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Abstract Parametric estimation is a canonical problem in sensor networks. The
intrinsic nature of sensor networks requires regression algorithms based on sensor
data to be distributed and recursive. Such algorithms are studied in this chapter for
the problem of (conditional) least squares regression when the data collected across
sensors is homogeneous, i.e., each sensor observes samples of the dependent and
independent variable in the regression problem. The chapter is divided into three
parts. In the first part, distributed and recursive estimation algorithms are developed
for the nonlinear regression problem. In the second part, a distributed and recur-
sive algorithm is designed to estimate the unknown parameter in a parametrized
state-space random process. In the third part, the problem of identifying the source
of a diffusion field is discussed as a representative application for the algorithms
developed in the first two parts.

1 Introduction

Sensor networks consist of spatially deployed sensors that sense their local envi-
ronment across time to learn some feature of interest about the underlying field. In
many applications, using a priori information, it is possible to build approximate
parametrized model sets for the feature of interest. In such cases, the problem of
learning the feature simplifies to the problem of estimating these unknown parame-
ters that determine the model that best fits the observed data.

For example, consider sensors deployed to determine the source of a spatiotem-
poral temperature field. A model set for the heat source could be the set of all point
sources with constant intensity. The model set is parametrized by the source location
and the constant intensity, and the sensors measurements have to be used to estimate
these values. The diffusion equation that governs the propagation of heat can then be
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used to map the model for the heat source to a model for the sensor measurements.
Note that the actual source may have an arbitrary shape and have an exponentially
decreasing intensity. In effect, the goal is to only determine the best approximation
for the source among all point sources with constant intensity.

There are multiple advantages to estimating the unknown parameters jointly
using data collected by a network of sensors, rather than individual sensors. First,
measurements made by a single sensor may not be sufficient to uniquely resolve
the parameter. For example, triangulation of sources require distance measurements
format least three sensors that are not on a straight line. Second, there are fundamen-
tal limits on the sampling rate of a sensor. By using multiple sensors, it is possible
to obtain a higher effective sampling rate. Finally, even when multiple sensors add
redundancy, they serve to mitigate the effect of noise in observations.

There are two basic steps in estimation. The first step is to use physical laws to
map the models for the features to models for the sensor measurements. In the heat
source example, the diffusion equation can be used to map the model for the heat
source to a model for the sensor measurements. In this chapter, it is assumed that a
parametrized model for the sensor measurements is available and the focus is only
on the second step, which is to use statistical techniques to determine the form of
the estimator.

The intrinsic nature of sensor networks impose certain challenges. When there
are a large number of sensors spread across a large operational area, it is not energy
efficient to jointly estimate the parameter by collecting all the measurements from
the sensors at a fusion center. Instead, algorithms have to be distributed and the
estimate must be calculated by the network through local communication between
sensors and their neighbors, without the aid of a central fusion center. Further, each
sensor has a limited memory and measurements have to be purged periodically.
Thus, the estimation procedures should also be recursive, and only a constant sum-
mary statistic must be stored and updated when a new measurement is made. Thus
estimation algorithms that are to be used in sensor networks have to be distributed
and recursive. In this chapter, recursive and distributed procedures for (conditional)
least squares estimation are discussed. The chapter is divided into three parts. In the
first part, distributed and recursive estimation algorithms are developed for the non-
linear regression problem. In the second part, a distributed and recursive algorithm
is designed to estimate the unknown parameter in a parametrized statespace random
process. In the third part, the problem of identifying the source of a diffusion field
is discussed as a representative application for the algorithms developed in the first
two parts.

2 Preliminaries

The following notational convention is used. For a matrix A, [A]i, j denotes its
(i, j)-th entry. All vectors are column vectors and the set consisting of the first k
elements of a sequence {r�}�∈N is denoted by rk . A total of m, m ∈ N, sensors are
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spatially deployed and are indexed using the set V = {1, . . . , m}. Throughout this
chapter the variable i ∈ V and the variable k ∈ N. The sensors sequentially and
synchronously sense the underlying field once every time unit. The k-th observation
made by the i-th sensor is denoted by zi,k . We will find it convenient to view {zi,k}
as a sample path of a random process {Zi,k}.

We denote by x , x ∈ 	n , the unknown vector that is to be estimated. To aid in
the estimation, a priori information is used to develop a collection of models, called
a model set, that is parametrized by x . Typically, the random process {Zk}, rather
than the actual observed sample path, is modeled. Thus a model set can be denoted
by {Ẑk(x); x ∈ X}k∈N, where for each x Ẑk(x) is a model, i.e., “guess”, for Zk , and
different models are obtained as x takes different values in the parameter set X .

In some applications, it is possible that the a priori information available is not
sufficient to determine complete model sets for the process {Zk}. One such specific
case is regression. In this application, zk is divided into two parts: a dependent com-
ponent rk , and an independent component uk . The model set only specifies how {Rk}
depends on {Uk}. We will refer to such model sets as regression model sets1 and they
can be represented by {R̂k(x, U k

i ); x ∈ X}k∈N. We will study regression model sets.
Note that there is no loss in generality and the traditional estimation setting is simply
the extreme case when Rk = Zk and Uk = ∅.

