
Chapter 2
Cyclic covers of the projective line

Recall that we will study variations of Hodge structures of families of cyclic
coverings of the projective line. Moreover some families of such covers are
suitable for the construction of families of Calabi-Yau manifolds with dense
sets of complex multiplication fibers. In order to understand variations of
Hodge structures of such families of cyclic coverings we need to understand
the Hodge structure of a cyclic covering C → P

1.
A cyclic cover π : C → P

1 is given by

ym = (x − a1)d1 · . . . · (x − an)dn , (2.1)

where each dk is an integer satisfying 1 ≤ dk ≤ m − 1. The numbers dk are
not uniquely determined by the isomorphism class of a cover. However, these
numbers determine the isomorphism class of a cover and we will use them
for the computation of the variation of Hodge structures in the following
chapters.

In Section 2.1 we give a general description of cyclic covers of P
1 and

explain which tuples (d1, . . . , dn) yield equivalent covers. We will see that the
Galois group action of the cyclic covering yields an eigenspace decomposition
of π∗(C) over the complement of the branch points. In Section 2.2 we use
the branch indices dk for the description of the monodromy representations
of these eigenspaces. We have also an eigenspace decomposition of H1(C, C)
by the Galois group action, which can also be described by using the branch
indices dk, as we will do in Section 2.3. In the next chapter this eigenspace
decomposition will be extended to an eigenspace decomposition of the V HS
of our families of cyclic coverings of P

1. In Section 2.4 we cover certain curves
C given by (2.1) by a Fermat curve, which implies that each of these certain
curves C has CM .
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2.1 Description of a cyclic cover of the projective line

Let us first repeat some known facts about Galois covers of P
1.

Definition 2.1.1. Let T1, T2, and S be topological spaces resp., com-
plex manifolds resp., algebraic varieties. The coverings f1 : T1 → S and
f2 : T2 → S, which are morphisms in the respective category, are called equiv-
alent, if there is an isomorphism g : T1 → T2 in the respective category such
that f1 = f2 ◦ g.

Proposition 2.1.2. Let G be a finite group, and S := {a1, . . . , an} ⊂ A
1

⊂ P
1. There is a correspondence between the following objects:

1. The isomorphism classes of Galois extensions of C(P1) = C(x) with Galois
group G and branch points contained in S.

2. The equivalence classes of (non-ramified) Galois coverings f : R → P
1 \ S

of topological spaces with deck transformation group isomorphic to G.
3. The normal subgroups in the fundamental group π1(P1 \ S) with quotient

isomorphic to G.

Proof. (see [62], Theorem 5.14) ��

Remark 2.1.3. We will need to understand the correspondence of the pre-
ceding Proposition. The correspondence between (1) and (2) is given by the
facts that a Galois covering f : R → P

1 \ S (of topological spaces) yields a
covering f : R̄ → P

1 of compact Riemann surfaces, and any morphism of
compact Riemann surfaces corresponds to an embedding of their function
fields.

The correspondence between (2) and (3) is given by the path lifting prop-
erties of coverings of Hausdorff spaces. Take b ∈ R. Let p = f(b), and
γ ∈ π1(P1 \ S, p), and f∗(γ(0)) = b. Then f∗(γ(1)) = g · b for some g ∈
G ∼= Deck(R/(P1 \P )). This induces a homomorphism Φb : π1(P1 \S, p) → G
and a kernel of this homomorphism, which is a normal subgroup G.

Remark 2.1.4. Let f : R → P
1 be a Galois covering with branch points

a1, . . . , an. One can choose γ1, . . . , γn ∈ π1(P1 \P ) such that each γk is given
by a loop running counterclockwise “around” exactly one ak. Hence one has
that

γn = γ−1
1 . . . γ−1

n−1

and we conclude that

Φb(γn) = Φb(γ1)−1 . . . Φb(γn−1)−1.

From now on we consider only irreducible cyclic covers of P
1. An irreducible

cyclic cover can be given by a prime ideal

(ym − (x − a1)d1 · . . . · (x − an)dn) ⊂ C[x, y].
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First this ideal defines only an affine curve in A
2, which has singularities, if

there are some dk > 1. But there exists a unique smooth projective curve
C birationally equivalent to this affine curve. By the natural projection onto
the x-axis, one obtains a cyclic cover of the smooth curve C onto P

1.

Remark 2.1.5. Let us consider the cover given by

ym = (x − a1)d1 · . . . · (x − an)dn ,

and fix a k0 ∈ {1, . . . n}. By an automorphism of P
1, one can put ak0 onto 0.

