Chapter 2
Cyclic covers of the projective line

Recall that we will study variations of Hodge structures of families of cyclic
coverings of the projective line. Moreover some families of such covers are
suitable for the construction of families of Calabi-Yau manifolds with dense
sets of complex multiplication fibers. In order to understand variations of
Hodge structures of such families of cyclic coverings we need to understand
the Hodge structure of a cyclic covering C' — P!,

A cyclic cover 7 : C — P! is given by

Y= (z—a)D (= an)?, (2.1)

where each dj is an integer satisfying 1 < dp < m — 1. The numbers dj are
not uniquely determined by the isomorphism class of a cover. However, these
numbers determine the isomorphism class of a cover and we will use them
for the computation of the variation of Hodge structures in the following
chapters.

In Section 2.1 we give a general description of cyclic covers of P! and
explain which tuples (di, ..., d,) yield equivalent covers. We will see that the
Galois group action of the cyclic covering yields an eigenspace decomposition
of m,(C) over the complement of the branch points. In Section 2.2 we use
the branch indices dj, for the description of the monodromy representations
of these eigenspaces. We have also an eigenspace decomposition of H!(C, C)
by the Galois group action, which can also be described by using the branch
indices dg, as we will do in Section 2.3. In the next chapter this eigenspace
decomposition will be extended to an eigenspace decomposition of the VHS
of our families of cyclic coverings of P!. In Section 2.4 we cover certain curves
C' given by (2.1) by a Fermat curve, which implies that each of these certain
curves C' has CM.
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2.1 Description of a cyclic cover of the projective line

Let us first repeat some known facts about Galois covers of P1.

Definition 2.1.1. Let T3, T, and S be topological spaces resp., com-
plex manifolds resp., algebraic varieties. The coverings f; : 737 — S and
f2 1 Ty — S, which are morphisms in the respective category, are called equiv-
alent, if there is an isomorphism ¢ : 77 — 75 in the respective category such

that f1 = faog.

Proposition 2.1.2. Let G be a finite group, and S := {ay,...,a,} C Al
C PL. There is a correspondence between the following objects:

1. The isomorphism classes of Galois extensions of C(P*) = C(z) with Galois
group G and branch points contained in S.

2. The equivalence classes of (non-ramified) Galois coverings f : R — P\ S
of topological spaces with deck transformation group isomorphic to G.

3. The normal subgroups in the fundamental group mi (Pt \ S) with quotient
isomorphic to G.

Proof. (see [62], Theorem 5.14) O

Remark 2.1.3. We will need to understand the correspondence of the pre-
ceding Proposition. The correspondence between (1) and (2) is given by the
facts that a Galois covering f : R — P\ S (of topological spaces) yields a
covering f : R — P! of compact Riemann surfaces, and any morphism of
compact Riemann surfaces corresponds to an embedding of their function
fields.

The correspondence between (2) and (3) is given by the path lifting prop-
erties of coverings of Hausdorff spaces. Take b € R. Let p = f(b), and
v € m(PL\ S,p), and f*(7(0)) = b. Then f*(y(1)) = g - b for some g €
G = Deck(R/(P*\ P)). This induces a homomorphism ®; : 71 (P*\ S, p) — G
and a kernel of this homomorphism, which is a normal subgroup G.

Remark 2.1.4. Let f : R — P! be a Galois covering with branch points
ai,...,a,. One can choose 71,...,v, € m1(P!\ P) such that each 7 is given
by a loop running counterclockwise “around” exactly one ar. Hence one has
that

Yo=Yl

and we conclude that

q)b(’)/n) = (I)b(’h)il e (I)b(’)/n—l)71~

From now on we consider only irreducible cyclic covers of P'. An irreducible
cyclic cover can be given by a prime ideal

(™" = (@ —a)® ... (z = an)") C Cla,y).
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First this ideal defines only an affine curve in A2, which has singularities, if
there are some d; > 1. But there exists a unique smooth projective curve
C birationally equivalent to this affine curve. By the natural projection onto
the x-axis, one obtains a cyclic cover of the smooth curve C' onto P'.

