
Chapter 2
The Stochastic Schrödinger Equation

2.1 Introduction

In this chapter, we introduce the theory of measurements in continuous time (diffu-
sive case) starting from the particular but important case of complete observation.
This allows to present the Hilbert space formulation of the theory, where the state of
the observed quantum system is described by a vector in the Hilbert space H of the
system. Even if this is a special case of the more general theory presented in Chaps.
3, 4 and 5, it deserves a separate treatment for different reasons: it is instructive, it
uses only the Hilbert space formulation of quantum mechanics, it is of interest on its
own because the stochastic Scrödinger equation presented in this chapter has also
been used in different contexts [1–6], some mathematical results of the following
chapter will relay anyhow on the theory presented here, and Hilbert space SDEs are
the key starting point for efficient numerical simulations of the dynamics of open
quantum systems [1, 7].

First, we introduce the class of SDEs in Hilbert spaces which we are interested in
and we present their mathematical properties. After that, we discuss their physical
interpretation and start to develop the theory of continuous measurements.

Given the initial (pure) state ψ0 ∈ H of the measured quantum system, the aim
is to get two stochastic processes together with the probability distribution of their
trajectories:

� the output W (t) of the continuous measurement;
� the system state ̂ψ(t), whose evolution includes the continuous measurement and

which is continuously conditioned on the observed output;
� the physical probability distribution of the processes W (t) and ̂ψ(t).

The system state ̂ψ(t) is called a posteriori state, as it depends on the trajectory
observed for W (s) in the time interval 0 ≤ s ≤ t . The knowledge of the physical
probability distribution of W (t) and ̂ψ(t) allows to consider and to compute mean
values at a given time, just as correlations and multi-time moments.

There are two possible ways to develop the theory: to start from the nonlinear
evolution equation of the a posteriori states ̂ψ(t) or from the linear evolution equa-
tion of the so-called non-normalised a posteriori states ψ(t). We prefer to begin with
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12 2 The Stochastic Schrödinger Equation

this second approach which is the direct generalisation of the traditional description
of an instantaneous measurement.

When a quantum system undergoes a “von Neumann measurement” of an observ-
able represented by a self-adjoint operator X with discrete eigenvalues xk and
eigen-projections Ek , one usually fixes the space Ω = {x1, x2, . . .} of the possible
outcomes and, for every xk ∈ Ω , uses the corresponding projection Ek to introduce
the linear state transformation (von Neumann reduction postulate):

ψ0 �→ ψ1(xk) := Ekψ0.

Then, ψ1(xk) gives both the physical probability distribution for the outcome X
and the a posteriori state ̂ψ1: if ψ0 is the initial system state, then

� ‖ψ1(xk)‖2 is the probability of observing X = xk ;
�
̂ψ1(xk) = ψ1(xk)/ ‖ψ1(xk)‖ is the a posteriori state when X = xk .

In order to generalise consistently such a representation of a measurement to the
continuous time case, we use the powerful mathematical tools of stochastic calculus
and thus we prefer to begin with their presentation.

Section 2.2 is devoted to the theory of homogeneous linear SDEs. To read this
section, one needs the notions of filtration, stochastic process, martingale, stochastic
integral with respect to a Wiener process and strong solution of an SDE; moreover,
familiarity with the Itô formula is essential. All these topics of stochastic calculus
are recalled in Sects. A.2, A.3 and A.4. In Sect. 2.3, the subclass of linear SDEs of
our concern is presented and studied. Here the notions of exponential martingale,
change of probability measure and Girsanov transformation are needed; they are
recalled in Sect. A.5.

The SDE approach to the quantum theory of open systems and of continuous
measurements is given in the rest of the chapter, starting from Sect. 2.4. In this
chapter, only the Hilbert space formulation of quantum mechanics is needed, as it
is presented in Sect. B.2. The key notion is “positive operator-valued measure”, a
mathematical object which represents a general quantum mechanical observable.

As already said in Sect. 1.3, we work in a finite dimensional Hilbert space, which
is enough to give the main ideas of the stochastic approach to open systems and
continuous measurements and to develop the simplest applications. For results and
examples in infinite dimensional Hilbert spaces, see [7–27].

2.2 Linear Stochastic Differential Equations

Assumption 2.1. The Hilbert space of the quantum system is H = C
n .

The SDEs we consider are driven by white noise, the derivative of the Wiener
process. So, let us introduce such a stochastic process and fix the framework needed
for SDEs.
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Assumption 2.2. We fix a stochastic basis
(

Ω,F, (Ft ),Q
)

satisfying usual condi-
tions (Sect. A.2.2) and a continuous d-dimensional Wiener process W = {W (t),
t ≥ 0}, with increments independent of the past (Definition A.21). We assume

F = F∞ :=
∨

t≥0

Ft . (2.1)

The symbol EQ indicates the expectation with respect to the probability Q.

2.2.1 An Homogeneous Linear SDE in Hilbert Space

Let us start by considering a generic homogeneous linear SDE with “multiplicative
noise” for an H-valued process ψ = {ψ(t), t ≥ 0}:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dψ(t) = K (t)ψ(t) dt +
d
∑

j=1

R j (t)ψ(t) dW j (t) ,

ψ(0) = ψ0 , ψ0 ∈ H.

(2.2)

Assumption 2.3. The initial condition ψ0 is non random. The coefficients R j (t),
K (t) are (non-random) linear operators on H. The functions t �→ K (t) and t �→
R j (t) are measurable and such that ∀T ∈ (0,+∞)

sup
t∈[0,T ]

‖K (t)‖ < +∞, sup
t∈[0,T ]

∥

∥

∥

∥

∑

j

R j (t)
∗R j (t)

∥

∥

∥

∥

< +∞. (2.3)

Theorem 2.4. Under Assumption 2.3, the linear SDE (2.2) admits strong solutions
in [0,+∞). Pathwise uniqueness and uniqueness in law hold. Moreover, for any
p ≥ 2 and T > 0, there exists a constant C(p, T ) such that

EQ

[

sup
t∈[0,T ]

‖ψ(t)‖p

]

≤ C(p, T )
(

1+ ‖ψ0‖p
)

. (2.4)

Proof. Let us make the identifications b(x, t) = K (t)x , σ j (x, t) = R j (t)x . We have
the estimates

‖b(x, t)‖ = ‖K (t)x‖ ≤ ‖K (t)‖ ‖x‖ ,
∑

j

∥

∥σ j (x, t)
∥

∥

2=
∑

j

∥

∥R j (t)x
∥

∥

2= 〈

x
∣

∣

∑

j R j (t)∗R j (t)x
〉 ≤

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ ‖x‖2 .

Obviously, we also have
∑

j

∥

∥σ j (x, t)− σ j (y, t)
∥

∥

2 = ∑

j

∥

∥σ j (x − y, t)
∥

∥

2
and

‖b(x, t)− b(y, t)‖ = ‖b(x − y, t)‖. Then, Hypotheses A.25, A.32 and A.34 hold
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with L(T ) = 2 max
{

supt∈[0,T ] ‖K (t)‖2, supt∈[0,T ]

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥

}

, M(T ) =√
2L(T ), and Theorems A.36 and A.38 give the statements. �

Let us recall that the existence of strong solutions means that (2.2) admits a

solution for every choice of the probability space, of the filtration and of the Wiener
process (see Definition A.27). For the notions of uniqueness see Definitions A.28
and A.29.

In our construction, the stochastic basis and the Wiener process are fixed by
Assumption 2.2. Then, by ψ we denote the continuous, adapted process (Itô pro-
cess – see Sect. A.3.4) satisfying

ψ(t) = ψ0 +
∫ t

0
K (s)ψ(s) ds +

d
∑

j=1

∫ t

0
R j (s)ψ(s) dWj (s) ; (2.5)

such a process is unique up to indistinguishableness (Sect. A.4.1).

Remark 2.5. In the following, the natural filtration of the increments of the Wiener
process and its augmented version will be important: for 0 ≤ s ≤ t , we define

Ds
t := σ {W (r )−W (s), r ∈ [s, t]}, D

s
t := Ds

t ∨N; (2.6)

N is the class of the Q-null sets in F.
Because of the properties of a Wiener process, the filtration {Ds

t , t ∈ [s,+∞)}
satisfies the usual conditions: D

s
t is independent of Fs and D

s
t ⊂ D

0
t ⊂ Ft ⊂ F,

for 0 ≤ s ≤ t .
Because of the existence of strong solutions and of the fact that the initial condi-

tion is non-random, the continuous (Ft )-adapted process ψ is also
(

D
0
t

)

-adapted.

2.2.2 The Stochastic Evolution Operator

Equation (2.2) being a linear equation, we can introduce a stochastic process of
operators A0

t (ω) giving the application ψ0 �→ ψ(t, ω). Indeed, let us consider the
operator-valued processes As

t , with t ≥ s ≥ 0, defined by the SDE

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dAs
t = K (t)As

t dt +
d
∑

j=1

R j (t)As
t dW j (t) ,

As
s = 1 .

(2.7)

This is a linear SDE for an n×n-dimensional complex process; so, exactly as for
(2.2), in

(

Ω,F, (Ft ),Q
)

there is a pathwise unique, continuous, adapted solution.
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Proposition 2.6. Under Assumption 2.3, the linear SDE (2.7) admits strong solu-
tions in [s,+∞), ∀s ≥ 0. Pathwise uniqueness and uniqueness in law hold. More-
over, for any p ≥ 2 and T > s, there exists a constant C(p, T ) such that

EQ

[

sup
t∈[s,T ]

∥

∥As
t

∥

∥

2
p

]

≤ C(p, T )
(

1+ n p/2
)

. (2.8)

Proof. Let us make the identifications b(a, t) = K (t)a, σ j (a, t) = R j (t)a, a ∈ Mn .
Now a, b, σ j are vectors whose components are labelled by a couple of indices;
then, the relevant norm is the Hilbert–Schmidt one (B.3). We have the estimates

‖b(a, t)‖2 = ‖K (t)a‖2
2 = Tr

{

a∗K (t)∗K (t)a
} = Tr

{

K (t)∗K (t)aa∗
}

≤ ∥

∥K (t)∗K (t)
∥

∥

∥

∥aa∗
∥

∥

1 = ‖K (t)‖2 Tr
{

aa∗
} = ‖K (t)‖2 ‖a‖2

2,

∑

j

∥

∥σ j (a, t)
∥

∥

2 =
∑

j

∥

∥R j (t)a
∥

∥

2
2 =

∑

j

Tr
{

a∗R j (t)
∗R j (t)a

}

= Tr
{

∑

j R j (t)∗R j (t)aa∗
}

≤
∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ ‖aa∗‖1

=
∥

∥

∥

∥

∥

∥

∑

j

R j (t)
∗R j (t)

∥

∥

∥

∥

∥

∥

‖a‖2
2.

Then, the proof goes on as in Theorem 2.4, exactly with the same constants. Note
that ‖1‖2

2 = Tr{1} = n. �


Because of the properties stated in the following proposition, As
t is called

stochastic evolution operator. In mathematical terms, A0
t is the fundamental matrix

of the linear equation (2.2), while in the physical literature the term propagator is
more used.

Proposition 2.7. For 0 ≤ s ≤ t , As
t is Q-independent of Fs and D

s
t -measurable.

