Chapter 2
The Stochastic Schrodinger Equation

2.1 Introduction

In this chapter, we introduce the theory of measurements in continuous time (diffu-
sive case) starting from the particular but important case of complete observation.
This allows to present the Hilbert space formulation of the theory, where the state of
the observed quantum system is described by a vector in the Hilbert space J{ of the
system. Even if this is a special case of the more general theory presented in Chaps.
3,4 and 5, it deserves a separate treatment for different reasons: it is instructive, it
uses only the Hilbert space formulation of quantum mechanics, it is of interest on its
own because the stochastic Scrodinger equation presented in this chapter has also
been used in different contexts [1-6], some mathematical results of the following
chapter will relay anyhow on the theory presented here, and Hilbert space SDEs are
the key starting point for efficient numerical simulations of the dynamics of open
quantum systems [1, 7].

First, we introduce the class of SDEs in Hilbert spaces which we are interested in
and we present their mathematical properties. After that, we discuss their physical
interpretation and start to develop the theory of continuous measurements.

Given the initial (pure) state ¥y € H of the measured quantum system, the aim
is to get two stochastic processes together with the probability distribution of their
trajectories:

the output W(¢) of the continuous measurement;

® the system state fp\(t), whose evolution includes the continuous measurement and
which is continuously conditioned on the observed output;

e the physical probability distribution of the processes W(z) and @(r).

The system state ;ﬁ\(t) is called a posteriori state, as it depends on the trajectory
observed for W(s) in the time interval 0 < s < . The knowledge of the physical
probability distribution of W(¢) and fﬁ\(t) allows to consider and to compute mean
values at a given time, just as correlations and multi-time moments.

There are two possible ways to develop the theory: to start from the nonlinear
evolution equation of the a posteriori states E(r) or from the linear evolution equa-
tion of the so-called non-normalised a posteriori states (). We prefer to begin with
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this second approach which is the direct generalisation of the traditional description
of an instantaneous measurement.

When a quantum system undergoes a “von Neumann measurement” of an observ-
able represented by a self-adjoint operator X with discrete eigenvalues x; and
eigen-projections Ey, one usually fixes the space 2 = {x;, x3, ...} of the possible
outcomes and, for every x; € §2, uses the corresponding projection Ej to introduce
the linear state transformation (von Neumann reduction postulate):

Yo = Y1 (xx) == Exro.

Then, 1, (x;) gives both the physical probability distribution for the outcome X
and the a posteriori state ¥: if ¥ is the initial system state, then

° ﬂ\wl(xk)ll2 is the probability of observing X = x;;
® U(xr) = Yi(xx)/ 11 (xe)ll is the a posteriori state when X = x;.

In order to generalise consistently such a representation of a measurement to the
continuous time case, we use the powerful mathematical tools of stochastic calculus
and thus we prefer to begin with their presentation.

Section 2.2 is devoted to the theory of homogeneous linear SDEs. To read this
section, one needs the notions of filtration, stochastic process, martingale, stochastic
integral with respect to a Wiener process and strong solution of an SDE; moreover,
familiarity with the Itd formula is essential. All these topics of stochastic calculus
are recalled in Sects. A.2, A.3 and A.4. In Sect. 2.3, the subclass of linear SDEs of
our concern is presented and studied. Here the notions of exponential martingale,
change of probability measure and Girsanov transformation are needed; they are
recalled in Sect. A.5.

The SDE approach to the quantum theory of open systems and of continuous
measurements is given in the rest of the chapter, starting from Sect. 2.4. In this
chapter, only the Hilbert space formulation of quantum mechanics is needed, as it
is presented in Sect. B.2. The key notion is “positive operator-valued measure”, a
mathematical object which represents a general quantum mechanical observable.

As already said in Sect. 1.3, we work in a finite dimensional Hilbert space, which
is enough to give the main ideas of the stochastic approach to open systems and
continuous measurements and to develop the simplest applications. For results and
examples in infinite dimensional Hilbert spaces, see [7-27].

2.2 Linear Stochastic Differential Equations

Assumption 2.1. The Hilbert space of the quantum system is 3 = C".

The SDEs we consider are driven by white noise, the derivative of the Wiener
process. So, let us introduce such a stochastic process and fix the framework needed
for SDEs.



2.2 Linear Stochastic Differential Equations 13

Assumption 2.2. We fix a stochastic basis (52, F, (&), Q) satisfying usual condi-
tions (Sect. A.2.2) and a continuous d-dimensional Wiener process W = {W(r),
t > 0}, with increments independent of the past (Definition A.21). We assume

F=TFp:=\F. 2.1)

t>0

The symbol Eg indicates the expectation with respect to the probability Q.

2.2.1 An Homogeneous Linear SDE in Hilbert Space

Let us start by considering a generic homogeneous linear SDE with “multiplicative
noise” for an H-valued process ¥ = {¥(t), t > 0}:

d
dyr(t) = KW () dt + Y Ry(y(6)dW;(1),
j=1

v (0) = o, Yo € H.

2.2)

Assumption 2.3. The initial condition v/ is non random. The coefficients R;(?),
K (t) are (non-random) linear operators on H. The functions ¢t — K(¢) and ¢ +—
R () are measurable and such that VT € (0, +00)

sup [|[K(D)| < +oo0, sup
1€l0,T] 1€[0,T]

< 4o00. (2.3)

D R R;(1)

J

Theorem 2.4. Under Assumption 2.3, the linear SDE (2.2) admits strong solutions
in [0, +00). Pathwise uniqueness and uniqueness in law hold. Moreover, for any
p=>2and T > 0, there exists a constant C(p, T) such that

Eq [ sup IIW(t)II”} < C(p, T) (1 + lIol”) - (2.4)

t€l0,7T]

Proof. Let us make the identifications b(x, 1) = K(t)x, 0(x, t) = R;(t)x. We have
the estimates

lbCe, Dl = IK @l < IKO xl]
> flose 0P =30 [Riox P =(x| 25 Ry Ryo)x) < | 5 Ry Ry o) I,
Jj J

Obviously, we also have Zj Haj(x, t)—oj(y, z‘)||2 = Zj ||aj(x -y, t)||2 and
|b(x,t) —b(y,t)|| = ||b(x — y, t)|l. Then, Hypotheses A.25, A.32 and A.34 hold
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with L(T) = Zmax{supte[o’n K@), sup,eo 1, H Y, Rj(t)*Rj(t)’ } M(T) =
V2L(T), and Theorems A.36 and A.38 give the statements. m|

Let us recall that the existence of strong solutions means that (2.2) admits a
solution for every choice of the probability space, of the filtration and of the Wiener
process (see Definition A.27). For the notions of uniqueness see Definitions A.28
and A.29.

In our construction, the stochastic basis and the Wiener process are fixed by
Assumption 2.2. Then, by ¥ we denote the continuous, adapted process (Itd6 pro-
cess — see Sect. A.3.4) satisfying

' d '
YO = Yo+ /0 K@y()ds + 3 /0 ROWEAWE); (25
j=1

such a process is unique up to indistinguishableness (Sect. A.4.1).

Remark 2.5. In the following, the natural filtration of the increments of the Wiener
process and its augmented version will be important: for 0 < s < ¢, we define

DS := o {W(r) — W(s), r € [s, 1]}, D, =D v; (2.6)

N is the class of the Q-null sets in J. .
Because of the properties of a Wiener process, the filtration {@;, t € [s, +00)}

satisfies the usual conditions: D, is independent of ¥, and D, c D, C ¥, C 7,
forO <s <r.

Because of the existence of strong solutions and of the fact that the initial condi-
L . . =0
tion is non-random, the continuous (&;)-adapted process ¥ is also (D, )—adapted.

2.2.2 The Stochastic Evolution Operator

Equation (2.2) being a linear equation, we can introduce a stochastic process of
operators A%(w) giving the application ¥y +— ¥ (¢, ®). Indeed, let us consider the
operator-valued processes A}, with t > s > 0, defined by the SDE

d
dA} = KA} dt + > R;(DA; dW(1) .

p 2.7)

AS=1.