Remark 2.1.5. Let us consider the cover given by
y" = (z — al)d1 R an)d",

and fix a kg € {1,...n}. By an automorphism of P!, one can put ax, onto 0.
Let pg, = d% € Q, and D a small disc centered in 0, which does not contain
any other ay with k # kq. Take any point p € D and remove the segment
[0,p]. The topological space D \ [0,p] is simply connected. Hence one can
define root functions z — z#*o on this space, which are given by:

P - |Z|#k0 exp(zwltdko
m

)4
—|—27ria) (with £=0,1,...,m—1 and z = |z| exp(2m7it))

Since the cover is given by y™ = x%o resp., y = xM*0 over a small disc
around 0, we may lift a closed path around 0 to some path with starting
point (z, 2" ) and ending point (z, €2 ko zHko ).

Definition 2.1.6. Let €™+ and dj, be given by Remark 2.1.5. Then
e?™itko is the local monodromy datum of d,.

Lemma 2.1.7. Assume that dy,...,d, < m. Let the (non-singular projec-
tive) curve C' be given by

dy . dn

Yy =(r—a)™ ... (T —ap)
Then the Galois group G is Z/(m), and the covering C — Pl is given by the
kernel of the homomorphism ® given by v, — di, € Z/(m). The point oo is
a branch point and

O(yoo) = — > _di mod m,
k=1

if and only if m does not divide >, d.
k=1

Proof. The last statement of the lemma follows by the preceding rest of the
lemma and the Remark 2.1.4.

The Galois group and Z/(m) are obviously isomorphic. Let us remove the
ramification points of C'. Then we obtain a Riemann surface R. Now take a
small loop 7 around pg, which starts and ends in p € P'. Moreover take a
point b € R with f(b) = p. The definition of R and Remark 2.1.5 imply that
the lifting f*(vx) of the path 7 starting in b ends in the point di - b. Hence
the statement follows from Proposition 2.1.2 and Remark 2.1.3. O
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Let d € Z and 1 < m € N. The residue class of d in Z/(m) is denoted
by [d]m.
Remark 2.1.8. Let G = Z/(m), and [d},, € Z/(m)*. We consider the ker-
nels of the monodromy representations of the covers locally given by

dy dn

Yy =(r—a)™ ... (x—ap)

and

ym = (.’L‘ — al)[ddl]m R (J} _ an)[dd"]m_

By the preceding lemma, these kernels coincide. Hence we conclude that both
covers are equivalent.

2.2 The local system corresponding to a cyclic cover

Now let us assume that our cover 7 : C' — P! is given by

m dl

y" = (x —ay) dn

coos (= ag)t,
where m divides d; + ...+ d,, and oo is not a branch point. Moreover let
S :={ay,...,an}.

First let us consider the construction of a cyclic cover of an arbitrary algebraic
manifold:

Remark 2.2.1. Let X be a complex algebraic manifold, £ an invertible

sheaf on X and
D= "bDy

a normal crossing divisor on X, where L™ = O(D) and 0 < b, < m for each
k. Then by £ and D, one can construct a cyclic cover of degree m onto X
(see [20], §3).

Definition 2.2.2. Let by and Dj be given by the previous remark. The
number by, is called the branch index of Dy with respect to this cyclic cover.

Example 2.2.3. In the case of

n

X=P, D= Xn:dkak, L= Opl(%zdk)a

k=1 k=1

the cyclic cover of Remark 2.2.1 is given by

Y= (x—a)B (= ay)?.
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Next we describe the local system 7, (C)|p1\ g and its monodromy.

Lemma 2.2.4. Let V be a C-vector space of dimension n, and X be an
arcwise connected and locally simply connected topological space with © € X.
Then the monodromy representation provides a bijection between the set of
isomorphism classes of local systems of stalk V' on X and the set of repre-
sentations

m (X, 2) — GL,(C),
modulo the action of Autc(V) by conjugation.

