
the principal symbol of P is equal to ¢, +ix%¢,. The full symbol is then
E +ixhE +po(x,E)+p_i(x,6)+.... We want to find pseudo-differential oper-
ators 4 and C of order 0, non-characteristic at (0, +¢,) such that the symbol
of

(26.3.1) PA—C(D,+ix‘D,)

is of order —oo in a conic neighborhood of (0, +¢,). If B is defined so that
the symbol of BC —1I is of order —oo in another such neighborhood, we
shall then have all statements in the proposition.

Let the symbols of 4 and C be ay+a_,+... and cy+c_,+.... The
leading symbol of (26.3.1) vanishes if a,=c,. The next term vanishes if

(26.3.2) —i{&, +ixt € ap} +poag+(E, +ixkENa_, —c_,)=0,
that is,
(2632 —i(8/@x, +ixk 3/dx, —ikxk~1E, B/0E g+ podq

+(&, +ixkENa_; —c_,)=0.
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It suffices to solve this equation when £,=1 and extend the solution by
homogeneity after cutting it off outside a neighborhood of the origin. To do
so we choose g, so that

(26.3.3) —i(3/ox, +ix%8/ax, —ikxk=1E B[O )a,+Poty

vanishes of infinite order when x,=0, and a,=1 there. This means that
(26.3.3) and all the x, derivatives shall vanish when x,=0, which suc-
cessively determines & ap/8x] when x) = 0 for every j. By Theorem 1.2.6 we
can choose a, with these derivatives. The quotient r of (26.3.3) by &, +ix%¢,
is then a C* function r, homogeneous of degree —1, and (26.3.2) is valid if
a_,—c_,=—r. Using this equation to eliminate c_, from the next equa-
tion, it becomes an inhomogeneous equation of the form (26.3.2) which can
be solved in the same way. Repeating the argument we obtain a solution of
(26.3.1), and this completes the proof.

From Proposition 26.3.1 it follows as in the proof of Theorems 26.1.4 and
26.2.1 that any microlocal statement on the singularities of the equation
(26.3.4) (D, +ixD)u=f

at (0, +¢,) can be carried over to the equation Pu=f at (x° £°). We shall
therefore study the equation (26.3.4) carefully. For odd values of k it will
turn out that its properties differ significantly from those of the constant
coefficient operators which served as models in Sections 26.1 and 26.2.
Fourier transform of (26.3.4) with respect to x, leads to an ordinary differen-
tial equation which we shall examine first.

Lemma26.3.2. If ue C3(R) and k is an integer 20 then
(26.3.5) f0u1? +(1 + x*)|u|?>)dx < C, [ |u' —x*ul? dx.

Proof. We may assume that u is real valued. With f=u'—x*u we have
f2 - uIZ + x2ku2 _xk(uZ)r,
hence
ffrdx={W?+(x*+kx*~"Yu?dx.
When k is odd the terms in the right hand side are all positive. If we just
integrate for |x]>1 we also obtain then

u(—1)+u(1)*s [ fdx
Ix]>1
An integration by parts gives

1
Jutdx=u(1)* +u(—1)* -2 [ xuv'dx
-1

1 1
Su(+u(—1)2+ [u?dx/2+ [ 2u'?dx,
-1 -1
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hence

;'1142 dx 22(u()? +u(—1))+4fu?dx <6 f2dx,
0 (26.3.5) is valid with C,=7. When k is even we first observe that
qjjf2 dx= a_f(u" +x2"u2)di+u(1)2.
Set ue=x "'kt —y fo=x*"Uk+ =g Then v’ =g, so

1
;’ vdx= } v2d(x+3)=4v(1)> —v(—2)2 =2 | vv'(x +3)dx
2 22 22

1 1
S4v(1)* —v(—2)%+ | v2dx/2+32 | v'?dx,
22 22
which gives

20(—2)*+ jzvz dx £8v(1)® + 64 }zgz dx.
Since |x[***/(k+1) is bounded in (—2, 1) we have now proved that
Tzuz dx+u(—2*<C, afzfz dx.
If we note that
_yz fdx= __[z(u’z+(x2"+kx"“)u2)dx—2"u(—2)2

and that x* + kx*~1 > x2%(1 —k/2** ') 2 3x?*/4 if x < —2, the estimate (26.3.5)
follows.

If we replace x by 6x in (26.3.5) we obtain
(2635 (1| +16* ' x*ul? +|0u|>)dx < C, |u —6** ‘x"ulzdx,_ ue CP(R).

Here 6**! can be an arbitrary real number if k is even but must be positive
when k is odd. This is significant for there is no estimate of the form (26.3.5)
with u' —x*u replaced by «' +x*u when k is odd. In fact, the equation u’'
+x*u=0 then has the solution u(x)=e~*"'/(k+1) in &, and cutting u off
far away we find that no such estimate exists. This distinction between even
and odd values of k will be crucial in what follows and was in fact already
observed in a geometric context in Theorem21.3.5. From (26.3.5) we obtain
the following estimate

Proposition 26.3.3. Let a(£)e C*(R") be homogeneous of degree 1/(k+1) and
assume that |E| <K&, in suppa for some constant K. Then we have with I?
norms

(26.3.6) la(D)ul S CH(D, +ixsD)ul, ueCFM").
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Proof. If (D, +ix}D,)u=f then
(D, +ix'{£")U=F

where U and F are the Fourier transforms of u and f with respect to x,.
When £,>0 it follows from (26.3.5) with §=¢L/*+1 that

JIG* DU dx, < C fIF* dx,.

If &, f are the Fourier transforms in all the variables it follows that

§ 16D AP dES Cf1 @)1 de.

En>0

Since a(£)/EX*+ 1 js bounded in supp a the estimate (26.3.6) is proved.
The estimate (26.3.6) leads directly to a result on hypoellipticity:

Proposition 26.3.4. The operator D, +ix%D, is microhypoelliptic where £,>0
(and also where £,<0 if k is even). More precisely, if (26.3.4) is valid and
fEH(s) at (x0,60)’ then uEH(S+ 1/(k+ 1)) at (xo,éo) l:f é’?>0 (Or 63<0 and k is
even).

Proof. Assume first that uel? _ fel? Choose yeC¥ with 20 and

'comp? comp*

fxdx=1, and form the regularizations
u,=ux*y,=j(eD)u.
Then |lu.|| < ljull and
(D, +ixDyu,=f*y,+i[xD,,{(eD)] u

is also bounded in I? as ¢— 0 since the symbol of the commutator

~ 2 &TUDIDEdeg,x C)
0<jsk

is bounded in Sp_ (Proposition 18.1.2). Hence (26.3.6) shows that a(D)u, is

bounded in I? as £—-0, so a(D)uel? if a satisfies the condition in Proposi-

tion 26.3.3. This proves that ueH,,, ;, when {, >0; replacing x by —x we

obtain the same result when ¢, <0 if k is even.

" To prove the general statement assume that we already know that ueH ,
at (x% &%) for a certain t <s. If g(x, D) is of order ¢, ¢ has compact support in
x, and WF(g) is in a sufficiently small conic neighborhood of (x°, £°), then v
=q(x, D)uel?,,, and

omp
(D, +ixtD)v=q(x,D) f+[D,+ix* D, q(x,D)]uel?

since the commutator is also of order ¢t. Hence veH 1) by the first part
of the proof. If g is chosen non-characteristic at (x%, &%) it follows that
u€H 14+ 1y at (x% &£%). By iterating the argument a finite number of times
we obtain ueH, 44 1) at (x° &%), which completes the proof.



26.3. The Symplectic Case 85

In view of Theorems 21.3.3 and 21.3.5 we obtain from Propositions
26.3.1 and 26.3.4

Theorem 26.3.5. Let Pe ¥y, (X) have principal part p, and let (x°,&°) be a

point where
p(x%£&%=0, {Rep,Imp}(x° £°)>0.

If Pu=feH at (x°¢°) it follows then that ueH,,,, _,, at (x°¢°. More
generally, Pu=feH, at (x°¢&° implies ueH, \ yuy1y at (x%E% if
p(x° &% =0, Hg,,(x° %) %0, and Imp has just a zero of order exactly k near
(x°, %) on each bicharacteristic of Rep starting near (x°,£°), with a change of
sign from — to + or no sign change at all. In particular, P is then
microhypoelliptic at (x°, £°).

At a non-characteristic point we have of course the “elliptic” result that
feH,, implies ueH .. Thus Theorem 26.3.5 gives a loss of k/(k + 1) deriv-
atives compared to the elliptic case. One calls P subelliptic with a loss of
k/(k+ 1)< 1 derivatives. A complete discussion of subellipticity will be given in
Chapter XXVIL In particular we shall then see that the constant k/(k+1) in
Theorem 26.3.5 cannot be decreased, which is also easy to prove by tracing
the proof of Proposition 26.3.4 backwards.

When the sign change from + to — ruled out in Theorem 26.3.5 occurs,
there is no microhypoellipticity at (x°, £°). Moreover, non-propagating sin-
gularities may appear there.

Theorem 26.3.6. Let Pe ¥y, (X) have principal part p, let
p(xo, 60)=0’ erp x09£0)#0$

and assume that Imp on every bicharacteristic of Rep starting near (x°,&°)
has a zero near (x° &°) of order exactly k where the sign of Imp changes from
+ to —. For any seR one can then find ue2'(X) with Pue C*(X), WF(u)
generated by (x°,£°), and ueH{ if and only if t<s.

Proof. By Proposition 26.3.1 it suffices to prove the theorem when P=
D, +ixkD,, (x° &% =(0, —¢,), and k is odd. Choose ye C*(R) equal to 1 on
(2, 0) and 0 on (— o0, 1), and set for real a

ua(x)=!‘e—a(ix,.+x';+ Hik+ 1)+ |x"|2) oall,(e)de

where x"=(x,,...,x,_,). By Theorem 8.1.9 we have

WF(u,)<{(0, —0s,),0>0}.
Partial integration shows that u, and all its derivatives are rapidly decreas-
ing when x— o0, so u,eH, at (0, —¢,) if and only if u,e H(R"). Moreover,

i, is-rapidly decreasing outside any conic neighborhood of (0, —¢,). Denote
the Fourier transform of exp(—x%*!/(k+1)) by &, thus ¢ If e=1/(k+1)
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then the Fourier transform of u, with respect to x,,x” becomes
[e= 0% (& ,/6%) 0o~ ¥ 140 )= D/2 62y (6) d6
which means that

B(Eysoenr &y —E)=20"2 B, [E) e IS gamem =22y (£, £,>0.
The product by (1+]¢ |?)2 is square integrable when [&,|<£,, |£”]<¢, if and
only if Ya—s—(n—2)/2+e+(n—2)2+2t< —1.

If we choose a so that
2a—e—(n—2)2+2s=—1,

the theorem is proved.

In Section26.4 we shall prove a general form of Theorem26.3.6 where
hypotheses are only made on a single bicharacteristic of Rep. At the same
time it will be proved that there is an intimate connection between the
existence of non-propagating singularities as in Theorem 26.3.6 and non-
existence theorems for the adjoint operator.

As in Section 26.1 we shall finally give parametrix constructions, particu-
larly for the model equation (26.3.4). First we assume that k is even. It is
then easy to construct a twosided fundamental solution for (26.3.4) reduces
to the Cauchy-Riemann equation if x%*!/(k+1) is introduced as a new
variable instead of x;. To simplify notation we first assume that n=2 and
set for x, yeR?

(26.3.7) E(x, y)=§i;t—(x';+ Vik+D+ix, —y itk +1)—iy,) .

This is a continuous function of x (or y) with values in L\,
modification of the proof of (3.1.12) gives

(26.3.8) (D,,+ix{D,) E(x,y)=(—D,, —iyiD,,) E(x, y)=5(x —y).
In fact, if ue Cg(IR") then

{  E,y)(=Dyu()—iyiDu(y)dy=— [ Ex,y)u()0idy,+idy,)

Ix—y|l>e Jx—yl=¢

and a slight

with the contour integral taken in the positive sense. The argument varia-
tion of y&*!/(k+1)+iy,—xX*'/(k+1)—ix, around the circle is 27z, which
gives the second part of (26.3.8). The first part follows since E(x,y)=
— E(y, x). For the operator E with kernel E(x, y) we obtain

(2639) - (D,+ix:D,)Eu=E(D, +ixtD,Ju=u, ueCI(R?).

It is obvious from (26.3.7) that sing supp E is in the diagonal of R? x R2. If
(x,&,y,neWF'(E) and (x,&)#+(y,n) then it follows from (26.3.9) that {,=n,
=0, hence &,=n,+0 since (D,,+D,)E(x,y)=0, and therefore {,=n,.
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Thus WF'(E) is equal to the diagonal in (T*(R2)~0) x (T*(R2)~\ 0) after all.
- In case n>2 we have the fundamental solution

(263.7)  E(x, Y)=5i7;(x’i+ Y+ 1) +ix, —yi* k+1)—iy) "' @8(x" —)")

where x"=(x,,...,x,_,) and y'=(y,,...,¥,_ ) It is clear that
(26.3.9y (D, +ixkD)Eu=E(D,+ix"D)u=u, ueCZ(R".
By Theorem 8.2.9 we have
(263.10)  WF(E)={(x,&; y,me(T*R")~0) x (T*(R")~0);
(x, =W, or x"=y", {=n, {; =¢,=0}.
From Proposition 26.3.4 it follows that E maps HZ™ into HS 4, 1

microlocally where &, 0.

The preceding results are essentially familiar from the Cauchy-Riemann
equation. However, we shall now see that the situation changes drastically
when k is odd. At first we assume again that n=2. The kernel E(x, y) defined
by (26.3.7) now has a singularity both for x=(y;,y,) and x=(-y,y,).
Instead of (26.3.8) we obtain, say,

(=D, —iD,) E(x, y))=06(x ~(y,}, y2)) —6(x —(—=ly ], y,)).

The definition must therefore be changed.
Let us first try to solve the equation

(D, +ixkD,)u=feC3(R?)
by introducing the Fourier transforms U and F of u and f with respect to
x,. This gives the equation (D, +ix%&,) U(x,,&;)=F(x,,&,) or
01(U(x,, &) exp(—xXH 1 E (k+1))=iF(xy, &) exp(— x4+ 1 E, /(k+1)).

Since the exponential tends to 0 when x,— oo if £,>0, the equation cannot
have a solution in & unless the integral of the right-hand side vanishes. For
a general F we take the I? orthogonal projection on this subspace, so we
form

(263.11) F(x,, &) —c(E) exp(— x4 &, /(k + 1))
where c¢(£,) is determined by

c€)IE)= § Fly,&)exp(—y5*1Ek+1)dy,, ¢&,>0.
Here w_w
I(E,)= [ exp(—2y4*1E, (k+1)dy, =5 VD I(1).

(I(1) can of course be expressed in terms of I'(1/(k+1)).) Let @, f be the
inverse Fourier transform of the term removed from F in (26.3.11),
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(26312) Q. f(x)=Q2m)~" [f &¢®N f(y)dydEy/IE,), feCTMR?)
§2>0

where ¢(x,y)=x, —y, +i(x** 1 +y5*1)/(k+1). It is the orthogonal projection
in I? on solutions of the homogeneous equation D ,u—ix{D,u=0. An
elementary computation gives that the kernel is

(26.3.12) Q. (x,y)=(2n)" 12-Ml+ Uy 1)~ Y+ D (h(x, y)fi)= e+ 1),

The inverse Fourier transform of the solution of the differential equation
with F replaced by (26.3.11) for £,20, and O for £, <0, is

(26.3.13) E, f(x):% g d&, [N (H(x, —y,)—G(x,, £,)) f(y)dy

where H is the Heaviside function, ¥ (x,y)=x, -y, +i(k** —xk*1)/(k+1),
and

(263.14)  G(x,,&p)= [ e= 2" &+ D dy/I(E )= G(x, EL*+ 1, 1),

In view of the elementary estimates valid for £,>0,
(26.3.15) [G(x,,&,)| < Ce™ 2118+ <Q,

1 =G(x,, &,)| < Cem 271k 50

it follows by partial integration with respect to £, that the inner integral in
(26.3.13) is rapidly decreasing when £,—c0. In fact, Imy =0 unless |x,|>|y,|
and then we have H(x, —y,)=0 if x, <0 and H(x,—y,)=1 if x,>0. Thus
(26.3.13) defines a continuous map from Cy to C. From the definitions
above we obtain

(26.3.16) E, (D, +ix'D,)f=H(D,)f, feCy,
(26.3.17) (D, +ixiD,)E, f=H(D,)f-Q.f, feC3.
Passing to adjoints in (26.3.16), (26.3.17) we obtain
(D, —ix{D,)E% f=H(D,)f, E%(D,—ix{D,))f=HD)f-0%f [feCy.

We change the sign for x, which changes the adjoints to

(26.3.18) 0_(x,))=2m)~"' | &4FENGE /1(~E,)
§2<0

(263.19) E_(x,y)= —5'; [ VN (Hy, —x,)—Glyy, —&,))dE,.
§2<0
If we set E=E, +E_ and note that H(D,)+ H(—D,) is the identity, we have
(26.3.20) (D, +ix{D)Ef=f-Q.f, feCy,
(26.3.21) E(D,+ix‘D,)f=f-Q_f, feC?.
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The wave front sets of the kernels of these operators are easily de-
termined. First of all we have

(26.3.22) WF(Q.)={(x&yn; x =y, = =n,=0, x,=y,,{,=1,20},

for WF'(Q.) is contained in the right hand side by (26.3.12), (26.3.18) and
Theorem8.1.9, and Q, is singular at (x,y) if x, =y, =0, x,=y, by (26.3.12)
and its analogue for Q _. For the kernels (26.3.20), (26.3.21) mean that

(D, +ixiD,) E(x,y)=8(x ~y) =@, (x, y),
(—=D,, —iyiD, )E(x, y)=d(x —y) —Q _(x, ),
and the translation invariance in x, gives in addition
(D, + D) E(x,y)=0.

The common characteristics of these operators are defined by &, =#,=0, &,
= —n,+0, x,=y,=0, and at these points one of the operators is micro-
hypoelliptic by Proposition 26.3.4. It follows that WF'(E) is contained in the
diagonal, and since WF(Q_,)uWF'(Q_) is nowhere dense there we must
have equality. We are now ready to prove

Proposition26.3.7. Let E, Q,, Q_ be defined as above. Then (26.3.20),
(26.3.21) are valid for fe&, WF'(E) is the diagonal in (T*R?)~0)
x(T*R?)~0), and WF'(Q,) is the subset defined by (26.3.22). If feH, at
(x°,&% then Q, feH , and EfeH . 4,1y at (x° &%), thus HE™ is mapped
into HY and H |4, 1y by these operators.

Proof. Only the continuity statements remain to be proved. We know
already that Q, as orthogonal projections in [* are bounded there. Let J be
the positive canonical ideal defined by the phase function &,¢(x,y),
&,>0. It is generated by the functions ¢(x,y), &, —i&,x%, n, —in,y} and ¢,
~1n,. Then Q, eI'*+D-#R*J') is non-characteristic in the real set Jg. It
follows that every Qel'**1D-%(R* J') defines an operator which is con-
tinuous from L2~ to L}, for the corresponding operator can be written in
the form QA4 mod C*®, where A4 is a pseudo-differential operator of order 0.
(Note that this follows from Theorem 25.5.6 if k=1 but not for larger values
of k) The H, continuity of Q_, now follows immediately (see for example
the proof of Corollary25.3.2). Hence Q* and therefore @_ is H, con-
tinuous. If fe HSS™P then

(s)
(D, +ixt DZ)Ef=f—Q+fEH:S°)°

s0 EfeH ., 1441y at (x% &% by Proposition 26.3.4 unless this is a character-
istic point with £3<0. For E* we have the same result except at the
characteristic points with £3>0, and this completes the proof.

The operators Q, and Q _ are hermitian symmetric and

(26.3.23) (D, —ix*D,)Q, =0, (D,+ixtD,)Q_=0.
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They are the projection operators on the cokernel and on the kernel of
D, +ix%D,. We shall draw some important conclusions from this after in-
troducing the extra parameters which occur in the n dimensional case. From
now on we therefore redefine E, Q,, O _ by substituting x,, y, for x,, vy, and
taking the tensor product with §(x” —y""), X" =(x,, ..., X,_ ).

Proposition 26.3.7". For the distributions E, Q_., Q_e2'(R>") and the corre-
sponding operators we have
(26.3.20y (D, +ixXXD)Ef=f-Q.f, feé&,
(26.3.21) E(D,+ixXD)f=f-Q_f, feé&,
(26.3.23y (D, —ix*D)Q.f=0, (D, +ix*D)Q_f=0, fe&,
(26.3.22y WF'(Q 1) ={(x,¢, y, me(T*IR")~ 0) x (T*R")~0);

(x’£)=(_))”1)’ x1=€1=07 énzo

or x"=y", &=n, {;=¢,=0},
(263.24)  WF'(E)={(x, &, y,me(T*(R")~0) x (T*R")~0);

(x,)=(y,m or x"=y", &=, {;=,=0}.
If fe€'(R" and feH, at (x°¢&°% and EJ+0, then Q. feH, and
EfeH, 441y at (x°E°.
Proof. (26.3.22Y and (26.3.24) are immediate consequence of Proposition
26.3.7 and Theorem 8.2.9. They show that E and Q, are continuous from &”
to 2', so (26.3.20), (26.3.21) follow since they hold in Cg by (26.3.20),
(26.3.21). It also follows that (x° EO)¢WF(Ef)u WF(Q, f) if (x° E9)¢WF(f)
and £2+0. When proving the last statement we may therefore assume that
feH, and that WF(f) is in a small conic neighborhood of (x°, £°), thus
a,) fel?

if aeé’ and deS(R). But 4(D,) commutes with E and Q, so it follows
from Proposition 26.3.7 that d(D,)Q. fel},., d(D,)EfeH . 1, The state-
ment follows if we multiply by b(D) x(x) where yeCg and beS° is chosen so
that |¢]/|¢,) is bounded in suppb, for b(D)x(x)d(D,) is then a pseudo-
differential operator which can be chosen non-characteristic at (x°, £°).

Proposition 26.3.7" immediately gives back Proposition26.3.4. Indeed, if
ue& and (D, +ix}D,)u= f, then
u=Ef+0Q_u
If feH,, at (x°¢°) and £9>0 it follows that ueH ,, 4. 1, at (x°&°) since
(x°, E9¢ WF(Q _u). We can also obtain Theorem 26.3.6 for the model opera-

tor if we observe that (D, +ix*D,)u=0 when u=Q _ f. We choose fe&" with
WF(f) equal to a ray in 2 _ where

2, ={(x,0)eT*R"); x,=¢, =0, {,20}.
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Then WF(u) is in the same ray by (26.3.22). We can choose f so that u is
not smooth and then give u the desired regularity by applying a suitable
convolution operator in D,. We can also determine completely when the
equation (26.3.4) can be solved microlocally at (x°, &°), provided that £°+0.
Let fe&’ and assume that

(26.3.25) (x°, E¢WF(D, +ix"D)u—f)

for some ue2'. We can of course take ued” then. Since Q (D, +ixtD,)=0
by (26.3.23), because @, is hermitian symmetric, it follows that

(26.3.26) (x% ¢ WF(Q, f).

Conversely, if (26.3.26) is valid then (26.3.25) is satisfied by u=Ef in view of
(26.3.20), so we obtain

Proposition26.3.8. If fe&’, and 040, then one can find ue?' satisfying
(26.3.25) if and only if (26.3.26) is fulfilled.

The condition (26.3.26) is of course automatically fulfilled if (x° E%)¢ZX .
However, if (x° £%eZX, we can as indicated above for Q_ find f so that
WF(Q, f) is generated by (x°¢°) and Q, f has a prescribed regularity.
Using Theorem 26.3.1 we can immediately carry this result over to operators
satisfying the condition there. When k=1 we obtain in particular

Theorem 26.3.9. For every (x°, %)eT*(X)~0 where p=0 and {Rep, Imp}>0
and for any given s one can find feH(X) with WF(f) generated by (x°, £°)
and (x°,E%e WF(Pu —f) for every ue9'(X).

It is also easy to extend Proposition26.3.7 microlocally to operators
satisfying the conditions in Proposition26.3.1. In case N,, defined by
(26.2.2), is the full characteristic variety one can also give a global version of
Proposition 26.3.7". To do so one just combines the local constructions with
a pseudo-differential partition of unity placed to the right (left) except near
Z.(Z,),

(26.3.27) X2, ={(x,0)eT*X)~0; p(x,8)=0, {Rep, Imp} (x,)20}.

These constructions fit together in the complement of X_ouZX, since E is
uniquely determined there mod C®. The details are left for the reader who
might also consult the references at the end of the chapter where it is shown
that Q, and E become unique mod C® if @, are required to be hermitian
symmetric.

26.4. Solvability and Condition (¥)

Let P be a properly supported pseudo-differential operator in a C* man-
ifold X of dimension n, and let K be a compact subset of X. In this section
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we shall prove a necessary condition for the equation Pu= f to be solvable
at K in a very weak sense suggested by Theorem 26.1.7.

Definition 26.4.1. We shall say that P is solvable at K if for every f in a
subspace of C*(X) of finite codimension there is a distribution u in X such
that

(26.4.1) Pu=f
in a neighborhood of K.