This is a linear SDE for an n x n-dimensional complex process; so, exactly as for
(2.2), in (.Q, F,(F), Q) there is a pathwise unique, continuous, adapted solution.
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Proposition 2.6. Under Assumption 2.3, the linear SDE (2.7) admits strong solu-
tions in [s, +00), Vs > 0. Pathwise uniqueness and uniqueness in law hold. More-
over, forany p > 2 and T > s, there exists a constant C(p, T) such that

Eq [ sup |A] ||2p} <C(p.T)(1+n"?). (2.8)
tels,T)

Proof. Let us make the identifications b(a, t) = K(t)a, oj(a,t) = Rj(t)a,a € M,.
Now a, b, o; are vectors whose components are labelled by a couple of indices;
then, the relevant norm is the Hilbert—Schmidt one (B.3). We have the estimates

b, DI = IK(Hall,> = Tr{a*K()*K(H)a} = Tr {K (#)* K (t)aa*}
< |KO*K@)| [aa*|, = IKOI Tr{aa*} = KO llall,>,

> loj@ o]’ =3 [Rjwal,” = 3 Tr{a* Ry R;(1)a)
J J J
=Te |, Ry Ri(aa*| < |, R0 Ry llaa®,

= YRR ()] llall,?.
J

Then, the proof goes on as in Theorem 2.4, exactly with the same constants. Note
that ||1]|,> = Tr{1} = n. o

Because of the properties stated in the following proposition, A{ is called
stochastic evolution operator. In mathematical terms, A? is the fundamental matrix
of the linear equation (2.2), while in the physical literature the term propagator is
more used.

Proposition 2.7. For 0 < s < t, A} is Q-independent of Fs and 5;-measurable.
Moreover, for every given 0 < r < s, almost surely (a.s.) we have

ATAL = A7, vt > s, (2.9)
Y(t) =A%y, V>0, (2.10)

More explicitly, the continuous processes t — AJA’ and ¢t — A] are indistin-
guishable; the same holds for the processes t > () and ¢ > A%.

Proof. Because of the existence of strong solutions and pathwise uniqueness, the
. A~ .

random variable A} is D,-measurable; then, the statement about the independence

follows from the independent increment property of the Wiener process.
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Letus fix s > r > 0 and set

A7, ifr <t <s,
B, = ) .
ATAY, ift >s.

Then, by (2.7) we have for ¢t > s

N

t t
B =AA = A +/ K(u)A;A;dquZ/ Rj(u)AS AT AW (u)
j s
N N t
- 11+/ K(u)A! du—i—Z/ R;(w)A” de(u)—i-/ K (u)B, du
r ] r N
t t t
+Z/ R;(u)B, dW;(u) = 11+/ K(u)B, du+2/ R;(u)B, dW;(u);
j K r j r

by the definition of B, the same equation holds also for ¢ < s. Therefore, B, and A}
satisfy the same equation and, by uniqueness, they are indistinguishable. This proves
(2.9). Similarly ¥ (¢) and A?l//o satisfy the same equation and, so, (2.10) holds. O

Also the adjoint AT of the stochastic evolution operator is a continuous, adapted
process and for ¢t > s it satisfies

d
dAT" = AT K ()" dr + Y AV R; ()" dW;(1),

J=1

@2.11)
A =1,

2.2.2.1 The Stochastic Liouville Formula

It is important to prove other properties of the stochastic evolution operator and in
particular that the matrix A} is a.s. invertible.

Proposition 2.8. For every given initial time s > 0, the Wronskian determinant
D} := det A} is given by the stochastic Liouville formula

D} =exp(/ Tr{K(r)—%ZRj(r)z}dr—i-Z/ Tr {R;(r)} de(r)>. (2.12)
s j j s

This equality holds a.s. for every t > s and, so, Q(D; > 0, ¥Vt > s) = 1. Then,
the operator AS is a.s. invertible and the process (A$)~! satisfies the SDE

d

AN~ = AN X; RGP = K0 |dr = Y (ADT Ri0dWi(0). (2.13)

j=1
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Finally, for every 0 < s < t, the following representation holds a.s.:
0/ A0y—1
Al = A/(A) . (2.14)

Proof. Let s > 0 be a given initial time. By differentiating the explicit expression
of the determinant, which is a polynomial in the matrix elements of A}, and by
using the It6 formula for products, in the proof of Theorem 2.2 in [28] the following
formula for the stochastic differential of D; is obtained:

1 1 ‘
dD; = [Tr{K(r) -5 zj:RJ-(zf} +5 Z]: (Tr{R;(1)} )Z}D‘; dr
+ZTr{Rj(t)} DS AW, (1). (2.15)
J

But this is a one-dimensional linear SDE with initial condition D{ = 1. Again
the solution is pathwise unique and it is an exercise in stochastic calculus to verify
that (2.12) solves this linear SDE. Thus, Q(D; > 0, V¢ > 5) = 1 and A] is a.s.
invertible for every t > s.

To prove (2.13), let us consider the equation

d
Az = 78 [Z,» R;(1)* — K(t)]dt S ZR0dw;().  Zi=1. (2.16)
j=1
Once more the solution is unique. By It6 formula for products one gets
d (ZfAf) = 0. Together with Z{ A} = 1 and continuity in ¢, this gives ZJ A} =
for every + > s. By multiplying on the right by (A‘,")_l, which exists, we get
Z; = (A‘Y)71 for every t > s and (2.13) is proved.

t
By using (2.9), we have A?(A‘?)’1 = AfA?(A?)’l = A} and (2.14) is proved.
O

2.2.3 The Square Norm of the Solution

Let us now study the behaviour of the norm of ¥ (7), which will be a key object in
the whole construction.

Proposition 2.9. We have

Iy O = lIvol® + /0 (W] (K@ + K@) + X, Ri6)Ri(5)) ws)ds

d t
+ Z/o (W (I(R;(s) + R ()P (s))dW;(s). (2.17)
j=1
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Moreover, VT > 0,

T
Eq [/O Z (W OI(R; (1) + Rj(t)*)w(t))izdti| < 400, (2.18)
J

and the stochastic integral in (2.17) is a square-integrable continuous martingale.
Proof. By It6 formula, we get

Ay O = FOIAY©0) + (Y@1Y (@) + (dy@)]dy (1)
= (YOIKOP @)z + Y (WOIR;(OP)AW; (1) + (KO ()] (1) dr
j

+ Y (R OVOI @)W, + Y | Ry 0] de
J J

= (b )] (KO + K0 + X, Ry R;(0) p(0)ds
+ D WOIR;(0) + R () dW; (1),
J

which gives (2.17).

For every x € JH, let P, be the one-dimensional orthogonal projection on the
Hilbert ray containing x and recall that R;(z)*P,R;(t) > 0 and R;(#)*
(I — Py)R;(t) = 0. Then, we have

J

S IR O+R; (1) )x)> <4 Y [l Ri0x)[* = 4 1x ]2 D (x| R;(1)* PR (1))
J J

< 41> YR 0 R (0x) < 41x | X, Ry Ry o)) :
J

so, the following estimate holds: Vx € I,

S IR 0 + R = 4l |2, R R0 @19)

J

By using this inequality and the L? estimate (2.4) given in Theorem 2.4, we get
T
Eq [ f S WOIR; () + Rj<r>*>w(r)>2dt}
0 -
J

=4 sup |, Ry Ry TEq [Osup ||w<z>||4}

te[0,T] <t=<T

<4 sup |5, ®io R0 TC@, T (14 Ioll) < +oo,
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and (2.18) is proved. Then, the integrand process (¥ (t)|(R;(t) + R;(t)*)¥(t))

belongs to the space M? for every j (Sect. A.3.1), and the stochastic integral in
(2.17) is a square-integrable continuous martingale (Sect. A.3.3). O

2.3 The Linear Stochastic Schrodinger Equation
For the physical interpretation anticipated in Section 2.1 and discussed in Sect. 2.4,

we are not interested in (2.2) in general, but only when ||y()||> is a martingale of
mean one and can be interpreted as a probability density with respect to Q.

2.3.1 A Key Restriction

In order to reduce ||y ()||> to a martingale, we need the vanishing of the integrand
in the time integral in (2.17) for every initial condition, i.e.

K@)+ K@)+ Rj(t)R;(t) =0,
J

which is equivalent to the following assumption.
Assumption 2.10. The operator K (¢) has the structure
d
. 1 «
K(t) = —iH(®) - 5 D R R;(1), (2.20)
j=1

where H(t) is a self-adjoint operator on J{, called effective Hamiltonian of the
system.
By Assumptions 2.3 and 2.10, the function 7 — H(t) is measurable and

VT € (0, +00), sup [|[H(@®)| < +oo. (2.21)
1€[0.T]

Proposition 2.8 gives ||¥(¢)]| > 0 and we can define the continuous processes

V(@) =yl v, (2.22)

m;(t) = (Y 0)|(R;() + R;(0)*) ¥ (1)) = 2Re (Y (1) |R; (DY (1)). (2.23)

Theorem 2.11. Under Assumptions 2.2 and 2.10, the square norm v ()] of the
solution of the SDE (2.2) is a positive, continuous martingale and
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t 1 t
||1/f(f)||2=||1/f0||2exp{2|: /0 myAW(5) - 5 /0 m,.(s>2ds]}. (2.24)
J

Moreover, Vp > 1,

sup Eq [llv))*] < E@[ sup ||¢(t>||ﬂ < +oo. (2.25)

0<t<T 0<t=<T

Proof. Being an It6 process, v is continuous and this holds for its square norm.
By Assumption 2.10 and the definitions (2.22), (2.23), equation (2.17) reduces to

IO = ol + f m;(s) ¥ ()|I> dW;(s). (2.26)
. 0
J

By Proposition 2.9, the positive continuous process ||1/()||* is a square-integrable
martingale. By taking m as given, (2.26) is a Doléans equation whose solution is
unique and given by (2.24) (cf. Proposition A.41 and (Egs. (A.23), (A.24), (A.25),
(A.206)).

