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Abstract. Self-Organizing Maps (SOMs), or Kohonen networks, are 
widely used neural network architecture. This paper starts with a 
brief overview of how SOMs can be used in different types of prob-
lems. A simple and intuitive explanation of how a SOM is trained is 
provided, together with a formal explanation of the algorithm, and 
some of the more important parameters are discussed. Finally, an 
overview of different applications of SOMs in maritime problems is 
presented. 

1   Introduction 

Although the term “Self-Organizing Map” has been used to designate a 
number of different entities, it generally refers to Kohonen’s Self Organiz-
ing Map [1], or SOM for short. These maps are also referred to as “Kohonen 
Neural Networks” [2], “Topological Neural Networks” [3], “Self-organizing 
Feature Maps (SOFM),” or “Topology preserving feature maps” [1], or 
some variant of these names. 

Professor Kohonen worked on auto-associative memory during the 
1970s and early 1980s, and presented his SOM algorithm in 1982 [4]. 
However, it was not until the publication of the second edition of his book 
“Self-Organization and Associative Memory” in 1988 [5], and his paper 
named “The Neural Phonetic Typewriter” on IEEE Computer [5] that his 
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reviews, presenting a thorough covering of the mathematical background 
for SOM, its physiological interpretation, the basic SOM, developments, 
and applications. 

Although Professor Kohonen has retired, his research group main-
tains a very good web-site at Helsinki’s Technical University at “http:// 
www.cis.hut.fi/research.” That site contains public domain software, vari-
ous manuals, papers, technical reports, and a very thorough and searchable 
list of papers dealing with SOM (available at “http://www.cis.hut.fi/ 
research/som-bibl” and containing a total of 7,718 references in December 
2008). The som_pak programs, that are available with source code, and the 
Somtoolbox for Matlab, are of particular interest to anyone wanting to ex-
periment with SOM. We strongly recommend a visit to these sites. 

Kohonen himself describes SOM as a “visualization and analysis tool 
for high dimensional data.” These are indeed the two most attractive  
characteristics of SOM, but, as we shall see, it can be used for many other 
applications. 

1.1   What Can a SOM Do? 

Despite the simplicity of the SOM algorithm, it can and has been used to 
perform many different tasks, the most common of which are: 

1. Clustering (k-means type clustering): This is probably the most 
common application of SOM, albeit probably not the best. In this 
context, the SOM is used as an alternative to k-means clustering 
[6–8], i.e., given a fixed number k of clusters, the SOM will partition 
the available data into k different groups. As an example, we may 
want to divide customers into four different groups according to 
their characteristics, for marketing purposes. The main advantage of 
SOM in this case is that it is less prone to local minima than the 
traditional k-means clustering algorithm, and thus can act as a good 
initialization algorithm for that method. In fact, it can substitute  
k-means altogether, for as noted in [9], the final stages of the SOM 
training algorithm are exactly the same as the k-means algorithm. 
An extra bonus of the SOM algorithm is that the clusters obtained are 
topologically ordered, i.e., similar clusters are (usually) grouped 
together. 

work became widely known. Since then, there have been many excellent 
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most important application of SOM. In this case, the SOM is used as 
a nonlinear projection algorithm, mapping n-dimensional data onto  
a one or two dimensional grid. The SOM can thus be an alternative to 
PCA projections, principal curves, or multidimensional scaling (MDS) 
algorithms such as Sammon mappings [10]. Different projection algo-
rithms perform different trade-offs when mapping from high to low 
dimensions, since in all but the most trivial cases some information 
will be lost. The main advantage of projecting multidimensional data 
onto one or two dimensions is that we can easily visualize the data  
in these dimensions. From this visualization, we can identify outliers 
(data points that are far from other data), identify data that are similar 
to a given reference, or generally compare different data. If we project 
data onto one dimension, we may then plot histograms, and thus 
identify “natural” clusters of data. A similar result may be obtained 
with a technique closely related to SOM called U-Matrix [11] that can 
be extended to visualize what can loosely be interpreted as a two-
dimensional histogram. 

3. Ordering of multidimensional data: This type of application makes 
use of the topological ordering of the SOM to organize a given  
set of data vectors according to some criteria. As an example, a  
1-dimensional SOM can be used to solve the well-known traveling 
salesman or related problems [12]. Another interesting use of this 
ordering capacity of a SOM is to create color palettes from pictures. 

