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1 Introduction

Fixed points and fixed point computations occur in just about every field of
computer science. Their widespread use is due to the fact that the seman-
tics of recursion can be described by fixed points of functions or functionals,
or more generally, functors or morphisms. Of course, the treatment of fixed
points in mathematics goes well back before their first use in computer sci-
ence: They frequently occur in analysis, algebra, geometry, and logic. One
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of the first occurrences of fixed points in the theory of automata and for-
mal languages were probably the equational characterizations of regular and
context-free languages as least solutions to right-linear and polynomial fixed
point equations. Kleene’s theorem for regular languages follows from the fixed
point characterization just by a few simple equational properties of the fixed
point operation. Many results in the theory of automata and languages can
be derived from basic properties of fixed points.

The aim of this paper is to provide an introduction to that part of the the-
ory of fixed points that has applications to weighted automata and weighted
languages. We start with a treatment of fixed points in the ordered setting
and review some basic theorems guaranteeing the existence of least (or great-
est) fixed points. Then we establish several (equational) properties of the least
fixed point operation including the Bekić identity asserting that systems of
fixed point equations can be solved by the technique of successive elimination.
Then we use the Bekić identity and some other basic laws to introduce the
axiomatic frameworks of Conway and iteration theories. We provide several
axiomatizations of these notions and review some completeness results show-
ing that iteration theories capture the equational properties of the fixed point
operation in a large class of models. In the last two sections, we treat fixed
points of linear functions and affine functions over semirings and semimodules.
The main results show that for such functions, the fixed point operation can
be characterized by a star operation possibly in conjunction with an omega
operation. We show that the equational properties of the fixed point operation
are reflected by corresponding properties of the star and omega operations.

Some Notation

The composition of functions f : A → B and g : B → C is written g ◦ f ,
x �→ g(f(x)). The identity function A → A will be denoted idA. When f :
A → B and g : A → C, the target pairing (or just pairing) of f and g is the
function 〈f, g〉 : A → B × C, x �→ (f(x), g(x)), x ∈ A. In the same way, one
defines the (target) tupling f = 〈f1, . . . , fn〉 : A → B1 × · · · × Bn of n ≥ 0
functions fi : A → Bi. When n = 0, the Cartesian product B1 × · · · ×Bn is a
singleton set and f is the unique function from A to this set. The ith projection
function A1 × · · · × An → Ai will be denoted prA1×···×An

Ai
, or prA1×···×An

i ,
or just pri. A base function is any tupling of projections. When f : A → A′

and g : B → B′, f × g is the function A × B → A′ × B′ mapping each pair
(x, y) ∈ A × B to (f(x), g(y)). Clearly, f × g = 〈f ◦ prA×B

A , g ◦ prA×B
B 〉.

2 Least Fixed Points

When A is a set, an endofunction over A is a function A → A. We say that
a ∈ A is a fixed point of f if f(a) = a. We also say that a is a solution of
or solves the fixed point equation x = f(x). When A is partially ordered by a
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relation ≤, we also define prefixed points of f as those elements a ∈ A with
f(a) ≤ a. Dually, we call a ∈ A a post-fixed point of f if a ≤ f(a). Thus, a fixed
point is both a prefixed point and a post-fixed point. A least fixed point of f
is least among the fixed points of f , and a least prefixed point is least among
all prefixed points of f . Greatest fixed points and greatest post-fixed points
are defined dually. It is clear that the extremal (i.e., least or greatest) fixed
points, prefixed points and post-fixed points are unique whenever they exist.

Least prefixed points give rise to the following fixed point induction prin-
ciple. When P is a poset and f : P → P has a least prefixed point x, then we
have x ≤ y whenever f(y) ≤ y. As an application of the principle, we establish
a simple fact.

Proposition 2.1. Let P be a partially ordered set and let f : P → P be
monotone. If f has a least prefixed point, then it is the least fixed point of f .
Dually, if f has a greatest post-fixed point, then it is the greatest fixed point
of f .

Proof. We only prove the first claim since the second follows by reversing the
order. Suppose that p is the least prefixed point of f . Then f(p) ≤ p, and
since f is monotone, f(f(p)) ≤ f(p). This shows that f(p) is a prefixed point.
Thus, by fixed point induction, p ≤ f(p). Since p is both a prefixed point and
a post-fixed point, it is a fixed point. 
�

Next, we provide conditions guaranteeing the existence of fixed points.
Recall that a directed set in a partially ordered set P is a nonempty subset
D of P such that any two elements of D have an upper bound in D. A chain
in P is a linearly ordered subset of P . Note that every nonempty chain is a
directed set.

Definition 2.2. A complete partial order, or cpo is a partially ordered set
P = (P,≤) which has a least element denoted ⊥P or just ⊥ such that each
directed set D ⊆ P has a supremum

∨
D.

It is known that a partially ordered set P is a cpo iff it has suprema of all
chains, or suprema of well-ordered chains, cf. [43]. See also [16].

Definition 2.3. Suppose that P, Q are partially ordered sets and f : P → Q.
We say that f is continuous if it preserves all existing suprema of directed
sets: For all directed sets D ⊆ P , if

∨
D exists, then so does

∨
f(D), and

f
(∨

D
)

=
∨

f(D).

Every continuous function P → Q is monotone, since for all x, y ∈ P with
x ≤ y, f(y) = f(

∨
{x, y}) =

∨
{f(x), f(y)}, i.e., f(x) ≤ f(y). From [43], it is

also known that a function f : P → Q is continuous iff it preserves suprema
of nonempty chains, or suprema of nonempty well-ordered chains.
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Remark 2.4. Suppose that P, Q are partially ordered sets and f : P → Q and
g : Q → P are monotone functions. We say that (f, g) is a Galois connection
if for all x ∈ P and y ∈ Q, f(x) ≤ y iff x ≤ g(y). It is known that when (f, g)
is a Galois connection then f preserves all existing suprema, and g preserves
all existing infima. In particular, f is continuous, and when P has a least
element ⊥P then Q also has a least element ⊥Q, and f(⊥P ) = ⊥Q.