By inequality (2.19), we have

)

> om0 = 4|2, R0 R0
J

T
/ >omierde <4 sup |5 R0 R0 T 2.27)

0o t€[0,T] ’ ’
Then, the last statement follows from Proposition A.42. O

In the following, we shall call linear stochastic Schrodinger equation the original
SDE (2.2) for an J{-valued process ¥ under all Assumptions 2.1, 2.2, 2.3 and 2.10,
ie.

1 d d
dy () = | —iH@®) ~ 5 D ORiO R0 | () de + Y Ri(OY (1) dW; (1)
j=1 j=1

Y (0) = v, Yo € H.
(2.28)

Of course, the solution is the continuous, adapted stochastic process ¥ (t) =
A%, where the stochastic evolution operator A and its adjoint AS* still satisfy the

d
SDEs (2.7) and (2.11) with K (t) = —iH(t) — % > Rj(t)"R;(t) and H(t) = H(1)".
j=1
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2.3.2 A Change of Probability

Assumption 2.12. The initial condition is normalised: ||y = 1.

% (¢)]|* being a positive martingale with Eq [||1,ﬁ(t)||2] = 1 by the discussion in
Sect. A.5.3 and Remark A.46, we have the following.

Remark 2.13. For any T > 0 the equation
Pl (F) = / 1(T, )| Qdw) = Eg [1£ly (D],  Fedr, (229
F

defines a new probabilit}//\ law @17/0 on (§2, F7) equivalent to QT’ the restriction of Q
to Fr. Let us denote by ]Ei0 the expectation with respect to ]I”io.

Moreover, {ﬁfm, T > 0} is a consistent family of probabilities, in the sense that

0<S<T, FeJs = P (F)=P5 (F). (2.30)

Then, Girsanov theorem (Theorem A.45 and Proposition A.47) gives the fol-
lowing fundamental result. The class of integrand processes L2 is defined in Sect.
A3.1.

Theorem 2.14. Under the law ﬁP\’dT/O defined by (2.29), the continuous processes

Wi@t) = Wj(t)—/ mi(s)ds,  j=1,....d, tel0,T], 2.31)
0

are independent, standard Wiener processes with respect to the filtration (F,).

Given d stochastically integrable processes G j(t), i.e. G; € L2, the Ité integrals
Zj fOI Gj(s)dﬁ/j(s) and Zj fot G ;(s)dW;(s) are defined for every t € [0, T], each
one under its corresponding probability law, and we have Q-a.s. and @go-a.s.

d t d t d t
Z/ Gj(s)dwj(s)=2f Gj(s)de(s)—Z/ Gi(s)m;(s)ds, Vrel[0,T].
j=1"0 j=170 j=170

(2.32)
Proposition 2.15. The processes @, m, W are (5?)-adapted.

Proof. The statement follows immediately from the definitions (2.22), (2.23), (2.31)
and Proposition 2.7. O

2.4 The Physical Interpretation

Let us begin with a list of the mathematical objects involved by the linear stochastic
Schrodinger equation (2.28) and their heuristic interpretation in the theory of con-
tinuous measurements, in analogy with the traditional representation of an instanta-
neous discrete measurement (Sect. 2.1).
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Yy is the initial state of the quantum system;

(52, J) is the measurable space of the possible outcomes of the experiment;

F; is the collection of events verifiable already at time ¢;

the d stochastic processes W;(t) are the output of the continuous measurement
and their derivatives Wj (t) can be interpreted as instantaneous imprecise mea-
surements of the quantum observables R;(r) + R;(¢)* performed at time ;

° 5? is the collection of events verifiable already at time ¢ which effectively regard
the continuous measurement;

® the stochastic linear state transformation ¥y +— ¥ (t) = A?lﬂ‘() gives both the
probability of the events, which could occur up to time ¢, and the state of the
quantum system conditioned on the observation in the time interval [0, 7]:

- ﬁlsio is the physical probability law of the events which could occur in [0, T'];

- @(r, w) is the state of the system at time ¢, conditioned on having observed
the trajectory s — W(s, ) up to time ¢.

When the canonical realisation of the Wiener process is used, i.e. when the only
output of the experiment is the diffusive process W, the outcome w itself can be
identified with the trajectory of the output; indeed in this case we have W(s, w) =
w(s) (see Remark A.23). Then v (¢, w), || (¢, w)|| and {//\(t, ) depend only on w(s)
for 0 < s < t. In particular, ||y (z, w)||? is the density of probability (with respect to
the Wiener measure) of observing W(s) = w(s) in the time interval 0 < s <.

When (.Q, F,(F)), Q) is bigger than the canonical realisation of the Wiener pro-
cess, still ¥ (¢, w), ||V (f, w)| and @(t, ) depend only on W(s) for 0 < s < ¢
because the stochastic processes ¥ (), ||y (¢)|| and @(t) are adapted to (5?) and
thus ¥ (t, w) = Y (t, @) if W(s, w) = W(s, ') for 0 < s < r (maybe except for a
set of null probability).

Therefore, even if from a mathematical point of view it can be convenient to work
with a Wiener process W with increments independent of the past in an arbitrary

filtration (J;), from a physical point of view the relevant filtration is always (5?): it
contains all the events regarding the output W of the measurement and, moreover,
only these events really condition the system state @

What we have to do now is to show that this interpretation is consistent with the
general formulation of quantum mechanics. However, let us first add two further
remarks on the physical interpretation.

The use itself of linear SDEs to assign the evolution of ¥/ (¢) implies a Markovian
hypothesis about the observed quantum system and the measurement process: for
every 0 < s < t, in spite of all the information available at time s (the initial state
Yo and all the events in Fj), the conditioned state f/f\(s) at time s is sufficient to
evaluate the conditional state /1/;(t) at time ¢ (together with the output W in [s, 7], of
course).

There are two typical but physically different interpretations of the linear stoch-
astic Schrodinger equation (2.28). Sometimes it is obtained by starting from a free
closed evolution of the quantum system and introducing the continuous measure-
ment as a perturbation, by adding a stochastic term in the evolution equation for
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every continuously monitored quantum observable R;(¢) + R;(z)*. In this case, one
can think of possibly switching off the measurement (R;(¢) = 0), and the linear
stochastic Schrodinger equation (2.28) reduces to an ordinary Schrédinger equation
dy(t) = —iH(t)y(t)dz. Other times, the linear stochastic Schrédinger equation
(2.28) is obtained by starting from an open evolution of the quantum system H
and introducing continuous measurements which acquire information on the system
without introducing extra perturbations (e.g. the continuous monitoring of an atom
by the detection of its fluorescence light). In this case, the “mean” evolution of the
quantum system is not modified by the continuous measurement, but it is “unrav-
elled” in many different trajectories according to the observed output W.

2.4.1 The POM of the Output and the Physical Probabilities
First, we introduce properly the positive operator-valued measure (see Defini-
tion B.1) associated with the continuous measurement in the time interval [0, T'].

Taking the stochastic evolution operator A associated with the linear stochastic
Schrodinger equation (2.28), we can define

Er(F) := / A ()" AN 0)Qdw) = Eq [1rAY AY], FeJr. (233
F

Then, Er is a positive operator-valued measure (POM) on the value space
(82, F7). Indeed, it is positive and o -additive by construction and, moreover,

WolEr(2)¥0) = Eq [(Wol AT AGvo)] = Eq [l (DIF] = Ioll®, Vo € I,
which implies ET(.Q) = 1 by the normalisation of .
The POM E7 assigns to each event in F7, according to the axioms of Sect.

B.2.1, just the probability Pgn that we called physical probability. Indeed, by (2.10)
and (2.33) we get

(ol Er(F)yo) = Eq [{Yol AT A7 ¥0) 1¢] = /F W (T, )” Qo) (2.34)
and, by (2.29),
(ol Er(F)o) =B, (F),  VF e Jp, (2.35)
which is the standard formula for probabilities in the Hilbert space formulation of
quantum mechanics.

Moreover, {ET T > 0} is a consistent family of POMs, in the sense that

0<S<T, FeFs = Er(F)= Es(F). (2.36)
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Indeed, forevery0 < S < T, F € Ty, A; being independent of F, one gets
Br(F) = Bq [1,AY 4] = Eq [1r A A 45 A1)
= 5o [1pA Bo [AY A3103] 43] = Eq [1£4% Eq [4747] 41
= Eq [17AY AY] = Es(F).

