2 Handling Semantics in Information
Exchange — An Introduction to XML

Good information is hard to get.
It is even more difficult, to use it.
[Sir Arthur Conan Doyle (1859 — 1930)]

This citation is even more valid for the information age with many billions of Web
page and in these times of the semantic web. The main issue for Web users is not
getting information. Rather the principal task for the user of the Web is to separate
relevant from irrelevant information. Humans can use their knowledge and subtle
clues when they face a long list of results from a search engine. Conversely, when
there is automated processing of information, large numbers of unreliable search
results are often a serious problem.

Opening Vignette: Will XML be the ultimate platform? Or will it be the
next EDI?!

I hear it's going to cure cancer," says Tim Bray, its co-creator. "It's going to
do my dishes, I hear," says Anne-Marie Keane, Staples' vice president of
B2B e-commerce. Behind the flip jokes lies XML - a syntax that underpins a
growing list of more than 300 nascent data standards. MathML, for instance,
will make it possible to manipulate advanced mathematical equations on a
Web page. Spacecraft Markup Language standardizes databases that operate
telemetry and mission control. And then there's MeatXML, a comical name
for a serious effort to create a universal meat and poultry supply chain
standard. With XML going in so many directions at once, you can't blame
CIOs for being confused. The hyperbole often makes XML sound like a
salve for all pain. Finding the truth behind the tales takes some digging.
Technologically, XML is a giant leap for IT. It can drastically reduce
development time while making data transfer over the Internet simple. If
nurtured properly, it may even become the ASCII text of online business -
ubiquitous and assumed. Or it could become the next EDI, fractured under
the pressure of vendor self-interest. One thing is certain: for XML to reach
its full potential, CIOs will have to take an active role in forcing their
partners, their vendors and even their competitors toward a radically more
open computing model than what existed before.

This chapter deals with enhancing the understanding of an electronic document
and information exchange. The eXtensible Markup Language (XML) and

I Excerpted from Scott Berinato, “XML: The Hype Stuff’, CIO Magazine, available at
http://www.cio.com.au/index.php/id;212673785.

16 2 Handling Semantics in Information Exchange — An Introduction to XML

derivatives are nothing other than an approach to realize the understanding of an
electronic document. XML is a foundation of the semantic web. In recent years,
discussion is not just on markup languages. Increasingly the dialog about
exchange of information includes also the term ontology. This term is rather scary
for a number of people who are not intimately involved in the field. The task of
ontologies is merely to describe things and the relationships between things. This
increased emphasis on ontologies has come into focus by the semantic web.

Over many years, organizations and public agencies have come forward to
develop standards to solve communication hurdles. These standards exist to
establish and disseminate communication methods to allow smooth understanding
in information flows. For example, SWIFT is an important communication
standard that supports automated money transfer between banks. Some
communication standards are already accepted. For example, the SWIFT codes to
facilitate money transfers are encoded in an International Standards Organisation
(ISO) standard (ISO 9362). There is even an XML wrapper for SWIFT codes
(swiftML). There are also emerging or de facto standards. The XML
recommendations from the World Wide Web Consortium (W3C) are good
examples of such de facto standards. They only have the force of the consortium
behind them. Yet a wide array of important standards rest on these de facto
standards.

XML is a basis for several communication standards. The reasons for
development of XML were many problems with the HyperText Markup Language
(HTML). These issues are seen in the so-called HTML dilemma. To understand
this dilemma, the following Code example 2.1 shows the structure of a typical
HTML document.

<html>
<head>
<title >Skeleton of a HTML document</title>
</head>
<body>
<h1>HTML documents</hl>
<p>This is a simple HTML document
without navigation<p>.
</body>
</html>

Code example 2.1: Document structure using HTML

HTML is a markup language for the standardized display of information. Web
browsers take tags such as <hl> (highest heading level) and <p> (paragraph) as
clues to represent information on the screen for a human user. Different browsers
have a different understanding about the document structure information. Seeking
a more positive user experience, websites will often use HTML tags for other than
their intended purposes. As a result the content (or better the semantics) of a
HTML document remains unclear for information exchanges purposes.