In the definition we have not assumed that the neighborhood where
(26.4.1) is valid or the order of the distribution u can be chosen inde-
pendently of f. However, using Baire’s theorem we shall now show that this
is always possible. At the same time we shall show that solvability is
equivalent to a solvability condition mod C*.

Theorem 26.4.2. The following conditions on the properly supported pseudo-
differential operator P in X and the compact set K< X are equivalent :

(i) P is solvable at K.

(i) There is an integer N and an open neighborhood Y<X of K such
that for every feHi‘,’\f)(X) there is a distribution ueH’("_“N)(X) such that
Pu—feC*(Y).

(iii) There is an integer N such that for every feH(X) there is a
distribution u in X such that Pu—feC® in a neighborhood of K.

(iv) There is an integer N such that for every feHS(X) we can find
ueZ'(X) with Pu—feH\%, |, in some neighborhood of K.

(v) There is an integer N and an open neighborhood Y = X of K such that
for every f in a subspace WCH{?\,‘)(X) of finite codimension the equation
(26.4.1) is valid in Y for some ue H{*y(X).

Proof. The implications (ii) = (iii) = (iv) and (v)=>(i) are obvious. We shall
now prove that (i) = (ii). Let || ||, denote a norm in H{3"P(X) which defines
the topology in H{,(M)=H n&'(M) for every compact set M < X. Choose
a fundamental decreasing system of open neighborhoods of K,

Ke..eY,eY,eX.

Since P is properly supported we can find Z€ X so that Pu=0in Y, if u=0
in Z. Fix ¢eCJ(X) with ¢=1 in Z. Then we have Pu=P(¢du) in Y, if
ue2'(X), and supp puc M =supp ¢.

Condition (i) means that we can choose f},..., f,e C*(X) so that for any
feC®(X) we have

(264.2) Pu=f+Yaf, in Yy
1

for some positive integer N, a;eC and ueZ'(X). Since u can be replaced by

¢u we can always choose ue&’(M), hence ueH;_y(M) for some N. The
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union of the sets
Fy={feC™(X); (26.4.2) is valid with ue H{_,(M), Ilull(_N)+Z IajléN}

is therefore equal to C*(X). The set Fy is convex, symmetric and closed
since the set of permitted (u,a,,...,a,) in the definition is convex, symmetric
and weakly compact. Hence it follows from Baire’s theorem that Fy has 0 as
an interior point when N is large. Thus we can find yeC3(X) and N’ so

that FeC®X), xS lwyS1= feFy.

Using the same compactness argument again we conclude that (26.4.2) has a
solution ueH{_y(M), ay,...,a, with Jlu|_y+Y la|SN for every feH,
with | x fll v, <1. This gives (ii) with N replaced by max (N, N’).

It remains to prove that (iv) = (v). To do so we now denote by G, the set
of all feH(y(Y;)=H such that

Pu=f+g in Y,

v

for some geH;y, ,(Y;) and ueH;_, (M) with
(264.3) Hullf_v)-i- "g||(21v+ 1)§v2.

Baire’s theorem gives as above that G, contains the unit ball in H for large
v. The minimum of the left-hand side of (26.4.3) is attained precisely when
(u,g) is orthogonal to all (,g) with Pu'=g’ in Y,, so g is then a linear
function Tf of f (All norms are taken Hilbertian) The map T:
H—Hy “,(7,) has norm <v. Thus T defines a compact operator in H,
which implies that the range of I+ T has finite codimension. The equation
Pu=h in Y, has a solution ue H{_ (M) for every heH in the range of I+ T.
This proves (v) with N replaced by max (N, v).

Remarks. a) If P satisfies (v) and Q is of order —2N —1 then it is clear that
P+ Q satisfies (iv). Thus solvability at K is not destroyed by perturbations
of P of sufficiently low order.

b) In view of (iii) it follows from Theorem 26.3.9 that P is not solvable at
{x} if x is in the projection in X of the set ~', defined by (26.3.27).

¢) In proving that (i) = (ii) it would have been sufficient to know that
(J Fy is of the second category. If P is not solvable at K it follows therefore
that for every finite dimensional subspace W of C*(X) the set

{f+g; feC®(X), Pu=f in a neighborhood of K for some ue2'(X), ge W}

is of the first category in C®(X). For any sequence K;, W, with these
properties we can thus find fe C®(X) so that the equation Pu= f cannot be
solved modulo W, in a neighborhood of K; for any j. In particular, we can
choose feC®(X) so that the equation Pu= f cannot be solved in a neigh-
borhood of any point in the projection of 2, in X. An example is the Lewy
operator P=D, +iD,+i(x, +ix,)D; in R?. Since

2, ={(x,&); §1=x263, £2= "xlé;a, é3>0}
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has surjective projection we can choose fe C*(R?) so that the equation Pu
= f does not have a distribution solution in any open set.

The condition (iii) in Theorem 26.4.2 suggests a definition of solvability
at a set in the cosphere bundle:

Definition 26.4.3. If K is a compactly based cone < T*(X)~0 we shall say
that P is solvable at K if there is an integer N such that for every
feHZ(X) we have K WF(Pu—f)=§ for some ue2'(X).

Solvability at a compact set Mc X is equivalent to solvability at
T*(X)|,,~ 0, by condition (iii) in Theorem 26.4.2. Note that solvability at K
< T*(X)~\0 implies solvability at any smaller closed cone, and that solv-
ability at K only depends on the symbol of P in a conic neighborhood of K.
This makes it possible to prove necessary conditions for solvability by local
arguments where the following proposition can be used:

Proposition 26.44. Let K< T*(X)~0 and K'c T*(Y)~0 be compactly based
cones and let y be a homogeneous symplectomorphism from a conic neigh-
borhood of K’ to one of K such that y(K')=K. Let Ael™(X x Y,I") and
BelI™ (Y x X,(I' ™)) where T is the graph of y, and assume that A and B are
properly supported and non-characteristic at the restriction of the graphs of y
and x~' to K’ and to K respectively, while WF'(A) and WF'(B) are contained
in small conic neighborhoods. Then the pseudo-differential operator P in X is
solvable at K if and only if the pseudo-differential operator BPA in Y is
solvable at K'.

Proof. Choose A,el™"™ (X x Y,I") and B,el ™ (Y x X,(I'"')) properly sup-
ported so that
K'nWF(BA, ~)=0, KnWFA4,B—I)=0,
K'nWF(B,A~D)=0, K~WF(AB,~I)=.

Assume that P is solvable at K and choose N as in Definition 26.4.3. Let
geHy_ . (Y) and set f=A,geH(X). We can then find ue2'(X) with
KNWF(Pu—f)=0. Let v=B,uc2'(R"). Then

WE(Av—u)=WE(AB, —I)u)
does not meet K, so KnWF(PAv—f)=0. Hence
K' nWF(BPAv—Bf)=9.
Since K'nWF((BA, —I)g)=9 it follows that
K'AWF(BPAv—g)=0.

Hence BPA is solvable at K'. Conversely, if BPA is solvable at K’ it follows
that A,BPAB, is solvable at K. Since K WF(A,BPAB, —P)=9 this means
that P is solvable at K, which completes the proof.
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As a final analytic preparation for the proof of necessary conditions for
solvability we shall show that solvability of P implies an a priori estimate
for the adjoint operator P*.

Lemma26.4.5. Let K be a compactly generated cone < T*(X)N\0 such
that P is solvable at K, and choose YEX so that KcT*(Y). If N is the
integer in Definition 26.4.3 we can find an integer v and a properly supported
pseudo-differential operator A with WF(A)n K =9 such that

(2644) 0l < CUP*oll oy + ol _y_n+ 140l o) veCRAY).

Proof. Let YEZ€ X. We claim that for fixed f in the Hilbert space Hfm(f)
we have for some C, v and A as in the lemma

(2645) (Lol S CUIP*vll )+ ol _y_nm+1A0lg),  veCT(Y).

In fact, by hypothesis we can find v and g in &'(X) so that f=Pu+g and
K nWF(g)=0. Thus

(f,o)=(u, P*v)+(g,v), veCg(Y)

Choose properly supported pseudo-differential operators B, and B, of order
0 with I=B, + B, and WF(B,)n WF(g)=0, WF(B,)n K =@ which is possible
since. WF(gJnK=@. Then B,;geC® so (B;gv) can be estimated by
Clivll _y_n We have for some p

|(B,g, ») £ B3 vl = C1BB3 vl o)+ 10l (_y_m)

if B is elliptic of order y and properly supported. This gives (26.4.5) with 4
=BB%.

Let V be the space CJ(Y) equipped with the topology defined by the
semi-norms (vl _y_,, 1P*vl,,, v=1,2,..., and ||Av],, where A is a proper-
ly supported pseudo-differential operator with K WF(A)=@. It suffices to
use a countable sequence A,,4,,... where A, is noncharacteristic of order v
in a set which increases to T*X)~0~ K as v—oo. Thus V is a metrizable
space. The sesquilinear form (f,v) in the product of the Hilbert space
HfN)(f) and the metrizable space V is obviously continuous in f for fixed v,
and by (26.4.5) it is also continuous in v for fixed f. Hence it is continuous,
which means that for some v and C

I(fv)ls C”f”(N)(”P*U”(v)+ ||Avvl|(0)+ “U”(—N—n))s

feHy(Z), veCg(Y).
This implies (26.4.4).

Proposition 26.3.8 suggests that an operator Pe¥p,, with principal
symbol p is not solvable at a characteristic point where Imp changes sign
from — to + on the oriented bicharacteristic of Rep. However, from
Proposition 26.4.4 we know that a necessary condition for solvability stated
in terms of p should be invariant under multiplication by non-vanishing
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homogeneous functions, so we are led to the following somewhat more
complicated looking condition:

Definition 26.4.6. The positively homogeneous function pe C*(T*(X)\0) is
said to satisfy condition (%) in the open set Y < X if there is no positively
homogeneous complex valued function g in C®(T*(Y)~0) such that Imgp
changes sign from — to + when one moves in the positive direction on a
bicharacteristic of Regp over Y on which g+0. (Sometimes p is then said to
satisfy (¥).)

Recall that a bicharacteristic of r is an integral curve of the Hamilton
field H, where r=0. We shall say that a bicharacteristic of Regp where
q+0 is a semi-bicharacteristic of p. The main purpose of this section is
to prove the following theorem.

Theorem 26.4.7. Suppose that there is a C* positively homogeneous function q
in T¥(X)~0 and a bicharacteristic interval t—y(t), a<t<b, for Reqp such
that q(y(t))+0, a<t<b, and

Imgp(y(a)) <0 <Imgqp(y(b)).
Then P is not solvable at the cone generated by y([a,b]).

Corollary 26.4.8. If P is solvable at the compact set K< X then K has an
open neighborhood Y in X where p satisfies condition ().

Proof. By condition (v) in Theorem 26.4.2 we can find a neighborhood Y of
K such that P is solvable at any compactly generated cone Mc T*(Y).
Hence the statement follows from Theorem 26.4.7.

Without using Theorem 26.4.7 but only results already established we
can prove that Imgp cannot change sign from — to + on a bicharacteristic
of Regp at a point (x° E%)eT*(Y)\0 where Imgp vanishes of finite order.
In fact, if Q is a pseudo-differential operator with principal symbol g we
know from Proposition 26.4.4 that QP must be solvable in a neighborhood
of (x° &%). On every bicharacteristic of Regp nearby there must be a zero
(x',£') where the same sign change occurs, and we choose it so that the
order of the zero is minimal. Then gp satisfies the hypothesis of Theo-
rem21.3.5 at (x',£') so using Proposition 26.3.1 we can transform QP
microlocally at (x*,&') to the operator D, +ixiD, at (0,¢,), where it is not
solvable by Proposition26.3.8. In view of Proposition26.4.4 this is a con-
tradiction proving the weaker form of condition ().

Before proving Theorem 26.4.7 in complete generality we must study the
geometrical situation in some detail; this will also lead to a simpler form of
condition (¥). Suppose that the hypotheses of Theorem 26.4.7 are fulfilled,
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and choose a pseudo-differential operator Q with principal symbol g. Then the
principal symbol of P, = QP is p = gp, so Imp, changes sign from — to +
along a bicharacteristic of Rep,. We then set B,=Q,P, where Q, is of
degree 1 —degree P, and has positive, homogeneous principal symbol. If p,
is the principal symbol of B, then Imp, and Imp, have the same sign and
Rep, has the same bicharacteristics as Rep, including the orientation. In
view of Proposition26.4.4 it is therefore sufficient to prove Theorem 26.4.7
in the case where g=1 and p is of degree 1. The bicharacteristics of Rep
can then be considered as curves on the cosphere bundle. If the curve where
Imp changes sign is closed on S*(X) we can always pick an arc which is not
closed where the change of sign still occurs, and this we assume done in
what follows. We can then use Proposition 26.1.6 and Proposition 26.4.4 to
reduce the proof further to the case X =IR", Rep=¢£,, and the bicharacteris-
tic of Rep given by

(26.4.6) asx,Sb,  X'=(xp...x)=0, &=¢,

Gilobal problems might occur in our constructions if b—a is large so we
shall examine how small the intervals can be where the crucial sign change
occurs. To do so we set

L(x,&)=inf{t —s; a<s<t<b, Imp(s,x',0,&)<0<Imp(t,x',0, )}

when (x, &) is close to (0, ¢,), and we denote by L, the lower limit of L(x', &)
as (x',£)—(0,¢,). For small 6>0 we can choose an open neighborhood V; of
(0,¢,) in R?*"~? with diameter <¢ such that L(x',¢)>L,—§/2 in V. For
some (xj, E)eV; and s;, t; with a<s; <t;<b we have

ts—s;<Lo+96/2, Imp(s;,x;5,0,&)<0<Imp(t,, x5,0,&).

It follows that Imp(t,x’,0,&) and all derivatives with respect to x’, £ must
vanish at (¢,x},0,&5) if s;+0<t<t;—0, for otherwise we could choose
(x', &)e Vs so close to (xj, &;) that

Imp(t,x',0,8)+0, Imp(s;,x',0,") <0 <Imp(t,,x',0,¢).

The required change of sign must then occur in one of the intervals (s;,¢)
and (t,t;) which is impossible since they are shorter than L, —3/2.

Choose a sequence 6,0 such that lims; =a, and lim ¢, =b, exist.
Then b, —ay,=L, and Im p{\(£,0,¢,)=0 for all &, § with a; =0 if a,<t<b,.
If ay<b, it follows in particular that we have a one dimensional bicharac-
teristic in the following sense:

Definition 26.4.9. A one dimensional bicharacteristic of the pseudo-dif-
ferential operator with homogeneous principal symbol p is a C' map
y: I > T*(X)~0 where I is an interval on R, such that

(i) p(()=0, tel,

(ii) 0%y (O)=c( H (y(t)) if tel.
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In order to achieve a simplification of p similar to that in Theorem
21.3.6 near a one dimensional bicharacteristic we shall now prove that the
choice of the function ¢ in Definition 26.4.6 is not very essential there.

Lemma 26.4.10. Let y: I — T*(X)~\0 be the inclusion of a characteristic point
for p or a compact one dimensional bicharacteristic interval and assume that
Jor some qe C® we have

(1) %0 and ReH_,+0 on y(I),

(1) there is a neighborhood U of y(I) where Im qp never changes sign from
— to + along a bicharacteristic of Reqp.
Then (ii) is valid for every q satisfying (i).

Note that no homogeneity is assumed here so we could in fact have an
arbitrary symplectic manifold. This will be allowed in the following more
general statement of the result which is actually easier to prove.

Lemma 26.4.10". Let I be a point or a compact interval on R, and let y: - M
be an embedding of I in a symplectic manifold M as a one dimensional
bicharacteristic of p=p, +ip,, if 1 is not reduced to a point, and any charac-
teristic point otherwise. Let

2
f:i=zajkpk7 j=172a
1

where det(a;)>0 on y(I). Assume that H, 0 and that H, 0 on y(I). If
y(I) has a neighborhood U such that p, does not change sign from — to +
along any bicharacteristic for p, in U, then U can be chosen so that f, has no
such sign change along the bicharacteristics of f, in U.

Proof. First note that if p=0 at a point in U then

{pi,ps) =Hp,P2 0.
Hence we have at the same point

{fi.friY={a,1p1+ai,p;, P +a,,P,}
=(ay,0;,—0a,,0,1){p;, P2} =0.

The proof is now divided into two steps, the first of which is quite trivial.

(1) Assume first that a,,=0. Since a,,a,,>0 either a,, and a,, are both
positive or both negative. Thus the bicharacteristics of f,=a,,p, are
equal to those of p, with preserved and reversed orientation respectively,
and f,=a,,p, when p,=0 so f, has the same and opposite sign as p,,
respectively. The lemma is therefore true in this case.

(i1) Proposition 26.1.6 obviously has an analogue for a general symplec-
tic manifold where we just drop everything referring to the multiplicative
structure in T*(X)~0. The proof is the same except that we start from
Theorem 21.1.6 instead of Theorem 21.3.1. By a canonical change of vari-
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ables we can therefore make M=R?" p,=¢, and TI'=y(I) equal to an
interval on the x, axis. Let T be a vector eR*" with

(Tdp,>=1, <(Tdf>+0 on I.

Since dp, and df, do not vanish on I, the existence of T is obvious if I'
consists of a single point. Otherwise dp, is proportional to dp, on I" so df,
is proportional to dp,. We can take any T with £, coordinate equal to 1
then.
Set
42(x, ) =p,((x,8) =&, T)

which means that p,=q, when £, =0 and that g, is constant in the direc-
tion T. Then there is a C* function ¢ such that

4,=¢p,+p,

so it follows from step (i) that the hypotheses in the lemma are fulfilled for
p,+ig,. We have

fi=@;—a,9)p, +a,4q,,
hence

0+£(Tdf>=(a;,—a,;,¢) onT.
In a neighborhood of I we can therefore divide f; by a,, —a,,¢ and set

g, =filla;—a,,9)=p,+a,,a,, —a,,$)"'q,

which implies
2
j:,'=zbjqu, j=12,
1

where b,,=a,,—a,,¢, b,,=0 and detb=deta>0. Thus it follows from
step (i) that it is sufficient to prove that (q,,q,) satisfies the hypothesis made
on (p,,p,) in the lemma. The difficulty here is that the surfaces p, =0 and
q,=0 are not the same. We shall identify them by projecting in the direc-
tion T.

Let U be a neighborhood of I' where g, does not change sign from — to
+ on the bicharacteristics of p,. Since T is transversal to the surface f; =q,
=0 we can choose U so small that

Y= {(xs 6)6 U; ql(xy 6) =O}
is mapped diffeomorphically by the projection = in the direction T on
X={(x,8)eU; £, =0}.

When ¢, =¢,=0, thus p, =p,=0, we have H, q,=H, p,<0. At a point in
Y where g, =0 and dg, vanishes on the tangent space of Y, we have dq,=0
since (T,dq,>=0. Hence w=H_=H, there so n,w=H, . If we apply the
following lemma to f=gq,=n*q, and the vector fields v=(z"'),H, and w
=H, in Y, it follows that g, cannot change sign from — to + along a

bicharacteristic of g, in Y, which proves the lemma.
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Lemma264.11. Let feCYY) where Y is a C? manifold and let v be a
Lipschitz continuous vector field in Y such that for any integral curve t+ y(t)
of v we have

(26.4.7) fpO)Y<0 = f(y()) <0 for t>0.
Let w be another Lipschitz continuous vector field such that
(26.4.8) (w,df) <0 when f =0
(26.4.9) w=v when f=df =0.

Then (26.4.7) remains valid if y(t} is an integral curve of w.

Note that (26.4.8) is empty when f=df =0 so it is natural that another
condition must be imposed then.

Proof. Let F be the closure of the union of all forward orbits for v starting
at a point with f(y)<0. By (26.4.7) we have f <0 in F, and F contains the
closure of the set where f<0. Orbits of v which start in F must remain in
F. If now (y,n)eN,(F) (Definition 8.5.7) then y is in the boundary of F so
f(»)=0. If df(y)#0 then F is bounded by the surface f=0 in a neigh-
borhood of y, so n must be a positive multiple of df(y) and {(w(y),n> <0 by
(26.4.8). If df (y)=0 we have {w(y),n>={v(y),%) by (26.4.9), and {v(y),n> =<0
by condition (ii) in Theorem 8.5.11. Hence w satisfies condition (ii) in Theo-
rem 8.5.11 so condition (i) there is also fulfilled, which proves the lemma.

Before proceeding with the proof of Theorem26.4.7 we digress to give
two alternative forms of condition (¥).

Theorem 26.4.12. Each of the following conditions is necessary and sufficient
for the homogeneous C* function p in T*(Y)~ 0 to satisfy condition (¥):

(¥)) There is no C® complex valued function q in T*(Y)~0 such that
Imgqp changes sign from — to + when one moves in the positive direction on
a bicharacteristic of Re qp where q+0.

(¥,) If I is a characteristic point with H, %0 or a compact one dimension-
al bicharacteristic interval with injective regular projection in S*(Y) then there
exists a C* function q in a neighborhood Q of I' such that Re H ,+0 in Q
and Imqp does not change sign from — to + when one moves in the positive
direction on a bicharacteristic of Reqp in Q.

Proof. 1t is clear that (¥,) =>(¥); the difference is just that g is not assumed
bhomogeneous in (¥,). To prove that (¥)=>(¥,) we only have to show that
ReH ,#0 on I' for some homogeneous g. This is clear if I' is a point.
Otherwise I' has a parametrization t+I'(t) with I"()=c(t) H (I'(¢)). If the
parameter is suitably normalized then c(t) and I'(t) are C® functions. If =:
T*(Y)~0—-S*(Y) is the projection then t+—=nI'(t) is an embedding of an
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interval so we can find a C® function g, on S*(X) with g (zI'(t))=c(t). Thus
g=mn*q, 1s homogeneous of degree 0 and Re H,,+0on I

It remains to prove that (¥,)= (%)) or equivalently that (¥,) is false if
(¥) is. So let g be any function in C®(T*(Y)~0) such that Imgp changes
sign from — to + on a bicharacteristic y of Regp where g40. As above we
can find a compact one dimensional bicharacteristic interval I'cy or a
point I'ey such that the sign change occurs on bicharacteristics of Regp
arbitrarily close to I' By Lemma26.4.10 this remains true for any other
choice of g with Hg,,,+0 on I', so (¥,) will be proved false if we show that
7 is injective and has injective differential on I', when I' is a one dimension-
al bicharacteristic interval. If H, has the radial direction at some point on I’
then the whole orbit of Hg,,, starting at I', and in particular y, would just
be a ray where p=0 identically. This contradicts our assumptions so n
restricted to I' has injective differential. If I is a closed smooth curve then
p would also vanish identically on y which is again contradictory. Finally it
cannot happen that moI returns to the same position with a change of
orientation, for a one dimensional bicharacteristic is uniquely determined by
its starting point and the choice of orientation there. If moI'(t,)=mnoI'(t,),
t, <t,, and the orientations are opposed, then we can for any t; >t, close to
t, find t), with ¢} <t} <t, and no I'(t})=mo I'(t}). The supremum ¢ of such ¢}
must be equal to the infimum of the corresponding t, which contradicts
that #oI' has a nonzero tangent at moI'(t). Thus (¥,) is false and the
theorem is proved.

The interest of condition (¥,) is of course that it eliminates the need to
consider arbitrary functions ¢. In case I' is a point it suffices to check it for
g=1 and for g=i.

To simplify the principal symbol near a one dimensional bicharacteristic
we need a global version of Theorem 21.3.6.

Proposition 26.4.13. Let p be a C® homogeneous function on T*(X)\0, let I
be a compact interval on R not reduced to a point and Iat—y(1)eT*(X)~0 a
one dimensional bicharacteristic, ye C®. Assume also that the composition of y
and the projection T*(X)~Q— S*(X) is injective, which means in particular
that H (y(t)) never has the radial direction. Then there is a homogeneous C®
canonical transformation y from a conic neighborhood of {(x,¢,), x,€l, x'=0}
in T*(IR™)\0 to a conic neighborhood of y(I) in T*(X)~0 and a C* homo-
geneous function a of degree 1 —m with no zero on y(I) such that y(x,,0,¢,)
=7y(x,), x,€l, and

(26.4.10) Map)=&;+if (x,)

where f is real valued, homogeneous of degree 1 and independent of &,.

Proof. Essentially we just have to inspect the proof of Theorem 21.3.6 to see
that it works globally. First choose as in the proof of Theorem26.4.12 a C*®
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function g, homogeneous of degree 1 —m, such that g(y(t))=c(t) where c is
thg function in Definition 26.4.9. Then

V(O)=Hgeg (1)), dImgp=0 at y(1), tel.
From Proposition26.1.6 it follows that we can find a canonical transfor-
mation y satisfying the conditions in the theorem except that
x*ap)=¢, +igx, {)

where we only know that dg=0 on Ix (0, ¢,). Using Malgrange’s prepara-
tion theorem we can find h and r homogeneous of degree 0 and 1 respec-
tively, and C® in a neighborhood of I x (0, ¢,), so that

(24.4.11) Eo=h(x, E)(&, +ig(x, &) +r(x, &).