Another way to look at (2.33) is to say that A% AY is the density (or Radon—
Nikodym derivative) of the POM E, with respect to the probability measure

Q = (2.37)
By recalling that A% AY is F,-measurable, we can write
E(do) o o
——=A *A . 2.38
Qo) (@) A (@) (2.38)

We already discussed the fact that the filtration (J,) could be unnecessarily large:
the natural value space, when the output of the continuous measurement is the

process W in the time interval [0, ¢], is (£2, 5?). Moreover, we could perform the
measurement only in the time interval [s, #]. As in the evolution equations only
the increments of W appear (through the dW term), the natural candidate to be
the output in the time 1nterva1 [s, ¢] is the process W(r) — W(s), r € [s, t], which
generates the set of events D Thus, analogous to (2.33), we define a POM E;’ on

the value space (2, @t) by

S

EN(F) = / Aj(@)' Al (0) Qo) = Eg [1FA*AS],  FeD,. (239

By this definition, we have that EO is the restriction of E, to D Also the new
POMs (2.39) are consistent with respect to 7. In order to use E g for an arbitrary
s > 0 one needs to know the system state at time s.

By noticing that the positive operator-valued random variable Aj*A{ is 5:-
measurable, we get that the analog of (2.38) is

EYd0) e
———— = A7 (WA (). (2.40)
Q(dw)|5;

Summing up, the POM representing the output of the continuous measurement
in the time interval [s, 7] is ES Even if s = 0, the relevant POM is E0 not E, We

can also say that the phys1cal probability, the probability of the events determined
by the output in the time interval [0, T], is ]P’T |—O
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The probability @50 of events in the (augmented) natural filtration of W is
obtained from a POM, as prescribed by quantum mechanics, whose value space

. =0 . .
is (.Q, DT). We interpret W as the output of a continuous measurement performed

on the quantum system H in the time interval [0, 7] and ﬁ’ﬁo as the corresponding
physical probability. Moreover, from Girsanov formula (2.31) we have

W(t):W(t)—i—/ m(s)ds, tel0,T1,
0

which says that the output process W(¢) decomposes to the sum of a Wiener process
W(r) and a process fot m(s)ds with trajectories of bounded variation. Let us remark
that, even if it could be suggestive to interpret the two addenda as noise and signal,
the two processes are typically not independent.

Remark 2.16. Here it is worthwhile to be more precise on the notion of output of
the measurement. As already said, the choice of the two-time o -algebras D; or 5; ,
which are determined by the increments of W, reflects the fact that we consider as
events which can be observed in the time interval [s, 7] only the events related to the
increments of W with extreme times inside [s, 7], not the ones determined by W (r)
with r € [s, t]. So, in this time interval, we observe the increments W (r) — W(u),
s < u < r < t,or functionals of these increments. “Morally” the output is the
singular process W(r), r € [s,t]. In the whole book we always understand this
interpretation, even when we write that the output is W.

2.4.2 The A Posteriori States

Now we would like to justify the interpretation of @(t) as the conditional state of the
system at time 7, i.e. as a posteriori state at time t (cf. Sect. B.4.3.2). We shall do this
properly in Sect. 4.1.1, where, in a more general setup, we shall introduce explicitly
the instruments. In the present paragraph, we only show that this interpretation is
consistent with the present construction.

Let us consider an event F regarding the output in the time interval [s, ¢], that is
Fe 5;. If we evaluate its probability at the beginning of the experiment, when we
only know that the initial state of the system is ¥, then we get ﬁ?fo(F ). On the other
hand, if we reconsider the same event F at time s, when we have gathered all the
information coming from the measurement in the time iﬂterval [0, s], then its prob-
ability can be updated and it is given by P), (F|F;) = E], [17|F] (Sect. A.1.2.2).
This is an Fs-measurable random variable, as it depends on what is observed up to
time s. The following proposition states that it can be computed using the POM Ef
defined by (2.39) and just @(s) as the conditional state of the system at time s.

Proposition 2.17. Forall F € 5;, 0<s <t <T, wehave

B! (FIF,) = (§6)|E}(F)P(s) = B, (FID)). (2.41)
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Proof. For all F-measurable bounded random variables Y, we get

B} [1rY] = Eg [Iv Ol 17Y] = Eg [(Yol AP A AT Alyig) 1 £ Y |
= Eq [(Yol AT Eq [17AT* A} |F,] Alv) Y]
= Eq [(¥ ()| Eq [1rAJ* A} ] ¥ (s) Y]
=K} [(W6)|Eg [1rATFA ] ¥ (o) Y]

we have used the equality ¥ () = AS A%, and the independence of 17 A*A$ from
s, which follows from Proposition 2.7. This computatlon proves that ET [17]Fs]

(1//(v)| Eq [ A;*At] W(s)>. By using the definition of E; we have ]’Ei0 [lplffr 1=
(W()|E;(F)¥r(s)). By the fact that D, c F, and that (W|ES(F)(s)) is D.-

measurable, we have
By, [16[D] = B, [BS, 117151 D]
=&}, [FOEEI)D] = @I EETe). o

Remark 2.18. As suggested in the presentation before the proposition, by comparing
(2.41) with (2.35), we see that we can interpret the state @(s) as the conditional state
of the system at time s; we call ﬁ(r) the a posteriori state at time ¢. Considering also
(2.34), we call ¥ (t) the non-normalised a posteriori state at time t.

With this interpretation in mind, we consider again the output and, thanks to the
representation

Wj(t):vT/j(t)+/o (V)] (R;(5) + R;(s)*) P (s))ds, tel0,T], (242

we say that Wj(t) is an imprecise measurement of the quantum observable R;(t) +
R;(t)*. We shall consider again this interpretation in Sect. 4.3.

Remark 2.19 (A phase change). Let us consider now the normalised random vector
o1, 0) = eIy, ), where {a(r), t > O} is an arbitrary (D )-adapted real
process. By substltutlng ¢>(t) to W(t) in (2. 41) this formula continues to hold true.
This means that ¢(t) has the same right of W(t) to the name of “a posteriori state”.
But this is nothing more than the stochastic version of the usual statement in quan-
tum mechanics that a phase change of the state vector does not alter any physical
quantity.

2.4.3 Infinite Time Horizon

Given the initial state ), we have a consistent set of probabilities @TU, T > 0. As
stated by Theorem 2.14, each ]P’VT,0 modifies the properties of the stochastic process
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W, in the corresponding time interval [0, T']. A natural question is whether it is
possible to have a unique probability for 7 — +oo. This would be useful, for
instance, to study the long-time behaviour of W under the physical probability. By
the discussion in Sect. A.5.5, we know that this is possible when the consistent
measures are defined on standard Borel spaces. Therefore, if we consider the new
probabilities restricted to D(t), the natural (not augmented) filtration of W, we have a
consistent set of probabilities on standard Borel spaces and we get that there exists
a unique probability P7° on DY, :=\/,_, D such that for every T > 0

Py (F) =P (F), VFeD). (2.43)

Nevertheless, even if we choose F = Dgo, e/qch augmented o -algebra 5(; is
strictly greater than DY and the limit probability 7, typically does not agree with

f%o on the whole 5‘; C DY.. In order to work inside the filtration (D), it is enough
to consider (D?)—adapted versions of the processes A?, w(t), @(r), m(t), W(t). What
we lose is that we are no more sure to have continuity in time for every w.

Just to have an example of the differences, let us consider the POMs. By restrict-
ing ES to D3, we get from (2.40)

ES(dw) o =Eqg [A7* A} 1D} ] (0)Q(dw) D (2.44)
but Eg [A*Af D! | (0) = AS*(w)Af(w), Q-a.s.
2.4.4 The Conservative Case
A very particular case is when the operators R () are anti-selfadjoint [23]:
Ri(t) = —iV;(1), Vi) =Vi@). (2.45)

Equations (2.%3), (2.26), (2.45) give m;(t) = 0 and (for [[Yoll = 1) YOI =1,
Vt. This implies IPTO = Qy7, VT > 0, so that the randomness does not depend on the
quantum system: the W; are pure noises and there is no true measurement on the
system.

The linear stochastic Shrodinger equation becomes

1
dy () = —i[H(t)dt +> Vj(t)de(t):|lﬂ(t) -5 D OVieynde,  (2.46)
J J

and one can check that (A%)* and (A$)~! satisfy the same SDE: (A$)*AS = 1.
Thus the system undergoes a stochastic unitary evolution: the quantum system has a
unitary evolution in a random environment which determines the stochastic potential
acting on the system. Even if W is observed, the measurement does not acquire any
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information on the quantum system itself, but it only detects which unitary evolution
occurs among the possible ones.

This class of stochastic Shrodinger equations was introduced as a model of dis-
sipative evolution, with W not observed. In this case, all the physical quantities are
obtained with a mean with respect to W. For an example of this approach to quantum
open systems, see [2].