Moreover, for every given 0 ≤ r ≤ s, almost surely (a.s.) we have

As
t Ar

s = Ar
t , ∀t ≥ s, (2.9)

ψ(t) = A0
t ψ0 , ∀t ≥ 0 . (2.10)

More explicitly, the continuous processes t �→ As
t Ar

s and t �→ Ar
t are indistin-

guishable; the same holds for the processes t �→ ψ(t) and t �→ A0
t ψ0.

Proof. Because of the existence of strong solutions and pathwise uniqueness, the
random variable As

t is D
s
t -measurable; then, the statement about the independence

follows from the independent increment property of the Wiener process.
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Let us fix s ≥ r ≥ 0 and set

Bt :=
{

Ar
t , if r ≤ t < s,

As
t Ar

s , if t ≥ s.

Then, by (2.7) we have for t ≥ s

Bt = As
t Ar

s = Ar
s +

∫ t

s
K (u)As

u Ar
s du +

∑

j

∫ t

s
R j (u)As

u Ar
s dW j (u)

= 1+
∫ s

r
K (u)Ar

u du +
∑

j

∫ s

r
R j (u)Ar

u dW j (u)+
∫ t

s
K (u)Bu du

+
∑

j

∫ t

s
R j (u)Bu dW j (u) = 1+

∫ t

r
K (u)Bu du +

∑

j

∫ t

r
R j (u)Bu dW j (u);

by the definition of B, the same equation holds also for t < s. Therefore, Bt and Ar
t

satisfy the same equation and, by uniqueness, they are indistinguishable. This proves
(2.9). Similarly ψ(t) and A0

t ψ0 satisfy the same equation and, so, (2.10) holds. �

Also the adjoint As

t
∗ of the stochastic evolution operator is a continuous, adapted

process and for t ≥ s it satisfies

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dAs
t
∗ = As

t
∗K (t)∗ dt +

d
∑

j=1

As
t
∗R j (t)

∗ dW j (t) ,

As
s
∗ = 1 .

(2.11)

2.2.2.1 The Stochastic Liouville Formula

It is important to prove other properties of the stochastic evolution operator and in
particular that the matrix As

t is a.s. invertible.

Proposition 2.8. For every given initial time s ≥ 0, the Wronskian determinant
Ds

t := det As
t is given by the stochastic Liouville formula

Ds
t = exp

(∫ t

s
Tr

{

K (r )− 1

2

∑

j

R j (r )2

}

dr+
∑

j

∫ t

s
Tr
{

R j (r )
}

dW j (r )

)

. (2.12)

This equality holds a.s. for every t ≥ s and, so, Q(Ds
t > 0, ∀t ≥ s) = 1. Then,

the operator As
t is a.s. invertible and the process (As

t )−1 satisfies the SDE

d(As
t )−1 = (As

t )−1
[

∑

j R j (t)2 − K (t)
]

dt −
d
∑

j=1

(As
t )−1 R j (t)dW j (t) . (2.13)
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Finally, for every 0 ≤ s ≤ t , the following representation holds a.s.:

As
t = A0

t (A0
s )−1. (2.14)

Proof. Let s ≥ 0 be a given initial time. By differentiating the explicit expression
of the determinant, which is a polynomial in the matrix elements of As

t , and by
using the Itô formula for products, in the proof of Theorem 2.2 in [28] the following
formula for the stochastic differential of Ds

t is obtained:

dDs
t =

[

Tr

{

K (t)− 1

2

∑

j

R j (t)
2

}

+ 1

2

∑

j

(

Tr
{

R j (t)
} )2

]

Ds
t dt

+
∑

j

Tr
{

R j (t)
}

Ds
t dW j (t) . (2.15)

But this is a one-dimensional linear SDE with initial condition Ds
s = 1. Again

the solution is pathwise unique and it is an exercise in stochastic calculus to verify
that (2.12) solves this linear SDE. Thus, Q(Ds

t > 0, ∀t ≥ s) = 1 and As
t is a.s.

invertible for every t ≥ s.
To prove (2.13), let us consider the equation

dZs
t = Zs

t

[

∑

j R j (t)2 − K (t)
]

dt −
d
∑

j=1

Zs
t R j (t)dW j (t) , Zs

s = 1 . (2.16)

Once more the solution is unique. By Itô formula for products one gets
d
(

Zs
t As

t

) = 0. Together with Zs
s As

s = 1 and continuity in t , this gives Zs
t As

t = 1

for every t ≥ s. By multiplying on the right by
(

As
t

)−1
, which exists, we get

Zs
t =

(

As
t

)−1
for every t ≥ s and (2.13) is proved.

By using (2.9), we have A0
t (A0

s )−1 = As
t A0

s (A0
s )−1 = As

t and (2.14) is proved.
�


2.2.3 The Square Norm of the Solution

Let us now study the behaviour of the norm of ψ(t), which will be a key object in
the whole construction.

Proposition 2.9. We have

‖ψ(t)‖2 = ‖ψ0‖2 +
∫ t

0

〈

ψ(s)
∣

∣

(

K (s)+ K (s)∗ +∑

j R j (s)∗R j (s)
)

ψ(s)
〉

ds

+
d
∑

j=1

∫ t

0
〈ψ(s)|(R j (s)+ R j (s)∗)ψ(s)〉dW j (s) . (2.17)
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Moreover, ∀T ≥ 0,

EQ

[ ∫ T

0

∑

j

∣

∣〈ψ(t)|(R j (t)+ R j (t)
∗)ψ(t)〉∣∣2 dt

]

< +∞, (2.18)

and the stochastic integral in (2.17) is a square-integrable continuous martingale.

Proof. By Itô formula, we get

d ‖ψ(t)‖2 = 〈ψ(t)|dψ(t)〉 + 〈dψ(t)|ψ(t)〉 + 〈dψ(t)|dψ(t)〉
= 〈ψ(t)|K (t)ψ(t)〉dt +

∑

j

〈ψ(t)|R j (t)ψ(t)〉dW j (t)+ 〈K (t)ψ(t)|ψ(t)〉dt

+
∑

j

〈R j (t)ψ(t)|ψ(t)〉dW j (t)+
∑

j

∥

∥R j (t)ψ(t)
∥

∥

2
dt

= 〈

ψ(t)
∣

∣

(

K (t)+ K (t)∗ +∑

j R j (t)∗R j (t)
)

ψ(t)
〉

dt

+
∑

j

〈ψ(t)|(R j (t)+ R j (t)
∗)ψ(t)〉dW j (t) ,

which gives (2.17).
For every x ∈ H, let Px be the one-dimensional orthogonal projection on the

Hilbert ray containing x and recall that R j (t)∗Px R j (t) ≥ 0 and R j (t)∗

(1− Px )R j (t) ≥ 0. Then, we have

∑

j

〈x |(R j (t)+R j (t)
∗)x〉2 ≤ 4

∑

j

∣

∣〈x |R j (t)x〉
∣

∣

2 = 4 ‖x‖2
∑

j

〈x |R j (t)
∗Px R j (t)x〉

≤ 4 ‖x‖2
∑

j

〈x |R j (t)
∗R j (t)x〉 ≤ 4 ‖x‖4

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ ;

so, the following estimate holds: ∀x ∈ H,

∑

j

〈x |(R j (t)+ R j (t)
∗)x〉2 ≤ 4 ‖x‖4

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ . (2.19)

By using this inequality and the L p estimate (2.4) given in Theorem 2.4, we get

EQ

[ ∫ T

0

∑

j

〈ψ(t)|(R j (t)+ R j (t)
∗)ψ(t)〉2dt

]

≤ 4 sup
t∈[0,T ]

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ T EQ

[

sup
0≤t≤T

‖ψ(t)‖4

]

≤ 4 sup
t∈[0,T ]

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ T C(4, T )
(

1+ ‖ψ0‖4
)

< +∞,
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and (2.18) is proved. Then, the integrand process 〈ψ(t)|(R j (t) + R j (t)∗)ψ(t)〉
belongs to the space M2 for every j (Sect. A.3.1), and the stochastic integral in
(2.17) is a square-integrable continuous martingale (Sect. A.3.3). �


2.3 The Linear Stochastic Schrödinger Equation

For the physical interpretation anticipated in Section 2.1 and discussed in Sect. 2.4,
we are not interested in (2.2) in general, but only when ‖ψ(t)‖2 is a martingale of
mean one and can be interpreted as a probability density with respect to Q.

2.3.1 A Key Restriction

In order to reduce ‖ψ(t)‖2 to a martingale, we need the vanishing of the integrand
in the time integral in (2.17) for every initial condition, i.e.

K (t)+ K (t)∗ +
∑

j

R j (t)
∗R j (t) = 0,

which is equivalent to the following assumption.

Assumption 2.10. The operator K (t) has the structure

K (t) = −iH (t)− 1

2

d
∑

j=1

R j (t)
∗R j (t) , (2.20)

where H (t) is a self-adjoint operator on H, called effective Hamiltonian of the
system.

By Assumptions 2.3 and 2.10, the function t �→ H (t) is measurable and

∀T ∈ (0,+∞), sup
t∈[0,T ]

‖H (t)‖ < +∞ . (2.21)

Proposition 2.8 gives ‖ψ(t)‖ > 0 and we can define the continuous processes

̂ψ(t) := ‖ψ(t)‖−1 ψ(t) , (2.22)

m j (t) := 〈

̂ψ(t)
∣

∣

(

R j (t)+ R j (t)
∗)
̂ψ(t)

〉 = 2 Re
〈

̂ψ(t)
∣

∣R j (t)̂ψ(t)
〉

. (2.23)

Theorem 2.11. Under Assumptions 2.2 and 2.10, the square norm ‖ψ(t)‖2 of the
solution of the SDE (2.2) is a positive, continuous martingale and
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‖ψ(t)‖2 = ‖ψ0‖2 exp

{

∑

j

[∫ t

0
m j (s)dW j (s)− 1

2

∫ t

0
m j (s)2ds

]}

. (2.24)

Moreover, ∀p ≥ 1,

sup
0≤t≤T

EQ

[‖ψ(t)‖2p
] ≤ EQ

[

sup
0≤t≤T

‖ψ(t)‖2p

]

< +∞. (2.25)

Proof. Being an Itô process, ψ is continuous and this holds for its square norm.
By Assumption 2.10 and the definitions (2.22), (2.23), equation (2.17) reduces to

‖ψ(t)‖2 = ‖ψ0‖2 +
∑

j

∫ t

0
m j (s) ‖ψ(s)‖2 dW j (s). (2.26)

By Proposition 2.9, the positive continuous process ‖ψ(t)‖2 is a square-integrable
martingale. By taking m as given, (2.26) is a Doléans equation whose solution is
unique and given by (2.24) (cf. Proposition A.41 and (Eqs. (A.23), (A.24), (A.25),
(A.26)).

By inequality (2.19), we have

∑

j

m j (t)
2 ≤ 4

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ ,

∫ T

0

∑

j

m j (t)
2dt ≤ 4 sup

t∈[0,T ]

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ T . (2.27)

Then, the last statement follows from Proposition A.42. �


In the following, we shall call linear stochastic Schrödinger equation the original
SDE (2.2) for an H-valued process ψ under all Assumptions 2.1, 2.2, 2.3 and 2.10,
i.e.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dψ(t) =
⎛

⎝−iH (t)− 1

2

d
∑

j=1

R j (t)
∗R j (t)

⎞

⎠ψ(t) dt +
d
∑

j=1

R j (t)ψ(t) dW j (t) ,

ψ(0) = ψ0 , ψ0 ∈ H.