In fact, it suffices to prove this when £,=1 and then extend from there by
homogeneity. As in the proof of Theorem 21.3.6 the preparation theorem
gives a local solution at any point in I x (0, ¢,), and the local solutions can
be pieced together by a partition of unity in x, to a solution in a neigh-
borhood of Ix(0,¢,). Note that h=1 and dr=0 on Ix(0,¢,). Writing r=
r,+ir, we want to introduce

ylle’ rllzél—rl(xa é/)
as new canonical variables. We choose
Va=X,, N,=C5, oo n,=&,  when x,;=0

and determine these canonical variables so that they are constant along the
orbits of H, . One of these contains I x(0, ¢,), $O y,, 11, ... will be defined in
a neighborhood. The commutation relations are fulfilled by the Jacobi
identity since they hold when x, =0. Hence we obtain a canonical transfor-
mation y, keeping I x(0, ¢,) fixed, such that h(x, &)(¢, +ig(x, £)) composed
with yx, is equal to n, +if(y, n) where f(y, n)= —r,(x, £'). Now
offon,={fiy;}=—{rs, x,}=0
$0 yox, and g(x~')*h have the desired properties.

If we combine the discussion preceding Definition 26.4.9 with Proposi-
tion 24.4.13 or Theorem 21.3.6 we conclude in view of Lemma 26.4.10 that
Theorem 26.4.7 follows if we prove

Theorem 26.4.7". Suppose that in a conic neighborhood of
r={(x,,0,0,¢%, ay<x,<by} = T*R")~0
the principal symbol of P has the form
p(x, =& +if (x, &)

where f is real valued and vanishes of infinite order on I if by>a,. Assume
also that in any neighborhood of I' one can find an interval in the x,
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direction where f changes sign from — to + for increasing x,. Then P is not
solvable at I

In the proof of Theorem 26.4.7 we may also assume that the lower
order terms pgy, p_4, ... in the symbol of P are independent of &, near I'. In
fact, Malgrange’s preparation theorem implies that

Po(x. ) =q(x, (& +if (x, &N +r(x, &)

where g is homogeneous of degree —1 and r homogeneous of degree 0. (See
the proof of Proposition 26.4.13)) The term of degree 0 in the symbol of
(I —q{x, D))P is equal to r(x, £'). Repetition of the argument allows us to
make the lower order terms successively independent of &, .

To prove Theorem 26.4.7° we shall use Lemma 26.4.5 which shows that it
suffices to construct approximate solutions of the equation P*v=0 con-
centrated so near I' that (26.4.4) cannot hold. Let us first show how this can
be done in the simple case where I'={(0,¢,)} € T*(R") and P=D, +ix,D,.
(In that case we know of course already from Proposition 26.3.8 that there
is no solvability.) Set

(26.4.12) v,(x)= ¢p(x) &>
where ¢ € CF(R") is equal to 1 in a neighborhood of 0 and
w(x)=x,+i(xI+x3+...+x2_, +(x,+ix?/2)?)/2
satisfies the equation P*w=0. If supp ¢ is small enough then
Imw(x)>|x|?/4, xesuppd,

so v, — 0 in C®°(R"\ 0) and 7™V P*v, = T™N(P*¢)e'™ — 0 in C{P(R") for
any N. We have v,(x) = ¢ ™ V,(x/7) where V,(x) = V(x) = e~ /2 in 7 ag
T — +00. Since 9,(€) = 772V, ((€ ~Te,) /1) it is clear that D,.(£)(1+]EHY — 0
uniformly for any N outside any conic neighborhood of €, and on any compact
set, so Av, — 0 uniformly for any properly supported pseudo-differential operator
A such that (0,&,) ¢ WF(A). We also have

oz, z= 25" "2 || V|2,  as t—o0,

and these statements together show that (26.4.4) cannot be valid.

Using Theorem 21.3.3 and Proposition 26.3.1 we can adapt the preced-
ing construction to prove that (26.4.4) is not valid if there is a point
(x, &) e T*(Y)~0~ WF(A) where p(x, £)=0 and {Rep, Imp}(x, £)>0. When
proving Theorem 26.4.7 we may therefore assume that

(26.4.13) fx,&)=0=0f(x,¢{)/0x, <0

in a neighborhood of I'. This will be important for an application of
Lemma 26.4.11 later on.
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In the general proof of Theorem 26.4.7" we shall take v, of the form
M
(26.4.14) v (x)=e™®Y ¢ (x) 7
_ 0

where Imw=0 with equality at some point and strict inequality outside a
compact set, which makes v, very small and ¢,; irrelevant there as t— oo.
The principal symbol of P* is &, —if(x, ') near I'. To make P*y, small the
first step is therefore to construct a phase function w satisfying the eiconal
equation

(26.4.15) ow/ox, —if(x,0w/dx")=0

approximately. When that has been done, which is the main problem, we
shall choose appropriate amplitude functions ¢, ¢,,... successively.
(Roughly speaking these steps correspond in the preceding proof of (26.4.13)
to the application of Theorem 21.3.3 and of Proposition 26.3.1 respectively.)

To simplify notation we shall in what follows write ¢ instead of x, and x
instead of x’, so (26.4.15) takes the form

(26.4.15) dw/ot—if (¢, x, 8w/dx)=0.

To keep as much as possible of the qualitative properties of (26.4.12) we
shall choose w so that Imw is strictly convex in x for fixed ¢ and has its
minimum on a smooth real curve x = y(¢). Thus we shall have

Imow(t, x)/éx=0 when x=y(t),
so we are led to looking for a solution of (26.4.15) which has the form

(26.4.16) w(t, )=wo()+<{x—y(O)nt)) + Y w ()= yE)/lel!.

22lalsM

Here M is a large integer and it is convenient to use, during the present
discussion only, the notation a=(«,, ..., o)) for a sequence of s=|a| indices
between 1 and the dimension n—1 of the x variable. w, will be symmetric in
these indices. If we make sure that the matrix (Imw) is positive definite
then Imw will have a strict minimum when x=y(t) as a function of the x
variables, for #(t) will be real valued.

On the curve x = y(t) the equation (26.4.15) reduces to

©) wo () =<y (@), n(O)> +if (2, y(1), n(2)).

This is the only equation where w, occurs so it can be used to determine w,
after y and n have been chosen. In particular

Oy dImwq(e)/de=f(t, y(e), n(t)).

If f(t, y(t), n(t)) has a sign change from — to + then Imwg(f) will start
decreasing and end increasing, so the minimum is attained at an interior
point. We can normalize the minimum value to zero and have then for a
suitable interval of ¢ that Imw,>0 at the end points and Imw,=0 at some
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interior point. Thus Imw=0 with equality attained but strict inequality
valid outside a compact subinterval of the curve.
Our purpose is to make (26.4.15) valid apart from an error of order
M+1 in x—y(t). Actually f(t, x, &) is not defined for complex &, but since
Ow(t, x)/0x;—n;(t)= 3 w, ;(£)(x — y(£))*/lel!
this is given a meaning if f(¢, x, 0w/0x) is replaced by the finite Taylor
expansion
Y. L0, x, n(@)@w(t, x)/0x—n@)F/\BI!.
1Bi=M
Note that to compute the coefficient of (x —y(t))* we just have to consider
the terms with || <|a|. We have
Owjot=wo =Y, ) +<x =y, 0>+, W) (x — y)F/la!
=Y ¥ wu—yrdydtfall,

K 1zla=M -1

so the first order terms in the equation (26.4.15) give

1) dn,-/dt—; wi()dyJdt=i(f;(t, y, n)+§f""(t, ¥, Mwi(e).
Since y and # are real, this is a system of 2n equations

y dn;/dt —Ek: Rew, () dy,/dt= —; Imw, (6) f®¢, y, 1),
1y ; Imw, (e)dy,/dt=—f,(t, y,n) —% Rew;, (1) ¥, y, ).

When Imw,, is positive definite we can solve these equations for dy/dt and
dn/dt. At a point where f=df =0 they just mean that dy/dt=dn/dt=0.
When 2<|a|< M we obtain from (26.4.15) a differential equation

(a) dwa/dt—;wa,kdyk/dtzpa(t’ Y. 1, {wﬂ})

where F, is a linear combination of the derivatives of f of order =<|aj
multiplied by polynomials in wg with 2<|B|<|a|+1. (When |a|=M the sum
on the left-hand side of () should of course be dropped and [B]|<|a].)
Altogether (1), (1)” and () form a quasilinear system of differential equa-
tions with as many equations as unknowns, so it is clear that we have local
solutions with prescribed initial data. As seen above F(t,0,¢£%.)=0 if
ag<t<b,, so when a,<t<b, we have the solution y=0, n=¢&°
=(0,...,0, 1), w,=constant. Hence we can find ¢>0 such that the equations
(1) and (o) with initial data

(26417)  wy=i8,, w,=0 when 2<|u|<M, 1=(aq+b,)2
(26.4.18) y=x, n=¢ when t=(ag+bo)2

have a unique solution in (a,—c, by +c) for all x, & with |x|+|&—¢&% <c.
Moreover,
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(i) (Imw;, —4;,/2) is positive definite,
(it) the map
(x, &= 1) IxI+]E-E0% <, ag—c<t<by+c

is a diffeomorphism.

In the range X, of the map (ii) we denote by v the image of the vector
field /0t under the map. Thus v is the tangent vector field of the integral
curves. Note that v=0/0t when f=df=0. Since we have assumed above
that /=0 implies 0f/0t <0 in X_ (cf. (26.4.13)), if ¢ is small enough, we can
now apply Lemma 26.4.11 with the vector field v just defined and w=4/0r.
The conclusion is that f must have a change of sign from — to + along an
integral curve of v in X, for otherwise there would be no such sign change
for increasing t and fixed (x, &), and that contradicts the hypothesis in
Theorem 26.4.7'. Recalling the discussion of the equation (0) above we have
therefore proved

Lemma 26.4.14. Assume that the hypotheses of Theorem 26.4.7 are fulfilled
and that in a neighborhood of I' we have 0f/0t <0 when f =0, the variables
being denoted by (t, x) now. Given M one can then find

(i) a curve t(t, y(t), 0, n(t))eR2", @’ <t £V, as close to I' as desired,
(i) C* functions w,(t), 25|a]<M, with (Imw;, —é;,/2) positive definite
when a' <t b
(iii) a function wy with Imwy(t) 20, o' <t <V, Imwy(a) >0,
Imwy(b')>0 and Imwy(c)=0 for some c' e(a’, b’)
such that (26.4.16) is a formal solution of (26.4.15) with an error which is
O(x—y@)™*1).

Before passing to the choice of the functions ¢; in (26.4.14) we shall
make some general remarks which show what is required to disprove
(26.4.4). In doing so we revert to the symmetric notation in (26.4.14) where x
denotes all the variables in R".

Lemma 26.4.15. Let v, be defined by (26.4.14) where we C*(X), ¢;e CF(X),
Imw=0 in X and d Rew#0. Here X is an open set in R". For any positive
integer N we have then

(26.4.19) lod_msCt N,  1>1.
If Imw(xy)=0 and ¢o(x,)*+0 for some x,€ X then
(26.4.20) odl_pmZct 2N, 1>1,

for some ¢>0. If T" is the cone generated by

(26.4.21) {(x,w'(x)), xe|Jsuppg;, Imw(x)=0}
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then 1“v,—0 in D% as 1->c0, hence 1*Av,~0 in C*(R"), if A is a pseudo-
differential operator with WF(A)n T =@, and k is any real number.

Proof. For every neighborhood U of the projection of (26.4.21) on the
second component in IR” and every positive integer v we have

(26.4.22) BOISC(+E+1)~"  if 1>1, &g U.

This follows from Theorem 7.7.1 since x> (tw~{x, EM/(t+]E|) is in a com-
pact set of functions with non-negative imaginary part and differential +0
at the real points. If we choose U bounded with 0¢ U then

18P A+1EP) N dE=0(2")
114

since v, is bounded in I* Together with (26.4.22) this gives (26.4.19). If
x € CY the estimate (26.4.22) is applicable to yv, as well. Hence

IS CA+El+T) ™" 1>1, EeV,

if V is any closed cone with I'n(suppy x V)=0; hence t*v,—0 in @} for
every k. To prove (26.4.20) finally we assume that x,=0 and observe that
when € C§ we have if w(0)=0

T, YlE ) =T Y g 0x/m T dx
=[O (x) $o(0)dx,

which is not equal to O for a suitable choice of ¥. Since

iy (z wm= O(TN —"/2)
it follows that ¢ << *"?|jv || _y,, which proves (26.4.20).

As already pointed out Theorem 26.4.7 will be proved by showing that
(26.4.4) cannot be valid. To do so we first use Lemma 26.4.14 to choose a
function w in a neighborhood Y of {(x,,0); a,<x,<b,}<R" such that
Imw>0 in Y except on a compact non-empty subset K of a curve x’'
=y(x,). In addition

Iy ={(x, w'(x)), xe K}
is in a small conic neighborhood of I' which does not meet WF(A) and
where the symbol of P* is of the form &, +iF(x, &), —f being the principal
symbol of F. If we apply (26.4.4) to a function of the form (26.4.14) where
¢0 %0 at some point in K, it follows from Lemma 26.4.15 that the left-hand
side has a lower bound ct~"2~" and that there is a smaller bound for the
last two terms in the right-hand side. If we can prove that

(26.4.23) | P* Ur“(v)=0(T”N*‘"+”/2)

it will follow that (26.4.4) is not valid.
If B is a pseudo-differential operator of order 0 with symbol 1 in a conic
neighborhood of I then (I —B)P*t*v,—»0 in C* for any k. We can choose
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B with WF(B) so small that &' %0 and the symbol of P* is £, +iF(x, &) in a
conic neighborhood. Then it follows from Theorem 18.1.35 that the product
B(P*—D, —iF(x,D’)) is a pseudo-differential operator with wave front
set disjoint with I,. Here F(x,D’) is a pseudo-differential operator in
n—1 variables depending on x, as parameter. Hence (26.4.23) will follow if

(26.4.24) Dy, +iF (x, Do (=0 (e~ N~ "+ DI%),

Since F(x,D') is a pseudo-differential operator in the variables
(x,, ..., x,) it is convenient to change notation again so that x, is denoted
by t and the other variables are denoted by x. Thus (26.4.24) is written now

(26.4.24)y ||(l)l +iF(t, x, D)) U,"(v) = O(‘[—N—'('I-I- 1)/2).
In our construction we shall actually aim for the estimate
(26.4.24)" (D, +iF(t, x, D))v < Cr~N-0r+ 22—,

and we shall see afterwards that (26.4.24) is obtained at the same time.

To make the left-hand side of (26.4.24)' small we need a formula for how
F(t, x, D) acts on functions of the form (26.4.14). This could be obtained
from the work in Section 25.3, but we prefer a direct elementary proof. To
simplify notation we suppress the parameter ¢ in the proof.

Lemma 264.16. Let gq(x,&)eS*(R"'xR"Y), let ¢eCPR"?),
we C*(R"~1), and assume that Imw>0 except at a point y where w'(y)
=neR"~'\0 and Imw" is positive definite. Then

(26.4.25) |q(x, D)(¢e"f“')_ Z q(ﬂ)(x, Tﬂ)(D—Tﬂ)a((ﬁe“w)/a!léCk‘r“—klz;

ol <k
>1, k=1,2,....

Proof. Let us first observe that

(26.4.26) (D—tn)y¢e™|=|D*¢e*™ <M} Crlli2,

In fact, if j of the |a| derivatives fall on the exponential they bring out a
factor ©/ but also j factors 0w/dx;—n; vanishing at y. If j>|a}/2 the remain-
ing |a| —j derivatives can only reduce the order of the zero to j—(|o| —j)=2j
—|al, so the term is bounded by a constant times

. T
tx—y|¥ el g=ctlx~y2 < Cglaliz

Note that (26.4.26) explains the power of t in the right-hand side of
(26.4.25).
To prove (26.4.25) we set u (x)=¢(x)e'™™ and study

()= [ $lx) e~ .
As in the proof of (26.4.22) it is clear that for every v
(26.4.27) [ = CUE+1™",  1>1,
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if |&€/t—n|=|nl/2, say. On the other hand, if |¢/t—n|<|n|/2 we can also
apply Theorem 7.7.1 with f(x)=w(x)—<x, £/t) noting that

In~¢&/tl> +|x—y1> < C(lgrad |* + Im f)
since f'(x)=w'(x)—&/t=n—E&/t+ O(x—y|). Hence
(26.4.28) [E (S Cor~*In—&/al == Ct*lrn -7~
In the integral
q4(x, D)(pe™)=2n) " [ &** q(x, &) 4, (§)d¢&

the contributions when |&/t1—n|>|n}/2 are rapidly decreasing by (26.4.27).
When |¢/t—n} <|n|/2 we replace g by the Taylor expansion at t# of order k.
This gives the sum

| Izk(2ﬂ)"'fei<"'§> g0, T — )b (E)dEfal.

Extending the integration to the whole space will only mean a change by a
rapidly decreasing function, again by (26.4.27), and the sum is then equal to
that in (26.4.25). The error term in Taylor’s formula can be estimated by
Ct**ltn—¢f. If we use (26.4.28) with k replaced by k/2 it follows that the
contribution from the error term to the integral when |&/t—n|<|nl/2 is
O(t**"~¥2), This proves (26.4.25) apart from an extra factor t" in the right-
hand side. If we apply this weaker result with k replaced by k+2n and
recall (26.4.26), we obtain (26.4.25).

If g is homogeneous of degree u, then the sum in (26.4.25) consists apart
from the factor €™ of terms which are homogeneous in © of degree p,
u—1,.... The terms of degree u are those in

¢34 x, Tn)(tw (x)—Tn)/a!

which is the Taylor expansion at tn of the possibly undefined quantity
g(x, Tw'), just as in the discussion of (26.4.15) above. The terms of degree
u—1 where ¢ is differentiated are similarly

'S @¥(x, W () Dy
1

where g™ should be replaced by the Taylor expansion at tn representing
the value at Tw'(x).

End of Proof of Theorem 264.7'. With v, defined by (26.4.14) we have now

proved that "

(D, +iF(t, x, D) v, =€ (z by + 0G0,
where 0

(26.4.29) ¥ ,-=D,¢,~+§c.‘(t, x)D,¢;+cod;+R;
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with R;=0 and R; otherwise determined by ¢g,...,¢; ,. Here ¢, is a
partial sum of the Taylor series at n(r) for —if®(t, x, w/(t, x)) but this is of
no importance. Set

bt X)= ) Pou)x—y()F

laj< M

with y(t) as in Lemma 26.4.14. Then
bo= (Dot Lault, 9D, +co ) b =0((x =y )¥)
2
if ¢, satisfy a certain linear system of ordinary differential equations
Dipo+ Y dapPos=0.
1Bl<M

We can solve these equations so that ¢,(0)=1 at a chosen point in K. In
the same way we can successively choose ¢; so that

¥, x)=0((x—y(@)” %), when j<M/2.

If M is chosen so that (1 —M)/2< — N —(n+1)/2—v, we obtain (26.4.24)".

The asymptotic series in (26.4.25) remains valid if we differentiate with
respect to x or a parameter ¢, though a factor T may be lost in the estimate.
In proving (26.4.24)" we have also used that a function of the form
x(t, x)e'™™ can be estimated by 12 if y vanishes of order k when x=y(t). A
differentiation can lead to a decrease of the order of the zero by one unit or
to a factor T when the exponential is differentiated, so the estimate may
deteriorate by a factor 1. In any case it is clear that we obtain (26.4.24)
when we compute the derivatives of order <v, so (26.4.4) is not valid. This
completes the proof of Theorem 26.4.7".

26.5. Geometrical Aspects of Condition (P)

Unfortunately it is not yet known if the converse of Corollary 26.4.8 is
valid. However, if P is a differential operator one can strengthen condition
(¥) since the principal symbol p(x, £) then has the symmetry property

p(x, =&)=(-1)"p(x, ).

If t(x(t), £(t)) is a bicharacteristic of Rep(x, &) it follows that t—(x(t),
—¢&(t)) is also a bicharacteristic curve with the correct (reversed) orientation
if m is odd (even). If the condition (¥) is fulfilled in X by p it follows that
Im p(x, £) cannot take both positive and negative values on the bicharacter-
istic, that is, p also satisfies condition ().

Definition 26.5.1. A C* homogeneous function p in T*(X)~0 is said to
satisfy condition (P) if p and p both satisfy condition (), that is, there is no
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C* complex valued function ¢ in T*(X)~0 such that Imgp takes both
positive and negative values on a bicharacteristic of Regp where g #0.

Here we have chosen to use the equivalent form (¥,) of (¥) in Theorem
26.4.12, which is applicable in any symplectic manifold. Of course we could
have used (¥,) or (¥) as well.

Thus condition (P) is necessary for solvability in the case of differential
operators although not for general pseudo-differential operators. At the end
of this chapter we shall prove that, conversely, an analogue of Theorem
26.1.7 is valid for every pseudo-differential operator P satisfying condition
(P). The proof will be based on theorems concerning propagation of singu-
larities which extend Theorems 26.1.4 and 26.2.1. These will be the main
topic of the following sections. As a preparation we shall discuss in this
section some geometrical properties of the characteristic set

N={(x, $)e T*(X)\0, p(x, {)=0}

which follow from condition (P), which we assume fulfilled throughout.
As in Section 26.2 we set

N,={(x,{)eN; Hg,.,and H
This is a conic manifold of codimension 2. By condition (P) it is involutive,
that is {Rep, Imp}(x, =0, (x,HeN,,

for {Rep, Imp}=Hg,,Imp must vanish at the zeros of Imp on a bicharac-
teristic of Rep since the sign would otherwise change. Thus Hg,, and H;,,
are tangents to N,.

In Section 26.4 we introduced the term semi-bicharacteristic of p for a
bicharacteristic of Reqp where g=+0. The advantage of this notion is that
through every point in N with dp+0 there is at least one semi-bicharacter-
istic curve. We shall now examine to what extent semi-bicharacteristics are
one dimensional bicharacteristics in the sense of Definition 26.4.9. In doing
so we shall use the following lemma, which is obtained by applying to
Regp the non-homogeneous version of Proposition 26.1.6. (This was also
used in the proof of Lemma 26.4.10")

1mp are linearly independent at (x, £)}.

Lemma 26.5.2. Let I=[a,b] be a compact interval on R not reduced to a
point, and let I31—y(t) be a bicharacteristic arc for Reqp where 0+qe C™.
Then there is a symplectomorphism y from a neighborhood V of J
={(x,,0,...,0), x,el} = T*(R") to a neighborhood of y(I)c T*(X)~0 such
that y(x,,0,...,0)=y(x,) and

x*(@p)(x, §)=¢, +if (x, &)
where f is real valued.

Assume now that y(@)eN,. In a neighborhood of a,
=(a,0,...,0)e T*(R") the manifold y !N, is invariant under the vector
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field 0/0x, so it is defined by &¢,=0, g(x', &)= f(a,x',0,&)=0 where x'
=(Xy, ..., X,), &'=(&,, ..., &) Since 0f/0x,={&,,f}=0 at a5 we know that
dg#+0 at 0. The parallels of the x, axis in the plane ¢, =0 are semi-
bicharacteristics so (P) gives in a neighborhood of J that f(x, £)=0 (resp.
f(x,§)<0) when ¢, =0 and g(x', {)>0 (resp. g(x', {')<0). Hence f(x, {)=0
when £, =0 and g(x', £')=0, and for some £¢>0

f(x,0,8)=g(x, )h(x, &), if a—e<x;<b+s, Ix|+|{]<e.

Here h=0, h(a,x, &)>0 if |x'|+|¢|<e, g(0)=0 and dg(x',&)+0 when
Ix'| +]€| <¢. Thus f=0 on J and

df =0f/o¢,d¢, +hdg on J,

so df is proportional to d&, except at points where h#0, and they are in
N,. A semi-bicharacteristic starting in N, is therefore a one-dimensional
bicharacteristic when it is not in N,. (If an isolated point is not in N, the
tangent is still proportional to H, there.) Also note that if f(x, 0, {’)=0 and
g(x', &)+0 then h(x, &)=0 which implies dh(x, £)=0 since h=0, so df
=0f/0&,d&,. If a semi-bicharacteristic starting in N, contains some point
x(x, &) with (x, &) in

V=A{(x, &); &,=0,a—e<x,<b+e, |x|+|E]|<e}

and g(x', £)=0 it must therefore run in the x, direction as a one dimension-
al bicharacteristic until it leaves V. Extending it if necessary so that it
contains a point with x, =a we obtain a contradiction since f(a, x’, &')%0
when g(x', £)%0. It follows that in x(V) the union of all semi-bicharacteris-
tics emanating from a point anywhere in N, is defined by &, =g(x/, £)=0,
so it is an involutive manifold of codimension 2. Hence we have proved

Proposition 26.5.3. The union N5 of all semi-bicharacteristics of p which meet
N, is a locally closed conic involutive submanifold of T*(X)~0 of codimen-
sion 2 on which p=0. Thus Hy,, and H,, , are tangents to N3, and N, is an
open subset of Nj.

From Theorem 21.2.7 and the remark following it we know that as
involutive manifold N has a natural foliation with 2 dimensional leaves,
having the symplectically orthogonal plane of the tangent plane of Nj as
tangent planes. It is natural to extend the terminology used in Section 26.2
as follows:

Definition 26.5.4. The leaves of the natural foliation of Nf are called two
dimensional bicharacteristics.