A model set captures the information in a “convenient” form [15]. In the heat
source example discussed earlier, we could have taken the model set to be the set of
all rectangular sources with random intensity. A priori information may tell us that
this model set contains a model which is a better approximation to the actual source
than any model in the point source model set. However, one may still work with the
point source model set since it may not be easy to determine the specific model in the
rectangular source model set that is the best. In the context of sensor networks, “con-
venient” is to be interpreted as having the structure to allow distributed and recursive
estimation. Thus we might possibly need to discard some a priori information and
work with less-accurate model sets, compared to a centralized and non-recursive
setting. This is the cost that is to be paid to obtain a distributed implementation.
Specifically, we will discard any information available about the joint statistics2 of
the measurements. Thus we will consider model sets that only specify how {Ri,k}
depends on {Ui,k}. They can be represented as {R̂i,k(x, U k

i ); x ∈ X, i ∈ V }k∈N. We
will refer to such model sets as separable regression model sets.

The estimate of the parameter is the value that determines the model in the model
set that “best fits” the observed data. In this chapter, we will define “best” as the
conditional least-squares criterion, described next. Define

pi,k+1(x, uk+1
i , rk

i ) = E
[
R̂i,k+1(x, U k

i ) | U k+1
i = uk+1

i , {R̂i,�(x, U �
i ) = ri,�}

]
.

1 When Uk = Rk−1, the model set is auto-regressive.
2 Not knowing anything about the joint statistics of the sensor measurements, should not be con-
fused with knowing that they are independent.
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Essentially, pi,k+1(x, uk+1
i , rk

i ) is the best estimate for Ri,k+1 based on the past
and present measurements of the independent variable, and all past values of the
dependent variable, when it is known that the true description of {Ri,k+1}k∈N is
{R̂i,k(x, U k

i )}k∈N. The conditional least squares estimate (CLSE) of [12] is given by:

x∗
N = argmin

x∈X

m∑

i=1

1

N

N∑

k=1

(
ri,k+1 − pi,k+1(x, uk+1

i , rk
i )
)2

. (1)

We refer the reader to [12] for a discussion of the properties of the CLSE.3 The
CLSE estimator has also been studied as the minimum prediction error estimate
(MPEE) in [15].

When the sensors make a large number of measurements, a convenient abstrac-
tion is to consider this number to be infinite. Denote, by x∗ the limit of x∗

N , i.e.,

x∗ = argmin
x∈X

m∑

i=1

lim
N→∞

1

N

N∑

k=1

(
ri,k+1 − pi,k+1(x, uk+1

i , rk
i )
)2

. (2)

The goal is to generate a sequence {xn} in a recursive and distributed manner that
converges to x∗. Traditionally, the convergence is proved only when there exists a
x̄ ∈ X , for which {Ẑk(x̄)} accurately describes {Zk}. This is restrictive and may not
be reasonable, especially considering the that we would like to work with “conve-
nient” model sets. Thus, we will study the properties under more general conditions.
In the following two sections, we discuss two different classes of model sets:

� Simple non-linear regression. This corresponds to the case when R̂i,k(x, U k
i ) is

of the form gi (x, Ui,k) + Ei,k+1, where {Ei,k+1} is an i.i.d. sequence.
� Stationary Gaussian linear state space model sets. This corresponds to the case

when R̂i,k(x, U k
i ) is a parametrized stationary Gaussian linear state space process

with input process {Ui,k}.

3 Simple Non-linear Regression

In the simple nonlinear regression problem, the model sets have the following form:

R̂i,k(x, U k
i ) = gi (x, Ui,k) + Ei,k, (3)

3 When the function in (1) has multiple minima, then each minimum is a CLSE estimate. For
example, this would be the case if less than three sensors were used in the acoustic source local-
ization. In most cases, by increasing the number of sensors, and thus the spatial diversity of the
measurements, it is possible to ensure that the estimation problem is well defined and there is a
unique least squares estimate. Such an assumption would be analogous the observability condition
of [10].
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where {Ei,k} is zero mean noise. The statistics of {Ei,k} are not of any concern in
determining the CLSE. For the model set in (3),

pi,k+1(x, uk+1
i , rk

i ) = gi (x, ui,k+1),

and note that the CLSE in (1) reduces to the well known least squares estimate
(LSE),

x∗ = argmin
x∈X

lim
N→∞

1

N

N∑

k=1

m∑

i=1

(
ri,k − gi (x, ui,k+1)

)2
.

3.1 Algorithms

We next review three different distributed and recursive estimation algorithms that
have been proposed in literature.

3.1.1 Cyclic Incremental Recursive Algorithm

Each sensor designates another sensor as an upstream neighbor and one as a down-
stream neighbor so that they form a cycle. See Fig. 1 for an example. Without loss
of generality, we will index the upstream neighbor of sensor i as i + 1, with the
understanding that the upstream neighbor of sensor m is a fictitious sensor, denote
as sensor 0. Between any two consecutive sampling times, one iteration of the algo-
rithm is performed. In iteration k, sensor i receives the current iterate zi−1,k from
sensor i − 1, updates the iterate using its latest measurement and passes it to its
upstream neighbor, sensor i . The update rule is

z0,k = zm,k−1 = xk−1,

zi,k = PX
[
zi−1,k − 2αk

(
gi (zi−1,k, ui,k) − ri,k

)∇gi (zi−1,k, ui,k)
]
, (4)

z1,n + 1 z2,n + 1 z3,n + 1

z4,n + 1z8,n + 1

z7,n + 1 z6,n + 1 z5,n + 1

Fig. 1 A network of 8 sensors with cyclical incremental processing. The estimate is cycled through
the network. The quantity zi,k is the intermediate value after sensor i updates at time k
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where the initial iterate x0 is chosen at random. Here, αk is the stepsize, PX denotes
projection onto the set X and ∇gi (x) denotes the gradient of the vector function gi

with respect to the vector parameter x . Thus, if x j denotes the j-th component of
the vector x,

[∇gi (x, ui,k)
]
�, j = ∂g(�)

i (x, ui,k)

∂x j
.