Proof. (see [61], Remarque 15.12) O
Since GL;(C) = C* is commutative, we can conclude:

Corollary 2.2.5. The monodromy yields a bijection between the set of iso-
morphism classes of rank one local systems on P\ S and the set of repre-
sentations

71 (P\ S) — GL{(C).

The Galois group of our covering curve is isomorphic to Z/(m) and gen-
erated by a map v, which is given by (z,y) — (:E,e%’%y) with respect to
the above affine curve contained in A2, which is birationally equivalent to
the covering curve. Hence a character x of this group is determined by x ()
with x(¢) € {€2™%|j = 0,1,...,m — 1}. Thus the character group is iso-
morphic Z/(m) and we identify the character, which maps ¢ to e* ', with
jeZ/(m).!

Let D be an arbitrary disc contained in P!\ S. The preimage of D is
given by the disjoint union of discs D, with » = 0,1,...,m — 1 such that
Y(D,) = Dipyqqy,,. The vector space m,.Colpi\s(D) has the basis {v;|j =
0,1,...,m — 1}, where

275 (m—1) 2mj
vji= (e ™ ,...,em 1),

and the r-th. coordinate denotes the value of the corresponding section of
7 1(D) on D,. By the push-forward action, each v; is an eigenvector with
respect to the character given by j. Since D is arbitrary, one can glue the
local eigenspaces, and obtain an eigenspace decomposition

m—1

W*CC’|]P’1\S = @ Lj

Jj=0

I These two identifications with Z/(m) are obviously not canonical, but useful for the
description of 7T*(CC|1]>1\S by using our explicit equation for w : C' — P! as we will see a
little bit later.
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into rank 1 local systems, where L; is the eigenspace with respect to
the character given by j € Z/(m). Hence the monodromy representation
p:m(PL\ S) — GL,,(C) has the corresponding decomposition

m—1

P = (pOapla' "7pm—1) : 7-‘-1('X’) - H GLI((C)a
i=0

where
pj:m(Pt\ S) — GL(C)

is the monodromy representation of L; for all 7 =0,1,...,m — 1.
Let us recall that our cyclic cover C' is given by

di (x — an)d”,

y" = (z—a1)
where oo is not a branch point. Now let 2 € P\ S, and 2 € D, where D is a
sufficiently small open disc as above. Take a counterclockwise loop 7, around
ar, and cover the loop with a finite number of (sufficiently) small discs. The
continuation of 5§ on the unification of these discs leads to a multisection. By

Remark 2.1.5, the possible liftings 'y,(:) of the loop ~; are paths with starting

point ’y,(:) (0) =y, where y,. € D, and ending point ’y,(f)(l) = Yldy+r],- Lhis

27jd
implies that the monodromy representation of IL; maps ; to e 7. Hence

we conclude:

Theorem 2.2.6. Let the cyclic cover m : C — P, which is not branched
over oo, be given by

Y™ = (x —a)P .. (- a,). (2.2)

Then the local system m.Clp1\ g is given by the monodromy representation

2mijdy
Ve — {(mj)j:0,1...,m—1 - (6 m xj)j:o,l...,m—1}~

Remark 2.2.7. One can consider m, (Q(e2 ))|p\ g, t00. Since a generator
Y of Gal(C;P!) satisfies Y™ = 1, the minimal polynomial of its action on
74 (Q(e2™))|p g decomposes into linear factors contained in Q(e2™ ' )[z].
Hence the eigenspace decomposition is defined over Q(e%i#).

Each local system L of C-vector spaces on any topological space X has a
dual local system LV given by the sheafification of the presheaf

U — Home (L, C).
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Proposition 2.2.8. One has

LY =L;.

Furthermore the monodromy representation Ly of L}/ is given by pLy (vs) =

pr; (vs) for alls € S.
Proof. (see [19], Proposition 2) 0

Hence by the respective monodromy representations, we obtain for all
j=1....m—1

Corollary 2.2.9.

LY = Ly

Let r|m. We consider the C-algebra endomorphism ®,. of C[z,y] given by
2 — z and y — y". The (non-singular) curve C' is birationally equivalent to
the affine variety given by Spec(C[z,y]/I), where

I=@"—(z—a)b .. (x—a,)%™).

