
Chapter 2
Non-hierarchical Coloured Petri Nets

This chapter introduces the concepts of non-hierarchical Coloured Petri Nets. This
is done by means of a running example consisting of a set of simple communica-
tion protocols. Protocols are used because they are easy to explain and understand,
and because they involve concurrency, non-determinism, communication, and syn-
chronisation which are key characteristics of concurrent systems. No preliminary
knowledge of protocols is assumed.

Section 2.1 introduces the protocol used as a running example. Sections 2.2 and
2.3 introduce the net structure, inscriptions, and enabling and occurrence of tran-
sitions using a first model of the protocol. Sections 2.4–2.6 introduce concurrency,
conflicts, and guards using a more elaborate model of the protocol. Section 2.7 dis-
cusses interactive and automatic simulation of CPN models.

2.1 A Simple Example Protocol

We consider a simple protocol from the transport layer of the Open Systems In-
terconnection (OSI) reference model [100]. The transport layer is concerned with
protocols ensuring reliable transmission between hosts. The protocol is simple and
unsophisticated, yet complex enough to illustrate the basic CPN constructs.

The simple protocol consists of a sender transferring a number of data packets to
a receiver. Communication takes place over an unreliable network, i.e., packets may
be lost and overtaking is possible. The protocol uses sequence numbers, acknowl-
edgements, and retransmissions to ensure that the data packets are delivered once
and only once and in the correct order at the receiving end. The protocol deploys a
stop-and-wait strategy, i.e., the same data packet is repeatedly retransmitted until a
corresponding acknowledgement is received. A data packet consists of a sequence
number and the data payload. An acknowledgement consists of a sequence number
specifying the number of the next data packet expected by the receiver.

We start with a first, very simple model of the protocol where retransmissions
and the unreliability of the network are ignored. The model is then gradually refined

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112 2, 13
c© Springer-Verlag Berlin Heidelberg 2009

14 2 Non-hierarchical Coloured Petri Nets

to introduce more and more aspects, including loss of packets on the network. The
gradual refinement of the model is used to illustrate the various facilities in the
CPN modelling language. When constructing CPN models or formal specifications
in general, it is good practice to start by making an initial simple model, omitting
certain parts of the system or making simplifying assumptions. The CPN model is
then gradually refined and extended to lift the assumptions and add the omitted parts
of the system.

2.2 Net Structure and Inscriptions

A CPN model is always created as a graphical drawing and Fig. 2.1 contains a first
model of the simple protocol. The left part models the sender, the middle part models
the network, and the right part models the receiver. The CPN model contains seven
places, drawn as ellipses or circles, five transitions drawn as rectangular boxes, a
number of directed arcs connecting places and transitions, and finally some textual
inscriptions next to the places, transitions, and arcs. The inscriptions are written
in the CPN ML programming language. Places and transitions are called nodes.
Together with the directed arcs they constitute the net structure. An arc always con-
nects a place to a transition or a transition to a place. It is illegal to have an arc
between two nodes of the same kind, i.e., between two places or two transitions.

n

n n n

n+1

(n,d)(n,d)

n

(n,d)

(n,d)(n,d)

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Packets
Received

B

NOxDATA

Packets
To Send

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

NOxDATA NOxDATA

Send
Packet

Fig. 2.1 First CPN model of the simple protocol

2.2 Net Structure and Inscriptions 15

The places are used to represent the state of the modelled system. Each place can
be marked with one or more tokens, and each token has a data value attached to it.
This data value is called the token colour. It is the number of tokens and the token
colours on the individual places which together represent the state of the system.
This is called a marking of the CPN model: the tokens on a specific place constitute
the marking of that place. By convention, we write the names of the places inside
the ellipses. The names have no formal meaning – but they have huge practical
importance for the readability of a CPN model, just like the use of mnemonic names
in traditional programming. A similar remark applies to the graphical appearance of
the nodes and arcs, i.e., the line thickness, size, colour, and position. The state of the
sender is modelled by the two places PacketsToSend and NextSend. The state of the
receiver is modelled by the place PacketsReceived and the state of the network is
modelled by the places A, B, C, and D.

Next to each place is an inscription which determines the set of token colours
(data values) that the tokens on that place are allowed to have. The set of possible
token colours is specified by means of a type, as known from programming lan-
guages, and it is called the colour set of the place. By convention, the colour set
is written below the place. The places NextSend, C, and D have the colour set NO.
Colour sets are defined using the CPN ML keyword colset, and the colour set NO
is defined to be equal to the set of all integers int:

colset NO = int;

This means that tokens residing on the three places NextSend, C, and D will have
an integer as their token colour. The colour set NO is used to model the sequence
numbers in the protocol. The remaining four places have the colour set NOxDATA,
which is defined to be the product of the types NO and DATA. This type contains
all two-tuples (pairs) where the first element is an integer and the second element is
a text string. Tuples are written using brackets (and) around a comma-separated
list. The colour sets are defined as

colset DATA = string;
colset NOxDATA = product NO * DATA;

The colour set DATA is used to model the payload of data packets and is defined
to be the set of all text strings string. The colour set NOxDATA is used to model
the data packets, which contain a sequence number and some data.

The inscription on the upper right side of the place NextSend specifies that the
initial marking of this place consists of one token with the token colour (value) 1.
Intuitively, this indicates that data packet number 1 is the first data packet to be sent.
The inscription on the upper left side of the place PacketsToSend:

1‘(1,"COL") ++
1‘(2,"OUR") ++
1‘(3,"ED ") ++
1‘(4,"PET") ++
1‘(5,"RI ") ++
1‘(6,"NET")

16 2 Non-hierarchical Coloured Petri Nets

specifies that the initial marking of this place consists of six tokens with the data
values

(1,"COL"),
(2,"OUR"),
(3,"ED "),
(4,"PET"),
(5,"RI "),
(6,"NET").