2.5 The Stochastic Schrodinger Equation

A key point of the theory is to show that the a posteriori states satisfy an SDE,
closed in @(t) itself. The structure of such an equation is not of usual type, but it
is possible, after some work, to arrive at a theorem giving existence and uniqueness
of the solutions. Different approaches to the existence and uniqueness problem, in
finite and infinite dimensional Hilbert spaces, are given in [24, 27, 29, 30].

2.5.1 The Stochastic Differential of the A Posteriori State

Let us compute the stochastic differential of the a posteriori state @(t) =
v (@)|~" ¥ () under the physical probability ]P’]io and in terms of the new Wiener

process W.To put in full evidence the dependence of the differential on @(t) itself,
it is useful to introduce the quantities
nj(t, x) = (x|R;(t)x), t €[0,+00), xeX. (2.47)
Note that

m;(t) = 2Ren; (t, (1)) . (2.48)

Proposition 2.20. Under the probability @TU, the stochastic differential of f/;(t),
0<t<T,is

Ay =) [Ri(t) = Ren; (1, ()] V() dW; (1)

J

_ I _ _

+| KO+ (Ren; (1. 70)) R0 =5 3 (Ren, (1, 7))’ | P dr.
J J

(2.49)

Proof. Itis enough to apply It rules to @(t) = || (t)||~" ¥ () under the probability
]P’io. By using (2.42) we can transform (2.2) into
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dy(t) = Z R;()y (1) dW; (1) + (K(t) + ij(t)Rj(t))x/f(t) dr.
j j

By using (2.24), (2.42) and the fact that || (¢)|| > O with probability one, we get

Iy~ = exp{—% ZJ: |:/0 m(s)dW;(s) — %/0 mj(S)zdS]}
= exp{—% 2}: |:/0 mj(s)de(s) + %/0 mj(s)zds]};

by It6 formula, this gives

1 ~ 1 1
Ayl = vl { —32 [mj<r>dwj<r> +3 mj<r>2dt] 3 Zm,-@)zdt}
J 7

1 ~ 1
=5 oI Y [m JOAW; 1)+ 2 m ,-(z>2dz} .

J

Finally, by using the Itd rules for the differential of a product, we obtain
dy(t) = Y ROV (@) dW;(1) + (K(z) +Y m ,-(t)R,-(t))@(r) dt
J J
—% > omiy) dvAV,u)—% > omi ) dr—% D omiOR; (Y (t)de
J J J
- Z [R,-(;) - "”T(t)} V(1) dW; (1)
J mj(t)2

+ [K(t) + Z mjz(t) R;(t) — Z T}{ﬁ(r) dr.
J

J

By using the notation n (¢, x) introduced in Definition (2.47), we get (2.49). O

2.5.1.1 A Stochastic Phase Change

Let us stress that no physical consequence depends on the phase of @(t): consider
the presentation of quantum mechanics given in Appendix B, the POM (2.33), the
probabilities (2.35), the processes m; (2.23), the output W (2.42), etc. So, we are
allowed to make any change of phase on @(r), even a stochastic one. In this order
of ideas, we introduce the new normalised vectors
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—_~ 4 —~ -~
o) = exp{ —i Z/ Ren; (s, ¥(s)) Imn; (s, ¥(s)) ds
. 0
J

=i Z /0 Imn; (s, ¥(s)) dVAVj(s)}ﬁ(t). (2.50)
J

The vectors a(t) have the same right to the name of “a posteriori states” as the
vectors 1/f(t) By applying It6 formula to (2.50) and by using the differential (2.49)
and the fact that n; (z, I/I(Z‘)) = n; (1, ¢>(t)) we get the stochastic differential of

B(1):

dp(t) =Y [R;j@®) = n; (t.¢(1)) ] () dW; (1)

J

[K(t)—i—ZnJ O Rj(1) — = Z|n, o) F(r)dz. (2.51)

Thus the choice (2.50) gives a simple expression for da(t) which is commonly
used in the literature, just as (2.49).

2.5.2 Four Stochastic Schridinger Equations

Both equalities (2.49) and (2.51) are closed equations, in the stochastic processes I/ﬂ\
and ?ﬁ respectively, and both are known under the name of stochastic Schrodinger
equation [9]. However, we got them for normalised vector processes and thus if we
want to interpret them as SDEs for J{-vector processes, we need to extend them also
to non-normalised vectors. There is not a unique way to do such an extension and
we present for each of them two extensions, the most natural ones.

Equalities (2.49) and (2.51) involve the quantities n; (¢, x) for normalised x. The
first type of extension is to allow for a non-normalised x in the quadratic form (2.47)
defining n;; in this way polynomial coefficients are obtained. The second type of
extension is to write n;(t, x)/ [|x I? everywhere n; appears in the differentials of
normalised states and then to extend the resulting expressions in the natural way to
non-normalised x; in this way we obtain coefficients with at most linear growth.

Thus, we obtain four nonlinear stochastic Schrodinger equations (¢ = 1,2, 3, 4)

dx‘@) = Z L (s, X)X @) dW,(0) + K (r, X)) X (1) dr
j (2.52)
XZ(O):.X(), )C()Gg‘f,

where the quantities Lﬁ(t, x) and K*(¢, x) are defined in the following; they are
introduced in order to write the four SDEs always in a compact form.
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The extension of the stochastic Schrodinger equation for @ with polynomial

coefficients is obtained by taking

Li(t, x) = R;(1) — Renj(t, x), (2.53a)
1
K'(t, x):= K@)+ ;(Renj(t, X))R;(1) — 5 Z(Renj(t, X))’
J
= —i|Ho)+ % 3" (Ren;(t, ) (R;(1) — R; (1))
J
(2.53b)

1
-3 ZL}(z,x)*L}(t,x).
J

The extension of the stochastic Schrédinger equation for $ with linearly growing

coefficients is given by the choice

n;(t. x) (2.54a)
[lx 12

K20 = K0+ 3 (Re ) gy — 137 (Re 202 ’
o ) el )24 Il

. i ‘(t, ) *
—i| HOO)+ 5 > (Re L X ) (Rj(t) — R;(1)*)

2
- I

1
-3 ZLﬁ(r,x)*Lﬁ(r,x).
J

L3(t,x) := R;(1) — Re

(2.54b)

The extension of the stochastic Schrodinger equation for a with polynomial coef-

ficients is the one with

L3(t, x) := R;(1) — n;(t, x), (2.55a)
K(t,x) == K(t) + ;m&m - % ; Injt. )
= —i|H@) + % Z (n;(t, ) R;(t) — nj(t, \)R;(1)")
J
(2.55b)

1
-3 > L 0L, x).
J
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Finally, the extension of the stochastic Schrodinger equation for a with linearly
growing coefficients is obtained by taking

. t,
L‘}(t,x) = R;(t) — nﬂ( ”f) , (2.56a)
’ X
K4t x) = KO+ Y ) o) > st 01
,X) = ———— R;i(t) — _
i L R B
. i n;(t, x) n;(t, x)
= —i|H@®+ = ! Ri(t) — -2 R;(t)*
2 ;( T T
1
-3 ZLj(z,x)*L‘;(z,x). (2.56b)
J
We are using the convention that
. [,
"f”( ”f )0 for x=0. (2.57)
X

When ||x|| = 1 we have L'(z, x) = L?(t, x) and K'(z, x) = K?(t, x) and the
SDE (2.52) for ¢ = 1, 2 reduces to (2.49) when xo = vy, if one proves that the
solution stays normalised for all . However, the two equations are different when
the initial condition has no norm one. Similarly, for ||x| = 1 we have L3(t,x) =
L*(t, x) and K3(t, x) = K*(¢, x) and the SDE (2.52) for £ = 3, 4 reduces to (2.51)
when xo = ¢y, if one proves that the solution stays normalised for all ¢.

2.5.2.1 The Conservative Case

This is the case R;(t)* = —R () of Section 2.4.4, corresponding to dissipation, but
no effective measurement. By setting R;(t) = —iV;(¢), with V;(¢)* = V;(¢), we find

Ren;(t,x) =0, (2.58)
Lit,x) = Li(t, x) = —iV;(1) (2.59a)
K't,x)=K*(t,x)= K(t) = —iH(t) — %Z Vi(t)*, (2.59b)
J
Li(r, x) = —i[Vi(t) = (x|V;(t)x)], (2.602)
Ly, x) = =i [V;(0) = lIx]I7> (x| V;(0)x)] (2.60b)
K3(t,x) = —iH(t) — % > L x) "Lt x) (2.60c)
Jj

K4, x) = —iH(t) — % Z Li(t, )" Li(1, x). (2.60d)
J



2.5 The Stochastic Schrodinger Equation 33

Then, for £ = 1,2 the stochastic Schrodinger equations (2.52) are linear and
they coincide with the corresponding linear stochastic Schrodinger equation (2.46),
while for £ = 3,4 they are nonlinear, but only due to a non-influent phase
factor.