(2.28)

Of course, the solution is the continuous, adapted stochastic process ψ(t) =
A0

t ψ0, where the stochastic evolution operator As
t and its adjoint As

t
∗ still satisfy the

SDEs (2.7) and (2.11) with K (t) = −iH (t)− 1

2

d
∑

j=1

R j (t)
∗R j (t) and H (t) = H (t)∗.
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2.3.2 A Change of Probability

Assumption 2.12. The initial condition is normalised: ‖ψ0‖ = 1.

‖ψ(t)‖2 being a positive martingale with EQ

[‖ψ(t)‖2
] = 1 by the discussion in

Sect. A.5.3 and Remark A.46, we have the following.

Remark 2.13. For any T > 0 the equation

̂P
T
ψ0

(F) :=
∫

F
‖ψ(T, ω)‖2

Q(dω) ≡ EQ

[

1F‖ψ(T )‖2
]

, F ∈ FT , (2.29)

defines a new probability laŵP
T
ψ0

on (Ω,FT ) equivalent to QT , the restriction of Q

to FT . Let us denote by ̂ET
ψ0

the expectation with respect tôPT
ψ0

.

Moreover,
{

̂P
T
ψ0
, T > 0

}

is a consistent family of probabilities, in the sense that

0 < S < T, F ∈ FS ⇒ ̂P
T
ψ0

(F) =̂P
S
ψ0

(F) . (2.30)

Then, Girsanov theorem (Theorem A.45 and Proposition A.47) gives the fol-
lowing fundamental result. The class of integrand processes L2 is defined in Sect.
A.3.1.

Theorem 2.14. Under the laŵP
T
ψ0

defined by (2.29), the continuous processes

̂W j (t) := W j (t)−
∫ t

0
m j (s)ds, j = 1, . . . , d, t ∈ [0, T ], (2.31)

are independent, standard Wiener processes with respect to the filtration (Ft ).
Given d stochastically integrable processes G j (t), i.e. G j ∈ L2, the Itô integrals

∑

j

∫ t
0 G j (s)d̂W j (s) and

∑

j

∫ t
0 G j (s)dW j (s) are defined for every t ∈ [0, T ], each

one under its corresponding probability law, and we have Q-a.s. and̂PT
ψ0

-a.s.

d
∑

j=1

∫ t

0
G j (s)d̂W j (s) =

d
∑

j=1

∫ t

0
G j (s)dW j (s)−

d
∑

j=1

∫ t

0
G j (s)m j (s)ds, ∀t ∈ [0, T ] .

(2.32)

Proposition 2.15. The processes ̂ψ , m, ̂W are (D
0
t )-adapted.

Proof. The statement follows immediately from the definitions (2.22), (2.23), (2.31)
and Proposition 2.7. �


2.4 The Physical Interpretation

Let us begin with a list of the mathematical objects involved by the linear stochastic
Schrödinger equation (2.28) and their heuristic interpretation in the theory of con-
tinuous measurements, in analogy with the traditional representation of an instanta-
neous discrete measurement (Sect. 2.1).
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� ψ0 is the initial state of the quantum system;
� (Ω,F) is the measurable space of the possible outcomes of the experiment;
� Ft is the collection of events verifiable already at time t ;
� the d stochastic processes W j (t) are the output of the continuous measurement

and their derivatives Ẇ j (t) can be interpreted as instantaneous imprecise mea-
surements of the quantum observables R j (t)+ R j (t)∗ performed at time t ;

� D
0
t is the collection of events verifiable already at time t which effectively regard

the continuous measurement;
� the stochastic linear state transformation ψ0 �→ ψ(t) = A0

t ψ0 gives both the
probability of the events, which could occur up to time t , and the state of the
quantum system conditioned on the observation in the time interval [0, t]:

– ̂P
T
ψ0

is the physical probability law of the events which could occur in [0, T ];
– ̂ψ(t, ω) is the state of the system at time t , conditioned on having observed

the trajectory s �→ W (s, ω) up to time t .

When the canonical realisation of the Wiener process is used, i.e. when the only
output of the experiment is the diffusive process W , the outcome ω itself can be
identified with the trajectory of the output; indeed in this case we have W (s, ω) =
ω(s) (see Remark A.23). Then ψ(t, ω), ‖ψ(t, ω)‖ and ̂ψ(t, ω) depend only on ω(s)
for 0 ≤ s ≤ t . In particular, ‖ψ(t, ω)‖2 is the density of probability (with respect to
the Wiener measure) of observing W (s) = ω(s) in the time interval 0 ≤ s ≤ t .

When
(

Ω,F, (Ft ),Q
)

is bigger than the canonical realisation of the Wiener pro-
cess, still ψ(t, ω), ‖ψ(t, ω)‖ and ̂ψ(t, ω) depend only on W (s) for 0 ≤ s ≤ t

because the stochastic processes ψ(t), ‖ψ(t)‖ and ̂ψ(t) are adapted to (D
0
t ) and

thus ψ(t, ω) = ψ(t, ω′) if W (s, ω) = W (s, ω′) for 0 ≤ s ≤ t (maybe except for a
set of null probability).

Therefore, even if from a mathematical point of view it can be convenient to work
with a Wiener process W with increments independent of the past in an arbitrary

filtration (Ft ), from a physical point of view the relevant filtration is always (D
0
t ): it

contains all the events regarding the output W of the measurement and, moreover,
only these events really condition the system state ̂ψ .

What we have to do now is to show that this interpretation is consistent with the
general formulation of quantum mechanics. However, let us first add two further
remarks on the physical interpretation.

The use itself of linear SDEs to assign the evolution of ψ(t) implies a Markovian
hypothesis about the observed quantum system and the measurement process: for
every 0 ≤ s ≤ t , in spite of all the information available at time s (the initial state
ψ0 and all the events in Fs), the conditioned state ̂ψ(s) at time s is sufficient to
evaluate the conditional state ̂ψ(t) at time t (together with the output W in [s, t], of
course).

There are two typical but physically different interpretations of the linear stoch-
astic Schrödinger equation (2.28). Sometimes it is obtained by starting from a free
closed evolution of the quantum system and introducing the continuous measure-
ment as a perturbation, by adding a stochastic term in the evolution equation for
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every continuously monitored quantum observable R j (t)+ R j (t)∗. In this case, one
can think of possibly switching off the measurement (R j (t) ≡ 0), and the linear
stochastic Schrödinger equation (2.28) reduces to an ordinary Schrödinger equation
dψ(t) = −iH (t)ψ(t) dt . Other times, the linear stochastic Schrödinger equation
(2.28) is obtained by starting from an open evolution of the quantum system H

and introducing continuous measurements which acquire information on the system
without introducing extra perturbations (e.g. the continuous monitoring of an atom
by the detection of its fluorescence light). In this case, the “mean” evolution of the
quantum system is not modified by the continuous measurement, but it is “unrav-
elled” in many different trajectories according to the observed output W .

2.4.1 The POM of the Output and the Physical Probabilities

First, we introduce properly the positive operator-valued measure (see Defini-
tion B.1) associated with the continuous measurement in the time interval [0, T ].
Taking the stochastic evolution operator A0

T associated with the linear stochastic
Schrödinger equation (2.28), we can define

̂ET (F) :=
∫

F
A0

T (ω)∗A0
T (ω)Q(dω) ≡ EQ

[

1F A0∗
T A0

T

]

, F ∈ FT . (2.33)

Then, ̂ET is a positive operator-valued measure (POM) on the value space
(Ω,FT ). Indeed, it is positive and σ -additive by construction and, moreover,

〈ψ0|̂ET (Ω)ψ0〉 = EQ

[〈ψ0|A0∗
T A0

Tψ0〉
] = EQ

[‖ψ(T )‖2
] = ‖ψ0‖2, ∀ψ0 ∈ H,

which implies ̂ET (Ω) = 1 by the normalisation of ψ0.
The POM ̂ET assigns to each event in FT , according to the axioms of Sect.

B.2.1, just the probabilitŷPT
ψ0

that we called physical probability. Indeed, by (2.10)
and (2.33) we get

〈ψ0|̂ET (F)ψ0〉 = EQ

[〈ψ0|A0∗
T A0

Tψ0〉1F
] =

∫

F
‖ψ(T, ω)‖2

Q(dω) (2.34)

and, by (2.29),

〈ψ0|̂ET (F)ψ0〉 =̂P
T
ψ0

(F), ∀F ∈ FT , (2.35)

which is the standard formula for probabilities in the Hilbert space formulation of
quantum mechanics.

Moreover,
{

̂ET , T > 0
}

is a consistent family of POMs, in the sense that

0 < S < T, F ∈ FS ⇒ ̂ET (F) = ̂ES(F) . (2.36)
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Indeed, for every 0 < S < T , F ∈ FS , AS
T being independent of FS , one gets

̂ET (F) = EQ

[

1F A0∗
T A0

T

] = EQ

[

1F A0∗
S AS∗

T AS
T A0

S

]

= EQ

[

1F A0∗
S EQ

[

AS∗
T AS

T |FS
]

A0
S

]

= EQ

[

1F A0∗
S EQ

[

AS∗
T AS

T

]

A0
S

]

= EQ

[

1F A0∗
S A0

S

] = ̂ES(F).

Another way to look at (2.33) is to say that A0∗
t A0

t is the density (or Radon–
Nikodym derivative) of the POM ̂Et with respect to the probability measure

Qt := Q
∣

∣

Ft
. (2.37)

By recalling that A0∗
t A0

t is Ft -measurable, we can write

̂Et (dω)

Qt (dω)
= A0

t (ω)∗A0
t (ω) . (2.38)

We already discussed the fact that the filtration (Ft ) could be unnecessarily large:
the natural value space, when the output of the continuous measurement is the

process W in the time interval [0, t], is (Ω,D
0
t ). Moreover, we could perform the

measurement only in the time interval [s, t]. As in the evolution equations only
the increments of W appear (through the dW term), the natural candidate to be
the output in the time interval [s, t] is the process W (r ) − W (s), r ∈ [s, t], which
generates the set of events D

s
t . Thus, analogous to (2.33), we define a POM ̂Es

t on
the value space (Ω,D

s
t ) by

̂Es
t (F) :=

∫

F
As

t (ω)∗As
t (ω) Q(dω) ≡ EQ

[

1F As∗
t As

t

]

, F ∈ D
s
t . (2.39)

By this definition, we have that ̂E0
t is the restriction of ̂Et to D

0
t . Also the new

POMs (2.39) are consistent with respect to t . In order to use ̂Es
t for an arbitrary

s > 0 one needs to know the system state at time s.
By noticing that the positive operator-valued random variable As∗

t As
t is D

s
t -

measurable, we get that the analog of (2.38) is

̂Es
t (dω)

Q(dω)
∣

∣

D
s
t

= As∗
t (ω)As

t (ω) . (2.40)

Summing up, the POM representing the output of the continuous measurement
in the time interval [s, t] is ̂Es

t . Even if s = 0, the relevant POM is ̂E0
t , not ̂Et . We

can also say that the physical probability, the probability of the events determined
by the output in the time interval [0, T ], iŝPT

ψ0

∣

∣

D
0
t
.
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The probability ̂P
T
ψ0

of events in the (augmented) natural filtration of W is
obtained from a POM, as prescribed by quantum mechanics, whose value space

is
(

Ω,D
0
T

)

. We interpret W as the output of a continuous measurement performed

on the quantum system H in the time interval [0, T ] and ̂PT
ψ0

as the corresponding
physical probability. Moreover, from Girsanov formula (2.31) we have

W (t) = ̂W (t)+
∫ t

0
m(s)ds, t ∈ [0, T ],

which says that the output process W (t) decomposes to the sum of a Wiener process
̂W (t) and a process

∫ t
0 m(s)ds with trajectories of bounded variation. Let us remark

that, even if it could be suggestive to interpret the two addenda as noise and signal,
the two processes are typically not independent.