The cyclical incremental algorithm can be implemented only when each sensor
identifies a suitable upstream and downstream neighbor. This could be achieved in
a setup phase in a distributed manner using the algorithm proposed in [14]. Note the
existence of a cycle is a stronger assumption than connectivity. We refer the reader
to [23] for a discussion of other implementation issues.

3.1.2 Markov Incremental Recursive Algorithm

In this algorithm, the order in which the sensors update the iterate is not fixed and
could be random. Let N (i) denote the set of neighbors of sensor i and |N (i)| denote
the number of neighbors. Suppose at time k−1, sensor s(k−1) updates and generates
the estimate xk−1. Then, agent s(k − 1) may either pass this estimate to a neighbor
j , j ∈ N (s(k − 1)), with probability

[P]s(k−1),s(k) = 1

m
,

or choose to keep the iterate with the remaining probability, in which case s(k) =
s(k − 1). See Fig. 2 for an illustration. The update rule for this method is given by

x1

x2

x3x4
x5

x6

x7 x8

x9

x10

Fig. 2 A network of 8 sensors with incremental processing. The estimate is randomly passed
through the network
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xk = PX
[
xk−1 − 2αk

(
gs(k)(xk−1, us(k),k) − rs(k),k

)∇gs(k)(xk−1, us(k),k)
]
, (5)

where x0 ∈ X is some random initial vector. Observe that the value of s(k) depends
only on the value of s(k − 1). Thus, the sequence of agents {s(k)} can be viewed
as a Markov chain with states V = {1, . . . , m} and transition matrix P . If the net-
work topology changes with time, for example, in mobile sensor networks, then the
transition matrix will also be time-varying [26]. Also note that the sensors need not
sense in every slot, and a sensor needs to make a measurement only when it obtains
the iterate. To save energy, sensors without an iterate may enter a sleep mode.

The Markov incremental algorithm has some advantages over the cyclic incre-
mental algorithm. First, the algorithm does not require the setup phase that is
required in the cyclic incremental algorithm. Second, the algorithm requires only
connectivity of the network, which is weaker than the condition imposed on the
network in the cyclic incremental algorithm. However, one can expect the Markov
incremental algorithm to take more time to converge than the cyclic incremental
algorithm. In one sensing interval only one update of the iterate can be performed
as a sensor may choose to retain the iterate for the next iteration and will have to wait
until the new measurement to update the iterate. In contrast, in the cyclic incremental
algorithm in each sampling interval m updates of the iterate are performed.

In the above discussion, the performance of the algorithms as a function of time
was discussed. A better comparison would be to keep the communication costs a
constant, and compare one iteration of the cyclic incremental algorithm with m
iterations of the Markov incremental algorithm. Even in this case one can expect
the cyclic incremental algorithm to converge faster. Since the sequence in which the
agents update the agents in the Markov incremental algorithm is random, the iterate
may be caught in some “corner” of the network and the other agents may receive
the iterate only after a large number of iterations.

3.1.3 Diffusive Nonlinear Recursive Algorithm

In this setting, each agent maintains and updates an iterate sequence. This is fun-
damentally different from the incremental algorithms in which a single iterate
sequence is incrementally updated by the agents. We will use wi,k−1 to denote the
iterate with agent i at the end of time slot k − 1. One iteration of the algorithm
is performed in each sampling interval. Each agent receives the current iterate of
its present neighbors. See Fig. 3 for an illustration. Each agent then calculates the
following weighted sum vi,k−1 given by

vi,k−1 = wi,k−1 + 1

m

∑

j∈N (i)

(w j,k−1 − wi,k−1).

Sensor i then obtains its new iterate wi,k+1 from vi,k according to

wi,k = PX
[
vi,k−1 − 2αk

(
gi (vi,k−1, ui,k) − ri,k

) (∇gi (vi,k, ui,k)
)]

. (6)
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Fig. 3 A network of 8 sensors with parallel processing. Each agent shares its current iterate with
its neighbors

The initial points {wi,0} are chosen randomly.
Similar to the Markov incremental algorithm, this algorithm requires the net-

work to be only connected and does not require a setup phase. Similar to the cyclic
incremental algorithm, each sensor uses its latest measurement to update in every
iteration. However, note that each sensor updates a different iterate sequence. There-
fore, unless the network is “densely connected” and each sensor has a large number
of neighbors, one can expect the performance of the algorithm with time to be worse
than that of the cyclic incremental algorithm. It is not immediately clear, however, if
the performance of the distributed parallel algorithm as a function of communication
costs would be better than the Markov incremental algorithm. The diffusive algo-
rithms are closely related to consensus algorithms [9, 32], and they can be viewed
as general consensus algorithms with stochastic errors.

3.2 Convergence of the Algorithms

The algorithms described above in Sect. 3.1 have been defined for arbitrary
sequences {ri,k} and {ui,k}. However, to study their convergence we would need
to impose some restrictions on the actual measurement sequences.

Assumption 1 The data {zk} is the sample path of an i.i.d. random process {Zk}.