Let μk0 = dk0
m ∈ Q, and D a small disc centered in 0, which does not contain

any other ak with k �= k0. Take any point p ∈ ∂D and remove the segment
[0, p]. The topological space D \ [0, p] is simply connected. Hence one can
define root functions z → zμk0 on this space, which are given by:

zμk0 = |z|μk0 exp(
2πitdk0

m
+2πi

�

m
) (with � = 0, 1, . . . , m−1 and z = |z| exp(2πit))

Since the cover is given by ym = xdk0 resp., y = xμk0 over a small disc
around 0, we may lift a closed path around 0 to some path with starting
point (z, zμk0 ) and ending point (z, e2πiμk0 zμk0 ).

Definition 2.1.6. Let e2πiμk0 and dk0 be given by Remark 2.1.5. Then
e2πiμk0 is the local monodromy datum of dk0 .

Lemma 2.1.7. Assume that d1, . . . , dn < m. Let the (non-singular projec-
tive) curve C be given by

ym = (x − a1)d1 · . . . · (x − an)dn .

Then the Galois group G is Z/(m), and the covering C → P
1 is given by the

kernel of the homomorphism Φ given by γk → dk ∈ Z/(m). The point ∞ is
a branch point and

Φ(γ∞) = −
n∑

k=1

dk mod m,

if and only if m does not divide
n∑

k=1

dk.

Proof. The last statement of the lemma follows by the preceding rest of the
lemma and the Remark 2.1.4.

The Galois group and Z/(m) are obviously isomorphic. Let us remove the
ramification points of C. Then we obtain a Riemann surface R. Now take a
small loop γk around pk, which starts and ends in p ∈ P

1. Moreover take a
point b ∈ R with f(b) = p. The definition of R and Remark 2.1.5 imply that
the lifting f∗(γk) of the path γk starting in b ends in the point dk · b. Hence
the statement follows from Proposition 2.1.2 and Remark 2.1.3. ��
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Let d ∈ Z and 1 < m ∈ N. The residue class of d in Z/(m) is denoted
by [d]m.

Remark 2.1.8. Let G = Z/(m), and [d]m ∈ Z/(m)∗. We consider the ker-
nels of the monodromy representations of the covers locally given by

ym = (x − a1)d1 · . . . · (x − an)dn

and
ym = (x − a1)[dd1]m · . . . · (x − an)[ddn]m .

By the preceding lemma, these kernels coincide. Hence we conclude that both
covers are equivalent.

2.2 The local system corresponding to a cyclic cover

Now let us assume that our cover π : C → P
1 is given by

ym = (x − a1)d1 · . . . · (x − an)dn ,

where m divides d1 + . . . + dn and ∞ is not a branch point. Moreover let

S := {a1, . . . , an}.

First let us consider the construction of a cyclic cover of an arbitrary algebraic
manifold:

Remark 2.2.1. Let X be a complex algebraic manifold, L an invertible
sheaf on X and

D =
∑

bkDk

a normal crossing divisor on X, where Lm = O(D) and 0 < bk < m for each
k. Then by L and D, one can construct a cyclic cover of degree m onto X
(see [20], §3).

Definition 2.2.2. Let bk and Dk be given by the previous remark. The
number bk is called the branch index of Dk with respect to this cyclic cover.

Example 2.2.3. In the case of

X = P
1, D =

n∑
k=1

dkak, L = OP1(
1
m

n∑
k=1

dk),

the cyclic cover of Remark 2.2.1 is given by

ym = (x − a1)d1 · . . . · (x − an)dn .
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Next we describe the local system π∗(C)|P1\S and its monodromy.

Lemma 2.2.4. Let V be a C-vector space of dimension n, and X be an
arcwise connected and locally simply connected topological space with x ∈ X.
Then the monodromy representation provides a bijection between the set of
isomorphism classes of local systems of stalk V on X and the set of repre-
sentations

π1(X,x) → GLn(C),

modulo the action of AutC(V ) by conjugation.

Proof. (see [61], Remarque 15.12) ��

Since GL1(C) ∼= C
∗ is commutative, we can conclude:

Corollary 2.2.5. The monodromy yields a bijection between the set of iso-
morphism classes of rank one local systems on P

1 \ S and the set of repre-
sentations

π1(P1 \ S) → GL1(C).