Remark 2.16. Here it is worthwhile to be more precise on the notion of output of
the measurement. As already said, the choice of the two-time σ -algebras Ds

t or D
s
t ,

which are determined by the increments of W , reflects the fact that we consider as
events which can be observed in the time interval [s, t] only the events related to the
increments of W with extreme times inside [s, t], not the ones determined by W (r )
with r ∈ [s, t]. So, in this time interval, we observe the increments W (r ) − W (u),
s ≤ u < r ≤ t , or functionals of these increments. “Morally” the output is the
singular process Ẇ (r ), r ∈ [s, t]. In the whole book we always understand this
interpretation, even when we write that the output is W .

2.4.2 The A Posteriori States

Now we would like to justify the interpretation of ̂ψ(t) as the conditional state of the
system at time t , i.e. as a posteriori state at time t (cf. Sect. B.4.3.2). We shall do this
properly in Sect. 4.1.1, where, in a more general setup, we shall introduce explicitly
the instruments. In the present paragraph, we only show that this interpretation is
consistent with the present construction.

Let us consider an event F regarding the output in the time interval [s, t], that is
F ∈ D

s
t . If we evaluate its probability at the beginning of the experiment, when we

only know that the initial state of the system is ψ0, then we get̂PT
ψ0

(F). On the other
hand, if we reconsider the same event F at time s, when we have gathered all the
information coming from the measurement in the time interval [0, s], then its prob-
ability can be updated and it is given by ̂PT

ψ0
(F |Fs) = ̂E

T
ψ0

[1F |Fs] (Sect. A.1.2.2).
This is an Fs-measurable random variable, as it depends on what is observed up to
time s. The following proposition states that it can be computed using the POM ̂Es

t
defined by (2.39) and just ̂ψ(s) as the conditional state of the system at time s.

Proposition 2.17. For all F ∈ D
s
t , 0 ≤ s < t ≤ T , we have

̂P
T
ψ0

(F |Fs) = 〈

̂ψ(s)
∣

∣̂Es
t (F)̂ψ(s)

〉 =̂P
T
ψ0

(F |D0
s ). (2.41)
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Proof. For all Fs-measurable bounded random variables Y , we get

̂E
T
ψ0

[1F Y ] = EQ

[‖ψ(t)‖2 1F Y
] = EQ

[〈ψ0|A0∗
s As∗

t As
t A0

sψ0〉1F Y
]

= EQ

[〈ψ0|A0∗
s EQ

[

1F As∗
t As

t |Fs
]

A0
sψ0〉Y

]

= EQ

[〈ψ(s)|EQ

[

1F As∗
t As

t

]

ψ(s)〉Y ]

= ̂E
T
ψ0

[〈̂ψ(s)|EQ

[

1F As∗
t As

t

]

̂ψ(s)〉Y ] ;

we have used the equality ψ(t) = As
t A0

sψ0 and the independence of 1F As∗
t As

t from
Fs , which follows from Proposition 2.7. This computation proves that ̂ET

ψ0
[1F |Fs]

= 〈

̂ψ(s)
∣

∣EQ

[

1F As∗
t As

t

]

̂ψ(s)
〉

. By using the definition of ̂Es
t we havêET

ψ0
[1F |Fs] =

〈

̂ψ(s)
∣

∣̂Es
t (F)̂ψ(s)

〉

. By the fact that D
0
s ⊂ Fs and that

〈

̂ψ(s)
∣

∣̂Es
t (F)̂ψ(s)

〉

is D
0
s -

measurable, we have

̂E
T
ψ0

[

1F

∣

∣D
0
s

]

= ̂E
T
ψ0

[

̂E
T
ψ0

[1F |Fs]
∣

∣

∣D
0
s

]

= ̂E
T
ψ0

[

〈

̂ψ(s)
∣

∣̂Es
t (F)̂ψ(s)

〉

∣

∣

∣D
0
s

]

= 〈

̂ψ(s)
∣

∣̂Es
t (F)̂ψ(s)

〉

. �

Remark 2.18. As suggested in the presentation before the proposition, by comparing
(2.41) with (2.35), we see that we can interpret the state ̂ψ(s) as the conditional state
of the system at time s; we call ̂ψ(t) the a posteriori state at time t . Considering also
(2.34), we call ψ(t) the non-normalised a posteriori state at time t .

With this interpretation in mind, we consider again the output and, thanks to the
representation

W j (t) = ̂W j (t)+
∫ t

0

〈

̂ψ(s)
∣

∣

(

R j (s)+ R j (s)∗
)

̂ψ(s)
〉

ds, t ∈ [0, T ], (2.42)

we say that Ẇ j (t) is an imprecise measurement of the quantum observable R j (t)+
R j (t)∗. We shall consider again this interpretation in Sect. 4.3.

Remark 2.19 (A phase change). Let us consider now the normalised random vector
̂φ(t, ω) = eiα(t,ω)

̂ψ(t, ω), where {α(t), t ≥ 0} is an arbitrary (D
0
t )-adapted real

process. By substituting ̂φ(t) to ̂ψ(t) in (2.41), this formula continues to hold true.
This means that ̂φ(t) has the same right of ̂ψ(t) to the name of “a posteriori state”.
But this is nothing more than the stochastic version of the usual statement in quan-
tum mechanics that a phase change of the state vector does not alter any physical
quantity.

2.4.3 Infinite Time Horizon

Given the initial state ψ0, we have a consistent set of probabilities ̂PT
ψ0

, T > 0. As

stated by Theorem 2.14, each ̂PT
ψ0

modifies the properties of the stochastic process
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W , in the corresponding time interval [0, T ]. A natural question is whether it is
possible to have a unique probability for T → +∞. This would be useful, for
instance, to study the long-time behaviour of W under the physical probability. By
the discussion in Sect. A.5.5, we know that this is possible when the consistent
measures are defined on standard Borel spaces. Therefore, if we consider the new
probabilities restricted to D0

t , the natural (not augmented) filtration of W , we have a
consistent set of probabilities on standard Borel spaces and we get that there exists
a unique probabilitŷP∞ψ0

on D0
∞ :=∨

t>0 D0
t such that for every T > 0

̂P
∞
ψ0

(F) =̂P
T
ψ0

(F), ∀F ∈ D0
T . (2.43)

Nevertheless, even if we choose F = D0
∞, each augmented σ -algebra D

0
T is

strictly greater than D0
T and the limit probability ̂P∞ψ0

typically does not agree with

̂P
T
ψ0

on the whole D
0
T ⊂ D0

∞. In order to work inside the filtration (D0
t ), it is enough

to consider (D0
t )-adapted versions of the processes A0

t , ψ(t), ̂ψ(t), m(t), ̂W (t). What
we lose is that we are no more sure to have continuity in time for every ω.

Just to have an example of the differences, let us consider the POMs. By restrict-
ing ̂Es

t to Ds
t , we get from (2.40)

̂Es
t (dω)

∣

∣

Ds
t
= EQ

[

As∗
t As

t |Ds
t

]

(ω)Q(dω)
∣

∣

Ds
t
, (2.44)

but EQ

[

As∗
t As

t |Ds
t

]

(ω) = As∗
t (ω)As

t (ω), Q-a.s.

2.4.4 The Conservative Case

A very particular case is when the operators R j (t) are anti-selfadjoint [23]:

R j (t) = −iVj (t) , Vj (t)
∗ = Vj (t) . (2.45)

Equations (2.23), (2.26), (2.45) give m j (t) = 0 and (for ‖ψ0‖ = 1) ‖ψ(t)‖ = 1,
∀t . This implieŝPT

ψ0
= QT , ∀T > 0, so that the randomness does not depend on the

quantum system: the W j are pure noises and there is no true measurement on the
system.

The linear stochastic Shrödinger equation becomes

dψ(t) = −i

[

H (t)dt +
∑

j

Vj (t)dW j (t)

]

ψ(t)− 1

2

∑

j

Vj (t)
2ψ(t)dt , (2.46)

and one can check that (As
t )∗ and (As

t )−1 satisfy the same SDE: (As
t )∗As

t ≡ 1.
Thus the system undergoes a stochastic unitary evolution: the quantum system has a
unitary evolution in a random environment which determines the stochastic potential
acting on the system. Even if W is observed, the measurement does not acquire any
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information on the quantum system itself, but it only detects which unitary evolution
occurs among the possible ones.

This class of stochastic Shrödinger equations was introduced as a model of dis-
sipative evolution, with W not observed. In this case, all the physical quantities are
obtained with a mean with respect to W . For an example of this approach to quantum
open systems, see [2].

2.5 The Stochastic Schrödinger Equation

A key point of the theory is to show that the a posteriori states satisfy an SDE,
closed in ̂ψ(t) itself. The structure of such an equation is not of usual type, but it
is possible, after some work, to arrive at a theorem giving existence and uniqueness
of the solutions. Different approaches to the existence and uniqueness problem, in
finite and infinite dimensional Hilbert spaces, are given in [24, 27, 29, 30].

2.5.1 The Stochastic Differential of the A Posteriori State

Let us compute the stochastic differential of the a posteriori state ̂ψ(t) =
‖ψ(t)‖−1 ψ(t) under the physical probability ̂PT

ψ0
and in terms of the new Wiener

process ̂W . To put in full evidence the dependence of the differential on ̂ψ(t) itself,
it is useful to introduce the quantities

n j (t, x) := 〈x |R j (t)x〉 , t ∈ [0,+∞), x ∈ H . (2.47)

Note that

m j (t) = 2 Re n j
(

t,̂ψ(t)
)

. (2.48)

Proposition 2.20. Under the probability ̂P
T
ψ0

, the stochastic differential of ̂ψ(t),
0 ≤ t < T , is

d̂ψ(t) =
∑

j

[

R j (t)− Re n j
(

t,̂ψ(t)
)]

̂ψ(t) d̂W j (t)

+
⎡

⎣K (t)+
∑

j

(

Re n j
(

t,̂ψ(t)
))

R j (t)− 1

2

∑

j

(

Re n j
(

t,̂ψ(t)
))2

⎤

⎦̂ψ(t) dt .

(2.49)

Proof. It is enough to apply Itô rules to ̂ψ(t) = ‖ψ(t)‖−1 ψ(t) under the probability
̂P

T
ψ0

. By using (2.42) we can transform (2.2) into
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dψ(t) =
∑

j

R j (t)ψ(t) d̂W j (t)+
(

K (t)+
∑

j

m j (t)R j (t)

)

ψ(t) dt .