2.1 What is XML? 17

The dilemma of HTML is that it is on the one hand very easy to structure
documents for Web presentations - which is positive. On the other hand, HTML
does not allow a machine understandable structuring of documents. Search
engines such as Google, allows ready access to a wide variety of documents on the
Internet. Unfortunately, that variety of search results is often a major impediment
to finding a desired value. All search engine users have the experience of a result
list with a million or more web pages. Most of these pages are not relevant for the
user. The result list is at the level of the relevance of the complete content in each
document, which is inappropriate in the realm of intra- or inter-enterprise
communications of designated values such as Revenue or Qualified Carbon
Credit. Automated document retrieval by search engine cannot ensure document
or value validation - which is negative. The construction of XML plays an
important role in resolution of these existing problems.

2.1 Whatis XML?

The eXtensible Markup Language (XML) is a World Wide Web Consortium
(W3C) defined open standard. Its task is to contain, name, structure, and secure
information. Thereby XML is not a programming language. The task of XML is to
describe the content of an electronic document. This means to clarify the meaning
of name, address and so on and then to structure it in an appropriate format (the
first row of a document is name, second row is street etc.). XML is a text-based
meta-language to exchange, visualize and manipulate structured data to support
heterogeneous applications.

The following example (Fig. 2.1) shows textual information, typed in a text-
processing program such as Microsoft Word. A human reader can read and
understand the text, which is nothing else than first name and surname. If a user
wishes to store this information, the application stores it as a single document with
a number of characters without knowing the meaning of these characters. XML
manages information in an entirely different way. First, XML defines the structure
of a document. Second, XML fills the information structure with appropriate
values. This leads to human- and machine-readable documents. XML has a similar
appearance to those structured in the HTML. HTML is only able to define the
presentation of the stored information. XML defines content. As a result, XML is
an important foundation of the semantic web.

18

2 Handling Semantics in Information Exchange — An Introduction to XML

<name>
Hans Muller <firstname/>
<lastname/>
</name>
Content Structure
\d
<hl>Hans</hl>
<h2>Muller</h2
Eormatting
A 4
Presentation
HTML XML
<p= <Pxmlversion="1.0"7>
Bosak Jon <article>
XML, Java <author> Bosak,Jon <fauthor>
and the future of the web <title=XML, Java
<fp> and the future of the web <#itle>
<farticlex

Fig. 2.1: XML task, HTML and XML

Importantly, XML is an open standard. It is an information container and a toolset
for other more specific markup languages, such as XBRL. XML documents are
machine- and human-readable, although the level of readability varies with the
level of their complexity. They are also structured like a tree, which is a very
common pattern in computer science. The following ten aspects characterize

XML:

1. XML represent structured data.

2. XML looks a bit like HTML.

3. XML is text, but not for reading.

4. XML has a full design.

5. XML is a family of techniques?.

6. XML is new, but not that new.

7. XML transfers HTML to XHTML.

8. XML is modular.

9. XML is the basis for the Semantic Web.

—_
o

. XML is freely licensed, platform- and company independent and well

supported.

Besides the structuring of documents, data can be stored and retrieved by using
XML standards and tools. Additionally, the output can be formatted by using

2

XML is a collection of a number of languages, rule collections and data structures. It contains
e.g. XSLT, XPath, XLink and XML schema.

2.1 What is XML? 19

XML together with style sheets (CSS). They can be transformed into an HTML
document (XML and XSLT), a PDF document (XML and XSL-FO) and many
other formats. As already stated, XML describes data. The following Code
example 2.2 shows an email described by XML.

<?xml version="1.0" encoding="I50-8859-1"7?>
<email>

<from>jenny</from>

<to>benny</to>

<subject>Hi</subject>

<message>Hello Benny! How are you doing?</message>
</email>

Code example 2.2: Email as an XML file

This example is easy to understand, because the tags are readable and context
oriented. There is no limit about the complexity or the hierarchy depth of an XML
document. The logical structure works in a hierarchical order, where the stored
information is represented as concepts. As the concepts are interrelated, we model
the interdependencies in a hierarchical tree structure. As far as the physical data
structure is concerned, the XML document is nothing more than a string of
characters.