We recall from Theorem 21.2.7 that a leaf B is either conic or else the

radial vector field is never tangent to it. In any case H, is a complex

tangent vector field of B. In Section 26.2 we used H, to define a complex
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structure in the leaves of the foliation of N, such that the analytic functions
are the solutions of the equation H,w=0. In a leaf B of the foliation of N3
this equation implies that w is constant on the one dimensional bicharacter-
istics which may be embedded in B. Let B, be the subset of B consisting of
semi-bicharacteristics with both end points in N,, and let B, be the reduced
two dimensional bicharacteristic obtained by identifying points in B, which
are connected by a one dimensional bicharacteristic. We shall prove in
Section 26.7 that B, has a natural structure as Riemann surface such that
the analytic functions lifted to B, are precisely the solutions of the equation
H,w=0. In Section 26.9 we shall show that Theorem 26.2.1 can be extended
to Nj with superharmonicity defined in terms of this analytic structure. In
the proofs we shall use the following supplement to Proposition 26.4.13 to
simplify the principal symbol.

Proposition 26.5.5. Suppose with the notation in Proposition 26.4.13 that y(I)
is a one dimensional bicharacteristic contained in N5 which cannot be extend-
ed at both end points as a one dimensional bicharacteristic. Then Proposition
26.4.13 is applicable, and in a neighborhood of I x {0} x {¢,} we have

J(x, &)=g(x, & h(x, &)

where h20, dg+0, both factors are in C* and h is homogeneous of degree 0,
g homogeneous of degree 1.

Proof. The tangent of y(I) cannot be radial and the projection of y(I) on
S*(X) cannot be a closed curve since y(I) is maximal at one end. (In the
proof that (%;) = (¥;) in Theorem 26.4.12 we saw that the projection cannot
return to the same point with reversed orientation.) Hence Proposition
26.4.13 is applicable, and since f(x,,0,¢,)=0 for x, in a neighborhood of I
and df 0 at some point there, the factorization follows from the discussion
of N3 following Lemma 26.5.2.

Remark. Proposition 26.5.5 and its proof remain valid if I is a point and
y(I)e N3 but does not belong to any one dimensional bicharacteristic. Prop-
osition 26.4.13 is just replaced by Theorem 21.3.6.

Set N;=N~Nj. We shall now discuss semi-bicharacteristics 1,3t y(t)
such that y(t,)e N, for some t,e€l,. By the definition of N5 we know that
7(Ip) cannot intersect N,, so Hg,, and H,, , are linearly dependent at every
point in y(I,)n N. If y(I,)= N it follows that y is a one dimensional bichar-
acteristic. Let I be the largest subinterval of I, containing ¢, such that
y(I}<N. If I has an end point contained in the interior of I, it is clear that
y(I) cannot be continued there as a one dimensional bicharacteristic, for it
would have to coincide with y(I,) then.

Proposition 26.5.6. - With the notation in Proposition 26.4.13 assume that
Y(I)"N5=0 and that y(I) cannot be extended in both directions as a one
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dimensional bicharacteristic. Then Proposition 26.4.13 is applicable and f 20,
or £ £0, in a neighborhood of I x {0} x {e,}.

Proof. The maximality of y(I) shows as in the proof of Proposition 26.5.5
that Proposition 26.4.13 can be applied. If f(x,, 0, ¢,) vanishes for all x; in a
neighborhood of I then df =0 since y(I)n N5=@. Hence we would have a
one dimensional bicharacteristic with y(I) in its interior. This is a con-
tradiction proving that f(x,,0,¢,)+0 somewhere. By the continuity of f
and condition (P) this sign is kept in the wide sense in a neighborhood of
I x {0} x {¢,}, since f does not depend on ¢&,.

We shall denote by N,, the set of all points in N, which lie on a semi-
bicharacteristic with one non-characteristic end point. In Section 26.6 we
shall show that Theorem 26.1.4 can be extended to control the singularities
in N,, with the slight modification that regularity only propagates in one
direction, determined by the sign of f in Proposition 26.5.6.

A semi-bicharacteristic starting at a point in N,~ N,, is always a one
dimensional bicharacteristic, for it never leaves the characteristic set by the
definition of N,, and it cannot enter N, by the definition of Nj. Thus
N;~ N, is the set through which one dimensional bicharacteristics can be
prolonged indefinitely.

Let us now consider Proposition 26.4.13 when y(I{)= N, ~ N,,. Condition
(P) then states that the sign of f is independent of x,, and f=df =0 on
I x {0} x {¢,}. However, it is not always possible to factor f as in Proposition
26.5.5 into a product of a non-negative function and one which does not
depend on x,. (This can be done in the real analytic case.) When f just
vanishes of second order, this is nearly possible though:

Proposition 26.5.7. Suppose with the hypotheses and notation of Proposition
26.4.13 that for some tyel and complex number c the quotient dp/c is real
and the Hessian of Imp/c is not identically 0 at y(t,), in the plane defined by
dp=0. Then we have near I x {0} x {¢,}

J(x, &)=g((x', &V h(x, &) +r(x, &)

where g(x', &)= f(ty, X', &), h and r are in C*™, r is homogeneous of degree 1,
h=0. Moreover, r=0 unless the Hessian of g is positive (resp. negative)
semi-definite at 0, and then r must still vanish when g <0 (resp. g>0).

If f has constant sign near I x {0} x {¢,}, we can of course take r=f so
the assertion is trivial then. Note that the Hessian of Im p/c is invariantly
defined since Im p/c vanishes of the second order at y(t,). If p is multiplied
by a function q,+iq, which is real there, then Imp/c is replaced by
q; Imp/c+q, Rep/c, and the Hessian of the second term is zero in the plane
dp=0. Thus the hypothesis is invariant under coordinate changes and
multiplication by non-vanishing functions as well.
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Proof of Proposition 26.5.7. It is enough to make the decomposition when
£,=1 and extend by homogeneity to {,>0 afterwards. Let us write t=Xx,
and y=(x,, ..., x,, &,, ..., &,_). That p(I) is a one dimensional bicharacter-
istic means that f=df =0 on I x {0}, and by hypothesis the Hessian of g(y)
=f(to, y, 1) with respect to y is not 0 when y=0, for the second derivatives
containing some ¢t or ¢, must vanish. Assume for example that
0?g(0)/0y?+0. By Malgrange’s preparation theorem (Theorem 7.5.5)

g =k +a, 0y, +a,()

where k(0)+0 and y' =(y,, ...). We can take y, +a,()')/2 as a new variable
and divide by k(y) so we may assume that with a=a,—a?}/4

gl)=yi+ay).
Now Malgrange’s preparation theorem (Theorem 7.5.6) gives, near I x {0},
Sy, D=h@t, g +rit, ) rt, y)=bt, y)y, +ct,y),

where h, b, ce C*. When a(y')<0 we have two simple zeros y, = +(—a(y))?
and obtain b(t, y')=c(t, y)=0 by condition (P), hence r(t, y)=0 when g<0.
This completes the proof if the Hessian of g is semi-definite. Otherwise we
can apply the same argument to prove that f{t, y, 1)/g(y) is also equal to a
C*> function when g(y)=0. When g(y)=0 the two quotients must have the
same Taylor expansion which proves that f is divisible by g.

An exact factorization is not always possible even if n=2. An example is
given by
flxg, x5, 8=, —x, CXP(—l/Xz))2 if x,>0,
f(xl, X2, &2)=8,(¢, —exp(l/x,) if x,<0; S(x,,0, 52)=§§

The proof can be found in the references or may be supplied by the reader.

We shall denote by N,, the set of points in N,~ N, such that there is
some complex ¢ for which dp/c is real and the Hessian of Imp/c is not
identically zero in the plane dp=0, and we write Ni, for the subset where
the Hessian is not semi-definite. By N¢, and Ni% we denote the union of the
one dimensional bicharacteristics intersecting these sets. Proposition 26.5.7
gives a simple representation of the principal symbol, particularly in the set
Ni,. In the remaining part N,; of the characteristic set we can apply
Proposition 26.4.13 and obtain a function f vanishing of third order on
Ix {0} x {e,}.

On ali one dimensional bicharacteristics we shall prove a result on
singularities which is considerably weaker than Theorem 26.1.4; roughly
speaking it states when Pue C® that s} is either monotonic or rises to a
maximum value monotonically and then falls monotonically again. As a
byproduct of the study of N we shall be able to prove more in Ni4; on one
dimensional bicharacteristics there s} is concave with respect to an affine
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structure which we shall now define. Under the hypotheses in Proposition
26.5.7 it will be defined by the differential h(x,,0,¢,)dx, on y(I). We shall
prove that this is invariantly defined apart from a constant factor, and this
means that we have a unique affine structure if we identify points on a
subinterval where h=0 identically.

Let us first note that if p is real and y,y' are two points on the same
integral curve of H, in the surface p=0, then the Hamilton flow gives a
symplectic map between the tangent spaces of p=0 modulo H, at y and at
y'. (This is obvious if p is taken as a symplectic coordinate &, for example.)
The observation remains true when p is complex valued provided that y and
y lie on a one dimensional bicharacteristic and we consider the com-
plexified tangent planes, for analytically the same computations will be
involved. When p has the special form in Proposition 26.5.7 and we consid-
er two points on y(I), the map is obtained from the Hamilton equations for
the Hamiltonian

£ +ih(x;,0,8)Q(x, )

where Q is the second order part of the Taylor expansion of g at (0,¢,).
These equations

dx,jdt=1, dx/dt=ih(x,,0,£)00/0¢, d&/dt=—ih(x,,0,£)dQ/dx

are easy to integrate but we only need the obvious fact that Q(x', &) is
constant along the orbits. This leads to the following general definition. Let
7(t) be a one dimensional bicharacteristic of p,

H,(y(t)=c(t)dy/dt,

and let Q, be the Hessian of Im p/c() in the plane dp=0 modulo H,, at y(?).
Note that if p is replaced by gp where g0 then c(t) must be replaced by
g(y(t))c(t) and Q, remains unchanged. When p has the special form in
Proposition 26.5.7 we have just seen that the pullback of Q,=h(t,0, ¢,)Q to
the tangent space at ¢, is equal to

h(t, 0, £)Q=(h(z, 0, £,)/h(0, 0, ) Q.

In general, if y(t,)e N, and Q, +0 it follows that the pullback of Q, to the
tangent space at t, is of the form hy(t)Q,. The differential hy(r)dt is well
defined on the bicharacteristic and changes only by a constant factor if the
base point t, is changed. Now assume that we introduce another parameter
s on the bicharacteristic. Then

H, (y(@)=c(t)ds/dtdy/ds

so Q, is multiplied by dt/ds which makes the differential invariant apart
from the normalization which depends on the choice of base point. We have
now proved

Proposition 26.5.8. There is a natural affine structure in every bicharacteristic
in N, if one identifies points in a subinterval which does not meet N ,.
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Let us sum up the notation introduced in this section and which will be
referred to in all the rest of the chapter:

N is the characteristic set consisting of all zeros of p;

N, is the subset where Hy, , and Hy,,, are linearly independent;

N5 is the union of semi-bicharacteristics starting in N,; it is an in-
volutive manifold obtained by attaching one dimensional bicharacteristics to
N,;

N,, is the set of points in N which can be joined by a semi-bicharacter-
istic to a non-characteristic point;

N, , is the set of points in N~ (N5UN,,) such that for some complex ¢
with dp/c real the Hessian of Im p/c is not identically zero in the plane dp
=0;

Ni, is the subset where the Hessian is not semi-definite;

Ni, and Ni¢ are the unions of the one dimensional bicharacteristics
intersecting these sets;

N,3;=N~(NfUN,, UN¢,) is the rest of the characteristic set.

It should be kept in mind that this classification of the characteristic
points has been made under the assumption that p satisfies (P).

26.6. The Singularities in N,

We shall start with studying an operator for which the principal symbol has
the special form which by Proposition 26.5.6 can be achieved by a homo-
geneous canonical transformation at any one dimensional bicharacteristic
(or point) in N,,. Afterwards we shall put the result in a general invariant
form.

The proof may seem a bit technical so it might be useful to see the
simple idea first for the ordinary differential equation

dujdt+ fu=g

in (a,b). If f=0 we obtain by multiplying with ie
taking the real part

-2 integrating and

b b R b
Re[gite 2Mdt=[e 2 d|u|?/2+( flu|>e~** dt
b
22 flul?>e2*dt—|u(a)|* e~ 2*9/2.
An application of Cauchy-Schwarz’ inequality now gives

b b
RA-1f|ul*e **dt<(Igl? e 2 dt+e~ 24 |u(a)|®.
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When A>1 we get control of the L? norm of u in terms of that of g and
u(a).

Proposition 26.6.1. Let Pe ‘I’p’gh(]R") be properly supported and have principal
symbol p satisfying

(26.6.1) plx, &)=¢+if(x,8),  f(x =0,

in a conic neighborhood of T={(x,,0,¢,), a<x,<b}cT*R")~0. If
ue?'(R") and PueHy at I', ueH at (a,0,¢,) for some seR, then ueH,
at I'. Moreover, if T"WF(Pu)=0 and (a, 0, ¢,)¢ WF (u), then I nWF(u)=§.

Proof. 1t suffices to prove the first statement for it implies the result on
wave front sets when applied to all bicharacteristics of £, near I' and all
seR. In the proof we may also make the additional hypothesis that
ueH,_,, at I'. For suppose that the theorem is proved under that hy-
pothesis. Since ueH_,,,) at I' for some positive integer k we can then
conclude successively that ue H,_, _ ), at I',...,ue H, at I'. We may even
assume that

(26.62) ueHF™), and ue Hi in a neighborhood of {x; x, =a}.

In fact, we can choose Te ¥° with symbol 0 outside such a small conic
neighborhood of I' that Tu satisfies (26.6.2) but WF(I —T)nI' =0, hence
PTueH, at I' since PTu~Pu is in C* at I'. An application of Proposition
26.6.1 to Tu will then give Tue H; at I', hence ue H, at I".

Now we come to the heart of the proof. Choose a compactly generated
conic neighborhood V of I' in T*(R") ~0 such that (26.6.1) is valid in a
neighborhood of V and PueH, at V. Then choose ye C3(R) and a real
valued C(x', £)e S*(R"~! x R") so that

(i) x=1 on [a, b], and C is non-characteristic at (0, ¢,);

(i) x'(xy)=x"(x;)—x*(x,) where 0=y*, 0=x~, x;Sainsupp x~, x, b
in supp x*, and x~(x,)ue H,.

(iil) x(x;) C(x', &) vanishes outside V.

Set for 4,0>0

Q,,5(x, )=e "1 {x,) C(x', O+~

Then Q, ;€5°~2 and is uniformly bounded in $° when 6—0 for fixed A.
Writing Q =0, ;(x, D) for the sake of brevity we now form

(QPu, Qu)=(PQu, Qu)+([Q, Plu, Qu)

which is legitimate since Que H;, and Q Pue H,. Write P=A+iB where 4
and B are self adjoint; thus the principal symbols are ¢, and f in a
neighborhood of V. Taking the imaginary part we then obtain

(26.6.3) Im(QPu, Qu)=(BQu, Qu)+ Re([Q, Blu, Qu) +Im([Q, ATu, Qu).

We shall discuss the terms in order from right to left.
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The symbol of [Q, A] is equal to the symbol i0Q, ;/0x, of [Q, D, ] with
an error which is bounded in S*~! for fixed A. Since

0Q,,5/0x,=—2Q; s+ y'(x)) C(x', O +6&1%) 7!
and yx' Syx~, because y =0, we obtain
(26.6.4) Im([Q, AJu, Qu)< — 2| Qull> + Q™ ull 1Quil+ K, lull_ 1)l Qul

where Q™ =Q; ;(x, D) with Q] ; defined as Q, , with y replaced by x~.
The symbol of Q*[Q,B] is —iQ, ;{Q, s f} with an error which is
bounded in $25~!, so the symbol of the self adjoint part

1(0*[0, B1+[Q, B]*Q)
is bounded in $2*~!, when §—0. Hence
(26.6.5) [Re([Q, Blu, Qu)| S K, flulll_ .

Choose C,eS°(R"xR") equal to 1 in {(x, &)eV; |£|>1} and 0 outside
such a small conic neighborhood of V that 0= F=C, feS!. By Theorem
18.1.14 we have

(26.6.6) Re(F(x, D)o, )< K |vll>, veH,,.

If b, is the term of order 0 in the symbol of B then the symbol of
(B—F(x,D)—(C, by)(x, D))Q is bounded in $*~! for fixed A. Since (C, b,)(x, D)
is bounded in L? we obtain with K’ independent of A

(26.6.7) (BQu, Qu)=K'|1Quil> + K, 1Qull lull._1)-
Summing up (26.6.3), (26.6.4), (26.6.5), (26.6.7) we have
(A=K 1QuI> <11 Quil (1~ ull +1Q Pull + K llull ;_ 1)) + K, lull§ _ 4
Using Cauchy-Schwarz’ inequality we obtain
(26.6.3) A=K =DIQuI* <@~ ull* + 1@ Pull* + K |ull§ _ ).
The symbol of
0,.5(x, D)= 3, Opd3(1+61£°)7" Op(=D3)Q, o(x, &)

lat<1
is bounded in $°~% when 8—0, and Op(—D3Q, o) PueL® since PueH,,, at
V. Hence ||Q, ;Pu| is bounded when 6—0. The same is true of Q; ,;u since
x (x)ueHg. If we take A=K'+2 in (26.6.3) and let 6—0, it follows now
that Q, ,(x, D)ue L. Hence ue H,, at I' and the proposition is proved.

IA

In the preceding proof the crucial point is the semi-boundedness (26.6.6).
Now Theorem 18.6.8 shows that (26.6.6) is also valid if 0<FeS]_,, and
0<e<i. This leads to an extension of Proposition 26.6.1 which will be
important in Section 26.9.
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Proposition 26.6.1'. Let Pe ¥, (R"), C, eSy_, .(R™); assume that C,(x, &)=0
for large |x| and that the principal symbol p of P satisfies

(26.6.1y px, &=¢,+if(x, &), f(x,£)<0 in suppC,.

Let ye CY(R) be equal to 1 in [a,b] and ' (&)=x (t)—x* (t) where y~ and
x* are non-negative with support to the left and right of a and b respectively.
Finally let C(x', £)e Sy _, . and assume that

(26.6.8) C,(x,&)=1  in a neighborhood of supp x(x,)C(x, &).

If 0e<iand

(26.69) ueHITA, 12, x(x))C(X,D)Puel?, y (x,)C(x’,D)uel?
it follows then that

(26.6.10) x{x,)C(x', D)uel?.

Proof. We just have to inspect the proof of Proposition 26.6.1. The identity
(26.6.3) is of course unchanged. In (26.6.4) we just have to replace |jul_,,
by flulls_1 4z and s—1+e<s+(3e—1)/2. The self-adjoint part of Q*[Q, B]
is now bounded of order 2s—1+3¢ so (26.6.5) remains valid with
flullis+3c—1y2 In the right-hand side. There is no change at all in (26.6.7),
but the proof now relies on Theorem 18.6.8. The proof is then completed as
before.

The important point in Proposition 26.6.1' is that f does not have to be
of constant sign in a conic neighborhood of supp x(x,) C(x', £). In fact, we
can choose C,eS9_ _¢,¢ Satisfying (26.6.8) and (26.6.1) if f is <0 at all points

with a fixed dlstancc to supp x(x,) C(x', £) in the metric
ldx, 12+ +IEPP X 1P+ (1 +|E12F e

(see Section 18.4). However, we shall not continue in this direction now but
turn instead to more invariant formulations of Proposition 26.6.1.

Theorem 26.6.2. Let Pe ¥y (X) be properly supported and have principal
symbol p satisfying (P), and let

[a,b]at-y(t), a<b,

be a bicharacteristic of Reqp where q+0 and Im(gp)(y(a))<0. If ue2'(X)
and Pue H, at y([a, b]) it follows that ue H;,,,_,, at y([a, b]).

Proof. 1f y(to))¢ N we have ueHg,,, at y(ty) so it suffices to prove that
ueH(s +m_1) at y(to) if y(ty)eN. Let I be the maximal interval c[a,b]
containing t, such that y(I)cN. Choose an interval [a,b’] with
I<[d,b]<[a,b] such that y(a')¢ N and [a’, b'] is so close to I that Propo-
sition 26.4.13 is applicable. Then we can find a C* function § which is
homogeneous of degree 1 —m and a homogeneous canonical transformation
z such that y*(gp)=¢&,+if(x, &) in a neighborhood of [a, b] x {0} x {e,}.
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We have y(x,,0, &,)=y(x,) when x,e[a’,b'] and §=g on this arc, for these
properties are obvious after the first step of the proof of Proposition 26.4.13
and they are not affected by the second step. Now Im(gqp)(y(z))<0 when
te[a,b] by condition (P) since Im(qp)(y(a))<0, so we conclude that
f(x,&)<0 in a neighborhood of [a’, b'] x {0} x {¢,}. If we now transform P
as in Proposition 26.4.4 with Fourier integral operators A and B belonging
to the graphs of y and y ! respectively, and the principal symbol of AB is §
near y(I), the theorem follows from Proposition 26.6.1 since ueH,,, at
y(d).

s+ m

We shall now study the propagation of singularities on one dimensional
bicharacteristic arcs ' N,,. We can extend I" as a one dimensional bichar-
acteristic so that it is maximal at one end point I, and choose ge C®
so that ¢+0 and Hg.,,+0 on I'. Then Imgp must be non-zero at some
points arbitrarily close to I'; on the bicharacteristic of Reqp extending I
there, and by condition (P) it follows that either Imgp=0 or else Imgp<0
in a neighborhood of I' in the surface Regp=0. If § is another function
with the same properties as assumed for g, and Hy,;, has the same direction
as Hg,,, on I', then we conclude that for each te[0, 1] the imaginary part
of (tq+(1 —1)§)p has a fixed sign and is not identically 0 in a neighborhood
of I' in the surface Re(tg+(1—1)§)p=0. Clearly the sign must then be
independent of t. Put differently, if we choose ¢ so that Imgp<0 in a
neighborhood of I' when Regp=0, then Hg,,, gives I' an orientation which
does not depend on the choice of g.

Definition 26.6.3. If p satisfies condition (P) and I' is a one dimensional
bicharacteristic arcc N;,; which is maximal at one end, then I' is given the
orientation of erqp when g is chosen so that g0, HR,”#O on I', and
Imgp <0 in a neighborhood of I' (in the surface defined by Regp=0).

Exactly as in the proof of Theorem 26.6.2 we now obtain from Proposi-
tion 26.6.1:

Theorem 26.6.4. Let Pe ¥y, (X) be properly supported and have a principal
symbol satisfying condition (P). If I is a compact one dimensional bicharacter-
istic interval <N, and ue 2'(X), PueH at I', ueH,,,_,, at the starting
pointonT,thenueHy,,  atT.

The difference between this result and Theorem 26.1.4 is that regularity
only propagates in the direction of the orientation, which of course agrees
with the direction in which regularity enters from the non-characteristic set
by Theorem 26.6.2. In general one cannot expect propagation in the op-
posite direction. We give an example.

Example 26.6.5. Let P=D,D,+iQ(D") where Q is a real quadratic form in
D"=(D,, ..., D,_,) which is not negative semi-definite. Then one can find a
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solution u of the equation Pu=0 such that
WF(u)={(x,,0,s¢,), s>0, x,eR}

and s}(x,, 0, &,)=h(x,) where h is any given decreasing concave function on
R. If Q takes both positive and negative values then one can obtain an
arbitrary concave function h. Since every (decreasing) concave function is
the infimum of countably many (decreasing) linear functions the assertion
follows from standard category arguments (cf. the proof of Theorem 26.2.3)
if it is verified when # is linear.

Fourier transformation of the equation Pu=0 with respect to x'
=(x,, ..., X,) gives formally the equation

(£,0/0x, — Q) di(x,, £)=0

with the solution d(x,, &)=c(&)exp(x, Q(£")/¢,). Choose 8eR"~? with
0(6)>0, a function Y e CT(R""?) with y(0)=1 and a function ¢ e C*(R)
with ¢ =0 in (— 00, 1), ¢=1 in (2, o0), and set with some real number b

i(xy, &)=Y ") p(E,) exp (x, Q(L")/ED,
where
n"=¢"((log,)/¢,)* —0log,.
Note that
Q(&")/€,=Q(0(log &)t +1"(log &)~ )
=(log £,)Q(0)+ L(n")+ Q(n")/log &,
where L is a linear function of #". Since |n"|<C, |&"—0(¢,logé,)}
< C(&,/log &) in supp 4, and
a”j/aék:é]k((logén)/én)i lf 1<],k<n,
on /0, =¢((log &,)/E,) & 2 (1 —log &,)/2—0/¢,,
it is easy to see that
(266.11) Dy ii(x;, €S C, (1 + )P += 2@ o

if 0<p<4 is fixed. From (26.6.11) it follows that i is indeed the partial
Fourier transform of a distribution u satisfying the equation Pu=0, and
x'*u(x) has N bounded derivatives where

b+x,00)—pla|+N< —n.

Hence x'=0 in sing suppu. If ye CY(R) then the Fourier transform of

(xq)u i ~
X(x,)u is ) =E ) $(E) 2(E, +iQEVE,.