Theorem 2.5. Suppose that P is a cpo and f : P → P is monotone. Then f
possesses a least prefixed point (which is the least fixed point of f).

Proof. Define xα = f(xβ), if α is the successor of the ordinal β, and xα =∨
{xβ : β < α} if α is a limit ordinal. In particular, x0 is the least element ⊥.

It is a routine matter to verify that xα ≤ xβ whenever α ≤ β. Thus, there is a
(least) ordinal α with xα = xα+1. This element xα is the least prefixed point
of f . 
�

A partial converse of Theorem 2.5 is proved in [43]: If P is a partially
ordered set such that any monotone endofunction P → P has a least fixed
point, then P is a cpo.

The above rather straightforward argument makes use of the axiom of
choice. An alternative proof which avoids using this axiom is presented in [19].
A special case of the theorem is the Knaster–Tarski fixed point theorem [50,
19] asserting that a monotone endofunction of a complete lattice L has a least
(and by duality, also a greatest) fixed point.

When the endofunction f in Theorem 2.5 is continuous, the least fixed
point can be constructed in ω steps.

Corollary 2.6. Suppose that P is a cpo and f : P → P is continuous. Then
the least prefixed point of f is

∨
{fn(⊥) : n ≥ 0} (which is the least fixed point

of f).

Proof. Using the above notation, we have by continuity that f(xω) = xω,
where xω =

∨
{fn(⊥) : n ≥ 0}. 
�

Note that the same result holds if we only assume that P is a countably
complete or ω-complete partially ordered set, i.e., when it has a least element
and suprema of ω-chains, or equivalently, suprema of countable directed sets,
and if f is ω-continuous, i.e., it preserves suprema of ω-chains, or suprema of
countable directed sets.

Dually, if P is a partially ordered set which has infima of all chains, and
thus a greatest element �, and if f : P → P is monotone, then f has a greatest
post-fixed point which is the greatest fixed point of f . This greatest fixed point
can be constructed as the first xγ with xγ = xγ+1, where xα = f(xβ) if α
is the successor of the ordinal β, and xα =

∧
{xβ : β < α} if α is a limit

ordinal, the infimum of the set {xβ : β < α}. Thus, x0 = �. If, in addition,
f preserves infima of nonempty chains, then the greatest post-fixed point is∧
{fn(�) : n ≥ 0}.
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Besides single fixed point equations x = f(x), we will consider finite sys-
tems of fixed point equations:

x1 = f1(x1, . . . , xn),
...

xn = fn(x1, . . . , xn).

Each component equation xi = fi(x1, . . . , xn) of such a system may be con-
sidered as a fixed point equation in the unknown xi and the parameters
x1, . . . , xi−1, xi+1, . . . , xn. This leads to parametric fixed point equations of
the sort x = f(x, y), where f is a function P × Q → P .

Note that when P and Q are cpo’s and A is a set, then P × Q and QA,
equipped with the pointwise order, are cpo’s. Moreover, the set of all con-
tinuous functions P → Q is also a cpo denoted (P → Q). For any partially
ordered sets, P1, P2, Q and function f : P1 × P2 → Q, f is monotone or con-
tinuous iff it is separately monotone or continuous in either argument, i.e.,
when the functions p1f : P2 → Q and fp2 : P1 → Q, p1f(y) = f(p1, y),
fp2(x) = f(x, p2), p1 ∈ P1, p2 ∈ P2 have the appropriate property. More-
over, a function f = 〈f1, f2〉 : Q → P1 × P2 is monotone or continuous iff
both functions fi = pri ◦ f , i = 1, 2 are monotone or continuous, where pr1

and pr2 denote the first and second projection functions P1 × P2 → P1 and
P1 × P2 → P2.

Definition 2.7. Suppose that P , Q are partially ordered sets such that f :
P × Q → P is monotone and for each y ∈ P the endofunction fy : P → P ,
fy(x) = f(x, y) has a least prefixed point. Then we define f† : Q → P as the
function mapping each y ∈ Q to the least prefixed point of fy.

In a similar fashion, one could define a greatest (post)fixed point oper-
ation. Since the properties of this operation follow from the properties of
the least (pre)fixed point operation by simple duality, below we will consider
only the least fixed point operation. Nested least and greatest fixed points
are considered in the μ-calculus, cf. Arnold and Niwinski [1]. It is known that
over complete lattices, the alternation hierarchy obtained by nesting least and
greatest fixed points is infinite.

Notice the pointwise nature of the above definition. For each y ∈ Q, f†(y)
is (fy)†, the least prefixed point of the function fy : P → P (which may be
identified with a function P × R → P , where R has a single element).

The above definition of the dagger operation is usually applied in the case
when P, Q are cpo’s. In that case, the existence of the least prefixed point is
guaranteed by Theorem 2.5.

Proposition 2.8. Suppose that f : P ×Q → P is monotone. Then f† is also
monotone. Moreover, when P and Q are cpo’s and f is continuous, so is f†.
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Proof. Assume that y ≤ z in Q. If x is a prefixed point of fz, then fy(x) =
f(x, y) ≤ f(x, z) = fz(x) ≤ x, so that x is also a pre-fixed point of fy. Thus,
the least prefixed point of fy is below the least prefixed point of fz, i.e.,
f†(y) ≤ f†(z).

Assume now that P and Q are cpo’s and f is continuous. Let D denote a
directed subset of Q. We have

f†(y) =
∨{

fn
y (⊥P ) : n ≥ 0

}
=

∨{
fn(⊥P , y) : n ≥ 0

}
, for all y ∈ Q,

where we define f0(x, y) = x and fn+1(x, y) = f(fn(x, y), y), for all n ≥ 0.
Now,

∨{
fn

(
⊥P ,

∨
D

)
: n ≥ 0

}
=

∨{∨{
fn(⊥P , y) : y ∈ D

}
: n ≥ 0

}

=
∨{

fn(⊥P , y) : n ≥ 0, y ∈ D
}

=
∨{∨{

fn(⊥P , y) : n ≥ 0
}

: y ∈ D
}

=
∨{

f†(y) : y ∈ D
}
. 
�

It is also known that for cpo’s P , Q, the function ((P × Q) → P ) →
(Q → P ) which maps each continuous f : P × Q → P to the continuous
function f† : Q → P is itself continuous; see, e.g., [19].