By using (2.24), (2.42) and the fact that ‖ψ(t)‖ > 0 with probability one, we get

‖ψ(t)‖−1 = exp

{

−1

2

∑

j

[∫ t

0
m j (s)dW j (s)− 1

2

∫ t

0
m j (s)2ds

]}

= exp

{

−1

2

∑

j

[∫ t

0
m j (s)d̂W j (s)+ 1

2

∫ t

0
m j (s)2ds

]}

;

by Itô formula, this gives

d ‖ψ(t)‖−1 = ‖ψ(t)‖−1

{

− 1

2

∑

j

[

m j (t)d̂W j (t)+ 1

2
m j (t)

2dt

]

+ 1

8

∑

j

m j (t)
2dt

}

= −1

2
‖ψ(t)‖−1

∑

j

[

m j (t)d̂W j (t)+ 1

4
m j (t)

2dt

]

.

Finally, by using the Itô rules for the differential of a product, we obtain

d̂ψ(t) =
∑

j

R j (t)̂ψ(t) d̂W j (t)+
(

K (t)+
∑

j

m j (t)R j (t)

)

̂ψ(t) dt

−1

2

∑

j

m j (t)̂ψ(t) d̂W j (t)− 1

8

∑

j

m j (t)
2
̂ψ(t) dt− 1

2

∑

j

m j (t)R j (t)̂ψ(t) dt

=
∑

j

[

R j (t)− m j (t)

2

]

̂ψ(t) d̂W j (t)

+
[

K (t)+
∑

j

m j (t)

2
R j (t)−

∑

j

m j (t)2

8

]

̂ψ(t) dt .

By using the notation n j (t, x) introduced in Definition (2.47), we get (2.49). �


2.5.1.1 A Stochastic Phase Change

Let us stress that no physical consequence depends on the phase of ̂ψ(t): consider
the presentation of quantum mechanics given in Appendix B, the POM (2.33), the
probabilities (2.35), the processes m j (2.23), the output W (2.42), etc. So, we are
allowed to make any change of phase on ̂ψ(t), even a stochastic one. In this order
of ideas, we introduce the new normalised vectors
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̂φ(t) : = exp

{

− i
∑

j

∫ t

0
Re n j

(

s,̂ψ(s)
)

Im n j
(

s,̂ψ(s)
)

ds

−i
∑

j

∫ t

0
Im n j

(

s,̂ψ(s)
)

d̂W j (s)

}

̂ψ(t) . (2.50)

The vectors ̂φ(t) have the same right to the name of “a posteriori states” as the
vectors ̂ψ(t). By applying Itô formula to (2.50) and by using the differential (2.49)
and the fact that n j

(

t,̂ψ(t)
) ≡ n j

(

t,̂φ(t)
)

, we get the stochastic differential of
̂φ(t):

d̂φ(t) =
∑

j

[

R j (t)− n j
(

t,̂φ(t)
)]

̂φ(t) d̂W j (t)

+
[

K (t)+
∑

j

n j
(

t,̂φ(t)
)

R j (t)− 1

2

∑

j

∣

∣n j
(

t,̂φ(t)
)∣

∣

2
]

̂φ(t) dt. (2.51)

Thus the choice (2.50) gives a simple expression for d̂φ(t) which is commonly
used in the literature, just as (2.49).

2.5.2 Four Stochastic Schrödinger Equations

Both equalities (2.49) and (2.51) are closed equations, in the stochastic processes ̂ψ
and ̂φ respectively, and both are known under the name of stochastic Schrödinger
equation [9]. However, we got them for normalised vector processes and thus if we
want to interpret them as SDEs for H-vector processes, we need to extend them also
to non-normalised vectors. There is not a unique way to do such an extension and
we present for each of them two extensions, the most natural ones.

Equalities (2.49) and (2.51) involve the quantities nj (t, x) for normalised x . The
first type of extension is to allow for a non-normalised x in the quadratic form (2.47)
defining nj ; in this way polynomial coefficients are obtained. The second type of
extension is to write nj (t, x)/ ‖x‖2 everywhere nj appears in the differentials of
normalised states and then to extend the resulting expressions in the natural way to
non-normalised x ; in this way we obtain coefficients with at most linear growth.

Thus, we obtain four nonlinear stochastic Schrödinger equations (
 = 1, 2, 3, 4)

⎧

⎨

⎩

dX 
(t) =
∑

j

L

j

(

t, X 
(t)
)

X 
(t) d̂W j (t)+ K 

(

t, X 
(t)
)

X 
(t) dt ,

X 
(0) = x0 , x0 ∈ H ,

(2.52)

where the quantities L

j (t, x) and K 
(t, x) are defined in the following; they are

introduced in order to write the four SDEs always in a compact form.
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The extension of the stochastic Schrödinger equation for ̂ψ with polynomial
coefficients is obtained by taking

L1
j (t, x) := R j (t)− Re n j (t, x), (2.53a)

K 1(t, x) := K (t)+
∑

j

(

Re n j (t, x)
)

R j (t)− 1

2

∑

j

(

Re n j (t, x)
)2

≡ −i

⎡

⎣H (t)+ i

2

∑

j

(

Re n j (t, x)
)(

R j (t)− R j (t)
∗)
⎤

⎦

−1

2

∑

j

L1
j (t, x)∗L1

j (t, x). (2.53b)

The extension of the stochastic Schrödinger equation for ̂ψ with linearly growing
coefficients is given by the choice

L2
j (t, x) := R j (t)− Re

n j (t, x)

‖x‖2 , (2.54a)

K 2(t, x) := K (t)+
∑

j

(

Re
n j (t, x)

‖x‖2

)

R j (t)− 1

2

∑

j

(

Re
n j (t, x)

‖x‖2

)2

≡ −i

⎡

⎣H (t)+ i

2

∑

j

(

Re
n j (t, x)

‖x‖2

)

(

R j (t)− R j (t)
∗)
⎤

⎦

−1

2

∑

j

L2
j (t, x)∗L2

j (t, x). (2.54b)

The extension of the stochastic Schrödinger equation for̂φ with polynomial coef-
ficients is the one with

L3
j (t, x) := R j (t)− n j (t, x), (2.55a)

K 3(t, x) := K (t)+
∑

j

n j (t, x) R j (t)− 1

2

∑

j

∣

∣n j (t, x)
∣

∣

2

≡ −i

⎡

⎣H (t)+ i

2

∑

j

(

n j (t, x) R j (t)− n j (t, x)R j (t)
∗)
⎤

⎦

−1

2

∑

j

L3
j (t, x)∗L3

j (t, x). (2.55b)
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Finally, the extension of the stochastic Schrödinger equation for ̂φ with linearly
growing coefficients is obtained by taking

L4
j (t, x) := R j (t)− n j (t, x)

‖x‖2 , (2.56a)

K 4(t, x) := K (t)+
∑

j

n j (t, x)

‖x‖2 R j (t)−
∑

j

∣

∣n j (t, x)
∣

∣

2

2 ‖x‖4

≡ −i

⎡

⎣H (t)+ i

2

∑

j

(

n j (t, x)

‖x‖2 R j (t)− n j (t, x)

‖x‖2 R j (t)
∗
)

⎤

⎦

−1

2

∑

j

L4
j (t, x)∗L4

j (t, x). (2.56b)

We are using the convention that

n j (t, x)

‖x‖2 = 0 for x = 0. (2.57)

When ‖x‖ = 1 we have L1(t, x) = L2(t, x) and K 1(t, x) = K 2(t, x) and the
SDE (2.52) for 
 = 1, 2 reduces to (2.49) when x0 = ψ0, if one proves that the
solution stays normalised for all t . However, the two equations are different when
the initial condition has no norm one. Similarly, for ‖x‖ = 1 we have L3(t, x) =
L4(t, x) and K 3(t, x) = K 4(t, x) and the SDE (2.52) for 
 = 3, 4 reduces to (2.51)
when x0 = φ0, if one proves that the solution stays normalised for all t .

2.5.2.1 The Conservative Case

This is the case R j (t)∗ = −R j (t) of Section 2.4.4, corresponding to dissipation, but
no effective measurement. By setting R j (t) = −iVj (t), with Vj (t)∗ = Vj (t), we find

Re n j (t, x) = 0 , (2.58)

L1
j (t, x) = L2

j (t, x) = −iVj (t) , (2.59a)

K 1(t, x) = K 2(t, x) = K (t) = −iH (t)− 1

2

∑

j

Vj (t)
2 , (2.59b)

L3
j (t, x) = −i

[

Vj (t)− 〈x |Vj (t)x〉
]

, (2.60a)

L4
j (t, x) = −i

[

Vj (t)− ‖x‖−2 〈x |Vj (t)x〉
]

, (2.60b)

K 3(t, x) = −iH (t)− 1

2

∑

j

L3
j (t, x)∗L3

j (t, x) , (2.60c)

K 4(t, x) = −iH (t)− 1

2

∑

j

L4
j (t, x)∗L4

j (t, x) . (2.60d)
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Then, for 
 = 1, 2 the stochastic Schrödinger equations (2.52) are linear and
they coincide with the corresponding linear stochastic Schrödinger equation (2.46),
while for 
 = 3, 4 they are nonlinear, but only due to a non-influent phase
factor.

2.5.2.2 A Peculiar Case of Continuous Measurement

In the literature, when the case is considered of usual observables followed with
continuity in time, a common choice is to take R j (t)∗ = R j (t) and to iden-
tify the continuously measured observables with 2R j (t). In this case, the four
stochastic Schrödinger equations (2.52) reduces to two, with a particularly simple
form:

Im n j (t, x) = 0 , (2.61)

L1
j (t, x) = L3

j (t, x) = R j (t)− n j (t, x) , (2.62a)

K 1(t, x) = K 3(t, x) = −iH (t)− 1

2

∑

j

[

R j (t)− n j (t, x)
]2
, (2.62b)

L2
j (t, x) = L4

j (t, x) = R j (t)− ‖x‖−2 n j (t, x) , (2.62c)

K 2(t, x) = K 4(t, x) = −iH (t)− 1

2

∑

j

[

R j (t)− ‖x‖−2 n j (t, x)
]2
. (2.62d)

2.5.3 Existence and Uniqueness of the Solution

We have introduced four nonlinear SDEs (2.52) of the type of (A.14) with drift
coefficients b(x, t) = K 
(t, x)x and diffusion coefficients σ j (x, t) = L


j (t, x)x ,

 = 1, . . . , 4, j = 1, . . . , d, given by (2.53), (2.54), (2.55) and (2.56).

Remark 2.21. For every finite time horizon T > 0 the following statements hold.

� The drift and the diffusion coefficients of the four SDEs (2.52) satisfy Hypothesis
A.25 (measurability condition).

� The expression 〈x |b(x, t)〉 + 1
2

∑

j

∥

∥σ j (x, t)
∥

∥

2
goes into

〈x |K 
(t, x)x〉 + 1

2

∑

j

∥

∥L

j (t, x)x

∥

∥

2

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−i〈x |H (t)x〉 + i
∑

j

(

Re n j (t, x)
)(

Im n j (t, x)
)

, 
 = 1,

−i〈x |H (t)x〉 + i

‖x‖2

∑

j

(

Re n j (t, x)
)(

Im n j (t, x)
)

, 
 = 2,

−i〈x |H (t)x〉, 
 = 3, 4.

(2.63)
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Therefore, the four sets of coefficients satisfy also the monotone condition
(Hypothesis A.35) with C(T ) = 0.