ROOT Customers CustomerID XYZAA
& L

ContactName _Joe

CompanyName Company1l

CustomerID XYZAA

OrderDate 2000-08-25T00:00:00

XYZAA

OrderDate 2000-10-03T00:00:00

CustomerID

Customers XYZBB
L

ContactName Steve
CompanyName Company2

No Orders Yet

Fig. 2.2: Tree of an XML document

XML is a standardized language that includes the capability to define the markup
language syntax. Since the definition of XML in 1998, many more initiatives have
come from the XML community. The following shows the most important XML
language family members.

20 2 Handling Semantics in Information Exchange — An Introduction to XML

XLink (Recommendation, 27 June 2001)

XPointer (Recommendation, 25 March 2003)

XML Namespaces (Recommendation, 14 January 1999)
XSL (Recommendation 15 October 2001)

XSLT 1.0 (Recommendation, 16 November 1999),
XSLT 2.0 (Recommendation, 23 January 2007)

XPath 1.0 (Recommendation, 11 November 1999),
XPath 2.0 (Recommendation, 23 January 2007),
XQuery 1.0 (Recommendation, 23 January 2007).

XML document: The following figure shows the construction of an XML message.

—>
XML 5 | <DOCTYPE telegram
Declaration
SYSTEM “/xml-resources/dtds/telegram.dtd“>
Document |
Prolog ntity [
Declaration—> | <!ENTITY my_name “Colonel Time Jump“>
1>
> | <telegram pri = “important“>
<to>Sarah Bellum</to>
< >Colonel Time Jump</ >
< t>Robot-Stitting-Instruction</ >
Document < file-ref="images/me.eps”“>
Element __| < >Thank you very much that you had a
look on my robo buddy</ e>
< >zonky</ >
</ >

Fig. 2.3: Construction of an XML document

The XML declaration is a collection of information to prepare software processors
for use of the information stored in an XML document. The declaration is always
the first row of the XML document.

A container tag, or just tag or element, is a markup symbol which is
symbolized by < > brackets. There must be a closing tag for each open tag. Tags
symbolize that there is information about the semantics of the document structure.
The following example shows the syntax of a container tag.

2.1 What is XML? 21

< Name Attribute 1 Attribute2 .. >

Fig. 2.4: Syntax of a container element

The figure above shows an (1) opening bracket, an (2) element name, (3) optional
attributes of the initial tag, a (4) closing bracket and a (5) closing tag with forward
slash after its opening bracket. The following syntax rules apply:

—> Tags cannot be overwritten (comparable to brackets in mathematic formulas)

Wrong: This text is bold <i>and italic</i>
Correct: This text is bold <i>and italic</i>
Code example 2.3: Example of nesting of tags

- Capitalization matters (because the computer differentiates according to the
case of text)

Wrong: <Text>This text is bold and italic</text>
Correct: <text>This text is bold and italic</text>
Code example 2.4: Example of capital case use in XML

- Correct structure (each element can have subelements but they need to be
properly nested as presented in the Examples 2.3 and 2.5)

<root>
<child>
<subchild>....</subchild>
</child>
</root>

Code example 2.5: Example of proper nesting in XML

—> Valid characters for element names are 0-9, a-z, A-Z, dot (.), hyphen (-) and
underline (). The initial character of an XML name must be a letter. The element

22 2 Handling Semantics in Information Exchange — An Introduction to XML

name must not start with a hyphen, number, punctuation character or string xml
(XML, Xml, xml, etc,). The length of an element name is not limited.

Correct < - >allowed</ - >

Wrong <- >not allowed</- >

Wrong <2nd-phone-number>13</2nd-phone-number>
Wrong <advise+question>Bla</advise+question>

Code example 2.6: Example allowed and disallowed characters for tags

The content of an XML document comes through information within the tagged
element, attributes of the tag, and sub-elements of the tag in an information
structure. Attributes characterize things of the reality we want to describe in our
document. Each attribute is as a container storing appropriate information.
Technically, an attribute is a pair of a name and a value. For example by the
means of attributes we can give an element a unique id. Attributes can provide
support for differentiation of data, because the definition and amount of attributes
is set up once and used several times. We show an example in the following
figure.