The symbols ++ and ‘ are operators used to construct a multiset consisting of
these six token colours. A multiset is similar to a set, except that values can appear
more than once. The infix operator ‘ takes a non-negative integer as its left argu-
ment, specifying the number of appearances of the element provided as the right
argument. The operator ++ takes two multisets as arguments and returns their union
(the sum). The initial marking of PacketsToSend consists of six tokens representing
the data packets which are to be transmitted. The initial marking of a place is, by
convention, written above the place. The absence of an inscription specifying the
initial marking means that the place initially contains no tokens. This is the case for
the places A, B, C, D, and PacketsReceived.

The five transitions drawn as rectangles represent the events that can take place in
the system. As with places, the names of the transitions are written inside the rectan-
gles. The transition names have no formal meaning, but they are very important for
the readability of the model. When a transition occurs, it removes tokens from its in-
put places (those places that have an arc leading to the transition) and it adds tokens
to its output places (those places that have an arc coming from the transition). The
colours of the tokens that are removed from input places and added to output places
when a transition occurs are determined by means of the arc expressions, which are
the textual inscriptions positioned next to the individual arcs.

The arc expressions are written in the CPN ML programming language and are
built from variables, constants, operators, and functions. When all variables in an
expression are bound to values of the correct type, the expression can be evaluated.
As an example, consider the two arc expressions n and (n,d) on the arcs connected
to the transition SendPacket. They contain the variables n and d, declared as

var n : NO;
var d : DATA;

This means that n must be bound to a value of type NO (i.e., an integer), while
d must be bound to a value of type DATA (i.e., a text string). We may, for example,
consider the binding (variable assignment)

〈n=3, d="CPN"〉

2.3 Enabling and Occurrence of Transitions 17

which binds n to 3 and d to "CPN". For this binding the arc expressions evaluate
to the following values (token colours), where ‘→’ should be read as ‘evaluates to’:

n → 3
(n,d) → (3,"CPN")

All arc expressions in the CPN model of the protocol evaluate to a single token
colour (i.e., a multiset containing a single token). This means that the occurrence of
a transition removes one token from each input place and adds one token to each
output place. However, in general, arc expressions may evaluate to a multiset of
token colours, and this means that there may be zero, exactly one token, or more
than one token removed from an input place or added to an output place. This will
be illustrated later with some further examples.

2.3 Enabling and Occurrence of Transitions

Next, consider Fig. 2.2, which shows the protocol model with its initial marking M0.
The marking of each place is indicated next to the place. The number of tokens on
the place is shown in a small circle, and the detailed token colours are indicated in
a box positioned next to the small circle. As explained earlier, the initial marking
has six tokens on PacketsToSend and one token on NextSend. All other places are
unmarked, i.e., have no tokens.

n

n n n

n+1

(n,d)(n,d)

n

(n,d)

(n,d)(n,d)

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Packets
Received

B

NOxDATA

Packets
To Send

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

NOxDATA NOxDATA

Send
Packet

1 1`1

6

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.2 Initial marking M0

18 2 Non-hierarchical Coloured Petri Nets

The arc expressions on the input arcs of a transition determine whether the tran-
sition is enabled, i.e., is able to occur in a given marking. For a transition to be
enabled, it must be possible to find a binding of the variables that appear in the sur-
rounding arc expressions of the transition such that the arc expression of each input
arc evaluates to a multiset of token colours that is present on the corresponding in-
put place. When a transition occurs with a given binding, it removes from each input
place the multiset of token colours to which the corresponding input arc expression
evaluates. Analogously, it adds to each output place the multiset of token colours to
which the corresponding output arc expression evaluates.

Consider now the transition SendPacket. In Fig. 2.2, the transition SendPacket
has a thick border, whereas the other four transitions do not. This indicates that
SendPacket is the only transition that has an enabled binding in the marking M0.
The other transitions are disabled because there are no tokens on their input places.
When the transition SendPacket occurs, it removes a token from each of the input
places NextSend and PacketsToSend. The arc expressions of the two input arcs are
n and (n,d), where n and d (as shown earlier) are declared as

var n : NO;
var d : DATA;

The initial marking of the place NextSend contains a single token with colour
1. This means that the variable n must be bound to 1. Otherwise, the expression
on the arc from NextSend would evaluate to a token colour which is not present at
NextSend, implying that the transition is disabled for that binding. Consider next
the arc expression (n,d) on the input arc from PacketsToSend. We have already
bound n to 1, and now we are looking for a binding of d such that the arc ex-
pression (n,d) will evaluate to one of the six token colours that are present on
PacketsToSend. Obviously, the only possibility is to bind d to the string "COL".
Hence, we conclude that the binding

〈n=1, d="COL"〉

is the only enabled binding for SendPacket in the initial marking. An occurrence
of SendPacket with this binding removes the token with colour 1 from the input
place NextSend, removes the token with colour (1,"COL") from the input place
PacketsToSend, and adds a new token with colour (1,"COL") to the output place
A. Intuitively, this represents the sending of the first data packet (1,"COL") to the
network. Note that it was the token on NextSend that determined the data packet to
be sent. The packet (1,"COL") is now at place A, waiting to be transmitted by the
network. The new marking M1 is shown in Fig. 2.3.

In the marking M1, TransmitPacket is the only enabled transition since the
other transitions have no tokens on their input places. Place A has a single token
with colour (1,"COL"), and hence it is straightforward to conclude that 〈n=1,
d="COL"〉 is the only enabled binding of the transition TransmitPacket in M1. When
the transition occurs in that binding, it removes the token (1,"COL") from A and
adds a new token with the same token colour to place B. Intuitively, this corresponds

2.3 Enabling and Occurrence of Transitions 19

n

n n n

n+1

(n,d)(n,d)

n

(n,d)

(n,d)(n,d)

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Packets
Received

B

NOxDATA

Packets
To Send

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

NOxDATA NOxDATA

Send
Packet

1
1`(1,"COL ")

5

1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.3 Marking M1 reached when SendPacket occurs in M0

to a transmission of data packet number 1 over the network. The data packet is now
at place B, waiting to be received. The new marking M2 is shown in Fig. 2.4.