The dagger operation satisfies several nontrivial equational properties. We
list a few below. Let P , Q, R denote cpo’s and f, g, . . . monotone or continuous
functions whose sources and targets are specified below.

Fixed point identity

f† = f ◦
〈
f†, idQ

〉
(1)

where f : P × Q → P .
Parameter identity

(
f ◦ (idP × g)

)† = f† ◦ g (2)

where f : P × Q → P and g : R → Q.
Composition identity

(
f ◦

〈
g,prP×R

R

〉)† = f ◦
〈(

g ◦
〈
f,prQ×R

R

〉)†
, idR

〉
(3)

where f : Q × R → P , g : P × R → Q and prP×R
R : P × R → P and

prQ×R
R : Q × R → Q are projection functions.

Double dagger identity or Diagonal identity

(
f†)† =

(
f ◦ (〈idP , idP 〉 × idQ)

)†
, (4)

where f : P × P × Q → P .
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Pairing identity or Bekić identity

〈f, g〉† =
〈
f† ◦

〈
h†, idR

〉
, h†〉 (5)

where f : P × Q × R → P , g : P × Q × R → Q and

h = g ◦
〈
f†, idQ×R

〉
. (6)

Permutation identity

(
π ◦ f ◦

(
π−1 × idQ

))† = π ◦ f†, (7)

where

f : P1 × · · · × Pn × Q → P1 × · · · × Pn and
π =

〈
prP1×···×Pn

i1
, . . . ,prP1×···×Pn

in

〉

for some permutation (i1, . . . , in) of the first n positive integers, and where
π−1 is the inverse of π, i.e., π−1 = 〈prP1×···×Pn

j1
, . . . ,prP1×···×Pn

jn
〉 where

(j1, . . . , jn) is the inverse of (i1, . . . , in).

For these identities, we refer to [4, 20, 44, 45, 47, 51] and [9]. Each of the
above identities can be explained using an ordinary functional language. For
example, the fixed point identity (1) says that f†(y) is a solution of the fixed
point equation x = f(x, y) in the unknown x and parameter y. It is customary
to write this least solution as μx.f(x, y). Using this μ-notation, the fixed point
identity reads f(μx.f(x, y), y) = μx.f(x, y). The parameter identity (2) is
implicit in the μ-notation. It is due to the pointwise nature of the definition
of dagger, and it says that solving x = f(x, y) and then substituting g(z)
for y gives the same result as first substituting g(z) for y and then solving
x = f(x, g(z)). In the composition identity (3), one considers the equations
x = f(g(x, z), z) and y = g(f(y, z), z), with least solutions μx.f(g(x, z), z)
and μy.g(f(y, z), z). The composition identity asserts that these are related:
μx.f(g(x, z), z) = f(μy.g(f(y, z), z), z). The double dagger identity (4) asserts
that the least solution of x = f(x, x, z) is the same as the least solution of
y = f†(y, z), where f†(y, z) is in turn the least solution of x = f(x, y, z). In
the μ-notation, μx.μy.f(x, y, z) = μx.f(x, x, z). The Bekić identity (5) asserts
that systems

x = f(x, y, z), (8)
y = g(x, y, z) (9)

can be solved by Gaussian elimination (or successive elimination). To find
the least solution of the above system, where f, g are appropriate func-
tions, one can proceed as follows. First, solve the first equation to obtain
x = f†(y, z), then substitute this solution for x in the second equation to ob-
tain y = g(f†(y, z), y, z) = h(y, z). The identity asserts that the second com-
ponent of the least solution of the above system is the least solution of y =
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h(y, z), i.e., h†(z). Moreover, it asserts that the first component is f†(h†(z), z),
which is obtained by back substituting h†(z) for y in f†(y, z), the solution
of just the first equation. In the μ-notation, μ(x, y).(f(x, y, z), g(x, y, z)) =
(μx.f(μy.h(y, z), z), μy.h(y, z)), where h(y, z) = g(μx.f(x, y, z), y, z).

We still want to illustrate the Bekić identity over semirings. So, suppose
that S is a continuous semiring, cf. [21]. It will be shown later that there is
a star operation ∗ : S → S such that least solutions of fixed point equations
x = ax+b can be expressed as a∗b. Suppose now that f, g : S2 → S, f(x, y) =
ax + by + e and g(x, y) = cx + dy + f and consider the system of fixed point
equations

x = ax + by + e,

y = cx + dy + f.

Then f†(y), the least solution of just the first equation is a∗(by + e) =
a∗by + a∗e. Thus, h(y) = g(f†(y), y) is (d + ca∗b)y + ca∗e + f , and h† =
(d + ca∗b)∗(ca∗e + f) is the second component of the least solution of the
above system. The first component is f†(h†) = a∗b(d+ca∗b)∗(ca∗e+f)+a∗e.
Using the matrix notation, the least solution of

(
x
y

)

=
(

a b
c d

)(
x
y

)

+
(

e
f

)

is
(

x
y

)

=
(

a∗b(d + ca∗b)∗ca∗ + a∗ a∗b(d + ca∗b)∗

(d + ca∗b)∗ca∗ (d + ca∗b)∗

) (
e
f

)

.

We leave it to the reader to express the permutation identity (7) in the μ-
notation.

A special case of the fixed point identity is

(
f ◦ prP×Q

Q

)† = f, (10)

where f : Q → P , and a special case of the parameter identity is

(
f ◦ prP×Q×R

P×Q

)† = f† ◦ prQ×R
Q , (11)

where f : P × Q → P . A special case of the permutation identity (7) is

Transposition identity

(
πP,Q

Q,P ◦ 〈f, g〉 ◦
(
πQ,P

P,Q × idR

))† = πP,Q
Q,P ◦ 〈f, g〉†, (12)

where f : P × Q × R → P and g : P × Q × R → Q, and where πP,Q
Q,P =

〈prP×Q
Q ,prP×Q

P 〉 and πQ,P
P,Q = 〈prQ×P

P ,prQ×P
Q 〉.
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In the μ-notation, (10) can be written as μx.f(y) = f(y), while the trans-
position identity (12) asserts that μ(x, y).(f(x, y, z), g(x, y, z)) is the transpo-
sition of μ(y, x).(g(x, y, z), f(x, y, z)). Equation (11), being a special case of
the parameter identity, is implicit in the μ-notation.