In view of this assumption, it is possible to interpret the algorithms discussed
above as stochastic approximation algorithms [3, 8, 22] and this will form the basis
for the convergence results we state later. Due to Assumption 1,
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x∗ = argmin
X

m∑

i=1

E
[(

Ri,k − gi (x, Ui,k)
)2
]
. (7)

Define fi (x) = E
[(

Ri,k − gi (x, Ui,k)
)]2

and f (x) = ∑m
i=1 fi (x). Observe that x∗

is the minimum of f (x). Suppose that the statistics of Ri,k and Ui,k are explic-
itly known to sensor i . Then, the problem simplifies to minimizing the sum of
deterministic functions, where each function is known to a sensor. This distributed
optimization problem has been studied in [18, 19, 25, 26] and different iterative
distributed algorithms have been proposed. For example, consider the incremental
gradient algorithm. In each iteration, the iterate is cycled through the network. Sen-
sor i updates the iterate in the k-th iteration according to

zi,k =PX
[
zi−1,k − αk∇ fi (zi−1,k)

]

=PX
[
zi−1,k − 2αkE

[(
gi (zi−1,k, Ui,k) − Ri,k

) (∇gi (zi−1,k, Ui,k)
)]]

,

and communicates the updated iterate to sensor i + 1. Note that algorithm requires
sensor i to only know its local function fi .

In the estimation problem, the statistics of Ui,k and Ri,k are not known. If they
were known, the least squares estimate could have been obtained without making
any measurements. Thus, sensor i cannot evaluate the gradient term ∇ fi (zi−1,k) that
is required in the k-th iteration. Instead, if the k-th iteration is performed in the (k +
1)-th sampling interval, i.e., after the k-th observation has been made, sensor i can
approximate ∇ fi (zi−1,k) with an LMS style instantaneous empirical approximation,
i.e,

E
[(

gi (zi−1,k , Ui,k ) − Ri,k
) (∇gi (zi−1,k , Ui,k )

)] ≈ (
gi (zi−1,k , ui,k ) − ri,k

) (∇gi (zi−1,k , ui,k )
)
.

Observe that the incremental algorithm with this approximation is the cyclic incre-
mental recursive estimation algorithm in (4). Thus, in effect the cyclic incremental
recursive estimation algorithm is a stochastic optimization algorithm.

In a similar manner, the Markov incremental recursive algorithm and the diffu-
sive recursive algorithm are obtained from their deterministic counterparts discussed
in [25, 26]. We next formally state the conditions that are required for the conver-
gence of the algorithm. We refer the reader to [25, 26] for the proofs.

Theorem 1 Consider the model set in (3). Let the set X be closed and convex, and
let Assumption 1 hold. Further, let the functions fi (x) be convex and have bounded
(sub)gradients on the set X. If {αk} is chosen such that

∑
k α2

k < ∞ and
∑

k αk =
∞. Then the following convergence results hold:

1. If the network topology allow a cycle that connects all the sensors, then iterates
generated in (4), converge to a minimum of f (x) with probability 1 and in mean
square.

2. If the network is connected, then the iterates generated in (5) converge to a min-
imum of f (x) in mean square.

3. If the network is connected, then the iterates generated in (6) converge to the
same minimum of f (x), for all i ∈ V , with probability 1 and in mean square.
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The convergence results in [25, 26] are more general and deal with general
choices of probabilities in (5) and general weights in (6). While we have no proof,
we believe that the convergence of the algorithms can be extended to the general
case when {Zk} is required to satisfy only the conditions of exponential stability and
stationarity (explained below). This has been verified for the specific case where
gi (x, ·) is linear in x .

Theorem 1 requires the functions fi (x) to be convex. A simple case when this
holds is when gi (x, ·) is linear in x . However, in general the condition is quite
implicit and there seems to be no direct way to verify it. We next state another
convergence result, which is applicable for a different class of functions. We only
state the result and refer the reader to [24] for the essential ideas of the proofs.

Theorem 2 Consider the model set (3) and let the network be connected. Addition-
ally, if the incremental algorithm is used, let the network topology have a cycle. Let
Assumption 1 hold, and let the set X be 	n, or compact and convex. Further, let
the functions fi (x) be differentiable on the set X and let the gradient be Lipschitz
continuous. If the set X = 	n, also assume that the gradients are bounded. If {αk}
is chosen such that

∑
k α2

k < ∞ and
∑

k αk = ∞, then every cluster point of the
iterate sequences generated in (4), (5) and (6) will be a stationary point.

First note that the theorem guarantees only convergence to a stationary point. In
addition, the conditions imposed on the set X are also stronger than the conditions in
Theorem 1. However, note that the conditions imposed on the functions fi are weak,
and easier to verify. For example, a sufficient condition for convergence when X is
compact is for the function gi (x, ·) to be twice continuously differentiable.

3.3 Effect of Quantization

Typically, the iterates are first quantized before they are communicated in wireless
networks. We next study the effect of quantization on the estimation algorithms. The
quantization lattice is the set

Q = {(q1Δ, . . . , qnΔ); q j ∈ Z}.

For a vector x ∈ 	n , we use Q[x] to denote the quantized value of x . We consider
the following two types of quantizers:

� Basic quantizer. The quantized value of a vector x ∈ X , is the Euclidean pro-
jection of x . Thus, Q[x] = PQ[x]. Observe that ‖Q[x] − x‖ is deterministically

bounded by
√

nΔ

2 [23].
� Dither quantizer. The quantized value of a vector x ∈ X , is the Euclidean pro-

jection of x added with a dither signal. Thus, Q[x] = PQ[x + D], where D
is a dither signal whose component are uniformly and independently chosen in
[−Δ

2 , Δ
2 ]. In this case, ‖Q[x] − x‖, is random, statistically independent of x and

uniformly distributed in
[

−√
nΔ

2 ,
√

nΔ

2

]
[2, 10].
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When there is quantization, it is better to use a constant stepsize than a diminish-
ing stepsize. We motivate this through the following discussion. It seems reasonable
to require the algorithms, with quantization, to converge to Q[x∗, ] i.e., the lattice
point that is the closest to x∗. However, this is not the case even when there are
no stochastic errors. To see this consider the standard gradient descent algorithm to
minimize f (x) over the set X = 	 with a basic quantizer without any dither. The
iterates are generated according,

xk+1 = xk − αk∇ f (xk).