The Galois group of our covering curve is isomorphic to Z/(m) and gen-
erated by a map ψ, which is given by (x, y) → (x, e2πi 1

m y) with respect to
the above affine curve contained in A

2, which is birationally equivalent to
the covering curve. Hence a character χ of this group is determined by χ(ψ)
with χ(ψ) ∈ {e2πi j

m |j = 0, 1, . . . ,m − 1}. Thus the character group is iso-
morphic Z/(m) and we identify the character, which maps ψ to e2πi j

m , with
j ∈ Z/(m).1

Let D be an arbitrary disc contained in P
1 \ S. The preimage of D is

given by the disjoint union of discs Dr with r = 0, 1, . . . ,m − 1 such that
ψ(Dr) = D[r+1]m . The vector space π∗CC |P1\S(D) has the basis {vj |j =
0, 1, . . . ,m − 1}, where

vj := (e
2πj(m−1)

m , . . . , e
2πj
m , 1),

and the r-th. coordinate denotes the value of the corresponding section of
π−1(D) on Dr. By the push-forward action, each vj is an eigenvector with
respect to the character given by j. Since D is arbitrary, one can glue the
local eigenspaces, and obtain an eigenspace decomposition

π∗CC |P1\S =
m−1⊕
j=0

Lj

1 These two identifications with Z/(m) are obviously not canonical, but useful for the
description of π∗CC |

P1\S by using our explicit equation for π : C → P1 as we will see a
little bit later.
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into rank 1 local systems, where Lj is the eigenspace with respect to
the character given by j ∈ Z/(m). Hence the monodromy representation
ρ : π1(P1 \ S) → GLm(C) has the corresponding decomposition

ρ = (ρ0, ρ1, . . . , ρm−1) : π1(X ) →
m−1∏
i=0

GL1(C),

where
ρj : π1(P1 \ S) → GL1(C)

is the monodromy representation of Lj for all j = 0, 1, . . . ,m − 1.
Let us recall that our cyclic cover C is given by

ym = (x − a1)d1 . . . (x − an)dn ,

where ∞ is not a branch point. Now let x ∈ P
1 \ S, and x ∈ D, where D is a

sufficiently small open disc as above. Take a counterclockwise loop γk around
ak and cover the loop with a finite number of (sufficiently) small discs. The
continuation of s̃ on the unification of these discs leads to a multisection. By
Remark 2.1.5, the possible liftings γ

(r)
k of the loop γk are paths with starting

point γ
(r)
k (0) = yr, where yr ∈ Dr and ending point γ

(r)
k (1) = y[dk+r]m . This

implies that the monodromy representation of Lj maps γk to e
2πjdk

m . Hence
we conclude:

Theorem 2.2.6. Let the cyclic cover π : C → P
1, which is not branched

over ∞, be given by

ym = (x − a1)d1 . . . (x − an)dn . (2.2)

Then the local system π∗C|P1\S is given by the monodromy representation

γk → {(xj)j=0,1...,m−1 → (e
2πijdk

m xj)j=0,1...,m−1}.

Remark 2.2.7. One can consider π∗(Q(e2πi 1
m ))|P\S , too. Since a generator

ψ of Gal(C; P1) satisfies ψm = 1, the minimal polynomial of its action on
π∗(Q(e2πi 1

m ))|P\S decomposes into linear factors contained in Q(e2πi 1
m )[x].

Hence the eigenspace decomposition is defined over Q(e2πi 1
m ).

Each local system L of C-vector spaces on any topological space X has a
dual local system L∨ given by the sheafification of the presheaf

U → HomC(L, C).



2.2 The local system corresponding to a cyclic cover 65

Proposition 2.2.8. One has

L
∨
j = L̄j .

Furthermore the monodromy representation μL∨
j

of L
∨
j is given by μL∨

j
(γs) =

μLj
(γs) for all s ∈ S.

Proof. (see [19], Proposition 2) ��

Hence by the respective monodromy representations, we obtain for all
j = 1, . . . , m − 1:

Corollary 2.2.9.
L
∨
j = Lm−j

Let r|m. We consider the C-algebra endomorphism Φr of C[x, y] given by
x → x and y → yr. The (non-singular) curve C is birationally equivalent to
the affine variety given by Spec(C[x, y]/I), where

I = (ym − (x − a1)d1 . . . (x − an)dn).

By Φr, we obtain the prime ideal

Φ−1
r (I) = (y

m
r − (x − a1)d1 . . . (x − an)dn).

Let Cr be the irreducible projective non-singular curve birationally equivalent
to the affine variety given by Spec(C[x, y]/Φ−1

r (I)).