<product id="screen-15-Zoll-Sony">
<weight>...</weight>
<resolution>...</resolution>
<!—More product details-->
</product>

<product id="screen-15-Zoll-IBM">
<weight>...</weight>
<resolution>...</resolution>
<!—More product details-->

</product>

Code example 2.7: Details of data contained in attributes

The following example shows rules for expressing values of an attribute.
2l L[]
1 7 T 73

© 00 0 o

Fig. 2.5: Attribute example

The components of the Fig. 2.5 are (1) attribute name, (2) equal symbol, (3)
double or single quotations, and (4) attribute value. The number of attributes of an
element is not limited. The following Code example 2.8 shows a tag with four
attributes.

2.1 What is XML? 23

<employee sex="female" age="25" height="170cm" ssn="123">
<!—content of the tag-->

</employee>

Code example 2.8: Tag with four attributes

Attributes of the same element must have different names.

wrong: <team person="Jane" person="Joe"></team>

correct: <team person 1="Jane" person 2="Joe"></team>
Code example 2.9: Unifying attributes

In the previous examples, we demonstrated how data could be stored as value of
an attribute. However, data can be also stored without use of attributes. The
following example shows the same data stored as values of elements. In later
chapters, we will explain how elements and attributes are used to capture certain
financial reporting data.

<team>
<personl>Jane</personl>
<person2>Joe</person2>
</team>

Code example 2.10: Content without using attributes

Attributes can be used to describe values. Other possibilities to get machine-
readable semantics are elements. Attributes were introduced to describe
information that is contained in the element itself as its value.

<from name="Maria Lara" email="ml@xyz.com">I am coming

soon!</from>

Code example 2.11: Information container

The final table summarizes the tag types in XML.
Tab. 2.1: Tag types in XML

Object Reason Example
Empty element Represents information ata <xref linkend="abx"/>
specific point within the

document.
Container Groups elements and <p>This is a new section.
element character set data. </p>
<IENTITY Author “John
Doe”™>
Declaration Enhances the parsing <?7print formatter create new

environment with new row?>

24 2 Handling Semantics in Information Exchange — An Introduction to XML

parameters, entities or
grammar definitions.

Comment Enhances the document with ~ <!--I stopped here-->
a comment which is ignored
by the XML processor.
CDATA Creates a section with <I[CDATA[AND-
section character set data that are not CASCADE!&&&&&&]]>

parsed (to keep all specific
elements within the

document).
Entity Informs the parser to fill in &companyname;
reference textual parts that are stored

at a different location.

2.2 XML namespaces

When we draw data from a variety of different sources, identical names can have
different meanings. For example, the term article can mean an article of a book
club, an article in a magazine or an article within the articles of incorporation of a
company. To solve this problem, we can use namespaces coupled with element
names to give truly unique combinations.

Namespace Namespace Namespace
www.club.com www.media.com www.enterpr.com
name magazine project

article article article
address publisher management

Fig. 2.6: Namespaces

Namespaces are parts of the XML family in general and of XBRL in particular.
XML namespaces are a mechanism to link elements and attributes into groups.

We are going to take a closer look into XML applications that use attributes
and elements within a single XML document (markup vocabulary). Such XML
documents are used and understood by different software modules. It is more
appropriate to reuse markup vocabulary as defined in the XML document. Such
reuse of markup vocabulary is hindered when recognition and collision problems
occur® in XML applications. Thus as a rule, tags and attributes must be unique.
Collisions, where we have identical attribute names or element types, should not
then cause errors during processing. XML namespaces exactly satisfy this
requirement.

3 The usage of identical terms with different meaning can lead to problems. For example,

Orange can be a fruit or can also be a European mobile phone company.

2.2 XML namespaces 25

Recommended XML Namespace for Government Organizations*

The US federal government is actively engaged in developing and deploying
XML. It is critical that the government establishes a cohesive, coordinated
namespace approach to support its various XML efforts. This namespace
approach must define a standardized structure for federal namespace as well
as establish a standardized naming convention for those namespaces.
Without such a coordinated approach, individual government organizations
will create a proliferation of disparate XML namespace structures and
names resulting in chaotic management of XML components.