In the marking M2, we have a single enabled transition, ReceivePacket, and once
more we use the binding 〈n=1, d="COL"〉. The occurrence of the transition re-
moves the token with colour (1,"COL") from place B, adds a token with colour
(1,"COL") to the place PacketsReceived, and adds a token with colour 2 to the
place C. The token colour at C becomes 2, since the arc expression n+1 on the arc
from ReceivePacket to C evaluates to 2 in the above binding. Intuitively, this cor-
responds to the receipt of data packet number 1 by the receiver. The received data
packet is stored in the place PacketsReceived. The token on C represents an ac-
knowledgement sent from the receiver to the sender in order to confirm the receipt
of data packet number 1 and to request data packet number 2. The new marking M3

is shown in Fig. 2.5.
In the marking M3 there is a single enabled transition TransmitAck. This time we

use the binding 〈n=2〉. Intuitively, this represents the transmission over the network
of the acknowledgement requesting data packet number 2. The new marking M4 is
shown in Fig. 2.6. In the marking M4 there is a single enabled transition ReceiveAck,
and once more we use the binding 〈n=2〉. The new marking M5 is shown in Fig. 2.7.
This marking represents a state where the sender is ready to send data packet number
2 (since the first data packet is now known to have been successfully received).

20 2 Non-hierarchical Coloured Petri Nets

n

n n n

n+1

(n,d)(n,d)

n

(n,d)

(n,d)(n,d)

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Packets
Received

B

NOxDATA

Packets
To Send

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

NOxDATA NOxDATA

Send
Packet

1
1`(1,"COL ")

5

1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.4 Marking M2 reached when TransmitPacket occurs in M1

n

n n n

n+1

(n,d)(n,d)

n

(n,d)

(n,d)(n,d)

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Packets
Received

B

NOxDATA

Packets
To Send

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

NOxDATA NOxDATA

Send
Packet

1
1`2

11`(1,"COL ")5

1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.5 Marking M3 reached when ReceivePacket occurs in M2

In the above, we have described the sending, transmission, and reception of data
packet number 1 and the corresponding acknowledgement. In the CPN model this

2.3 Enabling and Occurrence of Transitions 21

n

n n n

n+1

(n,d)(n,d)

n

(n,d)

(n,d)(n,d)

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Packets
Received

B

NOxDATA

Packets
To Send

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

NOxDATA NOxDATA

Send
Packet

1
1`2

11`(1,"COL ")5

1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.6 Marking M4 reached when TransmitAck occurs in M3

n

n n n

n+1

(n,d)(n,d)

n

(n,d)

(n,d)(n,d)

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Packets
Received

B

NOxDATA

Packets
To Send

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

NOxDATA NOxDATA

Send
Packet

1 1`2

11`(1,"COL ")5

1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.7 Marking M5 reached when ReceiveAck occurs in M4

22 2 Non-hierarchical Coloured Petri Nets

corresponds to five steps, where each step is the occurrence of a transition in an
enabled binding. We have listed these five steps below, where each step is written as
a pair consisting of a transition and the occurring binding of the transition. Such a
pair is called a binding element.

Step Binding element

1 (SendPacket, 〈n=1, d="COL"〉)
2 (TransmitPacket, 〈n=1, d="COL"〉)
3 (ReceivePacket, 〈n=1, d="COL"〉)
4 (TransmitAck, 〈n=2〉)
5 (ReceiveAck, 〈n=2〉)

It is easy to see that the next five steps will be similar to the first five steps, except
that they describe the sending, transmission, and reception of data packet number 2
and the corresponding acknowledgement:

Step Binding element

6 (SendPacket, 〈n=2, d="OUR"〉)
7 (TransmitPacket, 〈n=2, d="OUR"〉)
8 (ReceivePacket, 〈n=2, d="OUR"〉)
9 (TransmitAck, 〈n=3〉)

10 (ReceiveAck, 〈n=3〉)

After these additional five steps, we reach the marking M10 shown in Fig. 2.8.
Next, we shall have five steps for data packet number 3 and its acknowledgement.
Then five steps for data packet 4, five for data packet number 5, and finally five steps
for data packet number 6. After these steps the marking M30 shown in Fig. 2.9 is
reached. This marking corresponds to a state of the protocol where all data packets
have been received by the receiver, all acknowledgements have been received by the
sender, and no packets are outstanding on the network. This marking has no enabled
transitions, and hence it is said to be a dead marking.

This completes the survey of the first very simple CPN model of the protocol.
This model is deterministic, in the sense that each marking reached has exactly one
enabled transition with exactly one enabled binding, except for the last marking
which is a dead marking. Hence, there is only one possible occurrence sequence,
consisting of the markings M0, M1, M2, . . . , M30 and the 30 steps described above.
It should be noted that this is quite unusual for CPN models, which are usually non-
deterministic, i.e., they describe systems where several transitions and bindings are
enabled in the same marking.