2.5.2.2 A Peculiar Case of Continuous Measurement

In the literature, when the case is considered of usual observables followed with
continuity in time, a common choice is to take R;(1)* = R;(t) and to iden-
tify the continuously measured observables with 2R;(¢). In this case, the four
stochastic Schrodinger equations (2.52) reduces to two, with a particularly simple
form:

Imn;(t,x) =0, (2.61)

Lit, x) = L(t, x) = R;j(t) = n;j(1,x), (2.62a)

K'(t,x)= K3(t,x) = —iH(t) — %Z [R;(t) —nj(t, x)]z, (2.62b)
J

Li(t,x) = Li(t, x) = R;j(t) — [lx[ > n;(t, x), (2.62¢)

K?(t,x) = K*t,x) = —iH(1) — %XI: [Ri(t) = llx| "> nj(t, x)]z. (2.62d)

2.5.3 Existence and Uniqueness of the Solution

We have introduced four nonlinear SDEs (2.52) of the type of (A.14) with drift
coefficients b(x, 1) = K'(t, x)x and diffusion coefficients oj(x,t) = L‘jz.(t, X)X,
£=1,...,4,j=1,...,d, given by (2.53), (2.54), (2.55) and (2.56).

Remark 2.21. For every finite time horizon 7" > 0 the following statements hold.

® The drift and the diffusion coefficients of the four SDEs (2.52) satisfy Hypothesis
A.25 (measurability condition).

® The expression (x|b(x, 1)) + % Zj HGJ(X, t)”2 goes into

(x|K(t, x)x) + % ; LS x)x I

—i{x|H(t)x) +1 ) _(Ren;(t, x))(Imn;(t, x)), (=1,
/

=\ —ix|H@®)x) + —5 i |2 Z Ren;(t,x))(Imn;(r,x)), €=2,  (2:63)

—i(x|H(t)x), ¢=3,4.
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Therefore, the four sets of coefficients satisfy also the monotone condition
(Hypothesis A.35) with C(T') = 0.

® By construction, the coefficients of the SDEs (2.52) with ¢ = 2, 4 satisfy also
the linear growth condition (Hypothesis A.34).

Lemma 2.22. Let T be any finite time horizon. Then

® the coefficients of the SDEs (2.52) with £ = 1, 3 satisfy the local Lipschitz con-
dition (Hypothesis A.33);

® the coefficients of the SDEs (2.52) with £ = 2, 4 satisfy the global Lipschitz
condition (Hypothesis A.32).

Proof. The coefficients of the SDEs (2.52) with £ = 1, 3 are polynomials in the
components of x; together with the boundedness Assumption 2.3, this gives by
standard arguments that the local Lipschitz condition (A.17) holds.

Let us now consider the case ¢ = 2, 4. Given two vectors x, y in J, let us set

5. X . Y

xi=— yi=, P, = [%) (%], Py = 9)(3I, (2.64a)
flx]] Iyl
. (1 — Py)x . (1 — Py

R o= 2 Ppo= —— (2.64b)

T @ - P« ST A= eyl

With these notations we can write
L3, x)x = (1 — POR;(1)x, (2.65a)
Li(t, x)x = L, x)x +i[Imn; (1, $)] x, (2.65b)
1
Kﬁumx:K0n+gmx»—5&aLm, (2.65¢)
gt x) ==Y Ri()PR;(t)"x. (2.65d)
J

KZ(t, x) = K4(¢, x) +i; [Imnj (t, fc)] R;(t)x + % ; [Imnj (t, 2)]2)( .
(2.65¢)

By using

2 2
lx —yI* = @ = Px|” + || Pyx — y|” = @ — POylI* + 1 Pey — x|,
Iyl =Ny —x +xll < lly —xll+lxll,  lxll < lx =yl +lIyl,

we get

[@ - Pyx|| < lly—xIl, l@—proz| <1, &I,
Iyl @ = PE| < lly —xIl @ = Px|| + (@ — Pox|| <20y —x]l,
@ —Poyl <lly—xl, @A -PII <L lxllI@X—=P)5I<2ly—x|.
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|

$IP, Pyx) — (| Pcy) — (FI(L — Po)y)|
PIPPy(x — )|+ [(FI(L — Pyl
lx =yl + 1L — POyl <2]x — I,

IR I = [Ro [ IR = | R Ro)]| = [, R R;0)]

Let us check the global Lipschitz condition for the various coefficients.
Consider first L*:

Yo lLie = Liw y|F = Y@ - POR,(x — @ = PR, ()|’
7 i
= Z (= Po)[R;()x — (L — Py)R;()y] ”2
J
+ 3P - PR,y
J
=Y Ja-P)[@-P)R;OG—)+ PRy 0] |

J

+ ) [(@ = PRIR; (1))
J

i

we have
PR S LIONIE B (LR S W O |
j = i |@ = PYZ|* VIR (0 R; (1))
J

= |Z, RO RO @ = Pos|P Iy = 4| 2 R R0 1y = 512
and

2ol = Pl = POR; @0 = )+ PRy 0] |

j < Z (J@ = P@ = PYR;()x = )| + @ = POPR;(0)x )

J

< S (|Ri @ = )| + 1@ = POII|(BIR;(1)x)])?
J
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<23 (&0 — | + 1@~ P3P |R;00x])
J
< 2|, R R0 (I = yIP + 1 = POSIP IxP)
= 10|, RO R0 1x = yIP,
and so

2
> I ox = Ly < 14 sup |25 R0 Ry 0| = 1P,
i t€[0,T]
J

Therefore, L3(z, x)x is globally Lipschitz.
We now consider K*: we have

lgt, ) — g6, M)l = | 2, RO(PeR;0°x = PyR;0*y)|

< |2, Ri(O@ — PYPR (1)

+ H Zj Rj(l)Pny(]]- - Py)Rj(t)*x

+ |, Ri)P, PP R (1 (L — Px H
+ [, Ri)(Py PPy R () Pyx — PR (1)) H
= {| =, BorROGEIR W

+] 5, ROl IR e

[(31%)1

+ |2 RiOBGIR 00| 1612 ] @ - P

+ (120, RO GIR;(1*9) | [1912) 1 (91x) = (31y)]

={|z; moE) RO

+5; RO LR 02)

+ |2 RO GIR (050

2|2, ROBGIR |} e - 31,

lg(t.x) = gt I < 5> IROI I1x =yl

=5d sup |, Ry Ry )| Ix = 1.
t€l0,T]
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Moreover,

| Peg(t, x) — Pyg(t, y)|
= | PyPeg(t, x) + (L — P))P,g(t, x) — PyPeg(t, y) — Py(1 — Pog(t, y)|
< |@-=PyP.gt, )| + | Py — Pg, )| + | Py Pe(g(t, x) — g, »)) |
= || — Py)Peg(t, x)|| + [(FI(L — P)g(t, )| + || Py Pe(g(t, x) — g(t. )|
< @ = Pox|| [{21g(, &)1 + I — POyl g, Il + g, x) — g, y)

=7d swp | %, R0 R0 I =yl
t€[0,T]

Therefore, K*(¢, x)x is globally Lipschitz.

We now consider L? and K2, which are related to the previous coefficients by
(2.65). The differences with respect to the terms with £ = 4 have similar structures;
it is enough to check one of such differences:

i (e, 8)x =t 9) ] < [nj (e $) [l =yl + | (2, %) = (2 9) 1y
< 2[R Ix = ¥l + [n; (2. 2) Iyl = (SIR; (1))
<2 | RO e =yl + | 1515 = el 3] [ R;O] < 3[R0 1 = 31

Therefore, L2(¢, x)x and K (¢, x)x are globally Lipschitz. ]

Theorem 2.23. Every one of the four SDEs (2.52) admits a strong solution in the
time interval [0, 400). Pathwise uniqueness and uniqueness in law hold. Moreover,
the norm of the solutions of the equations with £ = 2, 4 is conserved,

|X20)* = X0,  [x‘o) = |x'o]. (2.66)

while for £ = 1, 3 we have

1= xol’ = (1- x|

X exp{—Z E / Ren; (s, X'(5)) [de(S) +Ren; (s, X“(s)) ds]}. (2.67)
~ Jo
j

Proof. Uniqueness and existence of solutions is by Remark 2.21, Lemma 2.22 and
Theorem A.36.
By computations similar to those in (2.17), one gets

dx o)’ =2 (1= [X0]") YoRen; (1. X)) dW;0), for ¢ = 1,3,
J

d|x‘@)|* =0, fore=2,4.
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Then, the statements about the norm follow from Proposition A.41 applied to the
stochastic processes Z(t) = 1 — || Xz(t)”z. O

Thus, in the case of polynomial coefficients (¢ = 1, 3), the solutions X* of the
stochastic Schrodinger equation move inside the unit ball if || X40) || < 1, on the unit
sphere if ||X‘3(0)|| = 1 and outside the unit ball if || X*(0)| > 1. In the case of lin-
early growing coefficients (¢ = 2, 4), the solutions X of the stochastic Schrodinger
equation move on the corresponding spheres of radius H X40) H

If we take the four equations with the same normalised initial condition, by
uniqueness, we have that the solutions of the equations of number 1 and 2 coincide
and the same holds for the solutions of numbers 3 and 4. Moreover, the solutions of
1 or 2 and of 3 or 4 are connected by (2.50).