4. Supervised data classification: The SOM is not meant to be a 
classifier, and a related technique called linear vector quantization 
(LVQ) [1] is best suited for this task. However, just like the centroids 
obtained by a k-means algorithm, a SOM may also be used to super-
vise classification by labeling the neurons (or units) with the classes 
of the data that are mapped to it. 

5. Sampling: The units of a SOM have a probability distribution that is a 
function of the probability distribution of the data used for training. 
Generally, the SOM will over-represent regions of the input space 
that have a low density, but that is frequently an advantage since it 
helps detect outliers and novel data patterns. 

6. Feature extraction: Since the SOM performs a mapping from a  
high-dimensional space to a low dimensional one, it may be used for 
feature extraction. In the simple case, the new features are simply the 
coordinates of the mapped data point. This is one of the few cases 
where SOMs with a dimension greater than two are easy to use. 

7. Control and/or data sensitive processing: A SOM can be used to 
select, based on available data, the best model, controller, or data 

2. Exploratory data analysis and visualization: This is, arguably, the 



22 

processor for a given situation. The main idea behind this type of 
application is that instead of designing a rather complex controller, 
multiple simple controllers may be used, each one tuned to a parti-
cular type of situation. During the training of the SOM the input data 
are partitioned into various Voronoi regions, and each of these is used 
to train or define the parameters of a different controller. 

8. Data interpolation: When using the SOM to interpolate data, the 
output space of the SOM will have the same dimension as the input 
space, but since the units are ordered on a regular grid, that grid 
provides a locally linear interpolator for the data. 

Beyond these more typical applications of SOM, there have been  
many others, and a complete list is not practical or indeed interesting.  
An example of an unexpected application is the use of SOM to draw  
cartograms [13]. 

2   Basic Principles 

A SOM is single layer neural network. The name neural network, or more 
correctly artificial neural network, is due to the historical fact that they 
were originally inspired by the way biological neurons were believed to 
work. Although this analogy is, generally speaking, still valid, develop-
ments in artificial neural networks and in our knowledge of how biological 
neurons actually work have led many researchers to refer to the basic  
computing units of artificial neural networks not as “neurons,” but as 
“units.” In this paper, to stress the difference between the mathematical 
model of a biological neuron and our computational units, we will follow 
the more recent conventions, and refer to them simply as “units.” 

There are also many terms used to designate the data that are used to 
train the network, or later to use it. In this paper, we will follow the term 
most used in the pattern recognition community, which is simply “pattern” 
or “data pattern.” Different communities will call it “sample,” “instance,” 
“point,” or “entity.” 

In a SOM, the units are set along an n-dimensional grid. In most appli-
cations, this grid is two-dimensional and rectangular, though many appli-
cations use hexagonal grids, and one, three, or more dimensional spaces. In 
this grid, we can define neighborhoods in what we call the output space, as 
opposed to the input space of the data patterns. 

Each unit, being an input layer unit, has as many weights or coefficients 
as the input patterns, and can thus be regarded as a vector in the same 
space as the patterns. When we train or use a SOM with a given input pat-
tern, we calculate the distance between that pattern and every unit in the 
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Fig. 1 Basic SOM architecture. On the bottom, the input patterns are shown as a 
four-dimensional vector (left) or three-dimensional point (right). The units are also 

a U-matrix coloring of a SOM 

matching unit – BMU), and say that the pattern is mapped onto that unit. If 
the SOM has been trained successfully, then patterns that are close in the 

put space and, hopefully, vice-versa. Thus, SOM is “topology preserving” 
in the sense that (as far as possible) neighborhoods are preserved through 
the mapping process. 

Generally, no matter how much we train the network, there will always 
be some difference between any given input pattern and the unit it is 
mapped to. This is a situation identical to vector quantization, where there 
is some difference between a pattern and its code-book vector representa-
tion. This difference is called quantization error, and is used as a measure 
of how well map units represent the input patterns. 