2.3 Enabling and Occurrence of Transitions 23

n

n n n

n+1

(n,d)(n,d)

n

(n,d)

(n,d)(n,d)

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Packets
Received

B

NOxDATA

Packets
To Send

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

NOxDATA NOxDATA

Send
Packet

1 1`3

2
1`(1,"COL ")++
1`(2,"OUR")4

1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.8 Marking M10 reached after transmission of data packet number 2

n

n n n

n+1

(n,d)(n,d)

n

(n,d)

(n,d)(n,d)

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Packets
Received

B

NOxDATA

Packets
To Send

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

NOxDATA NOxDATA

Send
Packet

1 1`7

6

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.9 Dead marking M30 reached when all packets have been transmitted

24 2 Non-hierarchical Coloured Petri Nets

2.4 Second Model of the Protocol

We now consider a slightly more complex CPN model of the protocol. It is based on
the CPN model which was investigated in the previous sections, but now overtaking
and the possibility of losing data packets and acknowledgements when they are
transmitted over the network are taken into account. Hence, it is necessary to be able
to retransmit data packets, and the receiver must check whether it is the expected
data packet that arrives. Since acknowledgement may overtake each other, we also
have to take into account that the sender may receive acknowledgements out of
order. This second model of the protocol is non-deterministic and will be used to
introduce concurrency and conflict, which are two key concepts for CPN models
and other models of concurrency.

Figure 2.10 shows the second CPN model of the protocol in the initial marking
M0. It has the same five transitions as for the first CPN model of the protocol. We
also find six of the places used in the previous model, together with two new places.
The place DataReceived is used instead of PacketsReceived. Now we want to keep
only the data from the data packets, not the entire data packets. Hence the colour set
of the place DataReceived is specified to be DATA instead of NOxDATA. This place
has an initial marking, which consists of one token with colour "" which is the
empty text string. The place NextRec has the same colour set as the place NextSend
and it plays a similar role. It contains the number of the data packet that the receiver
expects to receive next. This time a small amount of space has been saved in the
drawing by specifying the initial marking of the place PacketsToSend by means of
a symbolic constant, defined as

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`11 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.10 Second CPN model of the protocol in the initial marking M0

2.4 Second Model of the Protocol 25

val AllPackets = 1‘(1,"COL") ++ 1‘(2,"OUR") ++
1‘(3,"ED ") ++ 1‘(4,"PET") ++
1‘(5,"RI ") ++ 1‘(6,"NET");

Consider now the individual transitions. The transition SendPacket has the same
surrounding arc expressions as before, but now the two input arcs are replaced by
double-headed arcs. A double-headed arc is a shorthand for the situation where
there are two oppositely directed arcs between a place and a transition sharing the
same arc expression. This implies that the place is both an input place and an output
place for the transition. When the transition occurs with an enabled binding, tokens
are removed from the place according to the result of evaluating the arc expression,
but they are immediately replaced by new tokens with the same token colours. This
means that the marking of the place does not change when the transition occurs,
but it does determine the enabling of the transition. In the initial marking, the only
enabled transition is SendPacket with the binding 〈n=1,d="COL"〉. As before, an
occurrence of SendPacket with this binding adds a token to place A representing
a data packet to be transmitted over the network. However, now the data packet is
not removed from PacketsToSend and also the token at NextSend is left unchanged.
This will allow retransmission of the packet, if this becomes necessary. Figure 2.11
shows the marking M1 reached when the above binding element occurs in the initial
marking.

Consider the marking M1 and the transition TransmitPacket. This transition has
the same input arc expression as before, but now there is an additional boolean
variable success, declared as

var success : BOOL;

which appears on the output arc. The colour set BOOL is defined as

colset BOOL = bool;

The transition TransmitPacket is enabled with two different bindings in M1:

b+ = 〈n=1, d="COL", success=true〉
b− = 〈n=1, d="COL", success=false〉

The first of these bindings, b+, represents a successful transmission over the
network. When it occurs, the following happens:

• The data packet (1,"COL") is removed from the input place A.
• A new token representing the same data packet is added to the output place B (in

the if–then–else expression, the condition success evaluates to true, while
1‘(n,d) evaluates to 1‘(1,"COL")).

Figure 2.12 shows the marking M+
2 , which is the result of an occurrence of the

binding b+ in M1. The second binding, b−, represents an unsuccessful transmission,
i.e., the data packet is lost on the network. When this binding occurs, the following
happens:

26 2 Non-hierarchical Coloured Petri Nets

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`1

1

1`(1,"COL")

1 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.11 Marking M1 reached when SendPacket occurs in M0

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`11 1`1

11`""

1

1`(1,"COL")

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.12 Marking M+
2 after successful transmission in M1

• The data packet (1,"COL") is removed from the input place A.
• No token is added to the output place B (in the if–then–else expression, the con-

dition success evaluates to false, while the constant empty evaluates to the
empty multiset).

2.4 Second Model of the Protocol 27

Figure 2.13 shows the marking M−
2 , which is the result of an occurrence of the

binding b− in M1. The marking M−
2 is identical to the initial marking M0 previously

shown in Fig. 2.10.
It should be noted that the output arc expression of TransmitPacket uses 1‘(n,d)

and not just (n,d) in the if–then–else expression. Using an arc expression such as

if success then (n,d) else empty

would result in a type mismatch since the then-part and the else-part have different
types. The constant empty denotes a multiset of tokens, and hence we also need
to specify a multiset of tokens in the other branch of the if–then–else expression.
Types and expressions are discussed further in Chap. 3.

Consider now the reception of data packets in the marking M+
2 . The transition

ReceivePacket has four variables on the surrounding arc expressions, with the fol-
lowing purposes:

• n and d denote the sequence number and the data, respectively, of the incoming
data packet. The variables n and d will be bound according to the colour of the
data packet to be removed from place B.

• k (of colour set NO) denotes the expected sequence number of the data packet. It
will be bound to the colour of the token on the place NextRec.

• data (of colour set DATA) denotes the data that has already been received. It
will be bound to the colour of the token on the place DataReceived.

When a data packet is present at place B there are two different possibilities.
Either n=k evaluates to true, which means that the data packet being received is
the one that the receiver expects, or n=k evaluates to false which means that it

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`11 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.13 Marking M−
2 after unsuccessful transmission in M1

28 2 Non-hierarchical Coloured Petri Nets

is not the data packet expected. If the data packet on place B is the expected data
packet (i.e., n=k), the following happens:

• The data packet is removed from place B.
• The data in the data packet is concatenated to the end of the data which is already

present at the place DataReceived. The operator ˆ is the concatenation operator
for text strings.