Of course, when the stochastic Schrodinger equation (2.52) is considered in the

probability space (.Q, Fr, 715{0) for £ = 1,2 and normalised initial condition, its

solution {ﬁ\ is the normalisation (2.22) of the solution i of the linear stochastic
Schrodinger equation (2.28) in (£2, Fr, Q).

2.5.4 The Stochastic Schrodinger Equation
as a Starting Point

By the results of the previous subsection, we have that both the SDEs for a posteriori
states (2.49) and (2.51) with initial condition {ﬂ\(O) = :5(0) = Yo, ||Yoll = 1, have
a unique (pathwise and in law) strong solution with ||1/p\(t)|| = |$(t)|| = 1. The
solutions of the two equations are connected by the relation (2.50).

This point is very important because it gives the possibility of starting the whole
theory from the nonlinear stochastic Schrédinger equation; we sketch this construc-
tion just below. For the theory of continuous measurements, this is only an alterna-
tive possibility, but conceptually this is needed when the nonlinear SDE is postulated
for some reason, as for a modification of quantum mechanics [3, 6, 15, 31], or it
is used for stochastic simulations of quantum dynamical semigroups as explained
in Sect. 3.2.3.2. The problem of strong solutions, in the more general context of
infinite dimensional Hilbert spaces and equations involving unbounded operators as
coefficients, was already studied in [32].

Every one of the four stochastic Schrodinger equations (2.52) can be taken as
starting point; let us choose the SDE with £ = 2. Let us fix a stochastic basis
(.Q, F, (F)re[0.400)s IP’) in usual hypotheses and let B be a continuous Wiener pro-
cess in this basis with increments independent of the past. Let ,‘ﬂ\ be a solution of
(2.52), £ = 2, with the Wiener process B and initial condition Yo € H, ||¢fo|| = 1.
By Theorem 2.23, the solution is unique and its norm is conserved: Hw(t)” =1,
Vt € [0, +00). Due to the normalisation for every time, the stochastic differential of
@(r) reduces to (2.49), i.e.
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~ 1 NN
dy(r) = Z [R (1) — 3 m,f(t)} V(1) dB;(1)

J

1 1 _
+ | KO+ ;mj(t)Rj(t) -3 ;mj(t)z U(r)de, (2.68a)

m (1) = 2Re(Y ()| R; (P (1)). (2.68b)

In the case of a continuous measurement, besides the stochastic evolution of the
state r(¢), we have to introduce also the stochastic output and its relation with ().
The output is the stochastic process with components

Bj(t)=§j(t)+/ m j(s)ds. (2.69)
0

The physical probability is P. Notice that, having chosen the nonlinear stochastic
Schrodinger equation as a starting point, the system state I/ﬂ\(t) at time ¢ depends on
E(s), 0 < s < t, which is not the observed output. Anyway we are still allowed
to interpret @(t) as the system state at time ¢ conditioned by the observation of the
output B(s) for 0 < s < ¢ because the knowledge of B(s), 0 < s < 1, is equivalent
to the knowledge of E(s), 0 < s < t. Heuristically one can think that the knowledge
of the trajectory of B(s) in [0, ¢] determines the corresponding trajectory of E(s) and
thus the value of 1///\(1‘). The correct mathematical statement is that the two processes
generate the same augmented filtration:

G{B(S),s e o, t]} sza{’é(s),s e [0, t]} V. (2.70)

Indeed, the inclusion C is obvious because of (2.69) and because the process
@ is adapted to the augmented natural filtration of B thanks to Theorem 2.23. The
opposite inclusion D follows from the possibility of recovering the linear stochas-
tic Schrodinger equation and by its theorem of existence and uniqueness of strong
solutions. Let us show this fact.

Given the initial state 1 of the system, consider the positive continuous process

1 t ~ 1 [
q(t):exp{—EZ[/o mj(s)dB,-(s)+§f0 m,-(s)2ds“. (2.71)

J
Its square ¢(¢)* is a positive P-martingale and

o (do) = q(1, ) P(dw) (2.72)
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defines a new probability on (§2, F,); the probabilities Q' ol = 0, are consistent. By
Girsanov theorem, under the law (@io the process B(t), t € [0, T'], with components
(2.69) is a multidimensional standard Wiener process.

Let us define

Y(t) = qt)" (1) (2.73)

by Itd calculus we get, under (@5,0, the linear stochastic Schrodinger equation
(2.28):

dy(t) = Z R;Oy(t)dB;(t) + K(t)y(¢)dt. (2.74)

J

Thus, Theorem 2.4 guarantees that v (¢) is adapted to the augmented filtration of
B(1) and then the same is true for ¢(¢) = ||¥ ()] =", fb\(t) = g(t)y¥(¢) and E(t). This
completes the proof of (2.70).

Finally, the uniqueness in law of the solutions of all the equations involved guar-
antees that, for every finite interval of time [0, T'], the law of B under PP and the law
of W under ﬁP\’io coincide. So, the two approaches, the one starting from the linear
stochastic Schrodinger equation and the one starting from the nonlinear one, are
completely equivalent.

2.6 The Linear Approach Versus the Nonlinear One

As the theory can be formulated by starting either from the linear stochastic
Schrodinger equation, or from the nonlinear one, let us give here just some hints
of comparison between the two approaches.

® Advantages of the linear approach:

— Direct generalisation of the traditional description of an instantaneous mea-
surement.

— Clear analytical relation between the a posteriori state and the observed out-
put: if the canonical realisation of the Wiener process is used, then the a pos-
teriori states ¥ (¢) and @(1) are explicitly functions of the trajectory of the
output W(s) for0 <s <t.

® Characteristic features of the linear approach:

— The output process W is a fixed function from the sample space 2 to
Cg(O, 00), the space of all R-valued continuous functions of a positive
. . . . o T
variable. Its physical properties depend on the physical probability P, ,
which changes on (£2,F) according to the choice of the initial system
state .
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e Disadvantages of the linear approach:

— The linear stochastic Schrodinger equation is not suitable for numerical sim-
ulations as the norm of the non-normalised a posteriori state ¥/ (¢) can become
very small.

® Advantages of the nonlinear approach:

— The stochastic Schrédinger equation directly gives the a posteriori state /Iﬁ(t).
— The stochastic Schrodinger equation is suitable for numerical simulations
[7,32-35].

e Characteristic features of the nonlinear approach:

— The probability P on the measurable space (£2, J) is fixed. The output B
is a function from the sample space 2 to Cg(O, 00), the space of all RY-
valued continuous functions of a positive variable, which changes accord-
ing to the choice of the initial system state 1 (thus modifying its physical
properties).

e Disadvantages of the nonlinear approach:

— Non-transparent relation between the a posteriori state @(r) and the output
B(1).

2.7 Tricks to Simplify the Equations
In special cases, some peculiar time dependencies can be eliminated and/or more

compact forms of the stochastic Schrodinger equation can be obtained. Let us see
how.

2.7.1 Time-Dependent Coelfficients and Unitary Transformations
A particularly interesting case is when the time dependence of the coefficients
in the linear stochastic Schrodinger equation (2.28) can be eliminated by using a
unitary transformation. Let us assume that there exists a self-adjoint operator H
such that

eI R (e " = R;(0), e H()e ™ = H(0). (2.75)

In the physical literature, this transformation is known as the use of a (suitable)
interaction picture. We define the “interaction Hamiltonian” H; := H(0) — Hy and

. . 1 "
RY := R;(0), K°:= K(0)—iHy = —iH; — 5 Z RYRY. (2.76)
J
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By setting
&(t) =y (1), 2.77)

we get d®(1) = iHy®@(t)dt + e K ()y(t)dt + eflo! > Ri)y(1)dW,(r). By
inserting before v/(¢) the identity 1 = e "f’eifo’ we obtain the linear SDE with
time-independent coefficients

do(r) = K°®(r)dr + Z RYD(1)dW;(1). (2.78)
j

We can now redo the whole construction of probabilities and a posteriori states
by starting from this equation instead of from (2.2). We have v = [|P0)]>,
m (1) = 2Re(Y(1)| R;(1) (1)) = 2Re(®(1)|RID(1)) and nothing changes for what
concerns the physical probabilities. We have only to recall that the a posteriori states
are given by V(1) = e 1 §(r).

