
Chapter 2
Elements of Kinetic Gas Theory

In this chapter, we present some aspects of kinetic theory. They will be used in
deducing the quasi-gas-dynamic equations in Chap. 3, in constructing their gen-
eralizations (Chaps. 8 and 9), and in considering problems on the structure of a
shock wave and the flow in microchannels (Appendices B and C). We present a
schematic description of the kinetic DSMC algorithm,1 which is widely used in
numerical modelling of rarefied gas flows. Simulations within the framework of
this approach were used for the verification of the QGD algorithm in modelling
moderately rarefied flows. In the last section, we present a method for construct-
ing kinetically consistent difference schemes whose differential analogs served as
a basis for first variants of the QGD equations. The presentation in this chapter is
based on [28, 51, 52, 54–56, 122, 127, 160, 184, 190].

2.1 Boltzmann Equation

In 1872, L. Boltzmann suggested the integro-differential kinetic equation, which
became the classical model in rarefied monoatomic gas theory [27,28,118,122,141].
This equation has the form

ft + (ξ · ∇x ) f + (F · ∇ξ ) f = I( f, f ) (2.1)

and describes the evolution of the one-particle distribution function f = f (x, ξ, t).
Here, ξ is the velocity of a separate particle, which is considered as a spherical atom
of mass m0, F is the exterior force acting on the particles relative to the mass unit,
and ∇ is the Hamilton operator. The function f is normalized in such a way that the
relation

m0d N = f (x, ξ, t) dx dξ

defines a probable (or expected) number d N of particles in the volume element
dx dξ near a point (x, ξ ) of the phase space of coordinates and velocities at a fixed
instant of time t .

1 Direct simulation Monte Carlo algorithm.
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24 2 Elements of Kinetic Gas Theory

The collision integral I( f, f ) is a nonlinear functional determining the variation
of the distribution function resulting from pair collisions. A concrete form of this
integral can be found in [27, 28, 122, 141].

An important property of the collision integral, which we need in what follows,
is its orthogonality to any of the so-called collision (or summator) invariants

h(ξ ) = 1, ξ,
ξ 2

2
.

In other words, we can write

∫
h(ξ )I( f, f ) dξ = 0. (2.2)

This relation expresses the conservation laws of mass, momentum, and energy of
particles under their pair collision. Here and in what follows, the integration is per-
formed over the whole three-dimensional velocity space of the particle.

If the distribution function f is known, we can define the gas-dynamic quantities—
density ρ, velocity u, pressure p, temperature T , specific internal energy ε, viscosity
stress tensor Π , and heat flux q—using the expressions

ρ =
∫

f dξ, ρu =
∫

ξ f dξ, p =
∫

c2

3
f dξ,

ρcvT = ρε =
∫

c2

2
f dξ, q =

∫
c2

2
c f dξ,

Π =
∫ [

I
c2

3
− c ⊗ c

]
f dξ.

(2.3)

Here, c = ξ − u is the velocity of the chaotic motion of a gas particle or ther-
mal velocity, and cv = 3R/2 is the specific heat capacity at constant volume for
monoatomic gases.

Integrating Eq. (2.1) with weights 1, ξ , and ξ 2/2 and using property (2.2), we
obtain the following system of equations for the macroscopic parameters:

�ρ

�t
+ div ρu = 0, (2.4)

�(ρu)

�t
+ div(ρu ⊗ u) + ∇ p = ρF + div Π, (2.5)

�

�t

[
ρ

(
u2

2
+ ε

)]
+ div

[
ρu

(
u2

2
+ ε + p

ρ

)]
+ div q = (

ρu · F
)+ div(Π · u),

(2.6)

which, however, is not closed.
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For positive solutions f = f (x, ξ, t) of Eq. (2.1), under the assumptions that
they exist, have a necessary smoothness, and tend to zero as |ξ | → ∞, Boltzmann
proved his famous H -theorem.

Assume that a monoatomic gas is in a bounded volume V0 with interior wall
that is mirror reflecting. Let the corresponding initial and boundary conditions for
the particle distribution function be given in this volume. Then for the Boltzmann
function

H (t) =
∫

V0

dx
∫

f ln f dξ,

the following inequality holds for all t ≥ 0:

d H (t)

dt
≤ 0. (2.7)

Therefore, the motion of the gas in the vessel considered is accompanied with the
nonincrease of the quantity H (t) in time, which indicates its nonreversible character.