Suppose x0 �= Q[x∗], and αk < Δ
2C , where C is the bound on the subgradient of

fi , then it can be immediately seen that xk = x0, for all k. More generally, one can
conclude that stepsizes should always be large enough to push the iterate from a
non-optimal lattice point, but small enough to ensure that the iterate gets caught in
the optimal lattice point.

We will only discuss the quantized cyclic incremental algorithm here. Similar
results can be easily obtained for quantized versions of the other two algorithms.
Formally, the quantized cyclical incremental recursive estimation algorithm is given
by:

z0,k = zm,k−1 = xk−1,

zi,k = Q
[
PX
[
zi−1,k − 2αk

(
gi (zi−1,k, ui,k) − ri,k

) (∇gi (zi−1,k, ui,k)
)]]

. (8)

It is possible to obtain bounds on that the asymptotic performance of the algorithm
by extending the analysis for constant stepsize in [26] to handle quantization by
using ideas similar to those in [23]. Define νi to be some constant such that

νi ≥ sup
x∈X

Var
[(

Ri − gi
(
x .U T

i

)−) (∇gi (x, Ui ))
]
.

Then νi is an upper bound on the variance of the empirical gradient estimate.

Theorem 3 Let the Assumptions of Theorem 1 hold. Additionally, assume that X is
bounded and a constant stepsize α is used. Then, with basic quantization the iterates
{xk} in (8) satisfy

liminf
k→0

E[ f (xk)] ≤ f ∗ +
√

nΔ maxx,y∈X ‖x − y‖
2α

+ α

2

(
m∑

i=1

(
Ci + νi +

√
nΔ

2α

))2

,

and with dither quantization the iterates satisfy

liminf
k→0

E[ f (xk)] ≤ f ∗ +
√

nΔ maxx,y∈X ‖x − y‖
2α

+ α

2

(
m∑

i=1

(
Ci + νi +

√
nΔ

α
√

6

))2

.

Furthermore, the bounds hold with probability 1 for infk≥0 f (xk).
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Observe that with dither quantization it is possible to obtain a better bound.
This indicates that dither quantization may result in smaller errors than basic
quantization.

3.4 Special Case: Linear Regression

We next consider the special case when gi (x, Ui,k) = xT Ui,k, and X = 	n . In a
centralized setting, it is possible to recursively evaluate the exact least squares, i.e,
evaluate x̂N , from x̂N−1 and new measurements [15]. From a stochastic optimization
perspective, the recursive least squares (RLS) algorithm approximates the standard
Newton’s gradient algorithm, where the gradient term is approximated using an
instantaneous empirical approximation and a sample average for the Hessian term
[15]. Attempts have been made to exploit this to develop distributed and recursive
algorithms that perform better than the LMS-type algorithms discussed above. We
discuss these next.

Incremental RLS algorithms can be obtained by scaling the gradient term in the
incremental LMS with a matrix Li,k . Formally,

zi,k = zi−1,k − αk Li,kui,k(uT
i,k zi−1,k − ri,k).

The matrix Li,k is to be viewed as an approximation to the Hessian in the Newton
descent algorithm, which is determined recursively. If we allow the sensors to share
a little more information to evaluate Li,k , then it is possible to implement the least
squares algorithm exactly, in a recursive and incremental manner [16]. Specifically,
the matrix Li,k must have the form

Li,k = Pi−1,k

1 + uT
i,k Pi−1,kui,k

Pi,k = Pi−1,k − αk
Pi−1,kui,kuT

i,k Pi−1,k

1 + uT
i,k Pi−1,kui,k

. (9)

Note that the algorithm requires sensor i −1 to communicate to sensor i the statistic
Pi−1,k , in addition to the iterate sequence. A more communication efficient incre-
mental estimation algorithm can be obtained by replacing the Pi,k in (9) with an
approximation, Qi,k , that is evaluated locally in the following manner

Qi,k = Qi,k−1 − Qi,k−1ui,kuT
i,k Qi,k−1

1 + uT
i,k Qi,k−1ui,k

.

Note that the resulting algorithm requires the sensors to only cycle the iterates. The
matrix Qi,k is recursively evaluated at sensor i using only local information. When
αk is fixed at 1, the estimates do not asymptotically converge to the least-squares
estimate, but only to its neighborhood [30]. While it has not been verified, when
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{αk} diminishes at a suitable rate, one can expect the algorithm to converge to the
least squares estimate.

Similarly, diffusive RLS algorithms can be obtained by scaling the gradient term
in (6) with a matrix Li,k [5, 7, 33]. As stated previously, the matrix Li,k is the “equiv-
alent” of the Hessian in the Newton direction, and can be evaluated in a distributed
and recursive manner in different ways [7, 33]. A diffusive LMS algorithm that is
quite different from the diffusive algorithms discussed so far is proposed in [31].
This algorithm uses a hierarchical network structure, in which a subset of sensors
are designated as “bridge sensors” and a sensor is required to communicate only
with neighbors, that are bridges. However, the algorithm converges only to a region
around the optimal estimate.