� By construction, the coefficients of the SDEs (2.52) with 
 = 2, 4 satisfy also
the linear growth condition (Hypothesis A.34).

Lemma 2.22. Let T be any finite time horizon. Then

� the coefficients of the SDEs (2.52) with 
 = 1, 3 satisfy the local Lipschitz con-
dition (Hypothesis A.33);

� the coefficients of the SDEs (2.52) with 
 = 2, 4 satisfy the global Lipschitz
condition (Hypothesis A.32).

Proof. The coefficients of the SDEs (2.52) with 
 = 1, 3 are polynomials in the
components of x ; together with the boundedness Assumption 2.3, this gives by
standard arguments that the local Lipschitz condition (A.17) holds.

Let us now consider the case 
 = 2, 4. Given two vectors x, y in H, let us set

x̂ := x

‖x‖ , ŷ := y

‖y‖ , Px := |x̂〉〈x̂ |, Py := |ŷ〉〈ŷ|, (2.64a)

x̂⊥ := (1− Py)x
∥

∥(1− Py)x
∥

∥

, ŷ⊥ := (1− Px )y

‖(1− Px )y‖ . (2.64b)

With these notations we can write

L4
j (t, x)x = (1− Px )R j (t)x , (2.65a)

L2
j (t, x)x = L4

j (t, x)x + i
[

Im n j (t, x̂)
]

x , (2.65b)

K 4(t, x)x = K (t)x + g(t, x)− 1

2
Px g(t, x) , (2.65c)

g(t, x) :=
∑

j

R j (t)Px R j (t)
∗x , (2.65d)

K 2(t, x) = K 4(t, x)+ i
∑

j

[

Im n j (t, x̂)
]

R j (t)x + 1

2

∑

j

[

Im n j (t, x̂)
]2

x .

(2.65e)

By using

‖x − y‖2 = ∥

∥(1− Py)x
∥

∥

2 + ∥

∥Py x − y
∥

∥

2 = ‖(1− Px )y‖2 + ‖Px y − x‖2 ,

‖y‖ = ‖y − x + x‖ ≤ ‖y − x‖ + ‖x‖ , ‖x‖ ≤ ‖x − y‖ + ‖y‖ ,

we get

∥

∥(1− Py)x
∥

∥ ≤ ‖y − x‖ , ∥

∥(1− Py)x̂
∥

∥ ≤ 1, |〈x̂ |ŷ〉| ≤ 1,

‖y‖ ∥∥(1− Py)x̂
∥

∥ ≤ ‖y − x‖ ∥∥(1− Py)x̂
∥

∥+ ∥

∥(1− Py)x
∥

∥ ≤ 2 ‖y − x‖ ,
‖(1− Px )y‖ ≤ ‖y − x‖ , ‖(1− Px )ŷ‖ ≤ 1, ‖x‖ ‖(1− Px )ŷ‖ ≤ 2 ‖y − x‖ ,
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∣

∣|〈ŷ|x̂〉|2 〈ŷ|x〉 − 〈ŷ|y〉∣∣ = ∣

∣〈ŷ|Px Py x〉 − 〈ŷ|y〉∣∣
= ∣

∣〈ŷ|Px Py x〉 − 〈ŷ|Px y〉 − 〈ŷ|(1− Px )y〉∣∣
≤ ∣

∣〈ŷ|Px Py(x − y)〉∣∣+ |〈ŷ|(1− Px )y〉|
≤ ‖x − y‖ + ‖(1− Px )y‖ ≤ 2 ‖x − y‖ ,

‖Ri (t)‖2 = ∥

∥Ri (t)
∗∥
∥ ‖Ri (t)‖ =

∥

∥Ri (t)
∗Ri (t)

∥

∥ ≤
∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ .

Let us check the global Lipschitz condition for the various coefficients.
Consider first L4:

∑

j

∥

∥L4
j (t, x)x − L4

j (t, y)y
∥

∥

2 =
∑

j

∥

∥(1− Px )R j (t)x − (1− Py)R j (t)y
∥

∥

2

=
∑

j

∥

∥(1− Px )
[

R j (t)x − (1− Py)R j (t)y
]∥

∥

2

+
∑

j

∥

∥Px (1− Py)R j (t)y
∥

∥

2

=
∑

j

∥

∥(1−Px )
[

(1−Py)R j (t)(x−y)+Py R j (t)x
]∥

∥

2

+
∑

j

∣

∣〈(1− Py)x̂ |R j (t)y〉∣∣2 ;

we have

∑

j

∣

∣〈(1− Py)x̂ |R j (t)y〉∣∣2 ≤
∑

j

∥

∥(1− Py)x̂
∥

∥

2 ∥
∥R j (t)y

∥

∥

2

=
∑

j

∥

∥(1− Py)x̂
∥

∥

2 〈y|R j (t)
∗R j (t)y〉

≤
∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥

∥

∥(1− Py)x̂
∥

∥

2 ‖y‖2 ≤ 4
∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ ‖y − x‖2

and

∑

j

∥

∥(1− Px )
[

(1− Py)R j (t)(x − y)+ Py R j (t)x
]∥

∥

2

≤
∑

j

(∥

∥(1− Px )(1− Py)R j (t)(x − y)
∥

∥+ ∥

∥(1− Px )Py R j (t)x
∥

∥

)2

≤
∑

j

(∥

∥R j (t)(x − y)
∥

∥+ ‖(1− Px )ŷ‖ ∣∣〈ŷ|R j (t)x〉
∣

∣

)2
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≤ 2
∑

j

(

∥

∥R j (t)(x − y)
∥

∥

2 + ‖(1− Px )ŷ‖2
∥

∥R j (t)x
∥

∥

2
)

≤ 2
∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥

(‖x − y‖2 + ‖(1− Px )ŷ‖2 ‖x‖2)

≤ 10
∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ ‖x − y‖2 ,

and so

∑

j

∥

∥L4
j (t, x)x − L4

j (t, y)y
∥

∥

2 ≤ 14 sup
t∈[0,T ]

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ ‖x − y‖2 .

Therefore, L4
•(t, x)x is globally Lipschitz.

We now consider K 4: we have

‖g(t, x)− g(t, y)‖ =
∥

∥

∥

∑

j R j (t)
(

Px R j (t)∗x − Py R j (t)∗y
)

∥

∥

∥

≤
∥

∥

∥

∑

j R j (t)(1− Py)Px R j (t)∗x
∥

∥

∥

+
∥

∥

∥

∑

j R j (t)Py Px (1− Py)R j (t)∗x
∥

∥

∥

+
∥

∥

∥

∑

j R j (t)Py Px Py R j (t)∗(1− Py)x
∥

∥

∥

+
∥

∥

∥

∑

j R j (t)
(

Py Px Py R j (t)∗Py x − Py R j (t)∗y
)

∥

∥

∥

=
{∥

∥

∥

∑

j R j (t)|x̂⊥〉〈x̂ |R j (t)∗ x̂〉
∥

∥

∥

+
∥

∥

∥

∑

j R j (t)|ŷ〉〈x̂⊥|R j (t)∗ x̂〉
∥

∥

∥ |〈ŷ|x̂〉|

+
∥

∥

∥

∑

j R j (t)|ŷ〉〈ŷ|R j (t)∗ x̂⊥〉
∥

∥

∥ |〈ŷ|x̂〉|2
}

∥

∥(1− Py)x
∥

∥

+
∥

∥

∥

∑

j R j (t)|ŷ〉〈ŷ|R j (t)∗ ŷ〉
∥

∥

∥

∣

∣|〈ŷ|x̂〉|2 〈ŷ|x〉 − 〈ŷ|y〉∣∣

≤
{∥

∥

∥

∑

j R j (t)|x̂⊥〉〈x̂ |R j (t)∗ x̂〉
∥

∥

∥+
∥

∥

∥

∑

j R j (t)|ŷ〉〈x̂⊥|R j (t)∗ x̂〉
∥

∥

∥

+
∥

∥

∥

∑

j R j (t)|ŷ〉〈ŷ|R j (t)∗ x̂⊥〉
∥

∥

∥

+2
∥

∥

∥

∑

j R j (t)|ŷ〉〈ŷ|R j (t)∗ ŷ〉
∥

∥

∥

}

‖x − y‖ ,

‖g(t, x)− g(t, y)‖ ≤ 5
∑

i

‖Ri (t)‖2 ‖x − y‖

≤ 5d sup
t∈[0,T ]

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ ‖x − y‖ .
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Moreover,

∥

∥Px g(t, x)− Py g(t, y)
∥

∥

= ∥

∥Py Px g(t, x)+ (1− Py)Px g(t, x)− Py Px g(t, y)− Py(1− Px )g(t, y)
∥

∥

≤ ∥

∥(1− Py)Px g(t, x)
∥

∥+ ∥

∥Py(1− Px )g(t, y)
∥

∥+ ∥

∥Py Px
(

g(t, x)− g(t, y)
)∥

∥

= ∥

∥(1− Py)Px g(t, x)
∥

∥+ |〈̂y|(1− Px )g(t, y)〉| + ∥

∥Py Px
(

g(t, x)− g(t, y)
)∥

∥

≤ ∥

∥(1− Py)x
∥

∥ |〈x̂ |g(t, x̂)〉| + ‖(1− Px )y‖ ‖g(t, ŷ)‖ + ‖g(t, x)− g(t, y)‖
≤ 7d sup

t∈[0,T ]

∥

∥

∥

∑

j R j (t)∗R j (t)
∥

∥

∥ ‖x − y‖ .

Therefore, K 4(t, x)x is globally Lipschitz.
We now consider L2 and K 2, which are related to the previous coefficients by

(2.65). The differences with respect to the terms with 
 = 4 have similar structures;
it is enough to check one of such differences:

∥

∥n j
(

t, x̂
)

x − n j
(

t, ŷ
)

y
∥

∥ ≤ ∣

∣n j
(

t, x̂
)∣

∣ ‖x − y‖ + ∣

∣n j
(

t, x̂
)− n j

(

t, ŷ
)∣

∣ ‖y‖
≤ 2

∥

∥R j (t)
∥

∥ ‖x − y‖ + ∣

∣n j
(

t, x̂
) ‖y‖ − 〈ŷ|R j (t)x〉

∣

∣

≤ 2
∥

∥R j (t)
∥

∥ ‖x − y‖ +
∥

∥

∥ ‖y‖ x̂ − ‖x‖ ŷ
∥

∥

∥

∥

∥R j (t)
∥

∥ ≤ 3
∥

∥R j (t)
∥

∥ ‖x − y‖ .

Therefore, L2(t, x)x and K 2(t, x)x are globally Lipschitz. �

Theorem 2.23. Every one of the four SDEs (2.52) admits a strong solution in the
time interval [0,+∞). Pathwise uniqueness and uniqueness in law hold. Moreover,
the norm of the solutions of the equations with 
 = 2, 4 is conserved,

∥

∥X2(t)
∥

∥

2 = ∥

∥X2(0)
∥

∥

2
,

∥

∥X4(t)
∥

∥

2 = ∥

∥X4(0)
∥

∥

2
, (2.66)

while for 
 = 1, 3 we have

1− ∥

∥X 
(t)
∥

∥

2 =
(

1− ∥

∥X 
(0)
∥

∥

2
)

× exp

{

−2
∑

j

∫ t

0
Re n j

(

s, X 
(s)
) [

d̂W j (s)+ Re n j
(

s, X 
(s)
)

ds
]

}

. (2.67)

Proof. Uniqueness and existence of solutions is by Remark 2.21, Lemma 2.22 and
Theorem A.36.