• The token colour on the place NextRec changes from k to k+1, which means
that the receiver now waits for the next data packet.

• An acknowledgement is put on place C. The acknowledgement contains the se-
quence number of the data packet that the receiver is expecting next.

Figure 2.14 shows the result of an occurrence of the transition ReceivePacket in
the marking M+

2 shown in Fig. 2.12. This occurrence of ReceivePacket corresponds
to the reception of the expected data packet.

If the data packet on B is not the expected data packet (i.e., n�=k), the following
happens:

• The data packet is removed from place B.
• The data in the data packet is ignored (the marking of DataReceived does not

change).
• The token colour on the place NextRec does not change, which means that the

receiver is waiting for the same data packet as before.
• An acknowledgement is put on place C. The acknowledgement contains the se-

quence number of the data packet that the receiver is expecting next.

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`2

1
1`2

1 1`1

11`"COL"6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.14 Marking reached when ReceivePacket occurs in M+
2

2.5 Concurrency and Conflict 29

The transition TransmitAck has a behaviour which is similar to the behaviour of
TransmitPacket. It removes acknowledgements from place C and adds them to the
place D in case of a successful transmission. The choice is determined by the binding
of the variable success that appears in the output arc expression.

Consider now the reception of acknowledgements. The transition ReceiveAck
has two variables:

• n (of colour set NO) denotes the sequence number in the incoming acknowledge-
ment, and will be bound to the acknowledgement on the place D.

• k (of colour set NO) denotes the sequence number of the data packet which
the sender is sending. It will be bound to the colour of the token on the place
NextSend.

When the transition ReceiveAck occurs, it removes an acknowledgement from
place D and updates the token on NextSend to contain the sequence number speci-
fied in the acknowledgement. This means that the sender will start sending the data
packet that the receiver has requested via the acknowledgement.

2.5 Concurrency and Conflict

We shall now consider the behaviour of the CPN model shown in Fig. 2.10 in further
detail. A single binding element is enabled in the initial marking

(SendPacket, 〈n=1, d="COL"〉)

When it occurs, it leads to the marking M1 shown in Fig. 2.15 (and Fig 2.11). In
the marking M1, three different binding elements are enabled:

SP = (SendPacket, 〈n=1, d="COL"〉)
TP+ = (TransmitPacket, 〈n=1, d="COL", success=true〉)
TP− = (TransmitPacket, 〈n=1, d="COL", success=false〉)

The first binding element represents a retransmission of data packet number 1.
The second binding element represents a successful transmission of data packet
number 1 over the network, and the third binding element represents a transmission
where the data packet is lost on the network. The last two binding elements, TP+ and
TP−, are in conflict with each other. Both of them are enabled, but only one of them
can occur since each of them needs a token on place A, and there is only one such
token in M1. However, the binding elements SP and TP+ can occur concurrently
(i.e., in parallel). To occur, SP needs a token on the place PacketsToSend and a token
on NextSend, while TP+ needs a token on place A. This means that the two binding
elements use disjoint sets of input tokens, and hence both of them can get the tokens
they need without competition or interference with the other binding element. By a
similar argument, we can see that SP and TP− are concurrently enabled. They use
disjoint sets of input tokens and hence can occur concurrently.

30 2 Non-hierarchical Coloured Petri Nets

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`1

1

1`(1,"COL")

1 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.15 Marking M1 reached when SendPacket occurs in M0

Assume that the first and second of the three enabled binding elements in the
marking M1 occur concurrently, i.e., that we have the following step, written as a
multiset of binding elements:

1‘(SendPacket, 〈n=1, d="COL"〉) ++
1‘(TransmitPacket, 〈n=1, d="COL", success=true〉)
We then reach the marking M2 shown in Fig. 2.16. In the marking M2, we have

four enabled binding elements, of which the first three are the same as in the marking
M1:

SP = (SendPacket, 〈n=1, d="COL"〉)
TP+ = (TransmitPacket, 〈n=1, d="COL", success=true〉)
TP− = (TransmitPacket, 〈n=1, d="COL", success=false〉)
RP = (ReceivePacket, 〈n=1, d="COL", k=1, data=""〉)
As before, we have a conflict between TP+ and TP−, whereas all of the other

binding elements are concurrently enabled since they use disjoint multisets of input

2.5 Concurrency and Conflict 31

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`1

1

1`(1,"COL")

1 1`1

11`""

1

1`(1,"COL")

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.16 Marking M2 reached when SendPacket and TransmitPacket occur in M1

tokens. Let us assume that we have a step where the first and last of the four binding
elements occur concurrently, i.e., the following step:

1‘(SendPacket, 〈n=1, d="COL"〉) ++
1‘(ReceivePacket, 〈n=1, d="COL", k=1, data=""〉)
We then reach the marking M3 shown in Fig. 2.17. In the marking M3, we have

five enabled binding elements, of which the first three are the same as in the marking
M1:

SP = (SendPacket, 〈n=1, "COL"〉)
TP+ = (TransmitPacket, 〈n=1, "COL", success=true〉)
TP− = (TransmitPacket, 〈n=1, "COL", success=false〉)
TA+ = (TransmitAck, 〈n=2, success=true〉)
TA− = (TransmitAck, 〈n=2, success=false〉)
However, this time there are two tokens on place A. This means that TP+ and

TP− can occur concurrently because there is a token on A for each of the two binding
elements. It also means that TP+ can occur concurrently with itself , and the same
is true for TP−. Thus it is possible to transmit multiple packets on the network

32 2 Non-hierarchical Coloured Petri Nets

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`2

1
1`2

2

2`(1,"COL")

1 1`1

11`"COL"6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.17 Marking M3 reached when SendPacket and ReceivePacket occur in M2

concurrently. Hence, we have the following five enabled steps with bindings for
TransmitPacket, where each step is a multiset of binding elements:

1‘ TP+,
1‘ TP−,
1‘ TP+ ++ 1‘ TP−,
2‘ TP+,
2‘ TP−

Moreover, it can be seen that each of the five steps with bindings for Trans-
mitPacket can occur concurrently with the following five steps with bindings for
SendPacket and/or TransmitAck:

1‘SP,
1‘TA+,
1‘TA−,
1‘SP ++ 1‘TA+,
1‘SP ++ 1‘TA−.