We have £,>1 and [£”|=0(£,) in the support. Since Q(&")/¢,=O0(logé,)
there we can also estimate |5(&, +iQ(E"YE,)| by CyEX(1+]&,)~N for any N,

with K independent of N. This proves that fz\z is rapidly decreasing in any
A\ . . . - - .
cone where ¢, < C|¢,], so yu is rapidly decreasing outside any conic neigh-
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borhood of ¢,=(0, ..., 0, 1). We have therefore proved that
WFu)<{(x,,0,s¢,), s>0, x;eR}.

In view of the rapid decrease of u and all its derivatives as x'— o0 we can
determine the microlocal H class by just examining when x(x,)ue H,,
that is, ~

Fxu@P (A +1€1%rdé < co.

We have just seen that ﬁ; is rapidly decreasing when |&,|>|&', so this is
equivalent to N
Jru@ra+1¢1?ydé<co.

The integral with respect to £, can then be calculated by Parseval’s formula,
so an equivalent condition is that

[§18ap ") @) exp (x, Q€Y x (e NP A +IE2F dx, dE < 0.

Here the exponential can be replaced by 2@ and |¢'|2 can be replaced by
2. The integral with respect to & can then be worked out, so we obtain the
simpler equivalent condition

(266.12) [ (£,/logl,)" P2 L2+ x1QO+9) | y(x )?dx, d¢, < 0.

&n>2
(26.6.12) implies that n+4(b+x,0(0)+s)<0 if x(x,)#+0, and conversely
(26.6.12) follows if this is true in supp x. Hence

$¥(x,,0,0,8,)=—x,0(0)—b—n/4

which is an arbitrary decreasing linear function. If we take 6 with Q(6)=0
or Q(6)<0 we get instead a constant or an increasing linear function, which
completes the verification.

That s¥(x,,0,0,¢&,) must be decreasing if Q=0 follows from Theorem
26.6.4. We shall see later (Theorem 26.9.6) that the concavity is also a
necessary condition so the construction above is optimal.

26.7. Degenerate Cauchy-Riemann Operators

In Proposition 26.5.5 we have seen that the principal symbol of an operator
satisfying condition (P) can be reduced to the form &, +ig(x’, &)h(x, &) in a
neighborhood of a one dimensional bicharacteristic (or a single point)
embedded in a two dimensional bicharacteristic. Here h=0 and dg+0. By a
possibly non-homogeneous canonical transformation the function g can be
taken as the &, variable. Then the two dimensional bicharacteristics are the
leaves of the foliation of the plane £, =¢,=0 by the planes parallel to the
X, X, plane, and the Hamilton field is

(26.7.1) 8/0x, +ih(x, &)8/ox,.
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The purpose of this section is to discuss such first order differential oper-
ators. (An example is the model equation D, +ix% D, with even k studied in
Section 26.3.) This will lead to a complex structure in reduced two dimen-
sional bicharacteristics as indicated in Section 26.5, and this will be the
basis of the extension of Theorem 26.2.1 in the next section. The study of
singularities in N;, will require information on solutions of families of
operators of the form (26.7.1) where there is only uniform control of the
derivatives of h which do not depend on x,. We shall therefore state the
results in the generality which will be required then. The special role of the
x, variable motivates a change of notation so that the x, variable in (26.7.1)
becomes t and all other variables are called x.

Let B®*(R'*¥) be the set of continuous function u(z, x), where teR and
x=(x,, ..., x,)€R¥ which have continuous bounded derivatives of all orders
with respect to x. It is a Fréchet space with the semi-norms

ut—sup | D u(t, x)|.
We shall study first order differential operators of the form
(26.7.2) P=D,+ia(t,x)D,, +ib(t, x)

where a, be B®, At first we take k=1 and prove a lemma closely related to
Proposition 26.6.1". The norms are L2 norms unless otherwise indicated.

Lemma 26.7.1. For every bounded subset B of B®(R?) there is a constant C
such that if P is defined by (26.7.2) with a,be B and a=0 then

(26.7.3) lull + la* A*ul| < C(I Pull + || A~ ul),
if ue¥ and u=0 when |t|>1. Here A*u=(1+|D,}*}"*u.

Proof. Choose he C*(R) decreasing, equal to 1 in (—oco, —2) and 0 in
(—1, o0). We shall apply (26.6.3), that is,

Im(QPu, Qu)=Re((@aD,+b)Qu, Qu)+Im([Q, Plu, Qu)
with Q =e~*h(D,). The commutator is
[0, P1=—iAQ+ie *[h(D,),aD, +b].

Here aD,+b can be regarded as a pseudo-differential operator in x with
symbol bounded in S!(R xR), with t as parameter, and from the calculus it
follows then that [h(D,), aD,+b] has a symbol uniformly bounded in S~*
(in fact, bounded in S~ for any N). Hence

Im([Q, Plu, Qu)< —A{|Qul|*+ K, | A~  ul |1 Qull.
We shall compare the term Re((aD, + b)Qu, Qu) with the positive quantity
le=*a* A*h(D)u||2 =(e-* A*aA*h(D)u, e~ * h(D,)u).

The principal symbol of A*aA*+aD_+b is a(|¢]+&)=0, £<0, so the sym-
bol is the sum of one which is uniformly bounded in S° and one which is
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uniformly bounded in S' and supported where £>0, so the product by
h(D,) is bounded in S~!. Hence we obtain, with K independent of A,

Re((aD,+b)Qu,Qu)+ e *a* A*h(D,)u||?
SKIQul? +K, [ 47 ul 1Qul.
Summing up, we obtain
(A—=K)[1Qu|*+ le~*a* A* h(D,)ul|?
SIQul (1QPull + K, | A~ ull)+ K, | A~ uf 2.
We fix A=K +2 now and obtain
1Qull® +lle~*a* A h(D,)ull> < | Q Pu|l* + K} A~ u|)>.

Now the same argument can be applied with Q=e*h(—D,), which just
amounts to changing the signs of both t and x. Since hy(&)=1—h(&)—-
h(— &) has compact support, we have

IhoD)ul <C| A~ ull,  |la*A*hy(D)u) S C |l A~ uj.
The triangle inequality now gives (26.7.3).

When the support is small in the x direction we can eliminate the
second term on the right-hand side of (26.7.3):

Lemma 26.7.2. Under the hypotheses in Lemma 26.7.1 one can find positive con-
stants ¢ and C such that '

(26.7.3y lull = CliPull, if ueCP{(E, x); It <1, |x|<c}).
Proof. 1If
(e, &)= e~ u(t, x)dx
is the partial Fourier transform of u with respect to x, then
(e, &> <c flute, x)1>dx
by Cauchy-Schwarz’ inequality. Hence
Cm~ A +IEP) A, §IPdE<c/2 flul, )2 dx,

s0 |A7 u|| £(c/2)*|ul. If we use this estimate in (26.7.3) and choose ¢ so
small that C(c/2)* <4, we obtain (26.7.3) with twice the constant in (26.7.3).

Lemma 26.7.2 leads immediately to a local existence theorem for the
adjoint operator. (Thanks to the lower order term in (26.7.2) the class of
operators we consider does not change if we take adjoints and change the
sign of x,.) However, we want to find C*® solutions so we must also have
estimates in H norms for large negative s. We must then work directly
with the parameters, so we allow an arbitrary dimension 1+k again now.
The set of functions in B(IR?) obtained by fixing the variables x,, ..., x, in
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the functions belonging to a bounded subset of B (IR'**) is of course bounded,
$0 (26.7.3) remains valid with norms in L2(R**!).
We shall actually work with the H,) norm in the x variables only,

(26.7.4) lully=(Q@m)~*f1a( O1P A +1E17F dEde?,  ued,

where i(t, £) is the partial Fourier transform in the x variables. For techni-
cal reasons we must use equivalent norms defined as follows. Let ¢, >¢,>...
be a decreasing positive sequence and set

N
Ex@=]10+1g¢»"
Then !
Niully =(@nr)~* fldG, EIPIENE)*dEdr), ues,

is equivalent to |lull{_,y,. We shall show that if ¢; are successively chosen
small enough then (26.7.3) remains valid with a slight change of the con-
stants for all the norms ||| ||5. The problem is of course that P does not
commute with the operator E,(D,). To be able to estimate commutators we
must extract more information from the second term in the left-hand side of
(26.7.3). In doing so we write

F,=(1+|eD |3~
With this notation we have
My + s =WF,, ully=UEN(DJF,, ul.
Lemma 26.7.3. If P is defined by (26.7.2) with a and b in a fixed bounded
subset of B*(R'*%), a2 0, then
(26.1.5) ILP. E]ol S Ce*(IPFol +]| Fol),  O<e<l,
if ve (R **) and v=0 when |t|> 1.

Proof. If a denotes multiplication by the function a then

[a, 1+]eD 2] =& (—A,a+2i§::Dj6a/6xj),
Mutltiplication left and right by F, gives (cf. the resolvent equation)
(26.7.6) [a, F]=¢F, ((Axa)-—ZiZ::Djaa/axj) F.

Since a20 and a; , is uniformly bounded we have by Lemma 7.7.2
(26.7.7) |0a/dx | < Cat.
With the notation A*=(1+D2)* from Lemma 26.7.1 we now obtain
faD,,F}=~2ie’F,) D;D, A~*0a/0x;A*F,+¢*F,D,(4,a)F,
—e?F(D,4,a)+2iY D,[0a/dx;, D, A~¥] A}F,.
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Here ¢2F,D;D, A~* is bounded in L?, and so are F,¢F,D; and the com-
mutator [da/dx;, D, A~*¥]A% By (26.7.3) applied to F,v and (26.7.7) this
gives
I{aD,, F]vll < Ce*(IPF,vll + | F,vll),

and a similar estimate for [b, F,]v follows from (26.7.6) with a replaced by b.
The lemma is proved.

In the following lemma we collect information on some other com-
mutators which will occur. We use the notation E, =E,(D,).

Lemma 26.7.4. For fixed Ey and ¢,y in a fixed bounded subset of B>,
regarded as multiplication operators, we have for 0<e<l,ue"

(i) |ExF.¢ul < C|EyFul,
(i) |En[o, FJull £ Ce|ExF,ul,
(i) |Ex[D;¢, F,Jul = C|ExF,ul,
(iv) |Ex[D;¢, [¥, F.1]ul < Cel| EyFul,
(v) ILD;¢, Ex]F,ull < CIEyF,ul,
(vi) (LK, [D;, Ex]Jull = Ce| EyF,uj.

In (iii)~(vi) j runs from 1 to k and D; may be omitted.

Proof. To prove (ii) we replace a by ¢ in (26.7.6) and multiply by E, to the
left and by Eg'E, to the right. The operators Ey(4,¢)Ey' and
Ey0¢/0x;E5" have uniformly bounded symbols in S° so the L* norms are
uniformly bounded. Since ¢F,D; and F, have norm <1 we obtain (ii). If ¢ is
multiplied by D; to the left we just get another factor D; to the left, and
since the norm of szf;DjD, is at most 1, this proves (iii). The estimate (i)
follows from (ii), for

IEy¢ Full =|Ey¢Ex" EyFul £ C||EyFul.

To prove (iv) we observe that taking the commutator of D;¢ and (26.7.6)
with a=y gives three terms,

[D;, [y, F.]1=¢*F,A,F,B,F,+&’F,B,F,+¢*F,B, F A, F,

where A; are second order differential operators and B; are first order
differential operators with coefficients in a bounded subset of B®. If we
multiply by E, to the left and insert factors Ey'E, at appropriate places,
the estimate (iv) follows, for e F,EyA4;Ex" and ¢F,EyB;E;" have uniformly
bounded norms since differentiations can be moved through E, to F,. (v)
follows since

[D;¢, EN1F,=[D;¢, E\]Ey'EyF,

and [D;¢, Ey]Eg" is bounded. Now
[F,, [D;¢, E\JIF, ' Ey ' =F,[[D;¢, Ex], F, 1ER ! =& F (Ao + Y. D, 4)
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where A, ..., 4, are uniformly bounded in L*. The norm is therefore O(g),
which completes the proof.

We can now give the main inductive step in the extension of (26.7.3) to
the norms |} {lly.

Lemma 26.7.5. Assume that for a set of operators of the form (26.7.2) with
coefficients in a bounded subset of B® we have

(26.7.8) Nully< CxllPully i ue S @R**")

~and u=0 when [t|>1 or [x,|>cy.
If Cy,y>Cyand O<cy,,<cy it follows that (26.7.8) remains valid with N
replaced by N +1 provided that ¢y , , is small enough.

Proof. Choose yeCy(—cy,cy) equal to 1 in (—cy,,,cy,q)- To prove
(26.7.8) with the next norm we shall apply (26.7.8) to v=y F,u where u=0
when |t|>1 or |x,|>c¢cy, . Since u=yu we have

Fu=Fyu=v—[y, F]u,
so (ii) in Lemma 26.7.4 and (26.7.8) give
NF,ully < flolly + Cell Fully < CallPolliy+ Cell Fullly.
We have
Po=PYFu=PFEu+P[y, F.Ju=F,Pu+ [P, F]u+[¥, F1Pu+[P, [y, E]]u.
By (ii) and (iv) in Lemma 26.7.4
WLy, E1Pullly +IILP, ¥, F1]ully < Ce(llF,Pullly+ I Fully)-
Using the Jacobi identity and Lemma 26.7.3 we obtain
WCP, EJully=lEy [P, F,Jull S\ [Ey, [P, F1]ull + | [P, F]1Eyul
SIF, [P, E\]ull +&* (| PF,Eyull + || F,Eyul).
The first term can be estimated by Cel|F,u||y by (vi) in Lemma 26.7.4, and
PF,Ey=EyPF,+[P,E\]F,=EyF,P+Ey[P,F1+[P,Ey]F,
so by (iii) and (v) in Lemma 26.7.4 we have
|PF,Eyul < CUIE,Pully+ I F,ully).
Summing up, we have proved that
IF,ully < Cy(1 + Ce)IIF, Pullly + Ce* | Fullly-

Choosing ¢ so small that Cy(1+ Ce?)/(1-Ce?)<Cy +1 Wwe obtain (26.7.8)
with N replaced by N+1 if ¢y, , <e. The proof is complete.

We can now prove an existence theorem by a standard duality argu-
ment.
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Theorem 26.7.6. Let M be a set of operators of the form (26.7.2) with coef-
ficients in a bounded subset of B*(R'**) and a20. Then there is a constant
¢, >0 such that for every f in a bounded subset F of B°(R**¥) one can find u
with u and du/dt in another bounded subset U of B®(R'**), and satisfying the
equation Pu= f in {(t,x); |t| <1, |x,|<c,}.

Proof. Application of Lemma 26.7.2 to the adjoint of P with x, replaced by
—x, shows that for suitable positive constants C and ¢

ol = ClIIP*vll  if ve CTU(E, x); It <L, Ix | <c}), PeM.

Assume for the moment that all feF have support in a set of fixed measure.
Then there is a constant C’ such that

IflsC, feF.

Let 0<cy<c. We shall choose a sequence g, >¢,>...>0 such that for N
=0,1,...

(26.79) Holly < CN +1AN + DIIP* ol
if 0e C2({(1,); 11 <1, Ix,| <(Neo+ (N +1)}), PeM,
(26.7.10) IEFY ISCRN+D)AN+1), feF.

We know this already when N =0, and Lemma 26.7.5 states that if (26.7.9) is
valid for one value of N then it is valid with N replaced by N+1 if ¢y, is
small enough. This is also true for (26.7.10), for

IEn: S =NEx S +eR s JER 4,11
where the last term tends to 0 uniformly for feF when gy, ,—0. If
veCF(Q), Q={(t, x);|t|<1,Ix,l<ce},
and if feF, we obtain
(o)l =ER 'S Exv)| S4CCl|P*vlly -4 CC'[|P*vll,

as N — 0. Hence the Hahn-Banach theorem shows that we can find g with
)" [lge. P11 +le;EP)dE<(dCCY,
1

(@ f)=Qnr)~" [ P*5(t, )2, D¢,  veC(Q).
If we set
u(t, x)=2m)~" | g(t, &) 'O d¢

we obtain Pu=f in Q, and there is a fixed bound for ||D%u| for every a.
Since Du=f—iaD, u—ibu in Q we also have a uniform bound for
| D, D%ull 2. Hence Diu is continuous and uniformly bounded in € for all
o, and so is D,Diu. After multiplying by a function YyeCy(~c,,c,) of x,,
which is 1 in a somewhat smaller interval (—~c¢,,c,) we can extend u to a
function in B®(R**!) with fixed bounds for all x derivatives.
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To remove the support condition on f we choose a function
x€CP(R*~') such that ) y(x'—g)*=1 in Q if g runs through the lattice
points in the variables x'=(x,, ..., x;). After solving the equations

Pu,=x(x'—g)f

as above we just have to set u(t,x)=) x(x'—g) ug(t,x) to get the desired
solution of Pu= f for we may assume that |t| <2 and |x,| <2 C, in supp f.

Remark. By repeated differentiation of the equation Pu=f it follows that
ueC® in any open set where a, b and f are in C*. Bounds for the
derivatives of u follow from bounds for those of a, b and f.

The substitution u=ve” where D,w+iaD, w+ib=0 can now be used to
reduce the equation Pu=f to the form D,v+iaD, v=fe~". In the follow-
ing corollary we construct non-trivial solutions of the corresponding homo-
geneous equation.

Corollary 26.7.7. Let A=B®(R**!) be a bounded set of non-negative func-
tions. Then there exists a constant c¢,>0 and another bounded set U
< B®(R** ") such that for every acA there is a solution of the equation

(26.7.11) Du+iaD, u=0 in Q={(t,x); |tI<], Ix)|<c,},
such that u and Ou/ot are in U, du/dx,=¢" in Q, and w,0w/dteU.

Proof. If u satisfies (26.7.11) and v=0u/0x,, then the equation
(26.7.12) D,v+iaD, v+0da/ox,v=0

follows by differentiation of (26.7.11). We solve this equation first by writing
v=e¢", which gives the inhomogeneous equation

(26.7.13) D,w+iaD, w+0a/dx,=0.

By Theorem 26.7.6 there is a solution of this equation when |t]<1, |x,|<¢c,
such that w and D,w are in a bounded subset of B*. Now

xy
u(t,x)= [ v(t,s,x)ds—u,(t,x), X =(xj,...,%,),
(1)

satisfies (26.7.11) if
D,u,(t,x")=(av)(t,0,x).
We choose

u, (t,x")y=i j' (av)(s,0,x)ds.
4]

It is then clear that u and du/0t are in a bounded subset of B after a cutoff
for large |t| +]x,|, and this proves the corollary.
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In Section 26.10 we shall need solutions which are small at the boundary
in the x direction:

Corollary 26.7.8. Let AcB®(R**!) be a bounded set of non-negative func-
tions. For every ¢>0 one can then find arbitrarily small neighborhoods V,
€V,€V, of the origin in R* and T >0 such that the equation D,U +iaD, U
=0 for every a€ A has a solution in (— T, T) x V, with uniform bounds

(26.7.14) DU XISC,;  |tl<T, xeVy;
independent of a, and

(26.7.15) ReU(t,x)20 if |tI<T, xeV,,
(26.7.16) ReU(t,x)>1 if |t|]<T, xeV,~\V,,
(26.7.17) ReU(t,x)<e if |ti<T, xe¥,.

Proof. We start from the solution u in Corollary 26.7.7 where we may
assume that w(0)=0, since this can be achieved by multiplication with a
suitable constant. Decreasing c, if necessary we may then assume that
w(0, x,,0,...,0)| <n/4 when |x,|<c,. The curve

F={u(0,x1’09 -’0)7 |x1|§cl}
then has slope <n/4 and the element of arc is e~ ™*|dx,|. The distance
between the end points z, =u(0, +c,,0,...,0) is therefore at least 2¥c,e="/*.

The function
F(2)=26((0+z—z_ )" '+(0+z,—2)"1)

is analytic and Re F;>0 in the d neighborhood of I', since |arg(z—z_)| <n/4
and |arg(z, —z)|<n/4 on I We have ReFj(z)<g/2 near {u(0,x,,0,...,0);
|x,|S¢,/2} if 8 is small, and Re Fy(z)>% when |z—z_|< /2 or |z—2z,|<d/2.
Since u is uniformly Lipschitz continuous it follows that the function

Ult, z)=Fyu(t, x))+|x"|*/6*
has the desired properties for small & if
Vo={x;|x,|<c,/2,|x"| < 6%¢/2},
Vi={x;lx;l<c, —6%|x"| <6},
V,={x;|x,|<c,|x"]| <26}

In the following results we have no need to insist on uniformity with
respect to the coefficients so we consider a single operator.

Corollary 26.7.9. Let 0<aeB®(R'*¥), and let u, be a solution of the equation
Dyug+ia(t,x,0)D, u,=0

when |t|<1 and |x,|<c,, with u, and Ouy/0teB*(R?). Then one can find
ue B°(R**1) with du/dte B®*(R**?) satisfying (26.7.11) such that

u(t,x,,0)=uyt, x,).
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Proof. Since f(t,x)=D,u,+ia(t,x)D, u,eB* vanishes in 2 when x”"=0 we
can find f;eB*(R'**) such that

f60=F 5,00+ in 0
2

we first define f; in Q and then extend to the whole space. By Theo-
rem 26.7.6 we can find v;e B* with Jv;/dte B* and

Dw;+iaD, v;=f; in Q.

x17J

Now we just have to take
k

u(t, x) =uy(t, xl)——;xjv](t, x)(1+]x"3)~%.

We shall simplify the following discussion by dropping the parameters
x"”, so x will denote a real variable from now on. The characteristics of the

operator D,+ia(t,x)D,,

where we assume 0 < a € B®(IR?), are defined by a(t,x) = 0 and 7=0. Since
a=0 implies da=0 the corresponding direction of the Hamilton field is that
of the t axis, so the base projection of a one dimensional bicharacteristic is
precisely an interval Ix{x,} in the direction of the ¢ axis where a is
identically 0. It is clear that every solution of the homogeneous equation

(26.7.11y Du+ia(t,x)Du=0

is constant on I x {x,}. Differentiation with respect to x (cf. (26.7.12)) shows
that also du/0x, is constant in I x {x,}. For the solution given by Corollary
26.7.7 it follows then that w is also constant in I x {x,}. Now assume that I
<(—1,1) is a maximal compact interval such that a vanishes on Ix {x,}.
Choose a closed rectangle R with axes parallel to the coordinate axes so
that I x {x,} cR<Q and a0 on the sides parallel to the x axis. We choose
R so small that w varies by less than n/4 in R. Then it is clear that intervals
in R paraliel to the ¢t or x axis are mapped by u to C' curves with tangent
direction differing by less than n/4 from Im w—n/2 resp. Im w, evaluated at a
point in I x {x,}. If we join two points in R by a curve consisting of two
line segments parallel to the coordinate axes, it follows that they have
different images under u unless they lie on a line x=constant and a vanishes
between them. In particular, the boundary of R is mapped to a Jordan
curve I' which has the value of u at I x{x,} in its interior. If z is in the
interior (exterior) of I' then the winding number of u(t, x)— z when (¢, x) goes
around I is 1 (resp. 0). Hence u(R) contains the interior of I' but no point
in the exterior since regular values there would have to be taken an even
number of times and we know that they can only be taken once. It follows
that u is a homeomorphism from R to u(R) if R is obtained from R by
identifying points in R which lie on a line segment x=constant where g
vanishes identically.
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Now assume that v is any other solution of (26.7.11) in a neighborhood
of R. Then v= f(u) where f is a continuous function from u(R) to v(R). We
claim that f is analytic in the interior of u(R). This is obvious if a%0
everywhere, for u is then a C' diffecomorphism which transforms (26.7.11) to
the Cauchy-Riemann equation. In general we can obtain the same con-
clusion by using Corollary 26.7.9 to extend u to a solution U(t, x,¢) of the

equation )
D,U +i(a(t,x)+€*)D, U =0
with U(t, x,0)=u(t, x). We extend v similarly to a solution V and obtain
V(t,x, &)= fU(t,x,&)), &*0

where f, is a continuous map from U(R,¢) to V(R, ¢) which is analytic in the
interior of U(R,¢). In particular, f, is uniformly bounded so there is a
uniform limit f, of f, in the interior of u(R). Thus f, is analytic and f,(u)
=vp, so f, is the function we wanted to prove analytic. Thus we have
proved:

Theorem 26.7.10. Let 0=<aeB®(R?2) and let u be the solution of the equation
(26.7.11) given in Corollary 26.1.7. Set

Qo ={(t,x)e; alt,,x)a(t,,x)*0 for some t,,t,
with —1<t, <t<t,<l1},

and let Q, be the quotient of Q, by the equivalence relation identifying (t,x)
with (¢, x) if a(s,x)=0 when se(t,t']. Then u defines a local homeomorphism
Q, - C giving Q, an analytic structure such that the analytic functions in G,
ltfted to Q4 are precisely the solutions of the equation (26.7.11).