3.5 Special Case: Accurate Model Sets

Next consider the case when the model set is accurate, i.e., there exists a x̄ such that

Ri,k = gi (x̄, Ui,k) + Ei,k .

In this case it can be immediately seen that x∗, which is the asymptotic limit of the
least squares estimators, will equal x̄ . For this case, the problem of estimating the
parameter can be viewed as solving a system of equations, rather than an optimiza-
tion problem. Specifically, observe that x∗ is a solution to the following problem:

Determine x such that
m∑

i=1

E
[
Ri,k − gi (x, Ui,k) − hi (x)

] = 0

The statistics of Ri,k and Ui,k are not known but we observe the samples {ri,k} and
{ui,k}. In a centralized setting, Robbins-Monro algorithm [28] can be used to solve
the problem, by generating iterates according to:

xk = xk−1 − αk

m∑

i=1

(ri,k − gi (xi,k, ui,k)).

Distributed versions of these algorithm can developed. In the diffusive algorithms,
proposed in [10], the iterates are generated according to

wi,k+1 = vi,k − αk(vi,k − gi (vi,k, ui,k)).

Similar cyclic and Markov incremental fixed point algorithms can also be devel-
oped. While this approach requires the stronger assumption that the model set be
accurate, it is has the advantage that convergence can be obtained by imposing
conditions directly on gi and hi [10].
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4 Gaussian Linear State Space Model Sets

We next focus on the following class of model sets

Θi,k+1(x) = Fi (x)Θi,k(x) + U T
i,k+1Gi (x) + Vi,k+1(x)

R̂i,k+1(x, U k) = Hi (x)Θi,k+1(x) + Wi,k+1(x), (10)

where {Wi,k+1(x)} and {Vi,k+1(x)} are i.i.d. random processes. The state vector
Θi,k+1(x) is a vector of dimension q and the distribution of Θi,0(x) is such that the
process {R̂i,k(x)}k∈N is stationary. We will also assume that the random processes
{Wi,k(x)}k∈N and {Vi,k(x)}k∈N are zero mean i.i.d. random sequences.4

Note that the (10) is the most general linear system description [15]. Linear state
space models arise naturally, or as approximations to non-linear systems. For exam-
ple, the auto-regressive moving average (ARMA) model set is an important special
case, where

R̂i,k+1(x, Rk
i ) = Ri,k−1gi (x) + Ei,k+1(x).

Here Ei,k+1(x) = Ei,k(x)+ Ni,k(x), with {Ni,k(x)} being an i.i.d. sequence. We refer
the reader to [15] for further discussion.

For the model set in (10), the optimal predictor pi,k+1(x, uk+1
i , rk

i ) will be the
Kalman predictor. Let Ki (x) be the Kalman gain for the state-space system in (10),
which is determined from Di (x), Hi (x), Cov

(
Wi,k(x)

)
, and Cov

(
Vi,k(x)

)
as the solu-

tion to the Riccati equation [15]. Define Fi (x) = Di (x) − Ki (x)Hi (x). The Kalman
predictor, pi,k+1(x, uk+1

i r k
i ), is

φi,k+1(x, uk+1
i , rk

i ) =Fi (x)φi,k(x, uk
i , rk−1

i ) + Ki (x)ri,k + uT
i,k+1Gi (x),

pi,k+1(x, uk+1
i , rk

i ) =Hi (x)φi,k+1(x, uk+1
i , rk

i ). (11)

Note that to evaluate the gradient of pi,k+1(x, uk+1
i , rk

i ) at x , uk+1
i and rk

i are
required. In contrast, in the simple non-linear regression model, pi,k+1(x, uk+1

i , rk
i )

was a function of only ui,k+1 and we could make the algorithm recursive by using an
LMS approximation. Thus, we need to make two approximations (a) an LMS-like
approximation for the gradient, and (b) an approximation to make the LMS approx-
imations recursive. These ideas are based on the recursive prediction error (RPE)
algorithm of [15] and hence we call the incremental algorithm proposed below
the incremental RPE (IRPE) algorithm [27]. Formally, the iterates are generated
according to the following relations for i ∈ V and � = 1, . . . , d,

4 We make the zero mean assumption to keep the presentation simple. The algorithm can be
extended to the case when they are not zero mean.
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xk−1 = zm,k−1 = z0,k, (12)
[

ψi,k

χ
(�)
i,k

]
=
[

Fi (zi,k−1) 0
∇(�) Fi (zi,k−1) Fi (zi,k−1)

] [
ψi,k−1

χ
(�)
i,k−1

]
+
[

Ki (zi,k−1)
∇(�) Ki (zi,k−1)

]
ri,k−1

+
[

Gi (zi,k−1)
∇(�)Gi (zi,k−1)

]
ui,k

[
ζi,k

ξ
(�)
i,k

]
=
[

Hi (zi−1,k) 0
∇H (l)

i (zi−1,k) Hi (zi−1,k)

] [
ψi,k

χ
(�)
i,k

]
,

εi,k = ri,k − ζi,k,

z(�)
i,k = z(�)

i−1,k − αk

(
ξ

(�)
i,k

)T
εi,k,

zi,k =
[
z(1)

i,k . . . z(d)
i,k

]T
.