This means that the marking M3 has a total of 35 enabled steps (25 for the pos-
sible combinations of the individual steps in the two groups above plus 10 because
each of the 10 steps constitutes a step on its own).

The above illustrates that it soon becomes complex, time-consuming, and error-
prone for human beings to keep track of the enabled binding elements and steps,
and the current marking of a CPN model. This is one of the reasons for building and
using computer simulators for the execution of CPN models.

A step, in general, consists of a non-empty, finite multiset of concurrently enabled
binding elements. A step may consist of a single binding element. An empty multiset

2.5 Concurrency and Conflict 33

of binding elements is not considered to be a legal step, since it would have no effect
and always be enabled. The effect of the occurrence of a set of concurrent binding
elements is the sum of the effects caused by the occurrence of the individual binding
elements. This means that the marking reached will be the same as that which will
be reached if the set of binding elements occur sequentially, i.e., one after another
in some arbitrary order. As an example, consider the marking M1 shown in Fig. 2.15
and the enabled step consisting of the following two binding elements:

SP = (SendPacket, 〈n=1, d="COL"〉)
TP+ = (TransmitPacket, 〈n=1, d="COL", success=true〉)

The marking M2 resulting from an occurrence of this step was shown in Fig. 2.16.
The marking M2 is also the marking resulting from an occurrence of SP followed
by an occurrence of TP+, and it is also the marking resulting from an occurrence of
TP+ followed by an occurrence of SP. The CPN Tools simulator executes only steps
consisting of a single binding element. This is sufficient, since the marking resulting
from the occurrence of an enabled step with multiple binding elements is the same
as letting the binding elements in the step occur one after another in some arbitrary
order. Hence, markings that can be reached via occurrence sequences consisting of
steps with multiple binding elements can also be reached via occurrence sequences
consisting of steps with a single binding element.

When the first data packet has been sent by an occurrence of SendPacket, we
may choose a sequence of binding elements that will successfully transmit the
data packet, receive the data packet, successfully transmit the acknowledgement
for the data packet, and finally receive the acknowledgement updating the token on
NextSend to the value 2:

Step Binding element

1 (SendPacket, 〈n=1, d="COL"〉)
2 (TransmitPacket, 〈n=1, d="COL", success=true〉)
3 (ReceivePacket, 〈n=1, d="COL", k=1, data=""〉)
4 (TransmitAck, 〈n=2, success=true〉)
5 (ReceiveAck, 〈n=2, k=1〉)

This could be called the successful occurrence sequence for packet number 1.
In the successful occurrence sequence, no retransmission of packet number 1 takes
place. However, it should be noted that the transition SendPacket is enabled in all
of the markings of the successful occurrence sequence. If, in any of these markings,
we choose to execute SendPacket, this represents a retransmission of data packet
number 1. Intuitively, the retransmission happens because the transitions in the suc-
cessful occurrence sequence are too slow in occurring and hence are outraced by the
second occurrence of SendPacket, i.e., the retransmission of data packet number 1.
This means that we have described a time-related behaviour without the explicit use

34 2 Non-hierarchical Coloured Petri Nets

of time. What is important at the chosen abstraction level is not when a retrans-
mission may occur, but the simple fact that it is possible that such a retransmission
can occur. While we are executing the successful occurrence sequence for packet
number 1, we may also deviate from it by choosing a binding for TransmitPacket
or TransmitAck which loses the packet/acknowledgement, i.e., a binding in which
success=false. Then SendPacket will be the only enabled transition, and a
retransmission will be the only possible way to continue.

The CPN model presented in this section is without any reference to time. It
is specified that retransmissions are possible, but we do not specify how long the
sender should wait before performing such retransmissions. What matters is the
possible sequences in which the various events (binding elements) may occur: at
least for the moment, we are uninterested in the durations of and start/end times for
the individual events. Timed CP-nets will be introduced in Chap. 10; these make it
possible to model the time taken by the various events in the system.

Notice that it is possible to reach markings where place A contains two different
tokens, for example, the multiset 1‘(1,"COL") ++ 1‘(3,"ED ") represent-
ing data packets numbers 1 and 3. In this situation the variables n and d of Transmit-
Packet can be bound such that (n,d) evaluates to (1,"COL") or (3,"ED "),
and hence it is possible for data packet 3 to overtake data packet 1. A similar remark
applies to data packets on place B and acknowledgements on places C and D.

2.6 Guards

In the discussion above, we have seen that it is the input arc expressions that de-
termine whether a transition is enabled in a given marking. However, transitions
are also allowed to have a guard, which is a boolean expression. When a guard
is present, it must evaluate to true for the binding to be enabled, otherwise the
binding is disabled and cannot occur. Hence, a guard puts an extra constraint on the
enabling of bindings for a transition. Figure 2.18 shows a variant of the receiver part
of the protocol which illustrates the use of guards. In this variant, the reception of
data packets, previously modelled by ReceivePacket, has been split into two transi-
tions: DiscardPacket and ReceiveNext. The idea is that ReceiveNext models the case
where the data packet received is the one expected, whereas DiscardPacket models
the case where the data packet received is not the one expected. This variant also
illustrates a modelling choice concerning the number of transitions in a CPN model.