Theorem 26.7.10 can be applied to the Hamilton field in a two dimen-
sional bicharacteristic of an operator satisfying condition (P), for with the
coordinates in Proposition 26.5.5 it is of the form

d/ox,+ihH,

where h20. The two dimensional bicharacteristic is generated by the x, axis
and a bicharacteristic of g in the x’, & variables. Hence we have a natural
analytic structure in the reduced two dimensional bicharacteristics defined
after Definition 26.5.4. The special case of a conic two dimensional bichar-
acteristic deserves a special discussion, Again with the coordinates in Prop-
osition 26.5.5 the bicharacteristic through I x {0} x {¢,} is the product of the
x, axis and the positive £, axis, and the Hamilton field is

H,=0/0x, +ib(x,)¢,0/0¢,

where b(x,)= —0f(x,,0,¢,)/0x, is different from @ at some points close to
the end points of I. It follows that

u={b(x,)dx, +ilogt,
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is a solution of the equation. H,u=0 in B with Reu constant in the radial
direction. Any other such solution is of the form au+c for some real a. In
fact, an analytic function f with Re f(z) depending only on Rez must be of
the form az+c with a real, for the harmonic function Re f(z) must be a

linear function of Re z. Thus we obtain:

Theorem 26.7.11. Let p satisfy condition (P) and let B be a two dimensional
bicharacteristic, B, the corresponding reduced bicharacteristic. Then B, has a
natural analytic structure such that the (local) analytic functions on B, lifted
to B are precisely the (local) solutions of the equation H,u=0. If B is conic,
then the set B/, obtained by identification of points on B, on the same ray has
a natural aﬁ“ ine structure such that the linear functtons lifted to B are
precisely the real parts of solutions of H,u=0 which are constant in the
radial direction.

26.8. The Nirenberg-Treves Estimate

In this section we shall prove a general version of Lemma26.7.1 where
(26.7.2) is replaced by an ordinary differential equation

(26.8.1) du/dt — A(t) Bu= f

in a Hilbert space H. We make the following assumptions:

(i) A(t) is a bounded non-negative self adjoint operator which is uni-
formly continuous as a function of ¢.

(i) B is bounded and self adjoint.

The boundedness condition on B could be dropped but it is convenient in
the statement and proof of the following theorem, and it is quite harmless in
our applications.

Theorem 26.8.1. Assume that the conditions (i) and (ii) above are fulfilled and
that when [t|<T

(26.8.2) 10[lA@I* | [B, A@)1I* (B, [B, AOIII* = M.

If u is a continuously differentiable function of t with values in H which
satisfies (26.8.1) and vanishes for |t|>T and if TM < %. then

(26.8.3) §lu@l?de<@T/1-2TM)* [ | f(1))* de.

Proof. Let E, be the spectral projections of B and write E_=E,, E _=
I—E, for the projections corresponding to the half axes. They will replace
the operators h(+D,) in the proof of Proposition26.7.1. Set u, =E,u and
form

Re(u_, f_)=Re(u_, f)=Re(u_,0u/ot)—Re(u_, A(t) Bu)

=1d|u_||*/dt-Re(u_,A(t)B,u, —B_u_)).
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Here B, =E_ B and B_= —E_B are positive operators and we have used
that du /0t is orthogonal to u_. Now
Re(u_,A(t)B_u_)=Re(u_,[A(t),B*1B*u_)+(B*u_,A(t)B* u_)
Z(u_,[[A(),BY], B Ju_)/2
for the adjoint of [A(t), B2 1B* is —B* [A(t), B ]. Similarly
Re(u_,A(t)B,u,)=Re(u_,[A(t),B{ 1Bt u,)
=Re(u_,[[4(), BL], BY Ju,)

since Biu_=0. In Lemma?26.8.2 we shall show that the norms of these
commutators are <M/3 by (26.8.2). If we now multiply by T—t¢ and in-
tegrate, we obtain '

M
AT deS2T (DD G2+ e, ) e
Taking scalar product with 4, instead and multiplying by — T—t we obtain
' M
B 12 e S2T [ (1o 1L 0+ e 122+ D e, D)

If we add and use Cauchy-Schwarz’ inequality it foillows that
0l de S2T(f w2 dO (f I £ 112 dey + TM { |ul)* de,
and this gives (26.8.3) when a factor ({ [|u|>dt)? is cancelled.
Lemma 26.8.2. Let A and B be bounded operators in a Hilbert space H, and
assume that B is self-adjoint. If B, =(|B|+ B)/2 it follows that
(26.8.4) I[BY, [BY, AT]I <2 AI* B, ATI* | [B, [B, AT]II*.
Proof. If R(z)=(B—2z)~" is the resolvent of B and ¢>0, then
(26.8.5) (L+¢|Bl)~'B: =Q2mi)~! T z¥(1+¢2)" ' R(z)dz.
Here /7 is analytic when Rez > 0. In fa;c':f
Qri)~? T 22 z—A)" (1 +ez) tdz= A1 +ed)~!  if A>0,
o =0 if 1<0,

so (26.8.5) follows if we write R(z)=[(A—z)~'dE, by the spectral theorem.
The integral in (26.8.5) is absolutely convergent since ||R(z){| £1/|Imz|. The

resolvent equation
[4,R(z)]=R(z) [B, A] R(2)

follows by multiplying the equation [B—z, A]=[B, A] left and right by R(z),
and it gives the estimate

L4, R@)]{| <min 2[|A]||Im 2| =%, |[[B, A]|[[Im 2| ~?).
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Hence we have for every T>0
2 T 0
Il[A,(1+8IBI)“Bi]H.S_;St‘*HAII dt+1/n | t*||[B, A]| dt
V] T
=2/n2T*|All + T ~*|[B, A]ll).
We minimize the right-hand side and conclude when £¢— 0 that
(26.8.6) 1[4, B3I <4V/2/n | AI* (B, A1),
To prove (26.8.4) we shall now estimate [[4, B ], B]. We have
[[4,R(2)], B1=R(2)[[B, A], B] R(z), [[4, R(z)], B]l= — [[B, 4], R(z)]
since B and R(z) commute, so |[[[A, R(z)], B}| can be estimated by
min (2]|[B, A]{|[lm z|~*, |[[B, 4], B]|||Im z|~3).
Hence it follows from (26.8.5) as in the proof of (26.8.6) that

(26.8.7) I[4, B%], B]I <4V/2/n|[B, AJI* I[B,[B, AT1I1%.

The preceding estimates are of course valid for Bt also. If we now apply
(26.8.6) with A replaced by [4, B1] we obtain by (26.8.7)

ICCA4, B4, B4 1112 <32/7% (4, BL ]I 4Y/2/n | (B, AI* I [B, [B, A1} II*
<(32/n*)* | A)1* I[B, ATI (B, [B, AT]II*.

Since 32/n?=3.24... <12, the estimate (26.8.4) follows.

In our application of Theorem26.8.1 4 and B will be pseudo-differential
operators with symbols bounded in S° and in S respectively, which makes
(26.8.2) valid for some M which we can estimate. It would have been
possible to avoid the abstract operator theory in Theorem 26.8.1 by using
Fourier integral operators corresponding to non-homogeneous canonical
transformations to reduce to a situation where B=D,, and pseudo-differen-
tial operators can be used as in the proof of Lemma 26.7.1. However,
Theorem 26.8.1 may serve as a useful reminder that abstract operator theory
may sometimes be more efficient than pseudo-differential operator theory;
the operators B} are not pseudo-differential operators unless B is of a very
special form.

In the proof of Theorem26.8.1 we discarded a positive quantity corre-
sponding to the one which gave the second term in the left-hand side of
(26.7.3), which was essential for the commutator estimate in Lemma 26.7.3.
We shall now prove an analogous estimate in the abstract context of
Theorem 26.8.1 which will also allow us to control some commutators
which occur in Sections 26.9 and 26.10.
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Theorem 26.8.3. If A(t) and B satisfy (i), (i) and (26.8.2) above, and if
ue C!(R, H) vanishes for |t|>T and satisfies (26.8.1), then

(26.8.8) ((Bu, A()Bu)dt < T||B|| f (181 f > +2M? ||ul|*) dt.

Proof. With the notation in the proof of Theorem 26.8.1 we have
Re(B_u_,f)=Re(B_u_,du/dt — A(t) Bu)

= 1d|\Bu_|2/dt + (B_u_,A(t) B_u_) — Re(B_u_, A(t) Bouy).
Since B B_=0 the last term can be estimated by

I(B_u_,[[A(t),BL], B Ju )< IB_u_|| Mlu,|/3

where we have used (26.8.4) and (26.8.2). If we integrate after multiplication
by 2T—t we obtain

LBt u_|2dt+T[(B_u_,A(t)B_u_)dt
STIGIB_u_ I f_Il+M{B_u_{lu,f)dt.

We have a similar estimate for Bt u,, and since Bu=B,u,—B_u_ we
have
(Bu, At)Bu)<2(B u,,A(t)B, u )+2(B_u_,A(t})B_u_),

—_Y_

for A(t) is positive. Hence we obtain by adding
§11BI*uli?dt + T §(Bu, A(t) Bu)dt ST [ (6| Bul| | || + 2M || Bul} |lull) dt.
Here ||Bul| < ||B||* |||Bl*ul} so the right-hand side is bounded by

FHBFul>de+ T B| f(181 £ 11> +2M? ||u||?)dt.
Hence
T [(Bu, A(t)Bu)dt < T*||B|| f (18| f | >+ 2M?||ul|?) dt,

which proves (26.8.8).

26.9. The Singularities in N§ and in N},

We are now ready to extend Theorem 26.2.1 to a general two dimensional
bicharacteristic B, that is, a leaf of the foliation of the involutive manifold
Nj. More precisely we shall consider the corresponding reduced bicharac-
teristic B,. (See Proposition 26.5.3, Definition 26.5.4 and the discussion after
it, as well as Theorems 26.7.10 and 26:7.11.) If ue2'(X) we define 5,(9) for
jeB, as infs¥(x, &) for (x,&) in the inverse image y of § in B, which is a
compact maximal embedded one dimensional bicharacteristic. Since s¥ is
semi-continuous from below it is clear that §,(f) is the supremum of all seR
such that ueH , at every point in y. The central result in this section is the
following one.
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Theorem 26.9.1. Let Pe ¥y (X) be properly supported and satisfy condition
(P). Let ue2'(X), let B be a two dimensional bicharacteristic of P and § a
superharmonic function in an open subset w of the corresponding reduced

bicharacteristic B, such that §p,25 in . Then it follows that
(26.9.1) min (S,,§+m—1)

is superharmonic in w. In the special case where B is conic, this means that
(26.9.1) is a concave function on By, if § is concave; here By is obtained from
By, by identifying points on the same ray.

Superhamonicity is a local property so it suffices to prove that Theo-
rem26.9.1 is valid for small neighborhoods w of any point in B,. Using
Propositions 26.4.13 and 26.5.5 with the remark following the proof of the
latter we can then transform P as in Proposition 26.4.4 (see also the proof
of Theorem 26.6.2). Thus we may assume that Pe'I’p‘hg(]R") and that the
principal symbol is of the form

(269.2) p(x,8)=¢,+ig(x, EVh(x,&);  X'=(x3,...,x,), &=(,,...,E)

in a conic neighborhood of I'=1 x {0} x ¢, T*(IR")~ 0. Here h=0 is homo-
geneous of degree 0, g is homogeneous of degree 1, and g(0,¢,)=0,
dg(0,¢,)+0. The interval IcRR is compact and h(x,,0,¢,) vanishes in I but
not in any strictly larger interval. The first step in the proof is to derive
estimates from Theorems 26.8.1 and 26.8.3.

Lemma 26.9.2. Let yeCY(R?*"~%) be equal to 1 in a neighborhood of 0,
0=y <1 everywhere, and set

Yo, :(X, &)=y (x'/6,(AC —&)/d); A 6>0;
I,={t+1; tel, [t'|<8}. Then there is a constant C such that
(269.3) vl < CID v +i(y5 ,gh)(x, D)ol,

(2694) ¥ A3 kG e)(x, Dol < CAY|D v +i(Ys k) (x, D)o,

la+Bl=1

if veCP(I;xR"™1), & is sufficiently small and 0<i<2;. The norms are I?
norms.

Proof. After multiplying g and h by a cut off function which is equal to 1 in
a conic neighborhood of (0,£) in T*(R"~') when |&|>1 we may assume
that geSY(R"~! x R""!) and that 0<heS%(R"x R"~') are homogeneous of
degree 1 and 0 for |¢]>1. We shall apply Theorems 26.8.1 and 26.8.3 to the
self-adjoint operators in I*(IR"~!) defined by

A(xy) =5 X", DY (h(x, D)+ h(x, DY), 3(x', D)2+ Co 4,
B=y, (x',DY(g(x', D)+ g(x’, DY)y, ;(x', D')/2,
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where the constant C, will be determined so that A4(x,)=0. By Theorem
18.1.13 we have

(A(x,)v,0)=CoAl|v]| >+ Re (h(x, D), (x', D)o, 5 (X', D')v)
2 Collv)> = ClI+ID'1?) ", x', D)o %
If 6 is small we have 3<|&A]<2 in the support of the symbol of
(L+|D'1®)~*y; ,(x', D), the product of the symbol by A~*% is uniformly

bounded in S° for fixed J, and the maximum has a bound independent of &
for small A. Hence it follows from Theorem 18.1.15 that

A(x)Z Cod—A(C + C54%) >0
for small 1 if C, < C,. From Theorem 18.1.15 we also obtain
1AGe DI S W3 3kl + Co 22,
LB, AG )M S Y3 .8, 93 b}l + CsA?
0B, [B, AGx )1 S W38 {¥5..8. V5.h} o + Cs 2%,

for all symbols have support where 1 <|&' 4| <2. The maximum norms on the
right-hand side are independent of A. Since g vanishes and h vanishes of
second order on Ix{0}x{e,}] we have D*, h/6%g/6)=0("") in
I, xsuppy; so the maximum norms are 0(3%), O(8) and O(1) respectively
if x,el,. For x,el; and 0 <A <4, we therefore have ||B] < C/A and

lAx I £CO?,  I[B Ax)IISCS,  |[B,[B,Ax )]l =C.
When ¢ is small enough it follows from (26.8.3) and (26.8.8) that
(26.9.5) lo| SClID,v+iABvl, veCy(I;xR""1),
(26.9.6) {(A(x,)Bv, Bv)dx, < C/A(I|D v +iABvl|* + [jv||?),
veCy(I;xR"~1).
The symbol of A(x,)B is
Y3.hg+ Colid 18 +8; 4+ R,

where R; ) is bounded in S~' for fixed § and Ss,» is a finite linear com-
bination of terms obtained from y‘gh by applying 3/0¢ and 8/0x; to two
factors, possibly the same. Thus S, , is bounded in S° for fixed & and
IS5,4l. < Cé with C independent of A, by the arguments above. Hence
Theorem 18.1.15 gives
I A(x,)B—(y58h)(x, D) S Cs, x,€l,,
if 4 is small enough. Hence (26.9.5) implies
lol ClID,v+iABv| < CI|D, v +i(y;5 ;8h)x, D))+ C 3 vl
veCPI; xR~ 1),

which gives (26.9.3) if J is small enough and also shows that we may replace
ABv by (5 ,8h)(x,D’)v in the right-hand side of (26.9.6). To prove (26.9.4)
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we first observe that Lemma 7.7.2 implies
[Wd? +(1+1E%) B> < Ch.
Hence it follows from Theorem 18.1.14 that
(269.7) Y e DYl + Y (1 +1D1)* k9, D'yv )
< CRe(h(x,D")v,0)+ C,lIvl|Z_,,-

To combine (26.9.7) with (26.9.6) where the leading term in the symbol of
BAB is y5 ,g*h we replace v by (3 ,g)(x’, D')v in (26.9.7). The symbol of

(¥3,28)(x', D')* h(x,D')(¥3 ,&)(x, D')—BA(x,) B

is uniformly bounded in S° for fixed 6 and as above it follows that the
maximum of the symbol has a bound independent of 6 when 1 is small.
Hence the norm has a bound independent of é when A</, again by
Theorem 18.1.15. Combining (26.9.6) and (26.9.7) we now obtain

A2l x, DYW3 ,8)(¢, D'yl
SC(ID v +i(y3,.8M)0x, DYol* + llol|?),  veCPU;xR"™Y),
if & is small and A< ;. The symbol of
h(x, DI)(‘/’:,;.g)(xla D)~ (lpg,lh(j)g)(x’, D)

is bounded in S° for fixed 6 and the maximum has a bound independent of
0 when A<4;. Hence Theorem18.1.13' again gives a fixed bound for the
norm, and (26.9.4) follows when we sum for =0, |f|=1. The estimate of the
other terms follows in the same way by means of the second sum in (26.9.7),
and this completes the proof, if we use (26.9.3) to estimate ||v]|.

In the proof of Theorem 26.9.1 we shall also need a description in terms
of I? norms for the regularity function s¥ defined in (18.1.41).
Lemma 26.9.3. Let x and ¢ be functions in CF(T*(R")~0) and set
(26.9.8) q,(x, &) =x(x, AE)A—¢=23),

If ue&'(R™) and s*>Re ¢ in suppy, then ||q,(x,D)ul|,. is bounded as A—0.
Conversely, if |q,(x, D)ull .. is bounded as 1 —0, then

sk, O)zRed(x,8)  if x(x,)+0.
Proof. First note that if Re¢p<pu in suppy, then g, is bounded in $* as
A—0, that is
(2699) ID3DAg,(x, I < C,lt +1EP T, A<L.

In fact, |1¢]| lies between two fixed positive bounds when (x, 1£)esupp y, and
we have
0q,/0x=((0x/0x — x log A3¢/0x)A~*)(x, A{)
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and a similar formula with another factor A for dq,/0¢. This proves (26.9.9),
and it follows that |ig,(x,D)ul,. is bounded as 1—-0 if s*>u>Re¢ in
suppy. If we just have s¥>Re¢ in suppy, we note that since s¥ is semi-
continuous from below we can write y=1)"y; where Re¢ <y ;<Sy in suppy;
for some u;. This proves the first part of the lemma.

It remains to prove the second part of the lemma. Let y(y,n)#+0 and
choose for given u<Red(y,7) a non-negative function y,eCy such that
Re¢>p and x+0 in supp xo, xo(y,1)>0. Let ue H{}?). One can find ay(x, $)
bounded in S° and R, bounded in S~ so that

(269.10) 1o(% AEA* = a,(x, D) g,(x, D)+ R,(x, D).
As a first approximation to a; we take
ag(x, &)= xolx, A)/x(x, ALY A1+ #:4D

which gives an error of the desired form apart from a finite number of terms
in the series
— Y (D) al(x, &) Dig,(x, &)fal.
a*0
These can again be handled in the same way, and after a finite number of
iterations we obtain the desired function a,. It follows from (26.9.10) that

lxox, ADYA ™ ull <€, A<L.

If we multiply by A*~' where £>0 and integrate from 0 to 1, we obtain

| (x, D)ul| . < 0o where
1

r(x,&)={ xo(x,A&)A=~* -1 dA.
0
When |§] is large enough the upper bound in the integration may be
replaced by oo which shows that r(x, £) is homogeneous of degree u—¢ at
co. It is clear that r is positive in the direction (y,#). Hence s¥(y,n)=u—e
which completes the proof.

Proof of Theorem26.9.1. As aiready pointed out we may assume that
Pe ?’p‘hg(]R”), that the principal symbol p satisfies (26.9.2) in a conic neigh-
borhood of the inverse image I'=1x {0} x {g,} = T*(R") 0 of a point in B,
and that B is the leaf containing (0,¢,) generated by the vector fields d/0x,
and H,. We may also assume that the term p, of order 0 in the symbol of p
vanishes in I'. In fact, the equation Pu=f implies SPS~!(Su)—SfeC™ if
Se ‘I’p‘{,g is elliptic with parametrix S—'. We have s*=s%,, s¥=s3;, and the
term of order 0 in the symbol of SPS~! vanishes in I’ if for the principal

symbol S, of S we have
SoD,So1+py=0, thatis, idS,/0x,+Sopo=0 in I

This ordinary differential equation is easy to solve, and S, can be extended
to an elliptic symbol of order 0. Replacing P by SPS~' we can thus assume
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that p, vanishes in I'. In view of Theorem 18.1.15 we can then choose ReS°
so that p,—R is of order —co in a conic neighborhood V of I' in
T*(R™ 0 and C||R(x, D)| <1 where C is the constant in Lemma 26.9.2.

We can find a neighborhood V,cV of I' and functions w,wye C*(V,)
such that

(26.9.11) (6/0x,+ihH)w=(0/0x, +ihH)w,=0 and H,w#0 in V,,
(26.9.12) C,dg(x, &) SRewy(x, &)< C,dp(x,8)?,  (x,E)eVy,

where dp is the distance to B. Note that (26.9.11) implies H,w=H w,=0
when g=0. When verifying this we may assume that g=¢£,, for this can be
achieved by a possibly non-homogeneous canonical transformation. Then
we have the equations

(0/0x,+ihd/dx,)w=(8/0x, +ihd[0x,)wy=0.

The existence of w is therefore an immediate consequence of Corollary
26.7.7. Recalling that w must be constant on I’ we may assume that w=0
on I’ and can then take

wox, &) =(x3+... +x2+ &I+ ...+ &1 +(&,— D)?) exp w(x, &).

Now we return to the original coordinates. Let K be a compact subset
of w such that the inverse image K in B is contained in V,, x,€l,;, in K
and the function ¥, , in Lemma26.9.2 is equal to 1 in a neighborhood of K
for some & such that (26.9.3), (26.9.4) are valid. We fix 6. Let H be a
harmonic polynomial in € such that, with s denoting the lifting of § to B,

H(w)<min(s}¥,s) on the boundary of K in B,.

The theorem will be proved if we show that the same inequality is then
valid in K, for the restriction of w to B is the lifting to B of a local analytic
coordinate in B,. Since H(w) is harmonic in B, and § is superharmonic, we
have H(w)<s in K. Furthermore, the boundary 0K of K in B is in the
inverse image of the boundary of K in B,, for the inverse image of the
interior is open. Hence we have if f =Pu

(269.13) H(w)<s* on 0K,
(26.9.14) H(w)<sf in K.

We may also assume in the proof that ued”’ and that
(269.15) Hw)—-1<s} in K,

for if the assertion is proved under that additional hypothesis we can just
start from the fact that s> H(w)—k for some positive integer k and de-
crease k successively until k=0 and the theorem is proved.
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Choose xeCg(V,) equal to 1 in a neighborhood of K but with supp y so
close to K that x,€l, and ¢, , =1 in supp y and (26.9.13)-(26.9.15) imply
s¥>H(w) in Bnsuppdy;
sf>H(w) and sf>H(w)—1 in Bnsuppy.

We can write H=Re F where F is an analytic polynomial in C. In view of
(26.9.12) we can choose a constant t so large that if

¢=F(w)—1w,
we even have
(26.9.16) s*>Re¢ in suppdy
(26.9.17) s}>Re¢ in suppy
(26.9.18) s¥*>Re¢—1 in suppy.

Note that Re ¢ = H(w) in K and that (6/0x, +ih H,)¢ =0.
From (26.9.3) and the fact that C||R] <1 it follows that

(269.3y vl £2CIDv+i(Y; ,gh)(x,D)v+R(x,D)v|
if ve& and x,€l; in suppv. We shall apply (26.9.3) to
v=q,(, D)u,  g;(x, &)= x(x, LA~ ¢4,
To estimate
M =|((D, +i(y;3,,8h)(x, D')+ R(x, D)) q,(x, D)ul

we want to commute g,(x,D) through the operator in front. Choose u so
that ueH _,). Since

0q,(x, £)/0x =(x(x, 1) —log A/ (x, AL A~ ¢4

and similarly for dq,/0¢, the symbol of [R(x, D), q,(x,D)] is, apart from an
error which is bounded in S~4, a finite sum of functions of the same form as
q, but with ¢ replaced by ¢ —j where j is a positive integer, and multiplied
by a power of log A. Hence it follows from (26.9.18) and Lemma 26.9.3 that

I[R(x, D), q,(x,D)Jul| £C,, 0O<i<l.

The symbol of
[D,+ i(l//:’;_gh)(x, D’), g;(x, D)]

is similar apart from the first term in the symbol which is
—i(0/0x, +igH,+ihH)q;.

(Here we have used that y; ;=1 in suppq;.) In view of the differential
equation (6/0x, +ihH )¢ =0 we obtain

(269.19) —i(0/0x, +igH,+ihH)q,=qd,(x,{)+ilog A g{h, ¢} (x,A0)q,.

Here B N e )
G,(x, &)= —if(x, AE) A~ #= 23, X=H,,x,
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is of the same form as g, but with supp y=suppdy. Hence it follows from
(26.9.16) and Lemma26.9.3 that [§,(x,D)ul is bounded when A—0. The
main term in the symbol of

(269.20) ilog A(}, b(;(x, AD)(W5,,hg)(x, D) q;(x, D)
— A Y ¢V(x, ADY(3 1 b 8)(x, D) g;(x, D))

is equal to the last term in (26.9.19), and the others are of the same form but
smaller by at least a factor 4 log A. Estimating (26.9.20) by means of (26.9.4)
we obtain in view of (26.9.16)

M < lq;(x, DY(D, +i(y3, ,8h)(x, D')+ R(x, D)ull + CA* |log AIM + C,.

When 1 is so small that Ci¥|log 1| <1 we can cancel the middle term on the
right-hand side against half the left hand side. The symbol of

q,(x, D)(D; +i(3, ,8h)(x, D) + R(x, D)~ P)

is bounded in S~ since ¥; ;=1 in suppq, and the complete symbol of P is
&, +igh(x, &)+ R(x, &) in V. Hence we obtain for small A

M/2<lg,(x, D) Pul| + C,,.