2.2 Equilibrium Distribution Function and the Euler System

An exact solution of the Boltzmann equation is the distribution function called the
locally Maxwell distribution function, which in dimensional quantities has the form

f (0)(x, ξ, t) = ρ

(2πRT )3/2
exp

(
− (u − ξ )2

2RT

)
. (2.8)

For the function f (0), the relation I( f (0), f (0)) = 0 holds, and it is connected with
f by the relations

ρ =
∫

f dξ =
∫

f (0) dξ,

ρu =
∫

ξ f dξ =
∫

ξ f (0) dξ,

ρcvT = ρε =
∫

c2

2
f dξ =

∫
c2

2
f (0) dξ.

(2.9)

By a direct substitution, we can verify that for the locally Maxwell distribution
function, one has

q =
∫

c2

2
c f (0) dξ = 0, Π =

∫ [
I

c2

3
− c ⊗ c

]
f (0) dξ = 0.

The function f (0) is also called the locally equilibrium distribution function.
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The integration of the Boltzmann equation with weights 1, ξ , and ξ 2/2 in the
zero approximation, i.e., when f is assumed to be equal to f (0), allows us to close
system (2.4), (2.5), and (2.6) and obtain the Euler system.

2.3 Navier–Stokes Equations

In 1916–1917, S. Chapman and D. Enskog suggested an asymptotic method for
solving the Boltzmann equation, which allows one to close system (2.4), (2.5), and
(2.6) and obtain a system of equations in the first approximation for describing flows
of a viscous heat-conducting gas, the Navier–Stokes system [28, 122, 141].

The essence of the method is that a solution of Eq. (2.1) reduced to a dimension-
less form is sought for in the form of a formal asymptotic series in powers of a small
positive parameter, the Knudsen number Kn, in the form

f = f (0)(1 + Kn f (1) + Kn2 f (2) + · · · ),
where

Kn = λ

L
, (2.10)

λ is the mean free path of particles in the unperturbed flow and L is the characteristic
size of the flow domain. As the zero approximation, the locally Maxwell function
(2.8) is used.

In the first approximation by the number Kn, the calculations via the Chapman–
Enskog method lead to the so-called Navier–Stokes distribution function

fNS = f (0)

[
1 − 1

pRT

(
1 − c2

5RT

)(
c · qNS

)− 1

2pRT
ΠNS :

(
c ⊗ c

)]
. (2.11)

The quantities ΠNS and qNS were written earlier (see Eqs. (1.34) and (1.35)).
Sequentially integrating the Boltzmann equation with the summator invariants 1,

ξ , and ξ 2/2, under the assumption that f coincides with fNS, we obtain the Navier–
Stokes system written above in Sect. 1.4. The Chapman–Enskog procedure allows
us to perform an approximate calculation of the viscosity and heat conduction coef-
ficients. For the hard-sphere gas, the approximate calculation of these coefficients
leads to the expressions

μ = 5

64

m0

r2
0

√
RT

π
, κ = cpμ

Pr
, (2.12)

where r0 is the radius of the hard-sphere particle. The number Pr in Eq. (2.12) turns
out to be equal to 2/3, and the coefficients themselves depend only on the tempera-
ture, which is in concordance with the known experimental data.

Using the next approximation in the expansion of the distribution function
with respect to the Knudsen number, we can obtain the Burnett equations. These
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equations involve the third-order partial derivatives, which lead to essential difficul-
ties in their numerical solution and in the substitution of the boundary conditions.

2.4 Bhatnagar–Gross–Krook Equation

In 1954, P. Bhatnagar, E. Gross, and M. Krook [25] suggested the approximate
kinetic equation of the form

ft + (
ξ · ∇x

)
f + (

F · ∇ξ

)
f = f (0) − f

τ
, (2.13)

i.e., Eq. (2.1) in which the collision integral I( f, f ) was approximated by the
expression

I( f, f ) = f (0) − f

τ
. (2.14)

At present, Eq. (2.13) is called the Bhatnagar–Gross–Krook model kinetic equa-
tion (BGK). Approximately at that time, Eqs. (2.13) and (2.14) were independently
published by P. Velander [141]. The positive parameter τ in the right-hand side of
relation (2.14) is interpreted as the characteristic time of relaxation of the function
f to the locally Maxwell distribution f (0) function defined by formula (2.8) and is
assumed to be a given function of the density and the temperature. The quantity
τ has the order of the mean collision time of molecules in the gas and is called
the Maxwell relaxation time. The macroscopic quantities entering the formula for
calculating τ are also quadratures of f . An analog of the Boltzmann H -theorem
holds for the BGK model.