Theorem 2.9. All of the above identities hold for the least prefixed point op-
eration.

Proof. It is clear that the fixed point (1), parameter (2), and permutation
(7) identities hold. We now establish the pairing identity (5). Suppose that
f : P ×Q×R → P , g : P ×Q×R → Q such that f† and h† exist. This means
that for all y ∈ Q and z ∈ R, f†(y, z) is the least prefixed point solution of
the single equation (8), and for all z ∈ R, h†(z) is the least prefixed point
solution of the equation

y = h(y, z).

We want to show that for all z, (f†(h†(z), z), h†(z)) is the least prefixed point
solution of the system consisting of (8) and (9). But

f
(
f†(h†(z), z

)
, h†(z), z

)
= f†(h†(z), z

)

and

g
(
f†(h†(z), z

)
, h†(z), z

)
= h

(
h†(z), z

)
= h†(z),

showing that (f†(h†(z), z), h†(z)) is a solution. Suppose that (x0, y0) is any
prefixed point solution, so that f(x0, y0, z) ≤ x0 and g(x0, y0, z) ≤ y0. Then
f†(y0, z) ≤ x0, and thus

h(y0, z) = g
(
f†(y0, z), z

)
≤ g(x0, y0, z) ≤ y0.

Thus, by fixed point induction, h†(z) ≤ y0 and f†(h†(z), z) ≤ f†(y0, z) ≤ x0.
The double dagger and composition identities may be established directly

using fixed point induction. Below, we show that these are already implied by
(10), (11) and the pairing (5), and transposition (12) identities. First, note
that by the pairing and transposition identities, we also have the following
version of the pairing identity:

〈f, g〉† =
〈
k†,

(
g ◦

(
πQ,P

P,Q × idR

))† ◦
〈
k†, idR

〉〉
(13)

where

k = f ◦
〈
prP×R

P ,
(
g ◦

(
πQ,P

P,Q × idR

))†
,prP×R

R

〉
. (14)

Now, for the double dagger identity (4), assume that f : P × P × Q → P .
Let g = prP×P×Q

1 and consider the function 〈f, g〉 : P × P × Q → P × P .
We can compute the second component of 〈f, g〉† in two ways using the two
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versions of the pairing identity. The first version gives f††, while the second
gives, using (10) and (11), (f ◦ (〈idP , idP 〉 × idQ))†.

As for the composition identity (3), assume that f : Q × R → P , g :
P × R → P . Then define f ′ = f ◦ 〈prP×Q×R

Q ,prP×Q×R
R 〉 and g′ = g ◦

〈prP×Q×R
P ,prP×Q×R

R 〉, and use the two versions of the pairing identity (and
(10)) to compute the first component of 〈f ′, g′〉† in two different ways. 
�

As already noted, the above identities are not all independent, (10), (11),
(12) are instances of (1), (2), and (7), respectively. By the proof of Theo-
rem 2.9, (10), (11) and the pairing (5), and transposition (12) identities imply
(in conjunction with the usual laws of function composition and the Carte-
sian structure) the double dagger (4) and composition (3) identities. The fixed
point identity is a particular instance of the composition identity (take P = Q

and g = prP×Q
P ). In fact, the following systems are all equivalent, cf. [9]:

1. The system consisting of (10), (11), and the pairing (5), and transposition
(12) (or permutation (7)) identities.

2. The system consisting of (10), (11) and the two versions of the pairing
identity, (5) and (13).

3. The system consisting of the parameter (2), double dagger (4), and com-
position (3) identities.

Several other identities follow. For example, the following “symmetric ver-
sion” of the Bekić identity follows. For all f, g as in the Bekić identity,

〈f, g〉† =
〈
k†, h†〉 (15)

where h and k are defined in (6) and (14). In the μ-notation, (15) can be
written as

μ(x, y).
(
f(x, y, z), g(x, y, z)

)

=
(
μx.f

(
x, μy.g(x, y, z), z

)
, μy.g

(
μx.f(x, y, z), y, z

))
.

3 Conway Theories

In most applications of fixed point theory, one considers a collection T of
functions f : An → Am, for a fixed set A, sometimes equipped with additional
structure, where n, m are nonnegative integers. For example, T may consist of
the monotone, or continuous functions Pn → Pm, where P is a cpo. When T
contains the projection functions and is closed under composition and tupling,
we call T a Lawvere theory of functions, or just a theory of functions. The
collection of all functions An → A of a theory of functions is a function clone,
cf. [16].

There is a more abstract notion due to Lawvere [42]. We may think of a
theory T of functions over a set A as a category whose objects are not the
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sets An, but rather the nonnegative integers n. A morphism n → m in T is
a function An → Am, subject to certain conditions. As such, T is a category
with all finite products in the categorical sense (cf., e.g., [3]), with n+m being
the product of n and m, and 0 being the terminal object.

Definition 3.1. A theory is a small category whose objects are the nonneg-
ative integers such that each integer n is the n-fold product of object 1 with
itself.

Morphisms between theories are defined in the natural way. They preserve
objects, composition, and the projections. It follows that morphisms also pre-
serve tupling (and thus pairing) and the identity morphisms. Below, when T
is a theory, we denote by T (m, n) the set of morphisms n → m in T . (Note
the reversal of the source and the target.)

Below, we will assume that each theory T comes with given projection mor-
phisms prn

i : n → 1, i = 1, . . . , n making object n the n-fold product of 1 with
itself. In a similar way, we write prn,m

n and prn,m
m for the projections n+m → n

and n + m → m, given by 〈prn+m
1 , . . . ,prn+m

n 〉 and 〈prn+m
n+1 , . . . ,prn+m

n+m〉,
respectively, and idn = 〈prn

1 , . . . ,prn
n〉 for the identity morphism n → n.