We can look at a SOM as a “rubber surface” that is stretched and bent 
all over the input space, so as to be close to all the training points in that 

network. We then select the unit that is closest as the winning unit (or best 

points in this input space. On the top, the grid of units is shown (left) together with 

input space will be mapped to units that are close (or the same) in the out-



24 

Let us imagine a very simple example, where we have four clusters of 
three-dimensional training patterns, centered at four of the vertices of the 
unit cube: (0,0,0), (0,0,1), (1,1,0), and (1,1,1). If we trained a two-dimensional, 
four node map, we would expect to obtain units centered at those vertices. 
If we use a larger map, with 16 nodes, for example, we would expect to 
obtain a map where the units are grouped in clusters of four nodes on each 
of the vertices (see Fig. 2). 

 
 

 

      
 

 

 
Fig. 2 Left: a 4-unit 2D SOM clustering some vertices of a 3D unit cube. On the 
far left we can see the units in the input (data) space, and center left in the output 
(grid) space. Right: a 16-unit SOM clustering the same data 

Before training, the units may be initialized randomly. During the first 

(in the input space) where they will stay. This is usually called the unfold-
ing phase of training. After this phase, the general shape of the network in 
the input space is defined, and we can then proceed to the fine tuning phase, 
where we will match the units as far as possible to the input patterns, thus 
decreasing the quantization error. 

To visualize the training process, let us follow a two-dimensional to 
one-dimensional mapping presented in [1]. In this problem, two-dimensional 
data points are uniformly distributed in a triangle, and a one-dimensional 

part of training, they are “spread out,” and pulled towards the general area 

space. In this sense, a SOM is similar to the input layer of a radial basis 
function neural network (e.g., [14]), a neural gas model [15], or a k-means 

notion of “output space” neighborhood (all units are “independent” from 

It thus imposes an ordering of the units that is not present in the other  
methods. These ties are equivalent to a strong lateral feedback, common in 
other competitive learning algorithms. 

algorithm. The big difference is that while in these methods there is no  

each other), in a SOM the units are “tied together” in the output space.  
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Fig. 3 2D to 1D mapping by a SOM, from [1] 

3   Description of the Training Algorithm 

3.1   The Algorithm 

Let kx  (with k = 1 to the number of training patterns N ) be the n-
dimensional training patterns. Let ijw  be the unit in position ( )ji, . Let 

10 ≤≤α
( )rwwh mnij ,,
cN

that are close in the output space, and small (or 0) for units far away. It is 
ij mn

as the distance in the grid between them increases up to a radius r (called 
neighborhood radius) and is zero from there onwards. Let bmuw  be the best 
matching unit for a given input pattern. 

The algorithm for training the network is then: 
For each input pattern :kx  
1. Calculate the distances between the pattern kx  and all units ijw : 

ijkij wxd −= . 

2. Select the nearest unit ijw  as best matching unit ijbmu ww = : 
( )mnij dd min= . 

3. Update each unit ijw  according to the rule α+= ijij ww  ( )rwwh ijbmu ,,  

ijk wx − . 

4. Repeat the process until a certain stopping criterion is met. Usually, 
the stopping criterion is a fixed number of iterations. To guarantee 
convergence and stability of the map, the learning rate α and neighbor-
hood radius r are decreased in each iteration, thus converging to zero. 

SOM is trained with these patterns. Figure 4 represents the evolution of the 
units in the input space. As training proceeds, the line first unfolds (steps  
1–100), and then fine-tunes itself to cover the input space. 

 be the learning rate (sometimes referred to as η), and 
 be the neighborhood function (sometimes referred to as Λ or 

). This neighborhood function has values in [0,1] and is high for units 

usual to select a function that is 1 if w = w ,  monotonically decreases 

0 20 100 1000 10000 25000
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The distance measure between the vectors is usually the Euclidean dis-
tance, but many others can and are used, such as norm-based Minkowski 
metrics, dot products, director cosines, Tanimoto measures, or Hausdorff 
distances. 