The application of the Chapman–Enskog method to the BGK equation also leads
to the Navier–Stokes system [28, 122, 141]. In this case, the dynamical viscosity
coefficient μ and the heat conduction coefficient κ are calculated by the formulas

μ = pτ, κ = cp pτ. (2.15)

It follows from the presented formulas that in the BGK approximation, the Prandtl
number is equal to unity.

At present, improved models of the BGK approximation type are elaborated. In
particular, the Shakhov S-model has been suggested; it allows one to consider the
real value of the Prandtl number. Moreover, instead of the equilibrium distribution
function, in the collision integral (2.14), one chooses the distribution function of the
form

fS = f0
(
1 + (1 − Pr)ψ(c, ρ, T, u)

)
,

where ψ is a certain function [176].
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There are generalizations of the BGK approximation to the case where the char-
acteristic time of relaxations depends on the velocity of the particles τ = τ (ξ ). A
variant of the relaxation equation that takes into account the nonequilibrium char-
acter with respect to internal degrees of freedom of the particles [28] is used in
Chap. 8 for the construction of the gas-dynamic equations. A variant of the BGK
approximation for a gas mixture and its use for constructing the moment equations
is discussed in Chap. 9.

2.5 Mean Collision Quantities of the Particle Motion

Let us present the definitions of the basic quantities characterizing the chaotic
motion of particles in a gas with distribution function f . The expressions obtained
are used in the sequel.

The mean thermal velocity of particles is calculated as follows:

〈c̄〉 = 1

ρ

∫
c̄ f dc, where c̄ =

√
c2

x + c2
y + c2

z . (2.16)

The mean relative velocity of particles is defined in the form

〈c̄r 〉 = 1

ρ2

∫∫
c̄r f1 f2 dc1dc2, (2.17)

where cr = ξ1 − ξ2 is the relative velocity of two colliding molecules,

c̄r = [(cx1 − cx2)2 + (cy1 − cy2)2 + (cz1 − cz2)2]1/2,

and f1 and f2 are the corresponding one-particle distribution functions.
In the case of the equilibrium distribution function f = f (0) defined according

to Eq. (2.8), integrals (2.16) and (2.17) can be calculated analytically, and the values
of the corresponding means are defined as follows:

〈c̄〉 =
√

8

π
RT , 〈c̄r 〉 = 4

√
RT

π
. (2.18)

The most probable velocity of particles is determined by the “width” of the distribu-
tion function, and in the equilibrium case (2.8), it is

cm =
√

2RT .

The mean frequency of collisions (the mean collision rate) ν is given by

ν = ρ

m0
〈σcr 〉, (2.19)

where σ is the collision cross-section and
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〈σcr 〉 = 1

ρ2

∫∫
σ c̄r f1 f2 dc1dc2

is the scattering cross-section.
For gases with the Maxwell distribution function f1 = f (0)

1 , f2 = f (0)
2 in the

VHS approximation [28], we have

〈σcr 〉 = 4σref

√
RTref

π

(
T

Tref

)1−ω

, (2.20)

where σref is the value of the collision cross-section at the temperature Tref. For the
hard-sphere gas (σ = σ0, ω = 0.5), expression (2.20) takes the form

〈σcr 〉 = σ0〈cr 〉 = 4σ0

√
RT

π
. (2.21)

The mean collision time is the inverse of the frequency of collisions:

τc = 1

ν
. (2.22)

For the hard-sphere gas,

τc =
√

πm0

4ρσ0

√
RT

. (2.23)

In the VHS approximation the Maxwell relaxation time is connected with the
mean collision time (see [28]):

τ = μ

p
= Ω(ω)τc, where Ω(ω) = 30

(7 − ω)(5 − ω)
. (2.24)

For the hard-sphere gas, Ω(ω = 1/2) = 5/4.
The mean free path λ of particles is determined by the mean collision time τc and

the mean thermal velocity (2.16):

λ = τc〈c̄〉. (2.25)