Each of the two transitions DiscardPacket and ReceiveNext has a guard, which,
by convention, is written in square brackets and positioned next to the transition.
The guards of the two transitions compare the sequence number in the incoming
data packet on place B with the expected sequence number on the place NextRec.
The guard of the transition ReceiveNext is [n=k] expressing the condition that
the sequence number of the incoming data packet bound to n must be equal to
the expected sequence number bound to k. The guard [n<>k] of the transition
DiscardPacket uses the inequality operator <> since this transition is only to be

2.7 Interactive and Automatic Simulation 35

k

k

(n,d)

k+1

k

data

k+1

data^d

(n,d)

Discard
 Packet

[n<>k]

Receive
Next

[n=k]

NextRec

1`1

NO

C

NO

Data
Received

1`""

DATA

B

NOxDATA

Fig. 2.18 Variant of the receiver part illustrating guards

enabled when the sequence number of the incoming data packet differs from the
expected sequence number.

Consider now Fig. 2.19, which depicts a marking where there are two data pack-
ets on place B: one corresponding to a data packet that has already been received,
and one corresponding to the expected data packet. For this marking, we can con-
sider the following bindings of ReceiveNext:

RN1 = 〈n=1, d="COL", k=2, data="COL"〉
RN2 = 〈n=2, d="OUR", k=2, data="COL"〉
For both bindings the input places have the tokens needed. However, the guard

[n=k] of ReceiveNext evaluates to false in the binding RN1. Hence, only the
binding RN2, corresponding to reception of the expected data packet, is enabled
in the marking shown in Fig. 2.19. Similarly, we can consider the following two
bindings of DiscardPacket:

DP1 = 〈n=1, d="COL", k=2〉
DP2 = 〈n=2, d="OUR", k=2〉
In this case only the binding DP1, corresponding to reception of the data packet

that has already been received, is enabled. The reason is that the guard [n<>k] of
DiscardPacket evaluates to false in the binding DP2.

Guards can, in general, be used in many different ways and for many different
purposes. Further examples of the use of guards will be given in later chapters.

2.7 Interactive and Automatic Simulation

An execution of a CPN model is described by means of an occurrence sequence,
which specifies the intermediate markings reached and the steps that occur. A mark-

36 2 Non-hierarchical Coloured Petri Nets

k

k

(n,d)

k+1

k

data

k+1

data^d

(n,d)

Discard
 Packet

[n<>k]

Receive
Next

[n=k]

NextRec

1`1

NO

C

NO

Data
Received

1`""

DATA

B

NOxDATA

1
1`2

11`"COL"

2

1`(1,"COL")++
1`(2,"OUR")

Fig. 2.19 Marking illustrating the semantics of guards

ing that is reachable via an occurrence sequence starting from the initial marking is
called a reachable marking. The existence of a reachable marking with more than
one enabled binding element makes a CPN model non-deterministic. This means
that there exist different occurrence sequences containing different sequences of
steps and leading to different reachable markings. It is important to stress that it
is only the choice between the enabled steps which is non-deterministic. The in-
dividual steps themselves are deterministic, in the sense that once an enabled step
has been selected in a given marking, the marking resulting from its occurrence is
uniquely determined, unless a random number function is used in one of the arc
expressions.

CPN Tools uses graphical simulation feedback, such as that shown in Fig. 2.20, to
provide information about the markings that are reached and the binding elements
that are enabled and occur during a simulation. The rectangular box next to the
transition ReceivePacket will be explained shortly.

The tools that are available for simulating CPN models in CPN Tools can be
found in the simulation tool palette shown in Fig. 2.21. A VCR (video cassette
recorder) metaphor is used for the graphical symbols representing the simulation
tools. The simulation tools can be picked up with the mouse cursor and applied to
the CPN model. The available tools (from left to right) are:

• Return to the initial marking.
• Stop an ongoing simulation.
• Execute a single transition with a manually chosen binding.
• Execute a single transition with a random binding.
• Execute an occurrence sequence with randomly chosen binding elements inter-

actively (i.e., display the current marking after each step).
• Execute an occurrence sequence with randomly chosen binding elements auto-

matically (i.e., without displaying the current marking after each step).
• Evaluate a CPN ML expression (to be explained in Chap. 3).

2.7 Interactive and Automatic Simulation 37

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`2

1
1`2

2

1`(1,"COL")++
1`(2,"OUR")

1 1`2

11`"COL"

2

1`(1,"COL")++
1`(2,"OUR")

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

k = 2
data = "COL"
n = ?

1
2

d = ?
"COL"
"OUR"

Fig. 2.20 Simulation feedback in CPN Tools

Fig. 2.21 Simulation tool palette in CPN Tools

When a CPN model is simulated in interactive mode, the simulator calculates the
set of enabled transitions in each marking encountered. It is then up to the user to
choose between the enabled transitions and bindings. Figure 2.20 shows an example
where the user is in the process of choosing between the enabled binding elements
of the transition ReceivePacket. The choice between the enabled binding elements
is done via the rectangular box opened next to the transition. This box lists the
variables of the transition and the values to which they can be bound. In this case,
the value 2 has already been bound to the variable k, and the value "COL" has been
bound to data. This is done automatically by the simulator, since there is only one
possible choice for these variables. The user still has a choice in binding values to
the variables n and d. The user may also leave the choice to the simulator, which
uses a random number generator for this purpose. In the above case it suffices for
the user to bind either n or d, since the value bound to the other variable is then
uniquely determined and will be automatically bound by the simulator.