3.2   Neighborhood Functions 

The neighborhood function provides a bond between a unit and its 
neighbors, and is responsible for the topological ordering of the map. In 
fact, without this neighborhood function (or when its radius is zero), the 
SOM training algorithm is exactly the same as the incremental k-means  
algorithm [6]. The two most common neighborhood functions are the 
Gaussian and the square (or bubble) functions: 
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In both cases, r decreases to 0 or 1 during training. If r → 0 the final 

quantization error will be minimized, but the topological ordering may be 
lost, since the algorithm is performing a k-means clustering. On the other 
hand, forcing r → 1 will preserve the ordering of the units, but the quanti-
zation error will not be minimized. Moreover, in this case, there will be a 
border effect, by which units close to the border will be dragged to the  
center, and present higher quantization errors. 

The algorithm is surprisingly robust to changes in the neighborhood 
function, and our experience is that it will usually converge to approxi-
mately the same final map, whatever our choice, providing the radius and 
learning rate decrease to 0. The Gaussian neighborhood tends to be more 
reliable (different initializations tend to converge to the same map), while 
the bubble neighborhood leads to smaller quantization errors, and is com-
putationally much faster. A theoretic discussion of the effect of neighbor-
hood functions (although only for the one-dimensional case) can be found 
in [17], and a less rigorous but more general one in [18]. 
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3.3   Other Parameters and Training Options 

As mentioned before, training is usually done in two phases: the unfolding 
phase, and the fine-tuning phase. The algorithm is exactly the same in both 
cases, but while in the first phase the neighborhood radius and learning 
rate have rather high values (to allow for a general orientation of the map),  
in the second phase they will have smaller values, to perform only fine ad-
justments on the unit’s positions. As a rule of thumb, the initial radius for 
the first phase should be roughly the length of the smaller side of the map, 
while for the second it should be the radius of the expected size of clusters 
in the output space. 

The size of the map will depend a lot on the particular problem at hand 
and on the data available. If the SOM is to be used as an alternative to  

cation, a one-dimensional SOM will usually provide the best results [9]. 
For exploratory data analysis, a larger map should be used. These are 

and variability of available data, a rule of thumb could be to use one unit 
for each 4–20 or more data patterns, but in some cases one might use more 
units than data patterns (to obtain very clear cut U-Matrices). 

3.4   U-Matrices 

U-Matrices were introduced by Ultsch [11] and are one of the most popu-
lar and useful ways of visualizing clusters with a SOM. A U-Matrix is  
obtained by computing the distance in the input space of units that are 
neighbors in the output space. If these differences are small, it means  
that the units are close together, and thus there is a cluster of similar data 
in that region of the input space. On the other hand, if the distances are 
large, the units are far apart, and there isn’t much data in that region of the 
input space. The U-Matrix can thus be seen as a sort of extension of an  
inverted histogram for multidimensional data projected on a lower dimen-
sional space: low values indicate large concentrations of data and high  
values indicate sparse regions. U-Matrices are usually presented as color-
coded maps: white regions indicate low values (and thus clusters), while 
dark regions indicate separations between clusters. 

k-means, one unit per desired cluster should be used. For that type of appli-

sometimes called emergent-SOM or ESOM [19]. Depending on the amount 
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4   SOM Variants 

Many different variants of the basic SOM algorithm have been proposed, 
and a complete review of these is beyond the scope of this paper. Some re-
views of these variants have been published [20, 21], and we will overview 
some of them to show how the basic algorithm can be adapted to different 
problems. 

The original SOM algorithm and most of its variants deal with vector 
data only. Some variants for nonvector data have also been proposed 
namely the dissimilarity SOM [22], the Kohonen multiple correspondence 
analysis and the Kohonen algorithm on disjunctive table [23]. For the  
simpler case of binary valued data, both the original algorithm using 0  
and 1 as real numbers and binary variants of SOM produce good results  
[24, 25]. 

SOMs have frequently been used to analyze temporal data, such as EEG 
or Stock Exchange data. In most cases, time can be imbedded into the data 
vector, and a standard SOM algorithm is used, treating that vector as a 
simple input pattern. More interesting uses of SOM have been made by 
changing the learning rule or by changing the topology or structure of the 
network so as to explicitly take time into consideration. In the former case, 
the learning rule may, for example, consider only the neighbors of the last 
BMU as candidates for the next input pattern, or separate the time variable 
from the rest when computing the similarity. As for changes in topology 
and structure, some approaches use hierarchical SOMs with different time 
frames, or include time delay memories in the units. A review of the dif-
ferent ways in which this has been done, together with a proposal for a 
taxonomy of temporal SOMs, is available in [26]. 