To summarize, we define the term namespace as follows: An XML namespace is a
collection of names, identified by URI links that are in use as element types and
attribute names within XML documents. URIs are necessary to be able to identify
namespaces. To make it clear - URIs are part of the set of URLs. The syntax is of
a namespace declaration is:

xmlns:prefix="URI"

The following example shows a code part of an XML document that uses
namespaces to demonstrate the unique identification of attributes.

<order
xmlns:bo="http://www.book.com/"
xmlns="http://www.magazine.com/">
<bo:article number="1234">
<bo:description>XML and XBRL</bo:description>
</bo:article>
<article id="111">
<name>Information Systems<name>
</article>
</order>

Code example 2.12: Namespaces

The example contains namespaces with the attribute declaration xmlns:bo and
xmins’. The elements of the shown order belong to the first or the second category.

4 Excerpted from J. L. Glace and M. R. Crawford: Recommended XML Namespace for
Government Organizations, August 2003, available at
http://xml.gov/documents/completed/Imi/GS301L1_namespace.pdf.

3 xmlns=“http://www.magazine.com/* is treated as default namespace and therefore is not

assigned a prefix.

26 2 Handling Semantics in Information Exchange — An Introduction to XML

2.3 XML schema

The W3C developed XML schema as a language for the description of XML
documents. An XML schema contains the necessary element types, attributes and
entities to align with XML instance documents. XML schema is similar to a
database schema for a database such as Microsoft Access or Oracle. An instance
document contains information that aligns with the schema. The instance
document includes processable information encoded by the tags from the schema.
The XML schema defines syntactical rules and the structure of a class of XML
documents.

A corresponding XML schema assures the validity of an XML instance
document. XML parsers or validators will validate whether an instance document
is a well formed XML document. Additionally the schema is an explicit coding of
rules which contain information about what is valid and necessary and what is
unnecessary.

Besides the already existing XML-based languages, XSD (XML schema
description language) has the highest practical recognition. XBRL uses XSD as
we describe later in the book. An XML schema can ensure a number of validation
quality checks:

It defines the elements that can be used within a document.
It defines the attributes that can be used in a document.

It defines the child elements of an element.

It defines the order of child elements of an element.

It defines the number of child elements.

It defines if an empty element is allowed.

It defines data types.

It defines fixed and default values.

An XML schema supports differentiation of namespaces that go hand in hand with
the structure of well-formed constraints on the content of an instance document.
An XSD document is organized as a tree of schema elements. The root of the
schema file is always <xsd:schema>. The root element includes other elements
<xsd:complexType> or <xsd:simpleType>. The prefix xsd shows that all elements
belong to the XML schema family. The XML schema namespace declaration is:

xmlns:xsd=http://www.w3.0org/2001/XMLSchema.

A typical XSD schema documents has several different components. Primary
components are simple or complex type definitions, element or attribute
declarations. We explain the roles of these components using a number of
examples in this section. As shown in the following example, simple type
definitions contain just a single value such as a number, a date or text. The XML
schema means that an XML document created upon such a schema is supposed to
provide a value for the element name.

2.3 XML schema 27

<xsd:element name="name">
<xsd:simpleType>
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>
</xsd:element>

Code example 2.13: Simple data type

Complex type definitions are elements that contain subelements or attributes. This
means that an XML document based on the following schema should provide
values for projectMember, projectBudget and projectGoal. All these three exist
within the element projectDescription.

<xsd:element name="projectDescription">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="projectMember"/>
<xsd:element ref="projectBudget"/>
<xsd:element ref="projectGoal"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

Code example 2.14: Complex data type

Secondary components are definitions of attribute groups, key references for
uniqueness, declaration of comments and linking of names. The XML schema has
additional supporting components like comment and description about using
attributes.

We can use a simple type to express limitations such as length, minLength,
maxLength, pattern, enumeration and whiteSpace. Let us look at the following
examples:

<xsd:simpleType name="password">
<xsd:restriction base="xsd:string">
<xsd:minlength value="8"/>
<xsd:maxlength value="15"/>
</xsd:restriction>

</xsd:simpleType>
Code example 2.15: Password with minimum and maximum number of elements

An XML document based on the schema from Code example 2.15 can provide an
alphanumeric value for the element password that has between 8 and 15
characters.