By (26.9.17) the right-hand side is bounded when 1—0, so using (26.9.3)
with v=gq,(x,D)u we conclude that |gq,(x,D)ul is bounded as 1—0. By
Lemma26.9.3 it follows that s*>¢ in K. In view of Theorem26.7.11 the
proof is now complete.

By the method of descent from an operator in a higher dimensional
space we can derive from Theorem 26.9.1 a similar result on the singularities
in N4 (see the summary at the end of Section 26.5).

Theorem26.9.4. Let Pe ¥, (X) be properly supported and satisfy condition
(P), let I be a compact interval on a one dimensional bicharacteristic with end
points in N,, and let I be the affine interval obtained by Proposition 26.5.8
when subintervals not meeting N}, are collapsed to points. If ue2'(X), s is a
concave function on I and 5,,2s on 1, it follows that

min(§,,s+m—1)
is a concave function on I.

Here the definition of §, and §p, on I is completely analogous to the
definitions used in Theorem 26.9.1.

Proof. We may assume that m=1 and that the principal symbol p has the
form ¢, +igh in Propositions 26.4.13 and 26.5.7, with h>0 at the end points
of I. Let H(x,¢) be a homogeneous function of degree 0 which is equal to
h(x,&’) in a neighborhood of I. If we regard 4 and f as distributions U and



26.9. The Singularities in N5 and in Nf, 145

F in R"*! independent of x,, , then

n+ 1>
(269.21) (P+iH(x,D)D,, ,)U=F.

Strictly speaking the operator in (26.9.21) is not a pseudo-differential opera-
tor but it becomes one if we multiply by an operator with symbol

1 /IE)  where xeCPMR), x(O)=1 and [£’=Ci+...+&0, )
Since D,, ,U=0 it is clear that £, , , =0 in WF(U). By Theorem 8.2.9
WE(U)={(x,%,4,,£,0); (x, )e WF(u)},
and the same obvious proof gives the more precise statement

sulx, &) =s8(x,x, 1 1,¢,0).
Now the principal symbol of the operator in (26.9.21) is
CyHih(x, &N +8(X,ED):

Near I x (R x {0}) it satisfies condition (P) and defines a two dimensional
bicharacteristic which is the product of the x, axis, the x,,, axis and g,
=(0,...,0,1,0), for H =0 on I. The Hamilton field is

8/0x, +ih(x,,0,£)8/3%, ., 1,

so introducing [h(x,,0,¢,)dx, as a variable in [ we obtain the standard
Cauchy-Riemann operator in [ xIR. A superharmonic function independent
of x,,, is then the same as a concave function on I, so Theorem 26.9.4
follows from Theorem 26.9.1.

The preceding argument does not fully use the hypothesis that the end
points of I are in N},; the conclusion is always valid when a factorization is
available with h=0, h>0 at the end points of I, and g independent of x,. In
particular this is always true by Weierstrass’ preparation theorem in the
analytic case if the end points are just in N;,. However, it seems necessary
to weaken the notion of concavity in general. We shall now discuss two
such weaker concepts here, where the weakest will be useful in Section 26.10.

Definition 26.9.5. A function s defined on an interval <R with values in
(— o0, + 0] will be called semi-concave if it is semi-continuous from below
and for every compact interval J<I and linear decreasing function L with
s=Lon dJ we have s2 L in J. We shall say that s is quasi-concave if this is
true for all constants L.

Semi-concavity is well defined on a semi-bicharacteristic I with end
points in N,,~Nj/,. In fact, putting the principal symbol in the standard
form &, +ig(x’, &Y h(x, &) +r(x, &) with r(x, &) vanishing of infinite order on
I, Hess g<0 and h=0, we obtain a natural orientation from the orientation
of the x, axis; the form h(x,,0,¢,)dx, defines a natural oriented affine
structure in [.
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Semi-concavity is clearly invariant under linear increasing changes of
variable whereas quasi-concavity is invariant under strictly monotonic
changes of variable. Thus an affine structure and an orientation are required
for the definition of semi-concavity. The meaning of the conditions is further
clarified in the following

Proposition 26.9.6. s is semi-concave in I =R if and only if either
(i) s is increasing and continuous to the left, or

(it) s is decreasing and concave, or

(ii1) there is a point a€l such that s satisfies (i) to the left of a and (ii) to
the right of a, and s(a)=s(a~0)<s(a+0).
S is quasi-concave if and only if either (1) is valid or

(i) s is decreasing and continuous to the right, or

(iliy there is a point ael such that s satisfies (i) to the left of a and (i)' to
the right of a, and s(a)=min (s(a+0), s(a—0)).

Proof. Assume first that s is quasi-concave. If s is monotonic we must of
course have (i) or (ii). Otherwise s is not decreasing so we can choose t, <t,
with s(t,)<s(t,). Then s(t)<s(¢,) for t<t, since s(t)>s(t,)<s(t,) would
contradict the definition. Moreover, if t' <t <t, we have s(t')<s(t) for other-
wise s(t')>s(t)<s(t,)<s(t;) which is also a contradiction. If a is the su-
premum of all ¢, el with s(t,)<s(t,) for some ¢t,>t, in I, it follows that s is
increasing to the left of a and decreasing to the right of a. The lower semi-

continuity gives s(a) <min (s(@+0),s(a—0)).

Inequality here would imply that s(a)<s(t,) and s{a)<s(t,) for suitable
t, <a and t,>a, which is also impossible. This proves that (iii)’ is valid. If s
is even semi-concave it is obvious that s is concave to the right of a since
the linear interpolation between two values there is decreasing. If
s(a—0)>s(a+0) we have for a<tel and small £>0

s(@z(es(t)+(t—a)s(a—e)/(t —a+e)—>sa—0), &—0,

so s(a)=s(a—0), which is also obvious from (iii) if s(a—0)<s(a+0). This
proves the necessity of (i), (ii) or (iii) in the semi-concave case. Conversely,
assume that s satisfies (iii) and let L be a linear decreasing function, J a
compact interval <l with L<s at 8J. Then s—L is increasing to the left of
a so L(t)<s(t) if a=ted. If aeJ we obtain s(a+0)=L(a) by (iii). The
concavity now gives s= L if a<tel also. The sufficiency of the conditions in
Proposition 26.9.6 is trivial in all other cases.

We can now give an exact analogue of Theorem 26.9.4:
Theorem 26.9.7. Let Pe¥y (X) be properly supported and satisfy condition

(P), let I be a compact interval on a one dimensional bicharacteristic with end
points in N,,~Nj,, and let I be the affine interval obtained by Proposition
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26.5.8 when subintervals not meeting N,, are identified to points, with the
orientation just defined. If ue@'(X), s is a semi-concave function on I and
$p.=s on I, it follows that

min(§,,s+m—1)

is a semi-concave function on 1. Here §, and 5p, are defined as in
Theorem26.9.1.

Proof. We may assume that Pe 'I’p‘hs(]R"), that x'=0, £=¢, on I and that

(26.9.22) p(x,&)=¢, +if (x, &),
f,&)y=g(x", &) h(x, &) +r(x, &)

in a neighborhood of I. Here Hess g <0 at (0,¢,), =0, and r=0 when g>0,
by Proposition26.5.7. Since g is strictly concave in some variable the set
where g<0 is the closure of the set where g<0 so g(x,¢)<0 implies
f(x,&)<0 for all x, by condition (P), for g(x’, &)= f(x, ') for a certain x,.
Let L be a linear decreasing function of {h(x,,0,¢,)dx, and let J be a
compact subinterval of I with end points in N, , such that

(26.9.23) L<min(sks) at dJ.

(Here s denotes the function s lifted from [ to I.) The theorem will be
proved if we show that the same estimate is valid in J. Since s is semi-
concave we have L<s in J, hence

(26.9.24) L<st, in J.

If g<0 then f<0 in a neighborhood of I, so we can apply Proposition
26.6.1. Let y, be the first point in J and y an arbitrary point in J. Then
s§.2 L(y) on [y, 7]1<J and s¥(y,)> L(yo)= L(y) so Proposition 26.6.1 gives
5X(y)> L(y) which proves the statement.

We now allow g to change sign. To prove the theorem we shall then first
use Proposition 26.6.1’ to get hold of u when g <0. We may then assume that
we already know that

(26.9.25) L—¢<s¥ inJ.

Let 0<e<% and choose x, x,eS7_, (R"~! x R"~') non-negative so that x,
=1 in suppy, x,=0 (resp. x=1) at all points in a conic neighborhood of
(0,¢;) with distance <1 (resp. >2) to {(x', &); g(x',&)>0} with respect to
the metric

(26.9.26) (L+IEPF(dx? + A +1E17) 1),

This is possible by Corollary 1.4.11 (or by using the closely related par-
titions of unity in Section 18.4). Choose ¥, ¢, e€S°(R"~! x R") non-negative
so that ¢, =1 in suppy and ¢y =1 at infinity in a conic neighborhood of
0,¢,). If we set

C, =L +IEP 2 Y (x, ) 1 (x, ),

Ci(x, &) =y,(x, Q) 1,(x', §)
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the hypotheses of Proposition26.6.1' are fulfilled in [y,,y] if suppy is
contained in a sufficiently small conic neighborhood of (0,¢,) and s=L(y) for
some yeJ. (Note that (3¢ —1)/2< —14 so the first part of (26.6.9) follows from
(26.9.25) in [y,4,7].) Hence

C(x',D)jueH,, aty if yeJ and s=L(y)

Since C*(x’,D)—(1+|D|*¥2 C°%x',D) is of order s+e—1 and e~1< -1, it
follows in view of (26.9.25) that (1+|D|*)*? C%x',D)ueH q, at v, if s=L(y),
that is,

(26.9.27) C°x',D)ueH,, at J.
Now let v=u— C°%x’, D)u. From (26.9.23) and (26.9.27) it follows that

veH,, if yedJ.
We have
Py=Pu—C%x',D)Pu—[P, C°%x', D)]u.

The symbol of [P, C%(x’,D)] is in 8§22~ apart from the term

1 -z,

{£C%=(£,Co/C)C,
which is in S5 _,. Thus we have
[P’ CO(xI’ D)] = Ql(xa D) Cl(x, D)+Q2(X, D)

where Q€85 _,, and Q,eS5}°",". The argument which led to (26.9.27) also
gives
C,(x,DyueH,, at J,
so it follows that
PveH,;_,, atJ.

Since r=0 when g>0 we can estimate r(x,¢')/|€'| by any power of the
distance to this set in the norm (26.9.26) with ¢=0. In a conic neighborhood
of I we therefore have r(x, &')=0(¢|' ~™) for any N in supp (1 —C°), and all
derivatives of r are also rapidly decreasing there. Hence the symbol of
r(x,D')(1— C°x’,D)) is of order —oo in a conic neighborhood of J. If P, is
obtained from P by changing the principal symbol to &, +igh in a conic
neighborhood of J, it follows that RveH, _,, at J. The proof of Theo-
rem 26.9.4 works for the operator P, since an exact factorization is available,
so we may conclude that veH; _,, at J since this is true at 0J. Hence

ueH, ., atlJ

for every £>0 and every L satisfying (26.9.23), which completes the proof.
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26.10. The Singularities on One Dimensional Bicharacteristics

On a general one dimensional bicharacteristic we have no affine structure
which permits us to define (semi-)concavity. However, quasi-concavity is
meaningful (see Definition 26.9.5), and we shall prove

Theorem 26.10.1. Let Pe ¥y, (X) be properly supported and satisfy condition
(P), and let 1 be a one dimensional bicharacteristic interval. If ue2'(X), s is a
quasi-concave function on I and s¥,=s on I, then

min(s¥,s+m—1)

is a quasi-concave function on 1.

We have here chosen a statement which is analogous to Theorems
26.9.1, 2694 and 269.7. However, it is useful to rephrase the result. Ex-
plicitly it means that if J is a compact interval <l and min(s¥,s+m-—-1)2t
+m—1€R at 9J, then this is also true in J. Since s is quasi-concave we
have s}, =s=t in J, so the assertion is that sf=t+m—1 in J. Theo-
rem 26.10.1 is therefore equivalent to the following apparently weaker state-
ment:

Theorem 26.10.1'. Let Pe ¥y (X) be properly supported and satisfy condition
(P), and let I be a compact one dimensional bicharacteristic interval. If
ueZ'(X), seR and s, zson I, s¥=s+m—1 at 01, then sf2s+m—1in L.

In the proof we may by Proposition 26.4.13 assume that Pe %}IE(IR"), that
X' =(x,,...,x,)=0and £¢=(0,...,0,1)=¢, on I, and that

(26.10.1) p(x,&)=¢&; +if(x,¢)

in a conic neighborhood of I, where f does not change sign for fixed (x', &').
Theorem 26.10.1' is a consequence of Theorem26.6.4 if IcN;,. If Ic Ny,
then Theorem 26.10.1’ follows from Theorems 26.9.4 and 26.9.7. In fact, if I
is the one dimensional bicharacteristic containing I and ¢>0 we can then
choose ¢eS° equal to 1 at infinity in a conic neighborhood of I and equal
to 0 outside another neighborhood which is so small that

Po(x,D)u=¢(x,D)Pu+[P, p(x,D)JucH in I,

and ¢(x,D)ueH_,,,_, at every point in I'NI. If '\ I contains points in
N, , on both sides of I it follows from Theorem 26.9.4 or Theorem 26.9.7 that
o(x,DyueH_,,,,_,, in I, hence that ueH,_,,, _,, in I. Otherwise we can
modify the definition of p outside WF(¢(x, D)) so that such points occur, for
example by changing the principal symbol to p(y,(x,),x’,¢) where y,(x,)
=Xx, in a neighborhood of I but (y,(x,),0,¢,)eN,, for large |x,|. This does
not affect condition (P) or the condition that P¢(x,D)ueH_, on I

If IcNj then f vanishes of third order on I since f=gh and g=h=0
on I, h=0 in a neighborhood. In the proof of Theorem26.10.1’ we may

(s—¢)
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therefore always assume that
(26.10.2) f vanishes of third order in I.

As in the proof of Theorem 26.4.7 we may also assume that the term of
order 0 in the symbol of P is of the form r(x,&’), and the argument at the
beginning of the proof of Theorem 26.9.1 shows that by conjugation with an
elliptic operator we can achieve that

(26.10.3) r=0 in L

As in Lemma 26.9.2 we shall cut f and r off outside a small neighborhood of
x'=0, ¢'=¢,/A by introducing
(26.10.4) S5, 8=y (x'[6,(AL' —£,)/0) [ (x, ),

15,46 &)=y (x'/0,(A8 —€,)/0)r(x, )
where YyeCy. Let I=Jx {0} x{g,} and J;={t+1t'; teJ, |t'|<5}. For 1>0
and small 6 >0 we have if x,eJ;
(26.10.5) ID%DE, f5 1%, EN A/6% + D% DEr; ofx, &) £ C,p0" el - 16 Jlal,

For reasons of homogeneity it suffices to prove (26.10.5) when A=1 and
then it follows from the fact that by Taylor’s formula

DL DL f(x,&)=0(63~"-18),  DLDLr(x,&)=0(3'~II-18)

when |x'|2+|¢& —¢,|2< Cé* and x,€J;.

To simplify notation we shall write F and R instead of f; , and r, ,,
taking x’/ﬂ, ﬂé’ as variables instead of x', &. Then the right-hand side of
(26.10.5) becomes C,z64'*#! where a?=1/6%. (Note that the change of
variables is the symplectic change of variables in T*(IR"~!) induced by the
change of x' variables.) Dropping the primes and writing ¢ instead of x; we
have to study the operator

D, +iF(t,x,D)+ R(t,x, D)

where all x, £ derivatives of F and R are continuous in ¢, x, £ and
(i) F is real valued and F(t, x, &) F(s, x, £) =0,
(i) @ |FOUt, x, &) + IRt x, O <6 Cidd,  j=0,1,2,....
Actually F and R are only defined in an interval, say |t} < T, but since no
differentiability with respect to ¢ is assumed we can extend them to all teR
so that they are independent of ¢ when t=T or t<—T We can also
introduce ¢'=4t as a new variable instead of ¢. This gives the operator

8D, +id ' F(t'/5,x,D)+ 6~ R(t'/d, x, D)).

The interval |t|<T has now become the interval {¢|<d T, and the operators
involve functions satisfying (i) with d=1. This is finally the situation in
which we are going to work. It is no restriction to assume that C;=1 for
j<£2. In the first lemma we write X =(x, £).
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Lemma26.10.2. Let F(t,X) be a real valued function in R'** such that
F(t,X)F(s,X)=0 for all t,5, X, all X derivatives are continuous and

(26.10.6) IFPe, XN Ca'~%  j=0,1,...; (t, X)eR'*X
Let 1<p<1/a and set

(26.10.7) a(X)~2=max (p?,sup|F(t, X)), sup |Fx(t, X)|?).
Then ' '

(26.10.8) agd(X)<1/p, aX+Y)L2a(X) if |Y|a(X)<4,
(26.10.9) aX)saX + Y1 +|Y|a(xy),

(26.10.10)  |FP(, X)SCa(Xy=2%,  j=0,1,...; (1, X)eR'*¥;
and for every X one of the following cases occurs:

D) d(X)=1/p; then 3<pa(X+Y)<1 and |Ft,X+Y)<4C;p*~,
j=0.1,... if a(X)|¥] <},
I1,) d(X)‘2=Sl‘lpF(t,X); then F(s, X+ Y)20 if a(X)|Y| L.
I1) 5(X)_2=Sl'lp —F(t,X); then F(s, X +Y)<0 if a(X)|Y| <L
1)  a(X) '=sup|F(t, X)|; then F(t, Y)=G(Y)H(,Y) if a(X)|Y-X|<d,
and then we have H20, |G'(X)|=1/d(X),
(26.10.11) IGY)C,a(Yy—2, |HP@ V) Cia(Yy
where the constants C’; only depend on Cy, ..., C;, ;.
Proof. That a<d(X)<1/p follows at once from the definition and the
hypothesis. Since
[F(t, X +Y)—F(t, X)| | YIIFlt, X)| +|YI?/2 | Y)/a(X) +1Y]%/2,
IF'(t, X +Y)—-F(t, X)| 1Y),
we obtain if @(X)|Y| <1 that
IF(t, X + Y) Z|F(t, X)| - 3a(X)~%/4,
IF(t, X + V) Z|F'(e, X)| —3a(X)~!
which proves the second inequality in (26.10.8). Also (26.10.9) follows for
[F(e, X + V) £a(X)~ (1 +[Y]a(X)),
IF'(e, X + V)| <a(X)~ (1 + Y| a(X)).

The estimate (26.10.10) follows from (26.10.6) if j=2, since a<d, and from
the definition of @ if j=0 or j=1. In case I) we have L < pd(X + Y)<1 when
d(X)|Y|<1 in view of (26.10.9), hence a(X + Y)Y ~2<4p2~4, j=0. In case 11,)
we have

Fe,X+Y)2F(t X)-34(X)"2/4>0, a(X)|Y|<3,
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provided that F(t,X)>3d(X) ?/4. By hypothesis it follows that we have
F(s, X+ Y)=0 for all s then. Case II_) is of course similar.

In case III) we choose ¢; so that IF,"(tj,X)I—ﬂi(X)"l and F(t;, Y)- G(Y).
Then the first estimate in (26.10.11) follows from (26.10.6), and |G'(X)|
=d(X)"'. Hence G'(Y)#0 if |X—Y|d(X)<1. Since the zeros of G are
simple then, they are limits of simple zeros of F(t;, Y). At such zeros we
have F(s, Y)=0 for all s since Y is in the closure of the set where F(t;,.)>0
as well as the set where F(t;,.)<0. It follows that F=0 when G=0 and that
H(t, Y)=F(t, Y)/G(Y) is a non-negative C* function when d(X)|Y—X|<1.
To estimate H we assume for example that dG(X)/0X >0, dG(X)/0X;=0,
j>1. Then

0G(X + Y)/aY, >a(X)~* —|Y.

If 4(X)|Y| <% and G(X + Y +se,)*0 for |s| <1/(2d(X)), where e, =(1,0,...,0),
1/(2(X)) ‘

then G(X+Y)> | sds=1/8a(X)?). Since [F(t, X + V) <a(X)~ (1 +1+1)

]
we obtain [H(t, X + Y)|<13 and of course similar estimates for the deriva-
tives with respect to Y. On the other hand, if G(X +Y +se,)=0 for some s
with d@(X)|s|<i then F(X+Y+se,)/s and G(X+Y +se,)/s are equal to
averages of J,F and of 0,G on the intervals between X +Y and X +Y +se,
so the ratio is bounded by

}(1+s)ds/1(1—s)ds=7.
£ k3

Hence |H(t, X + Y)| <7, and we have similar estimates for the derivatives of
H since this is true of the averages of d,G and d,F. The proof is complete.

Note that the proof also shows in the third case that if G(Y) has no zero
with |Y—X]a(X)<4 then |G(X)|=32ad(X)" 2 so we could essentially have
classified this situation as case II. There are similar borderline cases between
the others, but this will not be important. What is crucial is that the lemma
cleanly separates areas where F is bounded and therefore controlled, or F is
of constant sign so that the methods of Section 26.6 are applicable, or
finally where F can be factored so that we have essentially the situation
studied in Section 26.9.

Since the proof of the following proposition will depend on the ad-
vanced calculus of pseudo-differential operators in Sections 18.5.6, we shall
use the Weyl calculus already in the statement. Note that the hypotheses
(26.10.2) and (26.10.3) remain valid for the Weyl symbols.

Proposition26.10.3. Let P=D,+iF*(t,x, D)+ R"*(t,x,D) where F is real val-
ued, F(t,x, &) F(s,x, &) =20 for all (s, t,x, £)eR?*" and

(26.10.12) a|FOt, x, &) + IRVt x, O 6 C;al,  j=0,1,....
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If a and 6T are smaller than positive constants depending only on C,,C,,...
then

(26.10.13) |ull<16T||Pul, if ueLMR") and u(t,x)=0 when |t|>T

Proof. As already observed we may assume in the proof that =1 and that
C;=1 when j<2. At first we also assume that R=0. From Lemma 26.10.2
with p still to be chosen we obtain a metric

g=a(x,&)*(|dx]* +1d¢?)

which is slowly varying and o temperate (cf. (18.5.11)) by (26.10.8) and
(26.10.9), for 1+|Y|a(X)<1+|Y|=1+|Y/a(X). Choose X, =(x,,£,) so that
the balls

Bv(r)={X’d(Xv)|X_XV| <r}

cover R?"~1) when r=1 and there is a fixed bound for the number of balls
B,}) with a non-empty intersection. Choose ¢, CF(B,()) real valued so
that Y ¢2=1 and {¢,} is uniformly bounded as a symbol in S(1,g) with
values in I2. (See Lemma 18.4.4) We have

Ylevul®=3 (@7 ¢Vu, u)=(u,u)+ (" u, u)

where ¢ is uniformly bounded in S(@2,g), hence in S(p~2g). It follows that
l¢*ii < Cp~2 Fixing p now so that p> =max (1,2 C) we obtain

(26.10.14) ful>=23 HYul> <3 jull>.

Choose ¥, € C3(B,(5)) non-negative and equal to 1 in B(3) so that {y } is
uniformly bounded in S(1, g), and set

Ft,x, &)=y (x,£)? F(t, x, &).

F, is uniformly bounded in S(@(X,)~?, a(X ,)*(|dx|?+|d¢l?). If X is in casel)
of Lemma26.10.2 then d(X )~ ?=p?, so Theorem26.8.1 applied with 4=B
=0 gives

lull £ 4T||Dyul| £ 4T|\Dyu + iF} (¢, x, DYul| + CT p*jul).

When CTp?<1 it follows that
(26.10.15) lull 8T |(D,+iF)(t, x, D))ull.

In case II,) we observe that by Theorem 18.6.7 (in fact, by Theorem 18.1.14)
there is a constant ¢ such that

FX(t,x,D)+cI=0.
Applying Theorem 26.8.1 with B=1I and A(t)=F)'(t,x, D)+cI we obtain
lull 4T (D, +iF +c)ull S4T (D, +iF")ull +4Tc |lul,

$0 (26.10.15) is valid if 4Tc <. The same is true in case II_; we just have to
change the sign of ¢. In case Ill we set G,=y,G and H, =y, H where F=GH
is the local factorization in Lemma26.10.2. We can apply Theorem 26.8.1
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with B=GY(x, D) and A(t)=H(t,x, D)+ cd(X,)* with ¢ chosen so large that
A(t)=0. Then BeS(@(X,)2, a(X,)*(dx|*>+1d¢|%) and A(t)eS(1, a(X )*(dx|*
+1d¢*) uniformly, so |A4l, |[B,A]} and |[B,[B,A]]l| are uniformly
bounded; later we shall need that (X )| B is also uniformly bounded.
Hence (26.8.3) gives if T is small enough

lull 6T ||(D,+iA(t) B)ul| 6T (D, +iF'(t, x, DY)ul| + CT ||ul]

since the symbol of A(t)B—F,)” is uniformly bounded in S(1,g). When CT <1
we obtain (26.10.15), which is now established in all cases.
Now we apply (26.10.15) to ¢*u and obtain using (26.10.14)

lul><2 Y I¢yull> <27 T2 Y I(D,+iE’(t, x, D)y ul®.