By computations similar to those in (2.17), one gets

d
∥

∥X 
(t)
∥

∥

2 = 2
(

1− ∥

∥X 
(t)
∥

∥

2
)
∑

j

Re n j
(

t, X 
(t)
)

d̂W j (t) , for 
 = 1, 3,

d
∥

∥X 
(t)
∥

∥

2 = 0 , for 
 = 2, 4 .
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Then, the statements about the norm follow from Proposition A.41 applied to the
stochastic processes Z (t) = 1− ∥

∥X 
(t)
∥

∥

2
. �


Thus, in the case of polynomial coefficients (
 = 1, 3), the solutions X 
 of the
stochastic Schrödinger equation move inside the unit ball if

∥

∥X 
(0)
∥

∥ < 1, on the unit
sphere if

∥

∥X 
(0)
∥

∥ = 1 and outside the unit ball if
∥

∥X 
(0)
∥

∥ > 1. In the case of lin-
early growing coefficients (
 = 2, 4), the solutions X 
 of the stochastic Schrödinger
equation move on the corresponding spheres of radius

∥

∥X 
(0)
∥

∥.
If we take the four equations with the same normalised initial condition, by

uniqueness, we have that the solutions of the equations of number 1 and 2 coincide
and the same holds for the solutions of numbers 3 and 4. Moreover, the solutions of
1 or 2 and of 3 or 4 are connected by (2.50).

Of course, when the stochastic Schrödinger equation (2.52) is considered in the

probability space
(

Ω,FT ,̂P
T
ψ

)

for 
 = 1, 2 and normalised initial condition, its

solution ̂ψ is the normalisation (2.22) of the solution ψ of the linear stochastic
Schrödinger equation (2.28) in (Ω,FT ,Q).

2.5.4 The Stochastic Schrödinger Equation
as a Starting Point

By the results of the previous subsection, we have that both the SDEs for a posteriori
states (2.49) and (2.51) with initial condition ̂ψ(0) = ̂φ(0) = ψ0, ‖ψ0‖ = 1, have
a unique (pathwise and in law) strong solution with

∥

∥̂ψ(t)
∥

∥ = ∥

∥̂φ(t)
∥

∥ = 1. The
solutions of the two equations are connected by the relation (2.50).

This point is very important because it gives the possibility of starting the whole
theory from the nonlinear stochastic Schrödinger equation; we sketch this construc-
tion just below. For the theory of continuous measurements, this is only an alterna-
tive possibility, but conceptually this is needed when the nonlinear SDE is postulated
for some reason, as for a modification of quantum mechanics [3, 6, 15, 31], or it
is used for stochastic simulations of quantum dynamical semigroups as explained
in Sect. 3.2.3.2. The problem of strong solutions, in the more general context of
infinite dimensional Hilbert spaces and equations involving unbounded operators as
coefficients, was already studied in [32].

Every one of the four stochastic Schrödinger equations (2.52) can be taken as
starting point; let us choose the SDE with 
 = 2. Let us fix a stochastic basis
(

Ω,F, (Ft )t∈[0,+∞), P
)

in usual hypotheses and let ̂B be a continuous Wiener pro-
cess in this basis with increments independent of the past. Let ̂ψ be a solution of
(2.52), 
 = 2, with the Wiener process ̂B and initial condition ψ0 ∈ H, ‖ψ0‖ = 1.
By Theorem 2.23, the solution is unique and its norm is conserved:

∥

∥̂ψ(t)
∥

∥ = 1,
∀t ∈ [0,+∞). Due to the normalisation for every time, the stochastic differential of
̂ψ(t) reduces to (2.49), i.e.
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d̂ψ(t) =
∑

j

[

R j (t)− 1

2
m j (t)

]

̂ψ(t) d̂B j (t)

+
⎡

⎣K (t)+ 1

2

∑

j

m j (t)R j (t)− 1

8

∑

j

m j (t)
2

⎤

⎦̂ψ(t) dt, (2.68a)

m j (t) = 2 Re〈̂ψ(t)|R j (t)̂ψ(t)〉. (2.68b)

In the case of a continuous measurement, besides the stochastic evolution of the
state ̂ψ(t), we have to introduce also the stochastic output and its relation with ̂ψ(t).
The output is the stochastic process with components

B j (t) = ̂B j (t)+
∫ t

0
m j (s)ds. (2.69)

The physical probability is P. Notice that, having chosen the nonlinear stochastic
Schrödinger equation as a starting point, the system state ̂ψ(t) at time t depends on
̂B(s), 0 ≤ s ≤ t , which is not the observed output. Anyway we are still allowed
to interpret ̂ψ(t) as the system state at time t conditioned by the observation of the
output B(s) for 0 ≤ s ≤ t because the knowledge of B(s), 0 ≤ s ≤ t , is equivalent
to the knowledge of ̂B(s), 0 ≤ s ≤ t . Heuristically one can think that the knowledge
of the trajectory of B(s) in [0, t] determines the corresponding trajectory of ̂B(s) and
thus the value of ̂ψ(t). The correct mathematical statement is that the two processes
generate the same augmented filtration:

σ
{

B(s), s ∈ [0, t]
}

∨N = σ
{

̂B(s), s ∈ [0, t]
}

∨N. (2.70)

Indeed, the inclusion ⊂ is obvious because of (2.69) and because the process
̂ψ is adapted to the augmented natural filtration of ̂B thanks to Theorem 2.23. The
opposite inclusion ⊃ follows from the possibility of recovering the linear stochas-
tic Schrödinger equation and by its theorem of existence and uniqueness of strong
solutions. Let us show this fact.

Given the initial state ψ0 of the system, consider the positive continuous process

q(t) = exp

{

−1

2

∑

j

[∫ t

0
m j (s)d̂B j (s)+ 1

2

∫ t

0
m j (s)2ds

]}

. (2.71)

Its square q(t)2 is a positive P-martingale and

Q
t
ψ0

(dω) = q(t, ω)2
P(dω) (2.72)
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defines a new probability on (Ω,Ft ); the probabilities Q
t
ψ0

, t ≥ 0, are consistent. By
Girsanov theorem, under the law Q

T
ψ0

the process B(t), t ∈ [0, T ], with components
(2.69) is a multidimensional standard Wiener process.

Let us define

ψ(t) = q(t)−1
̂ψ(t) ; (2.73)

by Itô calculus we get, under Q
T
ψ0

, the linear stochastic Schrödinger equation
(2.28):

dψ(t) =
∑

j

R j (t)ψ(t)dB j (t)+ K (t)ψ(t)dt . (2.74)

Thus, Theorem 2.4 guarantees that ψ(t) is adapted to the augmented filtration of
B(t) and then the same is true for q(t) = ‖ψ(t)‖−1, ̂ψ(t) = q(t)ψ(t) and ̂B(t). This
completes the proof of (2.70).

Finally, the uniqueness in law of the solutions of all the equations involved guar-
antees that, for every finite interval of time [0, T ], the law of B under P and the law
of W under ̂PT

ψ0
coincide. So, the two approaches, the one starting from the linear

stochastic Schrödinger equation and the one starting from the nonlinear one, are
completely equivalent.

2.6 The Linear Approach Versus the Nonlinear One

As the theory can be formulated by starting either from the linear stochastic
Schrödinger equation, or from the nonlinear one, let us give here just some hints
of comparison between the two approaches.

� Advantages of the linear approach:

– Direct generalisation of the traditional description of an instantaneous mea-
surement.

– Clear analytical relation between the a posteriori state and the observed out-
put: if the canonical realisation of the Wiener process is used, then the a pos-
teriori states ψ(t) and ̂ψ(t) are explicitly functions of the trajectory of the
output W (s) for 0 ≤ s ≤ t .

� Characteristic features of the linear approach:

– The output process W is a fixed function from the sample space Ω to
Cd

0 (0,∞), the space of all R
d -valued continuous functions of a positive

variable. Its physical properties depend on the physical probability ̂P
T
ψ0

,
which changes on (Ω,F) according to the choice of the initial system
state ψ0.
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� Disadvantages of the linear approach:

– The linear stochastic Schrödinger equation is not suitable for numerical sim-
ulations as the norm of the non-normalised a posteriori state ψ(t) can become
very small.

� Advantages of the nonlinear approach:

– The stochastic Schrödinger equation directly gives the a posteriori state ̂ψ(t).
– The stochastic Schrödinger equation is suitable for numerical simulations

[7, 32–35].

� Characteristic features of the nonlinear approach:

– The probability P on the measurable space (Ω,F) is fixed. The output B
is a function from the sample space Ω to Cd

0 (0,∞), the space of all R
d -

valued continuous functions of a positive variable, which changes accord-
ing to the choice of the initial system state ψ0 (thus modifying its physical
properties).

� Disadvantages of the nonlinear approach:

– Non-transparent relation between the a posteriori state ̂ψ(t) and the output
B(t).

2.7 Tricks to Simplify the Equations

In special cases, some peculiar time dependencies can be eliminated and/or more
compact forms of the stochastic Schrödinger equation can be obtained. Let us see
how.

2.7.1 Time-Dependent Coefficients and Unitary Transformations

A particularly interesting case is when the time dependence of the coefficients
in the linear stochastic Schrödinger equation (2.28) can be eliminated by using a
unitary transformation. Let us assume that there exists a self-adjoint operator H0

such that

eiH0t R j (t)e
−iH0t = R j (0) , eiH0t H (t)e−iH0t = H (0) . (2.75)

In the physical literature, this transformation is known as the use of a (suitable)
interaction picture. We define the “interaction Hamiltonian” HI := H (0)− H0 and

R0
j := R j (0) , K 0 := K (0)− iH0 ≡ −iHI − 1

2

∑

j

R0∗
j R0

j . (2.76)
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By setting

Φ(t) := eiH0t ψ(t) , (2.77)

we get dΦ(t) = iH0Φ(t)dt + eiH0t K (t)ψ(t)dt + eiH0t
∑

j R j (t)ψ(t)dW j (t). By
inserting before ψ(t) the identity 1 = e−iH0t eiH0t , we obtain the linear SDE with
time-independent coefficients

dΦ(t) = K 0Φ(t)dt +
∑

j

R0
jΦ(t)dW j (t) . (2.78)

We can now redo the whole construction of probabilities and a posteriori states
by starting from this equation instead of from (2.2). We have ‖ψ(t)‖2 = ‖Φ(t)‖2,
m j (t) = 2 Re〈̂ψ(t)|R j (t)̂ψ(t)〉 = 2 Re〈̂Φ(t)|R0

j
̂Φ(t)〉 and nothing changes for what

concerns the physical probabilities. We have only to recall that the a posteriori states
are given by ̂ψ(t) = e−iH0t

̂Φ(t).
In the example of Section 8.1, we use just this trick in order to simplify the time

dependence of the coefficients.

2.7.2 Complex Noise

When one of the coefficients R j (t) in the linear stochastic Schrödinger equation
(2.28) differs from another one only by a multiplicative factor i (imaginary unit),
the equations assume a simpler form by introducing complex Wiener processes [5,
33, 36–38]. Let us illustrate this fact in the case d = 2.