28 2 Handling Semantics in Information Exchange — An Introduction to XML

<xsd:simpleType name="dayOfWeek">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Monday"/>
<xsd:enumeration value="Tuesday"/>
<xsd:enumeration value="Wednesday"/>

</xsd:restriction>
</xsd:simpleType>

Code example 2.16: Enumeration of elements

An XML document based on the schema from Code example 2.16 can provide a
value for the element dayOfWeek that is from the restricted set (Monday, Tuesday,
Wednesday...). One element can hold just one of these enumerated values.

<xsd:simpleType name="isbn">
<xsd:restriction base="xsd:string">
<xsd:pattern value="[0-9]{10}"/>
</xsd:restriction>

</xsd:simpleType>

Code example 2.17: Fixing an example for an element

An XML document based on the schema from Code example 2.17 must provide
an alphanumeric value for the element isbn consisting of digits between 0 and 9.

<xsd:simpleType name="ageGroup">
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="18"/>
<xsd:maxInclusive value="30"/>
</xsd:restriction>
</xsd:simpleType>

Code example 2.18: Defining a range

XML documents based on the schema from example 2.18 can provide a value for
the ageGroup element that is an integer with the value between 18 and 30.

<xsd:simpleType name="direction">
<xsd:list itemType="xsd:string"/>
</xsd:simpleType>

XML document (instance):
<direction>North East South West</direction>

Code example 2.19: Defining a list

2.4 XLink 29

The XSD definition of the document structure provides a set of names for all
possible elements and their attributes as well as links them with their respective
data type. We can add additional constraints and set default values of elements.
We define the element declaration with the statement <xsd:element
name="description"> (first character of a name is a letter). The XML schema
allows us to define complex elements each of which have several child elements.
We define this by modeling a custom data type:

<xsd:element name="description" type="description">
<xsd:complexType name="description">
<xsd:sequence>
<xsd:element name="customer" type="customer"/>
<xsd:element name="position" type="position"/>
</xsd:sequence>
</xsd:complexType>

Code example 2.20: Complex element

We can define complex data types with a so-called sequence. The term sequence®
means that XML parsers will parse the lines in the instance document row by row.

<xsd:complexeType name="customer"”>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="postcode" type="xsd:string"/>
<xsd:element name="place" type="xsd:string"/>
</xsd:complexeType>

Additional fixed value:

<xsd:attribute name="currency" type="xsd:string"
fixed="Euro"></xsd:attribute>

Code example 2.21: Complex element defined by sequence

2.4 XLink

This section briefly explains XLink, the XML linking language. XLink is as
important to XBRL as is XML namespaces. The main goal of XLink is to enable
linking within and between XML documents. In order to provide this
functionality, XLink allows the creation of unidirectional links as well as a
complex link structures. Links in XML documents can bind elements with

6 The sequence element specifies that the child elements must appear in a sequence. Each child

element can occur from O to any number of times. Parsers themselves unlike compilers
traverse the code line by line (of any XML document or XML schema document).

30 2 Handling Semantics in Information Exchange — An Introduction to XML

individual or multiple resources’ or with associated metadata®. Resources in
XLink can be external websites but also other documents or sections of
documents. This means that XLink is nothing else than a set of destinations (so-
called resources) and a set of links between these destinations (the solution for
creating links in XML documents was to put a marker on elements that should act
as hyperlinks). A link contains all necessary information, to be able to decide
which appropriate resources have to be linked. This does not mean that all
destinations in use in a link must have a relation to another destination.

<?xml version="1.0"?>
<homepages xmlns:xlink="http://www.springer.com">
<homepage xlink:type="simple"
xlink:href="http://www.springer.com">Visit
Springer</homepage>
<homepage xlink:type="simple"
xlink:href="http://www.iasb.org">Visit IASB</homepage>
</homepages>

Code example 2.22: Linking with XLink

This example presents a way by which simple hyperlinks can exist in XML
documents.