The initial values for the recursion are fixed at x0 = xs, ψi,0 = ψi,s and χ
(�)
i,0 =

χ
(�)
i,s . Observe that the algorithm has a distributed and recursive implementation. In

iteration k, sensor i first uses its iterates from the previous iteration, i.e., zi,k−1, and
ui,k to evaluate χ

(1)
i,k , . . . χ

(d)
i,k and ψi,k . Sensor i then receives zi−1,k from sensor i −1

and updates it using zi,k−1 to generate zi,k . This is then passed to the next sensor in
the cycle. Thus, sensor i only needs to store zi,k , χ

(1)
i,k , . . . χ

(d)
i,k and ψi,k for the next

iteration. The algorithm is therefore recursive and distributed. Furthermore, note
that sensor i only needs to know its own system matrices Hi (x), Fi (x) and Gi (x).

4.1 Convergence of the Algorithm

The data is assumed to satisfy the following assumption

Assumption 2 For each i ∈ V , the sequence {zk}k∈N is the sample path of station-
ary and exponentially stable random process {Zk}k∈N.

Exponential stability requires zk and zs to be weakly related when t � s. Both
these conditions are quite weak and are satisfied in practice. The precise mathemat-
ical definitions and other details are available on page 170 of [15]. We next state the
convergence result. The proof is available in [27].

Theorem 4 Let Assumption 2 hold and let the network topology allow a cycle
between the sensors. For each x ∈ X, let the system in (10) be stable and let the
matrix functions Fi (x), Hi (x) and Ki (x) be twice continuously differentiable. Let
the step-size αk be such that kαk converges to a positive constant. Then, the iterates
{xk} generated by the IRPE algorithm in (12) converge to a local minimum of f (x)
in (2) with probability 1.
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5 Application: Determining the Source of a Diffusion Field

A diffusion field is a spatio-temporal field that follows the diffusion partial dif-
ferential equation. The diffusion equation models diverse physical phenomena like
the conduction of heat, dispersion of plumes in air, dispersion of odors through a
medium and the migration of living organisms. We study the problem of determining
the source of a diffusion field (specifically, temperature field) generated in a room.

We briefly review the literature on source identification in the diffusion equation.
The point source model is a common model for diffusing sources and has been
extensively used [1, 13, 17, 34]. Usually the intensity is assumed to be a constant
[1, 13, 17] or instantaneous. Localization of sources with time-varying intensity
have been studied in a centralized and non-recursive setting in [6, 20]. These studies
consider a deterministic evolution of the leak intensity and use a continuous observa-
tion model. Most papers study that case when the medium is infinite or semi-infinite
since the diffusion equation has a closed form solution in that case [13, 17]. An
exception is [11] where two dimensional shaped medium is considered.

While centralized recursive source localization has received much interest [13,
17, 20, 21] there are very few papers that discuss a distributed solution. A recursive
and distributed solution to the problem in a Bayesian setting is discussed in [34]. A
related paper is [29] that deals with the problem of estimating the diffusion coeffi-
cient in a distributed and recursive manner. We are not aware of any prior work that
solves the source localization problem using a distributed and recursive approach in
a non-Bayesian setting. We refer the reader to [34] for a more detailed discussion of
the literature.

We will consider two different parametrized model sets for the source (the feature
of interest) and use the algorithms developed so far to determine the parameters.

5.1 Point Source and Constant Intensity Model Sets

We first consider the case when based on a priori information the model set for the
source can be chosen to be the set of all point sources with constant intensity. The
model set is parametrized by the source location x = (x1, x2) and intensity I . Thus
the problem of learning the source simplifies to estimating x and I . Additionally, it is
also known that the warehouse is large, the initial temperature is a constant through-
out the warehouse, and the thermal conductivity is large and uniform throughout the
medium, and known.

To map the model set for the source to a model set for the sensor measurements
we will use the diffusion equation. Let C(s, t ; x, I ) denote the temperature at a point
s at time t when the source is at x and intensity is I . For the source model set
and medium, C(s, t ; x, I ) can be approximated using the steady-state value given
by [17]:

C(s; x, I ) = I

2νπ‖s − x‖ ,
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where ν is the diffusion coefficient. If si is the location of the i-th sensor, then the
model set for its k-th measurement is

R̂i,k(x, I ) = C(si ; x, I ) + Ni,k,

where Ni,k is a zero mean i.i.d. measurement noise. Thus the estimation problem is
a simple nonlinear regression problem with no measurable inputs and can be solved
using the algorithms developed in Sect. 3.

5.1.1 Numerical Results

We illustrate the performance of the algorithms with simulation results. In the simu-
lation experiments the diffusion coefficient ν = 1. The actual location of the source
is x∗ = (37, 48) and the actual intensity value is 10. A network of 27 sensors is
randomly deployed. The initial iterate value is fixed at (50, 50) for the source loca-
tion and 5 for the intensity. The results are plotted in Figs. 4 and 5. Observe that
about 200 iterations are sufficient to obtain a good estimate of the source location
and 1000 iterations to obtain a good estimate of the intensity using the cyclic incre-
mental, Markov incremental and diffusion algorithms. In addition, we observed that
the convergence speed of the algorithm is affected by the initial point. If the initial
points are taken very far from the actual value then there is convergence to other
stationary points in the problem.
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Fig. 4 Estimates of the x and y coordinates generated by the cyclic incremental, Markov incre-
mental and diffusion gradient algorithms
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Fig. 5 Estimate of the intensity generated by the cyclic incremental, Markov incremental and
diffusion gradient algorithms

5.2 Point Source and Time-Varying Intensity Model Sets

Suppose that based on a priori information, the model set that is chosen consists
of all point sources that switch on at time t = 0 with intensity values I (t) = Ik ,
for t ∈ [k − 1, k), where Ik+1 = ρ Ik + Sk . Here, ρ is a known scalar and {Sk} is
a sequence of i.i.d. Gaussian random variables with mean (1 − ρ)μ and variance
(1 − ρ2)σ 2

s , and I (0) is Gaussian with mean μ and variance σ 2
s . Thus the model

set for the source, which is the feature of interest, is parametrized by the location
x = (x1, x2). Note that {Ik} does not parametrize the model set and is an incidental
random process whose statistics are specified. Thus we only need to estimate the
source location.