Assume that we have

R1(t) = 1√
2

R(t), R2(t) = i√
2

R(t). (2.79)

Then, we define the complex Wiener process

W (t) = 1√
2

W1(t)+ i√
2

W2(t), (2.80)

for which the Itô rules turn out to be dW (t)2 = 0, dW (t)dW (t) = dt . With these
notations the linear SDE (2.28) becomes

dψ(t) = R(t)ψ(t)dW (t)+ K (t)ψ(t)dt , K (t) = −iH (t)− 1

2
R(t)∗R(t).

(2.81)

Also the nonlinear stochastic Schrödinger equation assumes a simpler form in
this case, especially if we consider the a posteriori stateŝφ(t) with a changed phase:
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d̂φ(t) = [

R(t)− 〈̂φ(t)|R(t)̂φ(t)〉]̂φ(t) d̂W (t)

+
[

K (t)+ 〈̂φ(t)|R(t)∗̂φ(t)〉R(t)− 1

2

∣

∣〈̂φ(t)|R(t)̂φ(t)〉∣∣2
]

̂φ(t) dt, (2.82)

̂W (t) = 1√
2
̂W1(t)+ i√

2
̂W2(t) = W (t)−

∫ t

0
〈̂φ(s)|R(s)∗̂φ(s)〉ds. (2.83)

2.8 Summary: The Stochastic Schrödinger Equation

2.8.1 The Linear Stochastic Schrödinger Equation

2.8.1.1 Hilbert Space and System Operators

Assumptions 2.1, 2.3, 2.10.

� The Hilbert space of the quantum system under consideration is H = C
n .

� The effective Hamiltonian H (t) and the system operators R j (t), j = 1, . . . , d,
(dissipative terms) are non-random linear operators on H; H (t) is self-adjoint:
H (t)∗ = H (t).

� The functions t �→ H (t) and t �→ R j (t) are measurable and, for every T ∈
(0,+∞),

sup
t∈[0,T ]

‖H (t)‖ < +∞, sup
t∈[0,T ]

∥

∥

∥

∥

∑

j

R j (t)
∗R j (t)

∥

∥

∥

∥

< +∞.

� We use the shorthand notation: K (t) := −iH (t)− 1

2

d
∑

j=1

R j (t)
∗R j (t).

2.8.1.2 Reference Probability Space and Filtrations

Assumption 2.2, Remark 2.5.

�
(

Ω,F, (Ft ),Q
)

is a stochastic basis satisfying the usual conditions, which means
that (Ω,F,Q) is a probability space, (Ft ) is a filtration of sub-σ -algebras of F,
Ft =

⋂

s:s>t

Fs , Q(A) = 0 ⇒ A ∈ Ft , ∀t ≥ 0.

� F = F∞ :=
∨

t≥0

Ft , N := {B ∈ F : Q(B) = 0}.
� The symbol EQ indicates the expectation with respect to Q.
� W is a continuous d-dimensional Wiener process defined in

(

Ω,F, (Ft ),Q
)

. In
particular, the process W has increments independent of the past with respect to
the filtration (Ft ).

� The natural filtration of the increments of W : Ds
t := σ {W (u)−W (s), u ∈ [s, t]}.
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� The augmented natural filtration of the increments of W : D
s
t := Ds

t ∨N.
� The filtration {Ds

t , t ∈ [s,+∞)} satisfies the usual conditions: D
s
t is independent

of Fs and D
s
t ⊂ D

0
t ⊂ Ft ⊂ F, for 0 ≤ s ≤ t .

2.8.1.3 The Linear Stochastic Schrödinger Equation

Assumptions 2.2, 2.12, equations (2.2), (2.7), (2.11), Propositions 2.6, 2.7, 2.8,
Theorem 2.11.

� The linear stochastic Schrödinger equation (2.28):

dψ(t) = K (t)ψ(t) dt +
d
∑

j=1

R j (t)ψ(t) dW j (t) .

� Initial condition: a non-random ψ0 ∈ H, ‖ψ0‖ = 1.
� The solution is an H-valued process ψ , which is continuous and

(

D
0
t

)

-adapted.
� ‖ψ(t)‖2 is a mean one, continuous martingale.
� The stochastic evolution operator, or propagator, As

t is a continuous process in

t ≥ s, which is
(

D
s
t

)

-adapted and independent of Fs . It satisfies

dAs
t = K (t)As

t dt +
d
∑

j=1

R j (t)As
t dW j (t) , As

s = 1.

� The adjoint operator (As
t )∗ satisfies

d(As
t )∗ = (As

t )∗K (t)∗dt +
d
∑

j=1

(As
t )∗R j (t)

∗dW j (t) , (As
s)∗ = 1.

� ψ(t) = A0
t ψ0, Ar

t = As
t Ar

s for 0 ≤ r ≤ s ≤ t .
� det As

t > 0, As
t = Ar

t

(

Ar
s

)−1
for 0 ≤ r ≤ s ≤ t .

� The inverse operator (As
t )−1 satisfies

d(As
t )−1 = (As

t )−1

⎡

⎣

∑

j

R j (t)
2 − K (t)

⎤

⎦ dt −
d
∑

j=1

(As
t )−1 R j (t)dW j (t) ,

with (As
s)∗ = 1.
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2.8.1.4 The Physical Probability and the A Posteriori States

Equations (2.22), (2.23), (2.33), (2.39), (2.43), Theorems 2.11, 2.14, Proposition
2.17, Remarks 2.13, 2.16, 2.18.

� ψ(t) is the non-normalised a posteriori state at time t .
� ‖ψ(t)‖ > 0, ̂ψ(t) := ‖ψ(t)‖−1 ψ(t).
�
̂ψ(t) is the a posteriori state at time t .

� m j (t) := 〈

̂ψ(t)
∣

∣

(

R j (t)+ R j (t)
∗)
̂ψ(t)

〉 = 2 Re
〈

̂ψ(t)
∣

∣R j (t)̂ψ(t)
〉

.

� ‖ψ(t)‖2 = exp

{

∑

j

[∫ t

0
m j (s)dW j (s)− 1

2

∫ t

0
m j (s)2ds

]}

.

� The expression ̂PT
ψ0

(dω) = ‖ψ(T, ω)‖2
Q(dω)

∣

∣

∣

FT

defines the “physical” proba-

bility on (Ω,FT ). The expectation with respect to ̂P
T
ψ0

(dω) is denoted by ̂E
T
ψ0

.
The physical probability for the events regarding the output W up to time T is
̂P

T
ψ0

∣

∣

D
0
T
.

� The family of probabilities
{

̂P
T
ψ0
, T > 0

}

is consistent, which means that for

any choice of T > t ≥ 0 we havêPT
ψ0

(F) =̂P
t
ψ0

(F), ∀F ∈ Ft .
� There exists a unique probabilitŷP∞ψ0

on D0
∞ :=∨

t>0 D0
t such that

̂P
∞
ψ0

(F) =̂P
T
ψ0

(F), ∀T > 0, ∀F ∈ D0
T .

� Under the physical laŵP
T
ψ0

, the process with components

̂W j (t) := W j (t)−
∫ t

0
m j (s)ds, t ∈ [0, T ],

is a continuous Wiener processes with increments independent of the past. It is

(D
0
t )-adapted.

� The stochastic integrals with respect to W and ̂W are linked by (2.32).
� POMs and probabilities:

̂Es
t (F) :=

∫

F
As

t (ω)∗As
t (ω)Q(dω), ∀F ∈ D

s
t ,

̂P
T
ψ0

(F) = 〈ψ0|̂E0
T (F)ψ0〉, ∀F ∈ D

0
T .

� Consistency of the POMs:

0 ≤ r < s < t, F ∈ D
r
s ⇒ ̂Er

t (F) = ̂Er
s (F).

� For all F ∈ D
s
t , 0 ≤ s < t ≤ T , we have

̂P
T
ψ0

(F |Fs) = 〈

̂ψ(s)
∣

∣̂Es
t (F)̂ψ(s)

〉 =̂P
T
ψ0

(F |D0
s ).
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2.8.2 The Nonlinear Stochastic Schrödinger Equation

� Let
(

Ω,F, (Ft )t∈[0,+∞),P
)

be a stochastic basis in the usual hypotheses and ̂B
be a continuous Wiener process in this basis with increments independent of
the past.

� Both the nonlinear SDEs

d̂ψ(t) =
∑

j

[

R j (t)− Re〈̂ψ(t)|R j (t)̂ψ(t)〉] ̂ψ(t) d̂B j (t)+ K (t)̂ψ(t) dt

+
∑

j

[

(

Re〈̂ψ(t)|R j (t)̂ψ(t)〉) R j (t)− 1

2

(

Re〈̂ψ(t)|R j (t)̂ψ(t)〉)2
]

̂ψ(t) dt

and

d̂φ(t) =
∑

j

[

R j (t)− 〈̂φ(t)|R j (t)̂φ(t)〉]̂φ(t) d̂B j (t)+ K (t)̂φ(t) dt

+
∑

j

[

〈̂φ(t)|R j (t)̂φ(t)〉 R j (t)− 1

2

∣

∣〈̂φ(t)|R j (t)̂φ(t)〉∣∣2
]

̂φ(t) dt,

with initial condition ̂ψ(0) = ̂φ(0) = ψ0, ‖ψ0‖ = 1, have a unique (pathwise
and in law) strong solution with

∥

∥̂ψ(t)
∥

∥ = ∥

∥̂φ(t)
∥

∥ = 1. The solutions of the two
equations are connected by the relation

̂φ(t) = exp

{

− i
∑

j

∫ t

0
Re〈̂ψ(s)|R j (s)̂ψ(s)〉 Im〈̂ψ(s)|R j (s)̂ψ(s)〉 ds

− i
∑

j

∫ t

0
Im〈̂ψ(s)|R j (s)̂ψ(s)〉 d̂B j (s)

}

̂ψ(t).

� The output of the measurement is the process B(t), t ≥ 0, under the law P, with
components

B j (t) = ̂B j (t)+
∫ t

0
m j (s)ds ,

where

m j (t) = 2 Re〈̂φ(t)|R j (t)̂φ(t)〉 = 2 Re〈̂ψ(t)|R j (t)̂ψ(t)〉.

More precisely, the output is the collection of the increments of B in
the interval of observation; heuristically, the output is the time derivative
of B.
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� The square of

q(t) = exp

{

−1

2

∑

j

[∫ t

0
m j (s)d̂B j (s)+ 1

2

∫ t

0
m j (s)2ds

]}

is a positive P-martingale, and

Q
t
ψ0

(dω) = q(t, ω)2
P(dω)

defines a new probability on (Ω,Ft ); the probabilities Q
t
ψ0

, t ≥ 0, are consistent.
� Under the law Q

T
ψ0

the process B(t), t ∈ [0, T ], is a multidimensional standard
Wiener process.

� The random vector

ψ(t) = q(t)−1
̂ψ(t),

under the law Q
T
ψ0

, satisfies the linear SDE

dψ(t) =
∑

j

R j (t)ψ(t)dB j (t)+ K (t)ψ(t)dt .

� In particular cases, the SDEs involved in the theory can be simplified by some
tricks, for instance by using unitary transformations (in the case in Sect. 2.7.1)
or complex Wiener processes (in the case in Sect. 2.7.2).
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