For the hard-sphere gas with Maxwell distribution function, the substitution of rela-
tions (2.18) and (2.23) leads to the expression

λ = m0√
2ρσ0

. (2.26)

Let us present certain estimates for the characteristic parameters of air. At atmo-
spheric pressure at sea level, the number of particles is n = 2.4 × 1025 m−3, the
mean distance between particles is r� = n−1/3 = 3 × 10−7 m, the mean free path is
λ = 10−7 m, the mean collision time τc = 2.5 × 10−10 s, the mean thermal velocity
is 〈c̄〉 = 300 m/s, and the collision cross-section is σ = 10−18 m2.
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At a height of 300 km from the Earth’s surface the concentration of particles is
n = ρ/m0 ≈ 1015 m−3, the mean distance between molecules is r� ≈ 3 × 10−5 m,
the mean free path is λ ≈ 103 m, and the mean collision time is τc ≈ 1 s.

The estimates presented show clearly that the mean values in gases vary strongly
when the density of the particles varies. In particular, this refers to the relation
between the mean free path and the mean distance between molecules. This explains
the fact that the scales of the spatial average V and the time average Δt introduced
in Sect. 1.1 can substantially change depending on the concrete problem considered.

2.6 Transport Coefficients in Equilibrium Gases

The chaotic motion of particles considered on the microscopic level is accompanied
by the redistribution of their number and also by the transport of the momentum
and energy by each particle. Thus, on the macroscopic level, the description of the
motion of molecules generates three interconnected transport processes: diffusion
or self-diffusion, viscosity, and heat conduction.

These three transport processes are closely related to each other. In all three cases,
the fluxes are proportional to the gradients of the corresponding quantities. Accord-
ing to [160], these processes can be uniformly described by using basic concepts of
kinetic theory, namely, in terms of the mean thermal velocity of particles and the
mean free path.

Indeed, let the mean free path λ be much less than the characteristic size of the
problem, which is related to the gradients of the macroscopic quantities, the density,
the velocity, and the pressure. Consider the transport of a certain scalar quantity A
through a unit area, which is perpendicular to the axis z, for a unit time. Then the
normal component of the flow ΓA through this small area due to the chaotic motion
of particles at a unit time is defined as follows:

ΓA = −1

3
(nv̄λ)

d A

dz
, (2.27)

where n is the density of particles, v̄ is the mean velocity of chaotic motion, and λ is
the mean free path. The coefficient 1/3 is chosen from the assumption that all three
coordinate directions are equally probable in the chaotic motion.

If the quantity A is the concentration, A = n1/n, then we find the diffusion flux
through the unit area:

Γn = jρ = −1

3
(nv̄λ)

dn1/n

dz
= −1

3
(v̄λ)

dn1

dz
. (2.28)

This yields the expression for the diffusion coefficient in the form

D = 1

3
v̄λ. (2.29)

To calculate the momentum transport through the unit small area, we take A =
m0u, where u is the macroscopic velocity of the gas flow along the small area.
Then the flow of the quantity A transported in the random walk corresponds to the
component of the viscous stress tensor:
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ΓA = Π = −1

3
(nv̄λ)

m0du

dz
= −1

3
(ρv̄λ)

du

dz
. (2.30)

Therefore, we obtain the kinetic estimate for the coefficient of viscosity, the Maxwell
formula

μ = 1

3
ρv̄λ. (2.31)

If A is the heat energy of a particle, A = m0v̄
2/2. Replacing v̄2 by the most

probable velocity v̄2 = c2
m = 2RT , we obtain the following expression for the heat

flux through the unit area:

ΓA = qz = − 1

3 · 2
(nv̄λ)

d

dz
m02RT = −1

3
(nv̄λ)kB

dT

dz
. (2.32)

In other words, the heat conduction coefficient has the form

κ = 1

3
nv̄λkB = 1

9
ρv̄λcv, (2.33)

where cv = 3kB/m0 is the specific heat capacity at constant volume for the
monoatomic gas.

The values of coefficients of diffusion, viscosity, and heat conduction obtained
on the basis of simple kinetic estimates turn out to be connected with each other and
are proportional to the mean free path λ and the mean velocity v̄ of chaotic motion of
particles. Defining again v̄ as the mean thermal velocity (2.18) or the most probable
velocity, we obtain the well-known expressions for these three transport coefficients
for Sc = 1 and Pr = 1 and also the connection of the mean free path with the
coefficient of viscosity, which differs from the Chapman formula (see Sect. 3.4) by
a numerical coefficient of unit order.