XLink has two parts: simple and extended links. Simple links are a connection
between two resources. This is comparable to the links known in HTML. Figure
2.7 shows a simple link to connect a local and a remote resource. This can be for
example terms in a text document that link to their definition.

locator to
remote
resource

[oer:]
resource

R . -~

Fig. 2.7: Simple link

A simple link is a limited option to connect two resources. The extended link
offers the full XLink functionalities. The extended link allows the association to an

A resource can be everything which has an own identity. The term resource has in context to
the World Wide Web (WWW) different meanings. It can be an image, a file, a program or
another XML document.

A link can contain additional semantic information.

2.4 XLink 31

open number of resources. The participating resources can be a free combination
of local and remote destinations. The following figure 2.8 shows an example of
the extended link.

locator to
remote

ressource

locator to locator to
remote remote
ressource ressource

extended

locator to locator to
remote remote
ressource ressource

Fig. 2.8: Extended link
XLink

A language designed to allow creation of hyperlinks in XML documents.
Hyperlinks may have a specific meaning (role). Using XLink allows for
connecting elements and describes the nature of the connection in a
computer-readable manner. XLink hyperlinks connect internal (within one
XML document) and external resources (resources within the document to
external and even non-XML resources). In the XBRL architecture, XLink
defines the various linkbases, including presentation, calculation, definition,
label and reference linkbases by using the arcs and locator methodology.
The arcs can be given a specific meaning to indicate the nature of the
relationship. For instance, arcs in the XBRL presentation linkbase are
defined as a parent-child. This indicates the hierarchical meaning of the
relationship. Arcs in the calculation linkbase are defined as summation-item
indicating the aggregation nature of the relationship.

32 2 Handling Semantics in Information Exchange — An Introduction to XML

2.5 Summary

XML is a World Wide Web Consortium (W3C) defined open standard. Its task
is to contain, name, structure, and secure information. XML and derivatives are
nothing other than an approach to realize the understanding of an electronic
document.

XML defines the structure of a document and fills the information structure
with appropriate values. This leads to human- and machine-readable
documents.

Content of an XML-document comes through information within the tagged
element, attributes of the tag, and sub-elements of the tag in an information
structure.

An XML namespace is a collection of names, identified by URI links which are
used as element types and attribute names within XML documents.

The XML schema defines syntactical rules and the structure of a class of XML
documents.

The main goal of XLink is to enable linking within and between XML
documents. In order to provide this functionality, XLink allows the creation of
unidirectional links as well as a complex link structure.

2.6 Key terms you should know

XML

XML documents
Tags

Elements
Attributes

XML namespaces
XML schema
XLink

2.7 Case analysis 33

2.7 Case analysis®

Improving communications between departments was one of the main reasons
why governments around the world began showing early interest in XML, which
emerged in 1998 as an official World Wide Web Consortium standard that built
on the runaway success of its smaller cousin, the HyperText Markup Language
(HTML).

Integration into all manner of products came quickly, and XML's ability to add
structure and meaning to data made it a philosophical companion to efforts to
open up government data storage formats. Equally popular was XML's
enablement of industry or function-specific markup schemas — eXtensible
Business Reporting Language (XBRL) is one, as are eBusiness XML (ebXML),
Financial Products Markup Language (FpML), Math Markup Language
(MathML) and myriad others with specific purposes.

Yet XML's flexibility may have muddied its message: even the official World
Wide Web Consortium family of XML-based standards has grown, now including
XPath, XPointer, XSLT and a host of others. With so many acronyms floating
around - and specific expertise needed to take advantage of each one - it is no
wonder that many organizations that might otherwise be interested in XML's
benefits have put it into the too-hard basket.

Just because workers can create XML documents does not mean they will.
XML is an enabler, not a destination, and will offer no real benefit without
appropriate policy and framework formulation.

® Excerpted from David Braue, “You Can Lead a Government to XML . . .”, CIO Magazine

available at http://www.cio.com.au/index.php/id;1160512555;fp;4;fpid;21.

2 Springer
http://www.springer.com/978-3-642-01436-9

¥BRL for Interactive Data

Engineering the Information Value Chain
Debreceny, R Felden, C.; Ochocki, B.; Piechocki, M.;
Piechocki, M.

20089, XX, 214 p., Hardcover

ISEN: 978-3-642-01436-9