Additionally the following is known about the medium. Let D denote the room
and ∂ D denote the boundary of the room. The medium is uniform throughout the
room. The temperature at the boundaries of the room is always a constant and at time
t = 0, the temperature is modeled to be a constant everywhere in the room. Without
loss of generality, we fix the constant temperature to be 0, i.e., C(·, 0; ·) = 0.

For the above source model set and medium, the temperature at a point y at
time t is

∂C(y, t ; x)

∂t
= ν∇2C(y, t ; x) + I (t)δ̄(y − x), (13)

with the initial and boundary conditions

C(s, 0; x) = 0 for all s ∈ D,

C(s, t ; x) = 0 for all t ≥ 0 and s ∈ ∂ D.
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Here, ν is the medium conductivity, ∇2 is the Laplacian differential operator and δ̄

is the Dirac delta function. Let si be the location of the i-th sensor. Then the model
set for the sensor measurements is

R̂i,k(x) = C(si , k; x) + Ni,k,

where Ni,k is a zero mean i.i.d. Gaussian measurement noise with known variance
σ 2

n . By using Green’s technique to solve the differential equations, it is possible
to obtain an approximate state-space description for each sensor’s observation pro-
cess. The estimation problem can now be solved using the techniques developed in
Sect. 4. We refer the reader to [27] for a detailed analysis.

5.2.1 Numerical Results

We illustrate the performance of the algorithm with simulation results for the prob-
lem discussed above. In the simulation experiments, l1 = l2 = 100 and diffusion
coefficient ν = 1. The actual location of the source is x∗ = (37, 48). The value
of μ = 1000, ρ = 0.95 and σ 2

s = 1. A network of 27 sensors is deployed. To
ensure complete coverage of the sensing area, we first placed 9 sensors on a grid
and then randomly deployed 3 sensors in the immediate neighborhood of each of
the 9 sensors. The network is shown in Fig. 6. The sampling interval is 10 time units
and the measurement noise variance is set to 0.1.

Observe from Fig. 7 that the IRPE algorithm does not converge to the correct
parameter value. This is because, in the absence of convexity, the algorithms in
general are only guaranteed to converge to a stationary point and necessarily the
global minimum of the cost function.

One way to improve the structure of the cost function is to partially model the
dependence between sensor measurements. The idea is to group sensors in clus-
ters. The dependence between the sensor measurements within a cluster is explic-
itly modeled, while across clusters no model is assumed. Each sensor could then
pass its measurements to a cluster head and the distributed algorithms discussed
could be run between the cluster heads. Note that in this case the pi,k+1 term in
the conditional least squares term in (1) should be the best estimate for Ri,k+1

based on the past and present measurements of the independent variable, and all
past values of the dependent variable, of all the sensors in the cluster. There-
fore, to improve the topology of the cost function the network is divided into 9
clusters of size 3. The cluster heads are the sensors marked by circles in Fig. 6.
At the beginning of each slot, a cluster head collects the measurements from the
sensors in the cluster. A total of 1000 iterations of the IRPE is run between the
cluster heads and the performance is compared with 1000 iterations of the RPE.
Observe from Fig. 7 that the algorithm now converges to the correct parameter
value.
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Fig. 6 A network of 27 sensors. The small circles denote the cluster heads and the squares denote
the sensors. The source is represented by a dot. The arrows indicate the order in which the iterates
are passed in the cluster IRPE
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Fig. 7 Estimates of the x and y coordinates generated by the standard IRPE and the cluster IRPE.
Observe that the standard IRPE converges to a stationary point while the cluster IRPE converges
to the correct source location

6 Discussion

In this chapter we have focused on least squares parameter estimation. All of the
estimation algorithms were based on stochastic gradient optimization algorithms.
Similar ideas can be used to obtain weighted, and robust least-squares estimators,
for the case where the criterion is not necessarily quadratic. If the sensor measure-
ments are independent across sensors, the ideas presented here can be extended to
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obtain distributed and recursive maximum likelihood estimators; the independence
across sensors provides the additive form for the estimation cost function, which
makes it possible to use the distributed stochastic algorithms. Related work, which
we did not discuss in this chapter, is that involving recursive Bayesian estimation
over networks. In [4], the asymptotic convergence of optimal Bayesian estimates is
investigated, under the premise that the network is not very complicated and each
sensor can keep track of the total information flow. In [34], cyclical incremental
Bayesian estimation algorithms are discussed.

There are a number of avenues for future extensions. Perhaps, the most immedi-
ate is the development and analysis of Markov incremental and diffusive algorithms
for Gaussian state space model set. Another avenue involves relaxing the assumption
that the sensors sense and process in a synchronous manner, since this assumption
may not be valid in large networks. At a broader level, it is of interest to develop
recursive and distributed estimation algorithms for estimation in other model sets
that the two specific model sets that we described in the chapter.
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17. Matthes, J., Gröll, L., Keller, H.B.: Source localization for spatially distributed electronic
noses for advection and diffusion. IEEE Transactions on Signal Processing 53(5), 1711–1719
(2005)
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19. Nedić, A., Ozdaglar, A.: Distributed sub-gradient methods for multi-agent optimization.
Transactions on Automatic Control 54(1), 48–61 (2009)
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