Without loss of generality, we will assume that id1 = pr1
1. Since 0 is a ter-

minal object, for each n, there is a unique morphism n → 0. In any the-
ory, a base morphism is a tupling of projection morphisms. For example, the
identity morphisms and the morphisms with target 0 are base morphisms.
Note that there is a base morphism n → m corresponding to each func-
tion ρ : {1, . . . , m} → {1, . . . , n}, namely the morphism 〈prn

ρ(1), . . . ,prn
ρ(m)〉.

When ρ is bijective, injective, etc. we will also say that the corresponding
base morphism has the appropriate property. When f : p → m and g : q → n,
f × g : p + q → m + n is 〈f ◦ prp,q

p , g ◦ prp,q
q 〉. When T is understood, we will

just write f : n → m for f ∈ T (m, n).
There is a representation theorem for theories (see, e.g., [9]) by which each

theory is isomorphic to a theory of functions. But very often there are more
natural ways of representing the morphisms of a theory (e.g., as matrices over
a semiring).

When a theory T is equipped with a dagger operation † : T (n, n + p) →
T (n, p), n, p ≥ 0, we define when the fixed point identity and the other iden-
tities given above hold in T in the natural and expected way. For example,
the fixed point identity (1) is given by

f† = f ◦
〈
f†, idp

〉
, (16)

where f : n+p → n. As another example, the pairing identity (5) is understood
in the form

〈f, g〉† =
〈
f† ◦

〈
h†, idp

〉
, h†〉 (17)

where f : n + m + p → n, g : n + m + p → m and

h = g ◦
〈
f†, idm+p

〉
.
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Definition 3.2. A Conway theory is a theory T equipped with a dagger oper-
ation † : T (n, n + p) → T (n, p) which satisfies (10), (11), the pairing (5), and
transposition (12) (or permutation (7)) identities.

Morphisms of Conway theories, or theories equipped with a dagger opera-
tion, also preserve dagger. Two alternative axiomatizations of Conway theories
are given below. By the discussion at the end of the preceding section, we have
the following theorem.

Theorem 3.3. Let T be a theory equipped with a dagger operation. The fol-
lowing are equivalent:

1. T is a Conway theory.
2. T satisfies (10), (11), and the two versions of the pairing identity, (5) and

(13).
3. T satisfies the parameter (2), double dagger (4), and composition (3) iden-

tities.

Corollary 3.4. Any Conway theory satisfies all of the identities defined above.

Yet another axiomatization can be derived from the following result.

Theorem 3.5. Suppose that T is a theory equipped with a scalar dagger op-
eration † : T (1, 1 + p) → T (1, p), p ≥ 0 satisfying the scalar parameter (18),
scalar composition (19) and scalar double dagger (20) identities below.

Scalar parameter identity

(
f ◦ (id1 × g)

)† = f† ◦ g, (18)

for all f : 1 + p → 1 and g : q → p.
Scalar composition identity

(
f ◦

〈
g,pr1,p

p

〉)† = f ◦
〈(

g ◦
〈
f,pr1,p

p

〉)†
, idp

〉
, (19)

for all f, g : 1 + p → 1.
Scalar double dagger identity

f†† =
(
f ◦ (〈id1, id1〉 × idp)

)†
, (20)

for all f : 2 + p → 1.

Then there is a unique way to extend the dagger operation to all morphisms
n + p → n for all n, p ≥ 0 such that T becomes a Conway theory.

Proof. The unique extension is given by induction on n. When n = 0, † :
T (0, p) → T (0, p) is the identity function on the singleton set T (0, p). On
morphisms in T (1, 1 + p), the dagger is already defined. Suppose that n > 1
and f ∈ T (n, n + p). Then let m = n − 1 and write f as f = 〈f1, f2〉 where
f1 : m + 1 + p → m, f2 = m + 1 + p → 1. Then define f† as 〈f†

1 ◦ 〈h†, idp〉, h†〉
where h = g ◦ 〈f†

1 ,pr1+p
1 〉. 
�
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Corollary 3.6. A theory T equipped with a dagger operation is a Conway
theory iff T satisfies the scalar versions of the parameter, composition, and
double dagger identities and the scalar version of the pairing identity (17),
where f is arbitrary but g is scalar (i.e., m = 1).

A detailed study of the identities true of all Conway theories is given in [5].
It is shown that there is an algorithm to decide whether an identity holds in
all Conway theories, and that this decision problem is complete for PSPACE.
The proof is based on a description of the structure of the free Conway theories
using “aperiodic congruences” of flowchart schemes.

Remark 3.7. In any theory T equipped with a dagger operation, one may de-
fine a feedback operation ↑ : T (n + p, n + q) → T (p, q), n, p, q ≥ 0: Given
〈f, g〉 : n + q → n + p with f : n + q → n and g : n + q → p, we define
↑〈f, g〉 = g ◦ 〈f†, idq〉. Then T , equipped with the feedback operation and
the operation × as “tensor product” is a traced monoidal category [38]. The
same notion was earlier defined under a different name in connection with
flowcharts; see [49]. In fact, Conway theories correspond to traced monoidal
categories whose tensor product is a (Cartesian) product. Another aspect of
the connection is that traced monoidal categories are axiomatized by the iden-
tities that hold for flowchart schemes, and Conway theories by those that hold
for flowchart schemes modulo aperiodic simulations (and the iteration theo-
ries defined in the next section are axiomatized by the identities that hold
for flowchart schemes with respect to arbitrary simulations, or strong behav-
ioral equivalence). Flowchart schemes were first axiomatized in [8]. For more
information on the connection between Conway theories and traced monoidal
categories, we refer to [36, 49]. See also Chap. 6, Sect. 8 in [9].