Remark 2.2.10. By the equation above, we have a cover πr : Cr → P
1 of

degree m
r . The homomorphism Φr induces a cover φr : C → Cr of degree r

such that
π = πr ◦ φr.

Proposition 2.2.11.

(πr)∗CCr
|P1\S =

m
r −1⊕
j=0

Lr·j ⊂ π∗CC |P1\S .

Proof. Let m0 := m
r . By Theorem 2.2.6, the monodromy representation of

the local system (πr)∗CCr
|P1\{a1,...,an} is given by

γk → {(xj)j=0,1..., m
r −1 → (e

2πijdk
m0 xj)j=0,1..., m

r −1 = (e
2πijrdk

m xj)j=0,1..., m
r −1}.

By the respective monodromy representations of the local systems Lj , this
yields the statement. ��



66 2 Cyclic covers of the projective line

2.3 The cohomology of a cover

In this section we discuss some known facts about the eigenspace decom-
position of the Hodge structure of a curve C with respect to a cyclic cover
π : C → P

1. The main reference for this section is given by §3 of the book
[20] of H. Esnault and E. Viehweg. Section 2 of the essay [18] of P. Deligne
and G. D. Mostow contains additional information about our case.

Let π : C → P
1 be given by

ym = (x − a1)d1 · . . . · (x − an)dn

such that ∞ is not a branch point,

S = {a1, . . . , an}, D = d1a1 + . . .+dnan and L(j) = O
P1 (j

d1 + . . . + dn

m
−

n+3∑
k=1

[
j

m
·dk]).

Moreover let the generator ψ of the Galois group of π be given by (x, y) →
(x, e2πi 1

m y) with respect to the explicit equation above, which yields π.
We fix some new notation: Let q ∈ Q and [q] denote the largest integer,

which is smaller than q. Then we define [q]1 := q − [q] . Moreover we define

Sj := {a ∈ S|[jμa]1 �= 0}.

Proposition 2.3.1. The sheaves π∗(O) and π∗(ω) have a decomposition into
eigenspaces with respect to the Galois group representation, which are given
by the sheaves L(j)−1

and

ωj := ωP1(logD(j)) ⊗ L(j)−1
with D(j) :=

∑
a∈Sj

a

for j = 0, 1, . . . , m − 1 such that ψ acts via pull-back by the character e2πi j
m

on L(j)−1
resp., ωj.

Proof. The eigenspace decomposition of π∗(O) follows by [20], Corollary 3.11.
Moreover [20], Lemma 3.16, d) yields the decomposition of π∗(ω) into the
claimed sheaves. Since L(j)−1

is an eigenspace with respect to the Galois
group representation, ωj is an eigenspace of the same eigenvalue. ��

Remark 2.3.2. One has obviously h0(ω0) = 0. By [20], 2.3, c), one concludes
that

ωP1(logD(j)) = ωP1(D(j))

for j = 1, . . . , m − 1. Hence for j = 1, . . . , m − 1 we obtain
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h0(ωj) = h0(OP1(−2 + deg(D(j)) − j
d1 + . . . + dn+3

m
+

n+3∑
k=1

[
j

m
· dk]))

= −1 + |Sj | +
∑
a∈Sj

(−jμa + [jμa]) = −1 +
∑
a∈Sj

(1 − [jμa]1).

But here we want to determine our eigenspaces on π∗(ωC) with respect to
the push-forward action. Thus we put ω(j) := ω[m−j]m , and we obtain

h1,0
j (C) := h0(ω(j)) = h0(ω[m−j]m) = −1+

∑
a∈Sj

(1−[(m−j)μa]1) = −1+
∑
a∈Sj

[jμa]1.

Moreover let H0,1
j (C) denote the vector space of antiholomorphic 1-forms on

C with respect to the corresponding character of the Galois group action.
Since the push-forward action of the Galois group respects the alternating
form of the polarization of the Hodge structure on H1(C, Z), one concludes
that H0,1

[m−j]m
(C) is the dual of H1,0

j (C). Thus:

Proposition 2.3.3. We have the eigenspace decomposition

H1(C, C) =
m−1⊕
j=1

H1
j (C, C) with H1,0

j (C) ⊕ H0,1
j (C) = H1

j (C, C).

Moreover by h0,1
j (C) = h1,0

[m−j]m
(C) and the preceding calculations, one

concludes:

Proposition 2.3.4. We have

h1,0
j (C) =

∑
s∈Sj

[jμs]1 − 1, and h0,1
j (C) =

∑
s∈Sj

(1 − [jμs]1) − 1.