Geographical information science problems also have a special variable 
(special location) that should, like time, be treated in a different way. To 
this end a variant called GeoSOM has been developed [21, 27, 28]. 

Hierarchical SOMs [29, 30] combine several SOMs to process data at a 
low level, and then use their outputs as inputs to a high level SOM that 
fuses the results. 

In some applications, the notion of output grid is substituted by a more 
general graph, such as happens in the minimum spanning tree SOM [20], 
tree-structured SOM [29], or growing cells [31, 32]. The links and concept 
of output space may even disappear, as happens in the neural gas model 
[15, 33, 34]. 

Another important type of variants on the basic SOM algorithm are 
those that try and overcome the theoretical obstacles raised by the fact that 
the SOM does not minimize a global energy function. One solution is to 

   Victor. J.A.S. Lobo 



Application of Self-Organizing Maps to the Maritime Environment           29 

change the learning rule slightly, as was done in [35]. Another solution is to 
use a variation of Gaussian mixture models to derive a topologically ordered 
map, as is done with generative topographic mapping [36]. However, despite 
the theoretical soundness of these methods, they do not provide signifi-
cantly better results and are computationally more complex than the origi-
nal algorithm. 

5   Applications in Maritime Environment 

Given the wide range of capabilities of the SOM there have been many  
applications of this technique on maritime problems. 

SOMs have been used quite frequently to cluster and classify satellite 
images [3, 37–41]. In most cases, the SOM is basically used as a classifier, 
and each pixel of the satellite image forms a data pattern. When analyzing 
satellite images, the ground truth (i.e., the real class of a given pixel) is 
usually established by an expert, and is rather slow, expensive, and prone 
to errors. Therefore not many classified pixels are available. One advan-
tage of the SOM in this case is that it may be trained with all the data,  
including nonclassified pixels, and then labeled with only the classified 
ones. This labeling may then be extended to other units that belong to  
the same cluster, improving the classification capabilities of the system.  
Very similar approaches have been made with data that combine satellite  
images with other data [42], data obtained by radar [43], data obtained by 
meteorological stations [44], airborne lasers [45], or even data obtained by 
simulators. The common factor in all these cases is that a two-dimensional 
map with pixels that are multidimensional vectors is presented to a SOM 
for clustering and classification. Let us look at one of these in a little  
more detail, and then overview the problems where these approaches were  
successfully applied. 

One application of SOM to satellite images, that concerns reflectance 
spectra of ocean waters, is presented in [3]. In this case, a 20 × 20 unit 
probabilistic SOM (or more precisely PSOM) is trained with 43,000 six-
dimensional vectors. Each of these corresponds to sampled pixels of a  
satellite image with five preprocessed frequency bands, and an extra value 
corresponding to the spatial standard deviation of one of those measure-
ments. A human expert will then label some of the pixels, and these are 
used to label the SOM units, either directly or indirectly, after these are 
clustered with a hierarchical clustering algorithm. The authors point out 
that the method used provides a good overall classification of the data, in 
part due to the fact that that the probabilistic nature of PSOM allows for a 
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confidence level to be assigned to each classification. The PSOM is also 
considered useful by showing that a lot of resources are dedicated to  
separating clouds from other pixels, thus leading to the suggestion that the  
images be preprocessed to remove these clouds. The author’s main interest 
is in the characterization of Sahara dust, clouds, and other aerosols present 
over the ocean, and they do not go into great detail on the parameterization 
of the PSOM. It could be argued that a nonsquare map would lead to a  
better stabilization of the training process, and that the use of a U-Matrix 
would help define larger clusters (instead of using hierarchical clustering), 
but the authors did not follow that path. 

The SOM has been used in a similar way (i.e., for clustering and classi-
fying data contained in two-dimensional maps or images), in many applica-
tions of environmental science, climatology, geology, and oceanography. 
These include analyzing sea surface temperature [46–49], plankton [50, 51], 
ocean current patterns [43, 52], estuary and basin dynamics [53], sediment 
structure [54], atmospheric pressure [55, 56], wind patterns [39], storm 
systems [41], the El Niño weather conditions [42], clouds [57], ice [53, 58, 
59], rainfall [44, 60, 61], oil spills [45], the influence of ocean conditions 
in droughts [62], and the relationship between sardine abundance and  
upwelling phenomena [40]. 