Therefore, the simplified consideration of the transport processes in an equilib-
rium gas allows us to obtain qualitatively correct expressions for the coefficients
of diffusion, viscosity, and heat conduction. These transport processes have equal
rights and explicitly participate in the QGD/QHD equations. The Navier–Stokes
system contains only two of them, the momentum and heat energy transports related
to the coefficients of viscosity and heat conduction.

2.7 Numerical Simulation of Flows of Rarefied Gases

2.7.1 General Remarks

A simple characteristic of the rarefaction degree of a gas-dynamic flow is the Knud-
sen number Kn = λ/L , which is the quotient of the mean free path λ of molecules
and the characteristic size L of the problem considered. As usual, a gas is assumed
to be dense if Kn → 0 (in practice, Kn < 0.01). The conditions under which
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Kn → ∞ (in practice, Kn > 10) are characteristic for free molecule flows when
collisions between particles are practically absent. For intermediate values of Kn,
the gas is considered to be rarefied.

The methods of simulation of free molecule regimes are sufficiently well elabo-
rated at present. For these problems, we can neglect collisions of particles between
each other and take into account only the interaction of particles with walls. We can
assume that the velocity distribution of particles is known with large accuracy, for
example, we can assume that it is in equilibrium with the distribution function f (0).
In this case, the main problem is the description of the interaction of particles with
walls. This process can be approximately described by using the accommodation
coefficient σ . The simplest models are the complete accommodation of particles on
the wall, or the so-called diffusion reflection, which corresponds to σ = 1, and the
model of mirror reflection, in which σ = 0.

By a moderately rarefied flow of a gas one means flows for which the Knud-
sen number lies in the interval between 0.01 and 0.1, depending on the problem
considered. The flows of moderately rarefied gases present a domain lying on
the limits of applicability of the kinetic approach and the approach related to the
solution of the moment equations. The simulation of such flows by methods of
kinetic theory requires unwarranted large computational resources, which is stip-
ulated by a high density of the gas. At the same time, the Navier–Stokes equations
obtained in the approximation Kn → 0 lose their accuracy in analyzing the regimes
discussed.

To calculate flows of moderately rarefied gases in the framework of the moment
equations, there arises a necessity to take into account the deviation from the contin-
uous flow regimes, first of all, near the flowing around a surface. For this purpose,
one uses special boundary conditions.

For all Knudsen numbers, whatever small, in the boundary near the wall, there
exists a gas layer whose thickness is of order of the mean free path of molecules,
the so-called Knudsen layer. To take into account the influence of this layer on
the flow field in the framework of the macroscopic equations, one introduces the
boundary conditions being slip conditions for the velocity and jump conditions for
the temperature.

The first variant of such conditions was written by Maxwell under the assumption
of the diffusion reflection of molecules from the wall [148]. At present, in the liter-
ature, there are different variants of such conditions (see, e.g., [28, 122, 142]). They
have a similar structure and differ from each other only by numerical coefficients
of order 1. Here, we present the condition in the Smoluchowski form in which, as
compared with the classical Maxwell conditions, the value of accommodation coef-
ficients for the velocity σu and the energy σe, which can be different, are taken into
account, and the influence of the gradient of temperature along the wall (temperature
crip) is also taken into account:
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us = 2 − σu

σu
λ

(
�un

�n

)

s

+ 4

3

(
μ

ρT

�T

�s

)

s

,

Ts − Tw = 2 − σe

2σe

2γ

γ + 1

λ

Pr

(
�T

�n

)

s

,

where un and us are the normal component of the gas velocity near the wall and the
slip velocity along the wall, respectively, n and s, respectively, are the coordinates
along the exterior normal to the wall and along the wall itself, Ts is the temperature
of the gas near the wall, and Tw is the temperature of the wall.

For most materials, under the supersonic flowing around, the velocity and energy
accommodation coefficients can be assumed to be equal and close to the unit. In
the formula for the slip velocity, the second term plays an appreciable role only for
Knudsen numbers approaching the unit (see [99]).