The simulator executes the chosen binding element and presents the new marking
and its enabling to the user, who either chooses a new enabled binding element or
leaves the choice to the simulator, and so on. This means that it is the simulator that
makes all the calculations (of the enabled binding elements and the effect of their
occurrences), while it is the user who chooses between the different occurrence se-

38 2 Non-hierarchical Coloured Petri Nets

quences (i.e., the different behavioural scenarios). An interactive simulation is by its
nature slow, since it takes time for the user to investigate the markings and enablings
and to choose between them. This means that only a few steps can be executed per
minute and the working style is very similar to the single-step debugging known
from conventional programming environments.

When a CPN model is simulated in automatic mode, the simulator performs all
of the calculations and makes all of the choices. This kind of simulation is sim-
ilar to a program execution, and a speed of several thousand steps per second is
typical. Before the start of an automatic simulation, the user specifies one or more
stop criteria, for example, that 100 000 transitions shall occur. When one of the
stop criteria becomes fulfilled, the simulation stops and the user can inspect the
marking which has been reached. There are also a number of different ways in
which the user can inspect the markings and the binding elements that occurred
during the automatic simulation. We shall briefly return to this at the end of this
section.

We have previously illustrated that our CPN model of the protocol possesses
non-determinism, concurrency, and conflict. Now let us look at the marking M∗ in
Fig. 2.22. This marking is one of the many possible results of an automatic simu-
lation. From the marking of NextRec, it can be seen that the receiver is expecting
data packet number 5, and from the marking of DataReceived it can be seen that
the receiver has already received the data in the first four data packets in the correct
order. However, from the marking of NextSend, it follows that the sender is still
sending data packet number 4, and a copy of this data packet is present on place B.
Since this is not the expected data packet, it will be discarded by the receiver. An
acknowledgement requesting data packet number 5 is present at place D. When this
is received by the sender, NextSend gets the token colour 5, and the sender will start
sending data packet number 5.

If the automatic simulation is continued from the marking M∗, we may reach the
dead marking Mdead shown in Fig. 2.23. Owing to the non-determinism in the CPN
model, we cannot guarantee to reach the dead marking since it is possible to keep
losing packets and acknowledgements. However, if a dead marking is reached, it will
be the marking shown in Fig. 2.23. Here, we see that all six data packets have been
received in the correct order. The sender has stopped sending because NextSend
has the token colour 7 and there is no data packet with the number 7. All of the
places A, B, C, and D connecting the network to the sender and receiver are empty.
Hence, this marking represents the desired terminal state of the protocol system.
By performing a number of automatic simulations of the CPN model starting from
the initial marking, it is possible, by means of simulation, to test that the protocol
design as captured by the CPN model appears to be correct, in the sense that the
protocol succeeds in delivering the data packets in the correct order to the receiver.
Conducting a set of automatic simulations does not, however, guarantee that all
possible executions of the protocol have been covered. Hence, simulation cannot in
general be used to verify properties of the protocol, but it is a powerful technique
for testing the protocol and locating errors. In Chap. 7, we introduce state space

2.7 Interactive and Automatic Simulation 39

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`5

1
1`5

1 1`4

11`"COLOURED PET"

1

1`(4,"PET")

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.22 Marking M∗ reached by an automatic simulation

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`71 1`7

11`"COLOURED PETRI NET"6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.23 Dead marking Mdead reached at the end of an automatic simulation

analysis, which ensures, that all executions are covered. This makes it possible to
verify systems, i.e., prove that various behavioural properties are present or absent.

As mentioned earlier in this section, the user may be interested in inspecting
some of the markings that were reached and some of the binding elements that oc-
curred during an automatic simulation. A simple (and brute-force) way to do this
is to inspect the simulation report, which lists the steps that have occurred. For the

40 2 Non-hierarchical Coloured Petri Nets

simulation described above, the beginning of the simulation report could look as
shown in the extract in Fig. 2.24. Here we see the first six transitions that have
occurred. The simulation report specifies the name of the occurring transition, the
module instance where the transition is located, and the values bound to the vari-
ables of the transition. In this case all transitions are in instance 1 of the Protocol
module because the CPN model consists of just a single module, named Protocol.
The concept of modules in CP-nets will be presented in Chap. 5. The number 0
following the step number specifies the model time at which the transition occurs.
Since the model of the protocol presented in this chapter is untimed, all steps occur
at time zero. Timed CP-nets will be introduced in Chap. 10.

It is also possible to use graphical visualisation on top of CPN models. These
make it possible to observe the execution of the CPN model in a more abstract
manner using concepts from the application domain. Figure 2.25 shows an example
of a message sequence chart (MSC) created from a simulation of the CPN model
of the protocol. This MSC has four columns. The leftmost column represents the
sender and the rightmost column represents the receiver. The two middle columns
represent the sender and receiver sides of the network. The MSC captures a scenario
where the first data packet (1,"COL") sent by the sender is lost, as indicated by
the small square on the S-Network column. This then causes a retransmission of the
data packet. This time, the data packet is successfully transmitted to the receiver and
the corresponding acknowledgement 2 is successfully received by the sender.

1 0 SendPacket @ (1:Protocol)
- d = "COL"
- n = 1

2 0 TransmitPacket @ (1:Protocol)
- n = 1
- d = "COL"
- success = true

3 0 ReceivePacket @ (1:Protocol)
- k = 1
- data = ""
- n = 1
- d = "COL"

4 0 TransmitAck @ (1:Protocol)
- n = 2
- success = true

5 0 ReceiveAck @ (1:Protocol)
- k = 1
- n = 2

6 0 SendPacket @ (1:Protocol)
- d = "OUR"
- n = 2

Fig. 2.24 Beginning of a simulation report

2.7 Interactive and Automatic Simulation 41

Fig. 2.25 Example of a message sequence chart

In Chap. 13, we give examples of application domain graphics and explain how
they can be added to CPN models using the visualisation package [109] provided
together with CPN Tools. One of the examples in Chap. 13 also illustrates how
graphics can be used to provide input to the CPN model and thereby control its
execution.

http://www.springer.com/978-3-642-00283-0