4 Iteration Theories

The Conway identities do not capture all equational properties of the least
(pre)fixed point operation. In order to achieve completeness, we now introduce
the commutative identity in any theory T equipped with a dagger operation:

pr1 ◦ 〈f ◦ (ρ1 × idp), . . . , f ◦ (ρn × idp)〉† =
(
f ◦ (ρ × idp)

)†
, (21)

where f : n + p → 1, n ≥ 1, each ρi : n → n is a base morphism (i.e.,
a tupling of projections), and ρ is the unique base morphism 1 → n, i.e., ρ is
the diagonal 〈id1, . . . , id1〉. Particular instances of the commutative identity
are the group identities. Suppose that G is a finite group of order n with group
operation denoted. Moreover, suppose for simplicity that the carrier of G is
the set {1, . . . , n} with 1 being the unit element of G. For each i, define ρi as
the tupling of the n projection morphisms prn

i·j , so that ρi = 〈prn
i1, . . . ,prn

in〉.
Then the commutative identity above is called the group identity associated
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with G. (When the permutation identity holds, as will be the case below, it
does not matter how the elements of the group G are enumerated.)

The commutative identity (21) can be explained in theories of continuous
or monotone functions over cpo’s as follows. Suppose that P is a cpo and
f : Pn+p → P is continuous. Moreover, suppose that each ρi : Pn → Pn

is a tupling of projections, i.e., a base function. Then consider the system of
equations in n unknowns and p parameters:

x1 = f(xρ1(1), . . . , xρ1(n), y1, . . . , yp),
...

xn = f(xρn(1), . . . , xρn(n), y1, . . . , yp).

The commutative identity asserts that the first component of the least solution
of this parametric system is just the least solution of the single parametric
equation

x = f(x, . . . , x, y1, . . . , yp).

When the permutation identity holds, the same is true for all other compo-
nents.

Definition 4.1. An iteration theory is a Conway theory satisfying the group
identities.

Morphisms of iteration theories are Conway theory morphisms. Iteration
theories were defined in [6, 7] and independently in [24]. The axiomatiza-
tion in [24] used the Conway theory identities and the “vector form” of the
commutative identity; see below. The completeness of the group identities in
conjunction with the Conway theory identities was proved in [27].

Theorem 4.2. An identity involving the dagger operation holds in all theo-
ries of continuous functions on cpo’s iff it holds in all theories of monotone
functions on cpo’s iff it holds in iteration theories.

The proof is based on a concrete description of the free iteration theories
as theories of regular trees, cf. [9], which are the unfoldings of finite flowchart
schemes [8]. By this concrete description, it is known that there is a P-time
algorithm to decide whether an identity holds in all iteration theories; see [18].

Theorem 4.2 can be generalized to a great extent. The following result was
proved in [26].

Theorem 4.3. The iteration theory identities are complete for the class of
all theories T equipped with a partial order ≤ on each hom-set T (n, m) and
a dagger operation such that the operations of composition and tupling are
monotone. Moreover, the fixed point identity (1), the parameter identity (2),
and the fixed point induction axiom hold, so that

f ◦ 〈g, idp〉 ≤ g =⇒ f† ≤ g, (22)

for all f : n + p → n and g : p → n.
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Thus, in such theories, called Park theories in [26], the fixed point equation
ξ = f ◦ 〈ξ, idp〉 has a least solution, namely f†. With the same argument as
in the proof of Proposition 2.8, it follows that the dagger operation is also
monotone. Equivalently, one may define Park theories as ordered theories as
above satisfying the scalar parameter identity (18), the scalar versions of the
fixed point and pairing identities, i.e., (16) with n = 1 and (17) with m = 1,
and the fixed point induction axiom (22) for n = 1. See the proof of the Bekić
identity. Moreover, the fixed point identity may be replaced by the inequality
f ◦ 〈f†, idp〉 ≤ f†, for all appropriate f . Instances of Park theories are the
continuous theories and rational theories, cf. [9, 51]. In a continuous theory T ,
each T (m, n) is a cpo and composition is continuous. The dagger operation is
defined by least fixed points. In particular, the theory of continuous functions
over a cpo is a continuous theory. A rational theory T is also ordered, but not
all directed sets in T (m, n) have suprema. But there are enough suprema to
have least solutions of fixed point equations. It is known that each rational
theory embeds in a continuous theory.

More generally, one often considers certain 2-categories, called 2-theories,
such that for each f : n + p → n there is an initial solution of the fixed point
equation ξ = f ◦ 〈ξ, idp〉. The identities satisfied by such 2-theories are again
those of iteration theories, cf. [34].

An essential feature of iteration theories is that the “vector form” of each
identity true of iteration theories holds in all iteration theories. In a semantic
setting, this means the following. Given a theory T and an integer k, we
can form a new theory Tk whose morphisms m → n are the morphisms
mk → nk of T . The composition operation in Tk is that inherited from T ,
and the ith projection morphism n → 1 in Tk is 〈prnk

(i−1)k+1, . . . ,prnk
ik 〉. If

T is equipped with a dagger operation, then Tk is equipped with the dagger
operation inherited from T , since if f : n+p → n in Tk, then f is a morphism
nk + pk → nk in T and we may define f† in Tk as the morphism f† in T . For
details, see [27].

Theorem 4.4. When T is a Conway or iteration theory, so is Tk for each k.

Proof. The claim is clear for Conway theories, since the vector form of each
defining identity of Conway theories is also a defining identity. As for iter-
ation theories, by the completeness of the iteration theory identities for the
least fixed point operation on continuous functions on cpo’s (Theorem 4.2),
it suffices to prove that if T is the theory of continuous functions on a cpo P ,
equipped with the least fixed point operation, then each Tk is an iteration
theory. But Tk is isomorphic to the theory of continuous functions over P k,
which is an iteration theory. 
�

The commutative identity and the group identities seem to be extremely
difficult to verify in practice. But in most cases, this is not so. The commu-
tative identity, and thus the group identities are implied by certain quasi-
identities, which are usually easy to establish.
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Definition 4.5. Let C be a set of morphisms in a theory T equipped with a
dagger operation. We say that T has a functorial dagger with respect to C if

f ◦ (ρ × idp) = ρ ◦ g =⇒ f† = ρ ◦ g†, (23)

for all f : n + p → n, g : m + p → m in T and ρ : m → n is in C.