Flows of gases in the range 0.1–10 of the Knudsen numbers are substantially
difficult for the analytical study and the numerical simulation since in this range,
it is impossible to introduce a small parameter with respect to Knudsen number
of the type Kn or 1/ Kn. In this range, methods of kinetic theory are applied. The
numerical analysis of flows is performed either by the direct solution of the Boltz-
mann equation or its simplified variants, or by using methods of direct numerical
simulation, the Monte Carlo methods or DSMC methods (see [27, 28]).

The difficulty in using these approaches is related to large expenditures of com-
puter time in modelling the particle collisions and a large dimension of the problem
as a whole, which is considered in the space of seven dimensions (x, ξ, t). An addi-
tional difficulty is stipulated by the necessity of the computation of averaged charac-
teristics in order to obtain the gas-dynamic quantities being measured: the velocity,
the density, and the pressure. In the framework of DSMC approaches, additional
difficulties are the computations of nonstationary flows and flows with small (i.e.,
subsonic) velocities since such computations are accompanied with considerable
fluctuations of average quantities.

2.7.2 Monte Carlo Method

In a wide sense, the Monte Carlo methods are methods based on random variables.
Monte Carlo methods are successfully used for the solution of various problems
of statistical physics, computational mathematics, game theory, mathematical eco-
nomics, etc. (see [93]).

The direct-simulation method for computation of flows of a rarefied gas (the
direct simulation Monte Carlo, DSMC) was first elaborated by G. A. Bird in the
1960s and was then improved and developed (see [27, 28]).

In gas dynamics, a version of the Monte Carlo method is applied; it is based
on modelling a real gas flow by using a relatively small number of molecules. In
other words, a numerical experiment is performed in which the history of a bounded
number of particles is traced; each of them is representative of a large number W of
real molecules. The quantity W is called the weighting factor.
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For each molecule, its coordinates, velocity, and energy are stored. According to
these quantities, by averaging, the gas-dynamic parameters of the flow are found.

For stationary problems, the computation starts from prescribing an arbitrary dis-
tribution in the computational domain, which develops to its equilibrium state with
time. Now we list the main steps of the DSMC method.

2.7.2.1 Discretization and Modelling of the Particle Motion

The flow domain is partitioned into spatial cells such that the change of gas-dynamic
parameters in each of the cells is small. For the efficiency of simulation, the number
of particles in each cell must not be very different and is of order equal to several
tens.

Modelling the physical motion of molecules is performed by discrete steps in
time Δt , which are small as compared with the mean free path time, Δt < τc. The
motion of molecules and molecule collisions on the interval of time are sequentially
modelled. At each time step Δt , the motion of particles is partitioned into two steps
and is described in the framework of the kinetic model, which is a cyclically repeat-
ing process of free collision scattering and subsequent collisions that are considered
as instantaneous. This model corresponds to two steps of computation.

2.7.2.2 Movement

At the first step, all molecules move by a distance determined by their velocities
ξΔt . The intersection of molecules and rigid bodies, lines, symmetry planes, and
boundaries of the flow is taken into account. If there is a flow inside the domain,
new molecules are generated. If a molecule leaves the computational domain, then
it disappears.

2.7.2.3 Collisions

At the second step, the number of collisions between molecules are computed result-
ing in a change in their velocities. The choice of the colliding pair of particles is
performed in the same cell randomly, taking into account that the probability of a
pair of molecules to collide is proportional to σcr .

An important part of the direct modelling method is the computation of a correct
number of collisions (collision rate). The frequency of collisions ν is determined
by properties of the real gas, for which the problem is solved, and precisely this
quantity determines the dissipative characteristics of the flow, the coefficients of
viscosity μ and heat conduction κ of the gas modelled.

2.7.2.4 Computation of Macroscopic Characteristics

When the computation is completed, a number of quantities (Σc, Σc2, etc.) are
accumulated to obtain the macroscopic parameters of a gas (ρ, u, p, and T ). The
longer the cumulation process, the smaller the statistical fluctuations of macroscopic
parameters.
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2.8 Difference Approximation of the Boltzmann Equation
and Kinetically Consistent Difference Schemes

The numerical solution of the Boltzmann equation (2.1) is severely limited by
computational requirements, due to the large number of independent variables and
problems of approximation and calculation of the collision integral. Corresponding
numerical algorithms are presented, e.g., in [11, 12].