Data concerning fisheries were analyzed in different perspectives using 
a SOM in [63]. The use of SOM in this case clearly shows the existence  
of well-defined changes in fisheries over time, and relationships between 
different species. 

A more creative use of SOM in shown in [64], where the SOM is used 
to segment maps of the seafloor obtained with multibeam sonars. The 
segmented data is then classified with specialized classifiers for each seg-
ment. The SOM is thus used to preprocess the data so that multiple simpler 
or more precise classifiers can be used to obtain the desired results. 

Although classical harmonical methods can provide good sea level pre-
dictions in most cases, those predictions can have rather large errors  
in basins, estuaries, or regions where weather conditions have a large  
influence. In those cases, SOMs have been used to predict sea levels with 
greater accuracy in [65]. 

Following an approach common in several problems in robotics [66], 
the SOM has been used to control an underwater autonomous vehicle 
(AUV) [67–69]. The basic idea in this type of application is that the SOM 
receives the sensor inputs, and based on that chooses a unit that will pro-
vide the guidance for the AUV. The main advantage of the SOM in this 
case is that each of the units has a quite simple control law (as opposed  
to a complicated nonlinear controller), and the topological ordering of the 
SOM makes it relatively robust to noise in the inputs. 

   Victor. J.A.S. Lobo 
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With the increase in maritime traffic, the consequences of accidents, and 
the availability of vessel traffic systems (VTS), the automatic detection of 
anomalous behaviors of ships became a pressing problem. This problem 
was addressed, in [70], where track data (heading, speed, etc.) from navy 
exercises was used to train a SOM. Clusters were then identified on that 
SOM, and both suspicious behavior clusters and outliers were flagged as 
potential threats. The same problem was tackled in a similar way in [71]. 
In this case, the emphasis in more on visualization of the data, and on  
estimating the probability of a given situation occurring in the dataset. 

Also related to ship trajectories, SOMs have been used to plan patrol 
trajectories of naval vessels in [72]. The approach followed was basi-
cally the one used to solve the traveling salesman problem with a SOM 
(e.g., [12]). In this case, the geographical locations of “incidents” (acci-
dents and illegal fishing) were used as training patterns, and the trajectory 
obtained tries to maximize the probability of passing in the area where 
there were “incidents” in the past. 

In underwater acoustics, SOMs have been used extensively to analyze 
passive sonar recordings [73–76]. Although ship noise or transient recogni-
tion is basically a supervised task, it is very important to detect novelties, 
and to relate those novelties to known causes. The SOM can provide this 
by using large maps which will have many unlabeled units. Additionally, it 
provides an easy to use and understand interface for the operators. 

Also concerning fluids, although not directly applied to the maritime 
environment, an interesting use of SOM is given in [77, 78] for analyzing 
movement in fluids by tracking particles in suspension. The idea is to use 
successive images of the fluid for training a map, and then infer the 
movement by observing how the units change from one step to the next. 

6   Conclusions 

An introduction to how a SOM works and how it can be used has been  
presented. Despite its simplicity, the SOM can be used for a wide variety 
of applications. Some of its shortcomings were also pointed out, as well as 
the main issues that must be taken into consideration when using them. 

An overview of applications in the marine environment has been given, 
showing that it has successfully been used in many real maritime prob-
lems. I believe that its use in this field is still at a preliminary stage, and 
more and more powerful uses will be given to SOM. It is frequently used 
simply for k-means type clustering and supervised classification. While 
those types of applications are useful, I think that the greatest potential of 
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SOM is its ability to project and visualize multidimensional data. Many 
authors have criticized clustering through visualization as too subjective 
for engineering purposes. I would argue that clustering is intrinsically a 
subjective problem, and that the human eye and judgment are the best tools 
available for that task. The computer algorithms should only present the 
data in a suitable way, which is exactly what a SOM does. I also believe 
that there is still a lot of potential for using SOM in nonlinear control and 
routing or piping problems aboard ships. As SOMs become more main-
stream, and software for their use becomes more widespread, they will 
probably be used in creative ways in even more problems. 
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