By ®,., we obtain the prime ideal

m

O NI = (y+ — (x—al)dl oz fan)d").

Let C). be the irreducible projective non-singular curve birationally equivalent
to the affine variety given by Spec(C[z,y]/®, *(I)).

Remark 2.2.10. By the equation above, we have a cover 7, : C, — P! of
degree 7. The homomorphism @, induces a cover ¢, : C' — C. of degree r
such that

T = T O ¢p.

Proposition 2.2.11.

m_q
(Wr)*(ccr\u»l\s = @ L,;C 7T*<Cc|ﬂ»1\s.
j=0
Proof. Let mg := 2. By Theorem 2.2.6, the monodromy representation of

the local system (7,)+Cc, |p1\{a,.....a,,} 1S given by

2mijdy 2mijrdy
Vi = (@) j=01..,m o1 — (€770 xj)j=01..,m—1= (e ™ Xj)j=01..,m-1}.

By the respective monodromy representations of the local systems L;, this
yields the statement. ]
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2.3 The cohomology of a cover

In this section we discuss some known facts about the eigenspace decom-
position of the Hodge structure of a curve C' with respect to a cyclic cover
7 : C — P'. The main reference for this section is given by §3 of the book
[20] of H. Esnault and E. Viehweg. Section 2 of the essay [18] of P. Deligne
and G. D. Mostow contains additional information about our case.

Let 7 : C — P! be given by

Y= (x—a)P .. (z—a,)
such that oo is not a branch point,

n+3
. d ...+d j
S={ai,...,an}, D=dia1+...+dnan and £ :O]pl(jgf E [ldk})
m — m

Moreover let the generator ¢ of the Galois group of = be given by (z,y) —
(z, e2™iwy) with respect to the explicit equation above, which yields .
We fix some new notation: Let ¢ € Q and [g] denote the largest integer,

which is smaller than ¢g. Then we define [¢]; := ¢ — [¢] . Moreover we define

S; = {a € Slljal #0}.

Proposition 2.3.1. The sheaves m,.(O) and 7. (w) have a decomposition into
etgenspaces with Tesioect to the Galois group representation, which are given
by the sheaves L) and

wj = wp1 (1ogD(j)) ® LD with DY) = Z a
a€S;

forj = 01’ 1,....,m — 1 such that v acts via pull-back by the character i
on LU resp., w;.

Proof. The eigenspace decomposition of 7, (O) follows by [20], Corollary 3.11.
Moreover [20], Lemma 3.16, d) yields the decomposition of 7.(w) into the

claimed sheaves. Since £0)" is an eigenspace with respect to the Galois
group representation, w; is an eigenspace of the same eigenvalue. 0O

Remark 2.3.2. One has obviously h°(wp) = 0. By [20], 2.3, ¢), one concludes
that

wp1 (logDYW)) = wp: (DY)

for j=1,...,m — 1. Hence for j =1,...,m — 1 we obtain



2.4 Cyclic covers with complex multiplication 67

: di+...+d fas gy
0 10 U1 n+3
hO(w;) = hO(Op1 (—2 + deg(DW) — jE e ;[E ~di]))
= -1+ + Z (=Jta + [Jpa]) = -1+ Z (1 — [i#alr)-
aESj llESj

But here we want to determine our eigenspaces on m, (w¢) with respect to
the push-forward action. Thus we put w(@) := Wim—j].,» and we obtain

BOC) = B0 = K wpnyy,) = —14+ Y (I [m—i)pal) = 14+ Y [jpal:.

a€S; a€S;

Moreover let H;)’l(C) denote the vector space of antiholomorphic 1-forms on
C with respect to the corresponding character of the Galois group action.
Since the push-forward action of the Galois group respects the alternating
form of the polarization of the Hodge structure on H'(C,Z), one concludes
that H»'_ (C) is the dual of H;*(C). Thus:

Proposition 2.3.3. We have the eigenspace decomposition

—1
H'(C,C) = @ H}(C,C) with H;°(C)® H)"'(C)=H}(C,C).
1

3

J

Moreover by h?’l(C) = hYY . (C) and the preceding calculations, one

[m—3]m
concludes:

Proposition 2.3.4. We have

h°(C) = 3 limsh =1, and h3H(C) =3 (1= [jmsh) = 1.