Regarding {F,} and {¢,} as symbols with values in diagonal matrices in
L% 1?) or in 1= %(C, 1%, we obtain from the calculus that

(D, +iF)(t,x,D))¢p?u=¥(D,+iF*(t,x, D)u+K¥(t, x, D)
where {K} is uniformly bounded in S(1, g} (with values in I2). Since
Y. I#¥(x, DYD,+iF*(t, x, D)ul> < 3 (D, +iF¥(t, x, D)ul

by (26.10.14) and
YK, x, Dyul)* < Clul?,

we obtain for small T
ful 14T (D, +iF*(t, x, D))u|.

This proves (26.10.13) if R = 0 with the constant 14 instead of 16. When T is so

small that
14T |R™(t, x, D)ul| £ |ull/8,

the estimate (26.10.13) follows.

In case III) the estimate (26.10.15) is analogous to (26.9.3). We shall also
need the analogue of (26.9.4) obtained when Theorem 26.8.3 is applied to
the operators A(t)=H™(t,x,D)+cd(X,)> and B=G(x,D) in the preceding
proof. Using (26.10.15) we obtain for small T

§(B*u, HY(t,x, D)B*u)dt < CT&(X,)"*|Bul?; B=D,+iFy(t,x,D).

Since H,=>0 and the second derivatives of 4(X,)~2H, have uniform bounds,
it follows from Lemma 7.7.2 that

la(X,)"*H,)*< Ca(X,)"*H,
if H,=0H /0x; or 0H,/0¢; for some j. Hence
0<Ca(X )’ H,—(H ) eS@(X )% a(X ,)*(dx|* +1d&%)

so we can find another constant C’ such that the Weyl operator with

symbol
Ca(X)*H,—H?2+Ca(x,)*
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is non-negative. Since the symbol of (H,%)*—((H.)*)* belongs to
S@(X )%, a(x,)*(dx|> +|d¢|%) we obtain

IHvli? < Ca(X ) (Hyv,0)+ C'a(X,)*(v, v).
Taking v=G(x, D)u we obtain with another constant C
IH*GY(x, D)ul|* < CT | Bull*+ Cllul|®.

The symbol of H*G?—(H,G,)* is bounded in S(1,d(X,)*(|dx|*+]d¢[?). In
view of (26.10.15) it follows for small T that with still another C

(26.10.16) I(H,G)*(t,x, Dyull* < CT || Bul?

ifues, u=0for |t|>T

Proposition 26.10.3 is all one needs to prove local existence theorems.
However, the proof of Theorem26.10.1' requires a localized form of
(26.10.13) which we shall now prove.

Proposition 26.10.4. Let the hypotheses of Proposition 26.10.3 be fulfilled, let
Xo and x, be uniformly bounded in S(1,a*(|dx|? +|d¢|?), and assume that y,
=1 in supp y,. For every ¢>0 we have then if a and 6T are sufficiently small

(26.10.17)  a®llxg(x, D)ull = CT(lxY(x, D)Pul +a*|| Pull) +a*|ul,
Jor all ue #(R") vanishing when |t|>T.

Proof. We may assume in the proof that |x,|>1 at all points with distance
=<1/a from supp y,, for this is true at distance <y/a for some fixed ye(0, 1),
and changing the constants in (26.10.12) we may replace a by a/y in the
hypothesis. As in the proof of Proposition 26.10.3 we may also assume that
6=1 so that g and T are small. Now we apply Lemma 26.10.2 with p=a~3,
define ¢,, ¥, and F, as in the proof of Proposition 26.10.3 and set R (z, x, &)
=y,(x, &)*R(t, x, &), B=D,+iF}(t,x,D)+R%(t,x,D). If a is small enough we
have (26.10.14), hence

(26.10.18) Ix50x, Dyuli2 <23 4y (x, D)x5(x, D)ull*.
Application of Proposition 26.10.3 to ¢y(x, D) x5(x, D)u and P, gives
¢3(x, D) x5(x, Dyull < 16 T ||, ¢}(x, D) xo(x, D)ull.
We shall estimate the right-hand side by writing
Ry xo=[R,o71xs+ OV, 101+ SR — P)+ o7 x5 P-

When computing [P,¢)1=(F+R})¢) — ¢ (iF+ R}) we regard the right-
hand factor as a symbol with values in [>=2(C, %) and the left factor as a
symbol with values in diagonal matrices in Z(I?,1%). (All later calculations
are made similarly.) With the notation g =a%(|dx|?+|d¢&|?) it follows that the
symbol is {F,—iR,,$,}eS(l,g) (with I? values) apart from an error in S(G2,g)
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<S(a, g). Hence
2P, oY Ixgull®> < Clixgull?

which is harmless to have multiplied by T2 in the right hand side of our
estimates since ||xyull? will occur on the left. The symbol of ¢*[B,xs] is
#,{F,—iR,,x,} with an error in S(a%g), for {F,—iR,}eS(@ 2g) and
x0€S(1,8). Since x,eS(1,a%(|ldx|? +]d¢|%) the symbol is bounded in S(a/a,g)
< S(a?, g) if we restrict v to the set N, of indices such that X is in case I) of
Lemma 26.10.2. Thus

2 I$YIR, x51ull> < Callul®.
N

The symbol of ¢} ys(P,—P) is bounded in S(a,g) for all terms in the com-
position series vanish because y,=1 in supp ¢,. These terms have therefore
an even better estimate. Finally the symbol of y§—yxbx? belongs to
S(a*, a*(ldx|* +|d¢|?)) so

lxg Pull® < Clllxy Pull® +a®|| Pul?).
Using (26.10.14) again we therefore obtain

(26.10.19) ; I¥(x, D) x2(x, D)ul|

S CTX(lx{0x D)Pull® +a®| Pull® +aul® + | x5(x, D)ull®).

In cases II) and III) the commutator of P, and yy is too large to make
the preceding estimates useful. There is no point in keeping the factor yxj
then. Since ¢Yxo=xo¢r + [P, x0] and [@), x5] has a vector valued symbol

v

in S(a?, g) (recall that 4 <a?), we have

(26.10.20) Ylovxoull=C( Y Novull®+a’|ul?),

v¢N; NuuNm

where N; and Ny denote the sets of indices v such that X is in case II, resp.
III of Lemma 26.10.2 and ¢,y,+0. We recall that this implies [x,|>3 in
B (3). (See the beginning of the proof.)

If veN; we go back to the proofs of Proposition26.6.1 and of Theo-
rem 26.8.1. Thus we start from the fact that for fixed ¢

(26.10.21) Im(@y Pu, ¢y u)=Im (PP} u, dyu)+1Im (¢}, Plu, d} u).
We have in case II,

21m (P yu, ¢u)= —%Hdﬁ”uﬂz +2(F* ¢Vu, 7 u)+21m (R" §7u, $7'u)

)
> w2 __ w2
2 —o Igrul?—Clovul?

since F¥ is bounded from below and R is bounded. Furthermore

21m([¢}, Plu, o7 u)=([47,[47, F*1]u, u)+2 Im (797, R"Ju, u),
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and the symbols of

Y [on. [0, F11, Y. or[¢r,R"]

i N,

are bounded in S(@% g)<S(a,g). If we multiply (26.10.21) by T +t¢, sum and
integrate with respect to t also, we obtain with I? norms in (t, x)

; ll¢;”uIlZ§CT(NZ I|¢Z”u|lz+allullz+; I3 Pull l|¢3 ul)).

(The case II _ is reduced to Il by changing the sign of ¢.) Since
CT|\¢y Pul gy ul <(C*T?||$y Pull® + |7 ul*)/2
we obtain for small T and another C

(26.10.22) Y ¢rul>S CT?Y li¢p¥ Pu|®+ CTalulj®

Nu Nu

If §,=¢,/x,+{d,,1/x,}/2i then {P,} .y, is bounded in S(1,g) since |x,|>4%
in supp ¢, when ve Ny, and the symbol of ¢*—¢* " is bounded in S(a3 g)

since @, —x, $, —{,, x:}/2i={{d,, 1/x:}, x1}/4. Hence

(26.10.23) 2 ¢y Pull> < C(lxt Pull® +a® | Pull®).
Nn

In case IIl) we shall use operators commuting approximately with P
which are similar to the operators with symbol (26.9.8) used in the proof of
Theorem 26.9.1. They are constructed in the following lemma, which will be
proved after completion of the proof of Proposition 26.10.4.

Lemma 26.10.5. One can find an integer J and for every veNy and j=1,...,J
Junctions ¢, ;, @, E€CB,G), v, € C3(B,(})) such that if |t|<T and T is small
() {byhvenu (v} venms and {0} eny, are uniformly bounded in S(1,g),
(i) ¢,,=1in supp b, , . 8,,=1 in B,&3),
7
(iii) Ov,;/0t~iH,{v,;,G,} =0 in supp ¢, ,
(iv) v,;>¢/3 in supp ¢,;, v,;<2¢/3 in supp d3vj, v,;>1+¢/3 in suppd¢, ;.

End of proof of Proposition 26.10.4. With

m,;=¢,;a"’
we have by Proposition 26.10.3 applied to F, and m);u
(26.10.24) lmyull <16 T || Bmyull.
Here we want to commute F, and my;. The first part of (iv) shows that
{m,;},eny, is bounded in S(1,g), for the powers of loga which occur when

m,; is differentiated can be estimated by a~%>. The symbol of [m,;,R] is
therefore in S(a, g) (with values in I?) apart from the term

(26.10.25) —i{m,,t+iF}=—i{$,;,1+iF,}a" +(loga)G,{v,;, H,}m,;.
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Here we have used (iii) when calculating {v,;,7+iF,}. Since {¢,;,t+iF,} is
in S(1,g) with values in I?, the last part of (iv) gives

{¢vj’ T+ va} a"vies(a’ g)

with values in /2, and with a uniform bound. The second term in (26.10.25)
differs from the symbol of

10ga(§ (0, v,)*(G, 0., H,)" = (0,,0,)"(G, 0, H)")my;

Xy V]

by a symbol in S(a,g) with values in . Since d,,v,; and d,,v,; are bounded
in S(a?, g), it follows from (26.10.16) that

IB,myull < Imy; Pull + Ca*logal|Bmyull + | pYul

where {p,;} is bounded in S(a,g). (Note that the composition series of
m) (P — F) has only zero terms.) Hence

I Emyull S2(|my;Pul + 2| pyull
if a is so small that 2Ca*loga<1, so we obtain using (26.10.24)

(26.10.26) 2 limull? < CTHY [myPull® +a?||ul}?).
The proof of (26.10.23) also gives
(26.10.27) Y myPul? < Clllxy Pull® +a® || Pul?).

Since (ii) in Lemma 26.10.5 implies
¢V=Z¢" éﬁ:a_tzwvjmvj’ wvj=¢v$vjae_ij,
J j

and {y,;} is bounded in S(l g) by the second part of (iv), it follows that the
symbol of aor— le/v 'm}; is bounded in S(a, g) with values in I?, hence

2 latgyull? < C Imyull +a? u)®).

N

If we combine this estimate with (26.10.26), (26.10.27), and recall the es-
timates (26.10.18), (26.10.19), (26.10.20), (26.10.22) and (26.10.23), we have
proved that

a® |l x5(x, Dyull> < CT?(||x¥(x, DYPull +a® || Pul* +a* | x5(x, D)yul|>)+ Cau|*.
When T is so small that CT? <4, the estimate (26.10.17) follows.
Proof of Lemma26.10.5. The essential point is to use Corollary 26.7.8 to
construct a solution of the equation

ov/ot—iH {v,G,} =0

for {t]< T, where T is small, and for (x,¢) in a neighborhood of an arbitrary
YeB,(;) with diameter proportional to 1/a, where a,=d(X,). To do so we
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set k (y,n)=(x,+y/a,,¢,+n/a,) and obtain the equation
o(x*v)/ot+ix*H {a’k*G,, k*v} =0.

(Note that k, is not symplectic but multiplies the symplectic form by a
constant factor.) Here k*H, and a?x*G, have uniformly bounded y# deriva-
tives. There is a fixed positive lower bound for a2|dx%G,(0)|, so Theorem 21.1.6
and its proof show that there is a canonical transformation %, from a fixed
neighborhood of 0 to a neighborhood of ¥, !(Y) with uniform bounds for all
derivatives of &, and %, ! such that

azk*K*Gv(y’n)=’11‘

vy v

Thus we obtain the equation
a . PPRES *
5((51/""‘"11)*”) +i(kyRy) H, 0Ky k) V)/a)'l =0

which we solve using Corollary 26.7.8 with ¢ replaced by &/3. Since x & ,(0)
=YeB,(}) the neighborhoods can be chosen so small that x & V,<B,(3)
Choose @eCP(V,) equal to 1 in V, and ¥YeC¥(V,) equal to 1 in suppP.
Then

v=(F7 'y DHPU+e/3),  d=(ky 'K,

v

are in C3(B,(3)) and satisfy for small T the conditions on ¢,;, v,; in (i), (iii),
(iv). In addition we have ¢ =1 and v<2¢/3 in {X; a,|X —Y|<c} wherecis a
fixed constant. Now we can cover B/(3) by a fixed number J of such
neighborhoods so that there is a subordinate partition of unity 4;”' with
uniform bounds in S(1, a%(|dx|? +1d¢]?). The corresponding functions v and ¢
are denoted by v,; and ¢,;. This completes the proof of the lemma.

Proof of Theorem26.10.1' We must show that if ueé’(R"), s¥=s at dI and
s§,2s in I then s*>s in I. In doing so we may assume that s*2s—% in I,
for if the theorem is known then we can start from the fact that s*=s—k/4
in I for some integer k and deduce that s*>s—(k—1)/4,..., s¥=s in I. The
hypothesis s¥,=s in I is then preserved if we change the terms of order
< —1 in the symbol of P, so we may assume that the Weyl symbol of P is
equal to &, +if(x,&)+r(x, &) in a conic neighborhood V of I, when [¢|>1.
We can take V so small that s*>s—1—¢ and that s},>s—¢ in V where ¢
is an arbitrary positive number kept fixed in the following discussion. The
conditions (26.10.2), (26.10.3) are also assumed valid. Choose x4, ¥y,
YyeCP(R?*"~2) so that

%200)=1, x,=1insuppy,, ¥=1 insuppy,,
and define f; ;, r; ; by (26.10.4) and similarly
X5,5.0 &Y= 1,(x'/8,(A&" — &,)/0).
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After a symplectic dilation we can then, as observed after (26.10.5), apply
Proposition 26.10.4 with a>=1/62 and obtain for sufficiently small 6 and 4
(26.10.28)  (A/3%F"? | x5, 5,1(x', D)l
S ClIx}.5,20¢, D)V B, 301l +(4/82)H | B ol +(3/0%) o)),
if ve & and v=0 when x, ¢J. (Recall that I =J x {0} x {¢,}.) Here
B, =D +ify"(x, D) 473 (x, D).

Choose a compact interval I, in the interior of I such that s*>s—e¢ in
INI, and then a function ye CJ(V) with x,eJ in suppy and y=1 in a
neighborhood of I,,. We shall apply (26.10.28) to v=gq,(x, D)u where

4%, O =x(x, ) A"~

(As this point we prefer not to use the Weyl calculus to be sure that x,eJ
in supp ».) By Lemma26.9.3 there is a bound for |i*q,(x,D)u| as 1—0.
Since AD,q; is a sum of two operators of the same form with x(x,¢&)
replaced by &, x(x,&) or by AD,x(x,£) and since A(f;";(x,D")+r} ,(x,D) is
uniformly bounded, it follows that A% B ,q,ull >0 as A-0.

When computing the symbol of

vav,a,af.’s,zqz(x’ D)

we note that the symbol of F, is equal to the symbol of P in the
intersection of supp g, and supp y, ; ;. By Theorem 18.5.4 the symbol of

X150 D) B 19, D) —xY 5.2(x, D) q,(x, D) P
is therefore equal to 2*~*j(x, A1)+ p; , where

06,8 =11,51{P.4:}/i

and p, , is uniformly bounded in $°~! as 10, for g, is uniformly bounded
in §°~% Hence {p, ;ull is bounded as A—0. If 6 is small we have s} >s—¢ in
supp f<supp x, snsuppdy, for s¥>s+1—¢ when £,%0 since P is non-
characteristic then, and s*>s—¢ in suppdy when x' =0, £=¢,, by the choice

of . Hence
145~ % (x, AD)u]

is bounded as 21 —0. This is also true for ||q,(x,D)Puf, so (26.10.28) shows
that
K248, 5,2¢'s D) (x, D)ul|

is bounded as 1—0. The symbol of yxy ;.q,(x,D) is x, 4,4, apart from a
term which is bounded in S$*~ 1, so it follows that

A5/ 1(xo,5,29)(x, D)ul|

is bounded as 1—0. Hence s*=s—3¢/2 on I, by Lemma26.9.3, and this
proves the theorem since ¢ is an arbitrary positive number.
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26.11. A Semi-Global Existence Theorem

For arbitrary operators satisfying condition (P) we have now proved sub-
stitutes for Theorem 26.1.4 which permit us to prove an analogue of Theo-
rem26.1.7 with essentially the same arguments. Before stating it we shall
examine the geometrical conditions involved. The notation is that in the
summary at the end of Section 26.5.

Theorem 26.11.1. Let P be a pseudo-differential operator in ¥y (X) satisfying
condition (P), and let K be a compact subset of X. Then the following two
conditions are equivalent:

(1) Every characteristic point over K lies on a compact semi-bicharacteris-
tic interval with no characteristic endpoint over K.

(ii) No two dimensional bicharacteristic and no complete one dimensional
bicharacteristic in N~ (N, , U N3) lies entirely over K.

Proof. 1t is clear that (i) = (ii). Assume now that (ii) is fulfilled. We can also
assume that the order of P is 1. The Hamilton field H, of the principal
symbol p can then be regarded as a vector field v on the cosphere bundle
S*(X). It follows from (ii) that v cannot vanish anywhere over K in the
characteristic set for then there would exist a radial bicharacteristic curve
which contradicts (ii). If y,e N~ N5 then a semi-bicharacteristic through y,
is a one dimensional bicharacteristic until it leaves the characteristic set. If
(i) is false for some y,eN~Nf we can therefore find a C'map
R, 3t y(1)eS*(X)|, with

pyE)=0, Y(O=c@)o(r@) lc@i=1 y0)=ny,

where = is the projection T*(X)~0— $*(X). Now choose a sequence ;-0
such that y(t;) converges. Then it follows that

()= }im y(t+t))
J— 00

exists and is a complete one dimensional bicharacteristic curve, which
contradicts (ii). Assume now that y,eN; and let B be the two dimensional
bicharacteristic containing y,. We may assume that B contains some point
jeN, over the complement of K, for Proposition 26.5.5 shows that without
violating condition (P) one can modify the symbol at a point in N5\ N, to
make it lie in N,. If y,eB, (see the discussion after Definition 26.5.4) then
the assertion (i) follows since in the Riemann surface B, we can obviously
choose a smooth curve through the class of y, with endpoints near j. If
y0EB~ B, one can still find a semi-bicharacteristic from  to y, by the
definition of N, and (i) follows again unless it continues indefinitely in the
opposite direction as a one dimensional bicharacteristic over K. But we saw
in the first part of the proof that this would contradict (ii), so the proof is
now complete.
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Our microlocal regularity theorems have the following consequence:

Theorem 26.11.2. Let P be a pseudo-differential operator in ¥y (X) where X
is a manifold. Assume that P satisfies condition (P), and let K be a compact
subset of X such that the equivalent conditions in Theorem26.11.1 are fulfilled.
If ue&'(K) and s}, =s where s is a real number or + o0, it follows then that
sk2s+m—1.

Proof. Assume that the assertion is false so that
(26.11.1) so=infs*<s+m—1.

We shall prove that this leads to a contradiction. Since s} is lower semi-
continuous, there is some ye T*(X)~ 0 over K such that s¥(y)=s,. We have
s¥2s+m outside N so it is clear that ye N. Choose a semi-bicharacteristic
interval I' containing y with no characteristic end point over K. Then s*>
s+m at the end points of I'. If I' is not contained in N it follows from
Theorems 26.6.2 and 2664 that s¥*=s+m—1 at I, which contradicts
(26.11.1). Thus I'cN. If I' is a one dimensional bicharacteristic we also
obtain a contradiction in view of Theorem26.10.1'. The remaining possi-
bility is that I'< N5. Without violating condition (P) we can then as in the
proof of Theorem 26.11.1 change the principal symbol at the end points of I’
so that they are in N,. This does not affect the condition s¥,=s if the
change is made in a small enough set, for ue&'(K). Let B be the leaf of the
foliation of Nj containing y. Then yeB, and the function

S=min(§,s+m-1)

which is superharmonic by Theorem 26.9.1 is =s, in B, with equality in the
class of y. Hence § is identically equal to s, which contradicts the fact that
S=s5+m—1 at the class of any end point of I". This completes the proof.

We can now prove a slightly weakened analogue of Theorem 26.1.7.

Theorem 26.11.3. Assume that Pe ¥y (X) is properly supported and satisfies
condition (P). Let K be a compact subset of X such that the equivalent
conditions in Theorem26.11.1 are fulfilled. Then it follows that

N(K)={ved’'(K), P*v=0}

is a finite dimensional subspace of Cy(K) orthogonal to P%'(X). For every
feH(X) with (f,N(K))=0 and every t<s+m—1 one can find ue H5(X)
satisfying the equation Pu= f in a neighborhood of K. (If s= 00 one can take
t=00.)

Proof. That N(K) is a finite dimensional subspace of Cg(K) follows from
Theorem 26.11.2 exactly as in the proof of Theorem 26.1.7. By condition (i)
in Theorem 26.11.1 we can choose a compact neighborhood K’ of K for
which the hypotheses are still fulfilled and N(K')= N(K), so it suffices to
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prove that the equation can be satisfied in the interior of K. The proof then
proceeds as that of Theorem 26.1.7 except that in (26.1.5) and (26.1.6) we
must replace t by a larger number in || P*v|,, so we obtain (26.1.7) for any
t>1—m—s. The existence of a solution then follows as before.

It is now natural to extend Definition 26.1.8 and end the chapter by
defining the terminology used in the title:

Definition 26.11.4. Let Pe ¥y (X) be properly supported and satisfy con-
dition (P) in X. We shall then say that P is of principal type in X if the

conditions in Theorem 26.11.1 are satisfied for every K.

When P is of principal type we have proved in this chapter that the
equation Pu= f can be solved on an arbitrary compact set when f satisfies
a finite number of compatibility conditions there.

Notes

For operators of real principal type a local existence theorem was proved in
Hormander [1]. The example D, +iD,+i(x,+ix;)D; due to Lewy [1]
showed that the result was not true in general for compliex coefficients. This
led to the proof in Hormander [11] of a necessary condition for solvability.
Solvability was proved in Hormander [10] under a stronger form of this
condition, and the results were made semi-global in “Linear partial differen-
tial operators”. (See also Calderon [2].) Mizohata [4] observed that the
same methods are applicable in some other cases such as the “Mizohata
operators” D, +ix%D,. The importance of this became clear when Niren-
berg-Treves [1] showed that the local solvability properties of arbitrary first
order differential operators with analytic coefficients could be analysed by
means of closely related examples. A few years later Nirenberg-Treves [2]
extended their results to the higher order case and even to pseudo-differen-
tial operators. They proved that P is not solvable if with the notation in
Theorem 26.4.7 Im gp changes sign from — to + at a zero of finite order on
a bicharacteristic for Regp. For first order zeros this was known from
Hormander [11, 17]. The same necessary condition was found by Egorov
f2]. A decisive point in this work is the theorem of Egorov [1] which
allows a simplification of the principal symbol by conjugation with a Fou-
rier integral operator. Nirenberg and Treves [2] also conjectured the ne-
cessity of condition (%) for local solvability and proved its invariance. The
idea of the full proof given here is due to Moyer [1]. It contains the
invariance proof for condition (¥) as an essential component. The proof was
previously presented in Hormander {40].
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Nirenberg and Treves {2] proved the sufficiency of condition (P) for
local solvability in the analytic case. The analyticity assumption was re-
moved by Beals-Fefferman {17 but the result remained local. Indeed, it did
not even give local existence of C*® solutions for C* right-hand sides. That
such solutions exist was proved in Hormander [37] where a semi-global
existence theory was also added. The key to this is the proof of theorems on
propagation of singularities. In the real constant coefficient case such results
go back to Grusin [1] (see the notes to Chapter VIII) and were proved in
general by Hérmander [25]. The detailed discussion of operators of real
principal type in Section 26.1 is taken from Duistermaat-Hormander [1]
where it was given as an application of the theory of Fourier integral
operators. The results for the involutive case in Section 26.2 were also
proved there. Normal forms in the symplectic case were first given by Sato-
Kawai-Kashiwara [1] in the analytic (hyperfunction) case. The C*® results
in Section 26.3 are due to Duistermaat and Sj6strand [1]. The geometrical
arguments in Section 26.5 come from Hormander [37]. Section 26.7 is an
improvement of results there due to Dencker [1], and the key estimates in
Section 26.8 are due to Nirenberg-Treves [2]. They are first used in Section
269 to prove the extension of the superharmonicity theorem of
Duistermaat-Hérmander [1] given in Hormander [37], and they are also
essential in Section 26.10. The main result there is due to Dencker [1]. The
methods of Beals-Fefferman [1] are also very essential in the proof. The
standard conclusions in Section 26.11 are taken from Hormander [37].
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