When T has a functorial dagger with respect to the set of all base morphisms
(all morphisms, respectively), we also say that T has a weak (strong, respec-
tively) functorial dagger. It is known that every Conway theory has a functo-
rial dagger with respect to the set of injective base morphisms. Moreover, if T
has a strong functorial dagger, then it has a unique morphism 0 → 1. In [25],
it is proved that if a Conway theory has a functorial dagger with respect to
the set of base morphisms 1 → n, n ≥ 2, then it has a weak functorial dagger.

Proposition 4.6. If a Conway theory T has a weak functorial dagger, then
T is an iteration theory.

Proof. We show that under the assumptions, the commutative identity (21)
holds. So, let f : n + p → 1 and let ρ1, . . . , ρn be base morphisms n → n, and
let ρ denote the unique base morphism 1 → n. Define g = f ◦ (ρ × idp) and
h = 〈f ◦ (ρ1 × idp), . . . , f ◦ (ρn × idp)〉. Then h ◦ (ρ × idp) = ρ ◦ g, so that
h† = ρ ◦ g†, completing the proof. 
�

For other quasi-identities implying the commutative identity, we refer to
[9, 11]. It is known that there exist iteration theories which do not have a
weak functorial dagger.

Simpson and Plotkin [48] proved the following equational completeness
result for iteration theories. Suppose that T is a nontrivial iteration theory
equipped with a dagger operation, so that T has at least two morphisms 2 → 1,
or equivalently, pr2

1 �= pr2
2 in T . Then there are two cases. Either an identity

holds in T iff it holds in all iteration theories, or it holds in all iteration theories
with a unique morphism 0 → 1. It was argued in [9, 11] that all fixed point
models satisfy at least the iteration theory identities. Thus, by the Plotkin–
Simpson result, all nontrivial fixed point models either satisfy exactly the
iteration theory identities, or the identities that hold in all iteration theories
with a single “constant.” Such iteration theories are, for example, the matrix
theories over nontrivial iteration semirings defined below. Iteration theories
of Boolean functions are described in [28].

5 Unique Fixed Points

Suppose that T is a theory. We say that a morphism f = 〈f1, . . . , fm〉 : n → m
in T is ideal if none of the morphisms fi : n → 1 is a projection. Following
Elgot [22], we call T an ideal theory if whenever f is ideal, then for all g in T
with appropriate target, f ◦ g is ideal.
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An important example of an ideal theory can be constructed over complete
metric spaces M = (M, d), where d denotes a distance function. It is clear that
when (M, d) is complete, so is any finite power Mn of M equipped with the dis-
tance function dn defined by dn((x1, . . . , xn), (y1, . . . , yn)) = max{d(xi, yi) :
i = 1, . . . , n}. Now, a function f : M → M ′ between metric spaces M = (M, d)
and M ′ = (M ′, d′) is called a proper contraction if there is a constant 0 < c < 1
such that d′(f(x), f(y)) ≤ cd(x, y) for all x, y ∈ M . The following simple but
important fact is Banach’s fixed point theorem [2].

Theorem 5.1. When M is a complete metric space and f : M → M is a
proper contraction, then f has a unique fixed point.

Proof. If x, y are both fixed points, then d(x, y) = d(f(x), f(y)) ≤ cd(x, y) for
some 0 < c < 1. It follows that d(x, y) = 0, i.e., x = y.

To show that there is at least one fixed point, let x0 ∈ M and define
xn+1 = f(xn) for all n ≥ 0. Since f is a proper contraction, the sequence
(xn)n is a Cauchy sequence, and since M is complete, it has a limit x. Since
f is a proper contraction, it follows that f(x) = x. 
�

Let M be a complete metric space. Consider the collection TM of all func-
tions Mn → Mm, n, m ≥ 0 of the form f = 〈f1, . . . , fm〉 such that each
fi : Mm → M is a proper contraction or a projection. It is clear that TM

is closed under composition and tupling, so that it is a theory of functions
over M . Moreover, TM is an ideal theory, since if M is nontrivial then a
function f = 〈f1, . . . , fm〉 is an ideal morphism iff each fi is a proper con-
traction which implies that each component function of f ◦ g is also a proper
contraction for any g in TM with appropriate target.

Definition 5.2. An iterative theory (cf. Elgot [22]) is an ideal theory T
equipped with a dagger operation defined on ideal morphisms in T (n, n + p),
n, p ≥ 0 such that for each ideal f : n + p → n, the morphism f† : p → n is
the unique solution of the fixed point equation ξ = f ◦ 〈ξ, idp〉.

Thus, the fixed point identity (16) and the unique fixed point rule

f ◦ 〈g, idp〉 = g =⇒ g = f†

hold for all ideal f : n + p → n and all g : p → n in T .

Remark 5.3. Let T be an ideal theory. We say that f : n + p → n in T is a
power ideal morphism if for some k ≥ 1, fk is ideal. When f : n + p → n is a
power ideal morphism in an iterative theory T , then the fixed point equation
ξ = f ◦ 〈ξ, idp〉 has a unique solution, namely the solution of ξ = fk ◦ 〈ξ, idp〉,
where fk is ideal. See [22]. (Here, f0 = prn,p

n and fk+1 = f ◦ 〈fk,prn,p
p 〉.)

The following result is from [13]; see also [9].

Theorem 5.4. An ideal theory T is an iterative theory iff for each ideal mor-
phism f : 1 + p → 1 there is a unique solution of the equation ξ = f ◦ 〈ξ, idp〉.
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Proof. The proof is based on a version of the pairing identity. One argues by
induction. In the induction step, one shows that if the fixed point equation
for ideal morphisms n + q → n and m + q → m have unique solutions, then
the same holds for ideal morphisms n + m + p → n + m. 
�

In an iterative theory, the dagger operation is only partially defined. In
order to be able to solve all fixed point equations over an iterative theory T,
there must be at least one morphism 0 → 1 in T .