In the example of Section 8.1, we use just this trick in order to simplify the time
dependence of the coefficients.

2.7.2 Complex Noise

When one of the coefficients R;(¢) in the linear stochastic Schrodinger equation
(2.28) differs from another one only by a multiplicative factor i (imaginary unit),
the equations assume a simpler form by introducing complex Wiener processes [5,
33, 36-38]. Let us illustrate this fact in the case d = 2.

Assume that we have

1 i
Ri(t) = — R(1), Ry(t) = — R(). 2.79)
1(1) 7 ) 2 7 ( (
Then, we define the complex Wiener process
W) = —= Wi(0) + —= Wa(n) (2.80)
=5 1 NG 2(1), .

for which the It6 rules turn out to be dW(r)> = 0, dW(r)dW(r) = dr. With these
notations the linear SDE (2.28) becomes

1
dy (1) = ROy @)dW (1) + K@)y (r)de K@) =—-iH@) - 5 R()"R().
(2.81)

Also the nonlinear stochastic Schrodinger equation assumes a simpler form in
this case, especially if we consider the a posteriori states ¢(#) with a changed phase:
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dp(t) = [R(1) — (OIRDG(1)] (1) dW (1)
—~ ~ 1, ~ ~ ~
+ [K(r) + @OIRO POIR@) = 5 |<¢(r>|R<t>¢<t)>|2}¢<r) dr, (2.82)

~ 1~ i~ P ~
W) = 7 Wi(t) + % Wa(t) = W(r) —/0 (@()IR(s)"P(s))ds. (2.83)

2.8 Summary: The Stochastic Schrodinger Equation

2.8.1 The Linear Stochastic Schrodinger Equation

2.8.1.1 Hilbert Space and System Operators
Assumptions 2.1, 2.3, 2.10.

The Hilbert space of the quantum system under consideration is H = C”".

The effective Hamiltonian H(¢) and the system operators R;(t), j = 1,...,d,
(dissipative terms) are non-random linear operators on J(; H(¢) is self-adjoint:
H()* = H(1).

The functions ¢ + H(t) and t + R;(t) are measurable and, for every T €
(0, +00),

< +00.

> R R;(0)

J

sup [|H ()|l < +o0, sup
1€(0,7T] te€l0,7T]

d
1
‘We use the shorthand notation: K(¢) := —iH(t) — 2 Z R;(1)*R;(1).
j=1

2.8.1.2 Reference Probability Space and Filtrations

Assumption 2.2, Remark 2.5.

(.Q, F, (&), (@) is a stochastic basis satisfying the usual conditions, which means
that (£2, &, Q) is a probability space, (J;) is a filtration of sub-o-algebras of F,
Fo=()% QA =0=AeF, Vt>0.

sis>t
F=Fp:=\/F  N:={BeF:QB) =0}

>0

The symbol Eg indicates the expectation with respect to Q.
W is a continuous d-dimensional Wiener process defined in (.Q, F, (F), Q). In
particular, the process W has increments independent of the past with respect to
the filtration (F;).
The natural filtration of the increments of W: DY := o {W(u)—W(s), u € [s, t]}.
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e The augmented natural filtration of the increments of W: 5: :=Dj vN.
® The filtration {5?, t € [s, +00)} satisfies the usual conditions:@f is independent
of & and@f Cﬁ? cF cF for0<s <t

2.8.1.3 The Linear Stochastic Schrodinger Equation

Assumptions 2.2, 2.12, equations (2.2), (2.7), (2.11), Propositions 2.6, 2.7, 2.8,
Theorem 2.11.

The linear stochastic Schrodinger equation (2.28):

d
dy(t) = K@)y (t)dr + Z R;(t)y(t)dW;(1).

j=1

e [nitial condition: a non-random o € I, [yl = 1.

® The solution is an H{-valued process ¥, which is continuous and (ﬁ)-adapted.

° ||1ﬂ(t)||2 is a mean one, continuous martingale.
The stochastic evolution operator, or propagator, Aj is a continuous process in

t > s, which is (5:)—adapted and independent of JF;. It satisfies

d
dA} = KA} dt + ) R (DA} AW (1) , AS =1,
j=1

e The adjoint operator (Aj)* satisfies

d
(A" = (A K@) de + Y (A R0 AW;(1),  (AD" =1.
j=1
o (1) = A%, Al = ASAT for 0<r <s <t

o detA’>0, A=A/ (A7) for0<r<s<t.
e The inverse operator (A} )~ ! satisfies

d
d(AN™ = (AT DR — K1) [ dr = D (AT R;(0)dW;(1),
J

j=1

with (A%)* = 1.
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2.8.1.4 The Physical Probability and the A Posteriori States

Equations (2.22), (2.23), (2.33), (2.39), (2.43), Theorems 2.11, 2.14, Proposition
2.17, Remarks 2.13, 2.16, 2.18.

¥ (t) is the non-normalised a posteriori state at time .

[y @I >0, @) :=lyOlI™" ¥

¥ (t) is the a posteriori state at time 7.

mj () = (YO (R;() + R;j(0)") P (1)) = 2Re<w(r)|R OIZ0)

o ||w<r>||—exp{2[/ m(5)AW;(5) — / ,(s)ds“.

. defines the “physical” proba-

® The expression IP’II,0 (dw) =

bility on (£2, F7). The expectation with respect to f@T ,(dw) is denoted by ET
The physical probability for the events regarding the output W up to time T 1s

® The family of probabilities {@50, T > 0] is consistent, which means that for
any choice of T > t > 0 we have @T J(F) = @ J(F),YF € 3.
® There exists a unique probability ]P’OQ on DY : =V, DY such that

BY(F) =Pl (F), VT >0, VFeD).

e Under the physical law @TO, the process with components

W) := Wj(t)—/ mi(s)ds,  tel0,T],
0

is a continuous Wiener processes with increments independent of the past. It is

(D )-adapted.
® The stochastic integrals with respect to W and W are linked by (2.32).
e POMs and probabilities:

EN(F) := /F AN(0)* AN (@)Qdw),  VF e D,
B! (F) = (Wl EQ(F)yo),  VF €Dy
e Consistency of the POMs:
0O<r<s<t, FeD, = E/(F)=E(F).
e Forall F e@f,O <s <t <T,wehave

B (FI) = (F )| ES (P (s)) = B, (FID,).
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2.8.2 The Nonlinear Stochastic Schrodinger Equation

o Let (22,5, (F)iep0,+00). P) be a stochastic basis in the usual hypotheses and B
be a continuous Wiener process in this basis with increments independent of
the past.

e Both the nonlinear SDEs

Ay =Y [Rj(t) = Re(Y (IR, (0P ()] ¥(1)dB;(t) + K )y (¢) dt

J

~ ~ 1 ~ ~ ~
+> [(Re(llf(t)le(f)w(t))) Rj®) =3 (Re(llf(t)le(t)llf(t)))z} y(r)de
j

and

dp(t) = > [R;(1) = @@)IR;(1)p(1)] $(t) dB; (1) + K (1)p(t) dt

J

+ Z[(¢(r>|R,-(r)¢(r)) R;(1) = S |[BOIR;1)$(1)| }qﬁ(r) dr,
J

with initial condition 1///\(0) = 5(0) = Yo, ||Yoll = 1, have a unique (pathwise
and in law) strong solution with Hw(t)” = ||¢(t)“ = 1. The solutions of the two
equations are connected by the relation

¢(1) = exp { —iy /0 Re(/($)|R; ()1 (5)) Im(P ()| R; ()i (5)) ds
J
—i) /0 Im(y(5)| R; ()i (s)) dE,-<s>}$<t>.
J

® The output of the measurement is the process B(t), t > 0, under the law P, with
components

t
By(1) = B,,-(r>+/ m(s)ds |
0
where

m(t) = 2Re(@(0)|R;(1)P(1)) = 2Re(Y(1)|R; (1) (1)).

More precisely, the output is the collection of the increments of B in
the interval of observation; heuristically, the output is the time derivative
of B.
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The square of

1 d -~ 1!
4(t)=exp{—52[/o mj(s)dBj(S)+§f0 mj(S)zdS“
j

is a positive P-martingale, and
Lo [dw) = q(t, w)* P(dw)

defines a new probability on (§2, F,); the probabilities ol = 0, are consistent.

Under the law Qig the process B(t), t € [0, T], is a multidimensional standard
Wiener process.
The random vector

Y0 =q)" Y.
under the law Qio, satisfies the linear SDE
dy(t) = Z Ry (@)dB(t) + K () (¢)dt.
J

In particular cases, the SDEs involved in the theory can be simplified by some
tricks, for instance by using unitary transformations (in the case in Sect. 2.7.1)
or complex Wiener processes (in the case in Sect. 2.7.2).
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