The left-hand side of Eq. (2.1) has the form of the transport equation for the func-
tion f with velocity ξ , and it can be approximated by a first-order finite-difference
scheme with up-wind differences, the Courant–Isaacson–Rees (CIR) scheme. For
a consistent choice of steps in time and space, h = |ξ |Δt , this finite-difference
scheme describes the transport of a given perturbation of the function f without
distortion (see [163, 167]).

Let us present the form of the corresponding finite-difference scheme for a one-
dimensional spatial flow without exterior forces on a uniform spatial grid with space
step h = xi+1 − xi and time step Δt = t j+1 − t j :

f j+1
i − f j

i

Δt
+ ξx

fi − fi−1

h
= I( f, f )h,i , ξk > 0,

f j+1
i − f j

i

Δt
+ ξx

fi+1 − fi

h
= I( f, f )h,i , ξk < 0.

(2.34)

Here ξk is a component of the particle velocity, f = f j = f (xi , ξ, t j ), and
I( f, f )h,i is the difference analog of the collision integral.

The finite-difference scheme (2.34) can be identically transformed to the equiva-
lent form

f j+1
i − f j

i

Δt
+ ξk

fi+1 − fi−1

2h
− h

2
|ξk | fi+1 − 2 fi + fi−1

h2
= I( f, f )h,i . (2.35)

For the finite-difference analog of the collision integral I( f, f )h,i , let the orthog-
onality conditions with summator invariants h(ξ ) hold. The finite-difference scheme
(2.35) can be averaged in the velocity space assuming that f = f (0). In this case, all
the integrals can be analytically calculated, and it is possible to construct immedi-
ately the finite-difference scheme for the gas-dynamic quantities—density ρ, veloc-
ity u, and energy E (see [40, 41, 51, 55, 184]).

The scheme obtained is rather cumbersome since it involves error integrals aris-
ing in averaging the modules of the velocities ξk . However, this scheme turned out
to be very efficient for solving the Euler equations, and it was used in performing
simulations of one-dimensional, as well as some two-dimensional, supersonic gas-
dynamic flows. Later on, finite-difference equations having a close structure were
obtained in [48].

In the finite-difference scheme (2.35), let us replace the coefficient of the last
term by setting |ξ | ∼ c, where c is the sound speed. Taking into consideration a
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time τ = h/2c characterizing the time to cross a computational cell by a particle,
we obtain

h

2
|ξk | = hξ 2

k

2|ξk | ∼ h

2c
ξ 2

k = τξ 2
k . (2.36)

Then scheme (2.35) takes the form

f j+1
i − f j

i

Δt
+ ξk

fi+1 − fi−1

2h
− τξ 2

k

fi+1 − 2 fi + fi−1

h2
= I( f, f )h,i . (2.37)

Expression (2.37) in the case f = f (0) also admits an analytical averaging with
the summator invariants h(ξ ) and leads to constructing a more elegant, as com-
pared with the previous case, system of finite-difference equations for describing the
macroscopic quantities in the gas. The schemes thus obtained are called kinetically
consistent difference schemes.

Using the notation for central difference derivatives of the first and second order
in space accepted in [170], we rewrite the difference scheme (2.37) in the form

f j+1
i − f j

i

Δt
+ ( f ξk)◦

x
− τ ( f ξkξk)x̄ x = I( f, f )hi . (2.38)

Here, f ◦
x

= ( fi+1 − fi−1)/h is the first-order central difference derivative, fx =
( fi+1 − fi )/h and fx̄ = ( fi − fi−1)/h are the left and right difference derivatives,
respectively, and fx̄ x = ( fx − fx̄ )/h is the second-order central difference derivative.

Using the notation introduced, we write the kinetically consistent difference
schemes for the case of a plane one-dimensional flow in the form

ρ
j+1

i − ρ
j

i

Δt
+ (ρu)◦

x
= τ (ρu2 + p)x̄ x ,

(ρu) j+1
i − (ρu) j

i

Δt
+ (ρu2 + p)◦

x
= τ (ρu3 + 3pu)x̄ x ,

E j+1
i − E j

i

Δt
+ (u(E + p))◦

x
= τ (u2(E + 2p))x̄ x + τ

(
p

ρ
(E + p)

)

x̄ x

.

(2.39)

The schemes of type (2.39) modified later turned out to be very efficient in mod-
elling a wide range of gas-dynamic flows [8–10, 40, 41, 51, 52, 54–56, 104, 105].

Differential analogs of these schemes served as a base of the first variant of the
QGD equations.
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