The preceding two propositions imply:

Corollary 2.3.5.
h1

j (C, C) = |Sj | − 2

2.4 Cyclic covers with complex multiplication

Let us now search for examples of covers of P
1 with complex multiplication.

The family given by

P
2 ⊃ V (ym − x1(x1 − x0)(x1 − a1x0) . . . (x1 − am−3x0))

→ (a1, . . . , am−3) ∈ (A1 \ {0, 1})m−3 \ {ai = aj |i �= j}
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has obviously a fiber isomorphic to the Fermat curve Fm, which is given by
V (ym+xm+1) and has complex multiplication (see [22] and [32]). For another
family with a fiber with complex multiplication, we must work a little bit.

Lemma 2.4.1. If (V, h1) and (W,h2) are two Q-Hodge structures of weight
k, then

Hg(V ⊕W,h1⊕h2) ⊂ Hg(V, h1)×Hg(W,h2) ⊂ GL(V )×GL(W ) ⊂ GL(V ⊕W ),

and the projections

Hg(V ⊕ W ) → Hg(V ), and Hg(V ⊕ W ) → Hg(W )

are surjective.

Proof. (see [58], Lemma 8.1) ��

Lemma 2.4.2. Let V ⊂ W be a rational sub-Hodge structure of a polarized
Hodge structure W . Then we have a direct sum decomposition

W = V ⊕ V ′,

where V ′ is also a rational sub-Hodge structure of W .

Proof. (see [61], Lemme 7.26) ��

Lemma 2.4.3. A curve C, which is covered by the Fermat curve Fm given
by V (xm + ym + zm) ⊂ P

2 for some 1 ≤ m ∈ N, has complex multiplication.

Proof. A covering Fm → C yields an injective vector space homomorphism

H1(C, Q) → H1(Fm, Q),

which extends to an embedding of Hodge structures (see [61], 7.3.2 for more
details). This embedding induces a direct sum decomposition into two ratio-
nal sub-Hodge structures of H1(Fm, Q) (see Lemma 2.4.2). Hence by Lemma
2.4.1 and the fact that Fm has complex multiplication, one obtains the
statement. ��

Theorem 2.4.4. Let 0 < d1, d < m, and ξk denote a primitive k-th. root of
unity for all k ∈ N. Then the curve C, which is given by

ym = xd1

n−2∏
i=1

(x − ξi
n−2)

d,

is covered by the Fermat curve F(n−2)m given by V (y(n−2)m + x(n−2)m + 1)
and has complex multiplication.
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Proof. Let C be the curve, which is given by

ym = xd1

n−2∏
i=1

(x − ξi
n−2)

d,

and φ : A
2 → A

2 be the morphism, which is given by y → yxd1 and x →
xm. By a little abuse of notation, we denote by C ∩ A

2 the singular affine
curve given by the equation above, which is birationally equivalent to C. The
corresponding homomorphism φ∗ : C[x, y] → C[x, y] sends the ideal, which
defines C ∩ A

2, to the ideal generated by

ymxm·d1 − xm·d1

n−2∏
i=1

(xm − ξi
n−2)

d.

This is contained in the ideal generated by

ym −
n−2∏
i=1

(xm − ξi
n−2)

d. (2.3)

Let m0 := m
gcd(m,d) , and d0 := d

gcd(m,d) . It is obvious that

ym −
n−2∏
i=1

(xm − ξi
n−2)

d =
gcd(m,d)−1∏

j=0

(ym0 − ξj
gcd(m,d)

n−2∏
i=1

(xm − ξi
n−2)

d0).

Now we take the curve C1, which is given by

ym0 =
n−2∏
i=1

(xm − ξi
n−2)

d0 .

By the definitions of m0 and d0, and Remark 2.1.8, the curve C1 is given by

ym0 =
n−2∏
i=1

(xm − ξi
n−2),

too. Hence this curve irreducible, and φ induces a cover C1 → C resp., φ∗

induces a C-algebra homomorphism C[C ∩ A
2] → C[C1 ∩ A

2]. By x → x

and y → yn−2 m
m0 , we get a cover of the Fermat curve F(n−2)m given by

V (y(n−2)m+x(n−2)m+1) onto C1. Now we use the composition of these covers
F(n−2)m → C1 and C1 → C, and Lemma 2.4.3. This yields the statement. ��
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