SESJ' SESJ'
The preceding two propositions imply:

Corollary 2.3.5.
BA(C,C) = |S)] — 2

2.4 Cyeclic covers with complex multiplication

Let us now search for examples of covers of P! with complex multiplication.
The family given by

P2 5 V(y™ — a1 (x1 — 20)(21 — a120) . .. (1 — Aym_370))
(@1 ms) € (AN {0, 11N {a; = ali # J}
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has obviously a fiber isomorphic to the Fermat curve F,,, which is given by
V(y™+2™+1) and has complex multiplication (see [22] and [32]). For another
family with a fiber with complex multiplication, we must work a little bit.

Lemma 2.4.1. If (V, hy) and (W, hy) are two Q-Hodge structures of weight
k, then

Hg(VaW, hi®hs) C Hg(V, hy)xHg(W, he) C GL(V)xGL(W) C GL(VaW),
and the projections

Hg(Vae W) — Hg(V), and Hg(Ve W) — Hg(W)
are surjective.

Proof. (see [58], Lemma 8.1) O

Lemma 2.4.2. Let V. .C W be a rational sub-Hodge structure of a polarized
Hodge structure W. Then we have a direct sum decomposition

W=vVaV,

where V' is also a rational sub-Hodge structure of W.
Proof. (see [61], Lemme 7.26) O

Lemma 2.4.3. A curve C, which is covered by the Fermat curve F,, given
by V(z™ +y™ + 2™) C P? for some 1 < m € N, has complex multiplication.

Proof. A covering F,,, — C yields an injective vector space homomorphism
H'(C,Q) — H'(Fm,Q),

which extends to an embedding of Hodge structures (see [61], 7.3.2 for more
details). This embedding induces a direct sum decomposition into two ratio-
nal sub-Hodge structures of H*(F,,, Q) (see Lemma 2.4.2). Hence by Lemma
2.4.1 and the fact that F,, has complex multiplication, one obtains the
statement. O

Theorem 2.4.4. Let 0 < di,d < m, and & denote a primitive k-th. root of
unity for all k € N. Then the curve C, which is given by

n—2

ym = ‘rdl H(m - 6:;—2)da

i=1

is covered by the Fermat curve F(, ), given by V(y(n=2m 4 gp(n=2m 4 q)
and has complex multiplication.
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Proof. Let C be the curve, which is given by

n—2

y" =2 [ (@ - &)

i=1

and ¢ : A> — A2 be the morphism, which is given by y — yaz® and z —

™ By a little abuse of notation, we denote by C' N A? the singular affine
curve given by the equation above, which is birationally equivalent to C'. The
corresponding homomorphism ¢* : Clz,y] — Clx,y] sends the ideal, which
defines C' N A2, to the ideal generated by

n—2
ymxm-dl o xm»dl H(xm - ;72)(1.

i=1

This is contained in the ideal generated by

n—2
A | (S (2.3)
i=1
Let mo = m, and do = m It is obvious that
n—2 ged(m,d)—1 —
ym - H (Im - f;—Z)d = H (y g('d(m d) H - fn 2 do)
i=1 7=0 i=1

Now we take the curve C7, which is given by

n—2

y"o = H(xm —&ha)®.

By the definitions of mg and dy, and Remark 2.1.8, the curve C is given by

n—2

ymo = H(zm - 5’2—2)’

too. Hence this curve irreducible, and ¢ induces a cover C; — C resp., ¢*
induces a C-algebra homomorphism C[C' N A%] — C[C; N A%. By 2 — =
and y — yn_Q%, we get a cover of the Fermat curve F(,_s),, given by
V(y=2m 4 2(=2m 11) onto C;. Now we use the composition of these covers
F(,—2)m — C1 and C; — C, and Lemma 2.4.3. This yields the statement. O
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