Theorem 5.5. Suppose that T is an iterative theory with at least one mor-
phism 0 → 1. Then for each ⊥ : 0 → 1, the dagger operation on T has a
unique extension to all morphisms n + p → n, n, p ≥ 0 such that T becomes a
Conway theory with id†

1 = ⊥. Moreover, equipped with this unique extension,
T is an iteration theory having a weak functorial dagger.

This result was proved in [6, 7] and [24]. Iteration theories arising from
Theorem 5.5 are called pointed iterative theories. One application of the the-
orem is the following.

Corollary 5.6. Suppose that M is a complete metric space and consider the
theory TM defined above. Let x0 be a point in M . Then there is a unique way
to define a dagger operation on TM such that TM becomes a Conway theory
with id†

M = x0. This unique Conway theory is an iteration theory with a weak
functorial dagger.

Without proof, we mention the following theorem.

Theorem 5.7. An identity holds in all pointed iterative theories iff it holds
in iteration theories.

See [9, 24]. Thus, the equational properties of the least fixed point op-
eration are the same as the equational properties of the unique fixed point
operation.

6 Fixed Points of Linear Functions

Let S be a semiring. A function Sn → S is called linear if it is of the form

f(x1, . . . , xn) = s1x1 + · · · + snxn

for some s1, . . . , sn ∈ S. A linear function Sn → Sm is a tupling of linear
functions Sn → S. Since any composition of linear functions is linear, it
follows that linear functions over S determine a theory TS .

The linear function f given above may be represented by the n-dimensional
row matrix (s1, . . . , sn). More generally, any linear function Sn → Sm may
be represented by an m × n matrix M = (sij)ij over S: The linear function
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determined by M maps x ∈ Sn, an n-dimensional column vector to Mx,
an m-dimensional column. It follows that TS can be represented as the theory
T with T (m, n) = Sm×n, m, n ≥ 0, the set of all m × n matrices over S,
whose composition operation is matrix product. The projections are the row
matrices with an entry equal to 1 and all other entries equal to 0. The identity
morphism idn, n ≥ 0 is the n × n unit matrix En. We denote this theory by
MATS and call it the matrix theory over S.

Proposition 6.1. TS is isomorphic to MATS.

Note that in MATS , a base morphism, also called a base or functional
matrix, is a 0–1 matrix with a single occurrence of 1 in each row (at least when
S is nontrivial). In particular, every permutation matrix is a base matrix.
Note that the inverse of a permutation matrix π is its transpose, πT . It is
educational to see that for all A ∈ MATS(p, n) and B ∈ MATS(q, n),

〈A, B〉 =
(

A
B

)

,

and if A ∈ MATS(p, n) and B ∈ MATS(q, m) then

A × B =
(

A 0pm

0qn B

)

,

where 0pn and 0qm are zero matrices of appropriate dimension.
Below, we will show that any dagger operation on MATS satisfying the pa-

rameter identity determines and is determined by a star operation on MATS ,
and, in fact, on the semiring S. Moreover, we show how to express the Conway
identities and the commutative and group identities in terms of the star op-
eration giving rise to Conway matrix theories, matrix iteration theories, and
Conway and iteration semirings.

Proposition 6.2. Suppose that MATS is equipped with a dagger operation
such that the parameter identity holds. Then there is a unique star operation
A �→ A∗ defined on the square matrices A ∈ MATS(n, n), n ≥ 0 such that
for all (A, B) ∈ MAT(n, n+ p) with A ∈ MATS(n, n) and B ∈ MATS(n, p)

(A, B)† = A∗B. (24)

If MATS is equipped with a star operation and if we define dagger by (24),
then the parameter identity holds.

Proof. If the parameter identity (2) holds, then

(A B)† =
(

(A En)
(

En 0
0 B

))†
= (A En)†B.

Thus, we define A∗ = (A, En)†. With this definition, (24) holds. Moreover,
if MATS is equipped with a star operation and if we define dagger by (24),
then the parameter identity holds. 
�
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Theorem 6.3. Suppose that MATS is equipped with both a star and a dagger
operation which are related by (24).

1. The fixed point identity (1) holds iff the star fixed point identity holds:

A∗ = AA∗ + En (25)

for all A ∈ MATS(n, n), n ≥ 0.
2. The double dagger identity (4) holds iff the sum star identity holds:

(A + B)∗ = (A∗B)∗A∗ (26)

for all A, B ∈ MATS(n, n), n ≥ 0.
3. The composition identity (3) holds iff the product star identity holds:

(AB)∗ = En + A(BA)∗B (27)

for all A ∈ MATS(n, m), B ∈ MATS(m, n), m, n ≥ 0.
4. The identity (10) holds iff the zero star identity holds:

0∗nn = En, (28)

where the entries of the n × n matrix 0nn are all 0.
5. The pairing identity (5) holds iff the matrix star identity holds:

(
A B
C D

)∗
=

(
α β
γ δ

)

(29)

where A ∈ MATS(n, n), B ∈ MATS(n, m), C ∈ MATS(m, n), and D ∈
MATS(m, m), and where

α = A∗BδCA∗ + A∗, β = A∗Bδ,

γ = δCA∗, δ = (D + CA∗B)∗.

6. The permutation identity (7) holds iff the star permutation identity holds:
(
πAπT

)∗ = πA∗πT , (30)

where A ∈ MATS(n, n) and where π ∈ MATS(n, n) is a permutation
matrix with transpose πT .

7. The transposition identity (12) holds iff the star transposition identity
holds, i.e., the identity (30) when n = p + q and π =

( 0 Ep

Eq 0

)
.

8. The group identity associated with a finite group G of order n holds iff star
group identity associated with G holds:

e1M
∗
Gun = (a1 + · · · + an)∗ (31)

where MG is the n×n matrix whose (i, j)th entry is ai−1j, for all 1≤ i, j ≤ n,
and e1 = prn

1 is the 1×n 0–1 matrix whose first entry is 1 and whose other
entries are 0. Finally, un is the n × 1 matrix all of whose entries are 1.
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Definition 6.4. A Conway matrix theory (matrix iteration theory) is a ma-
trix theory MATS equipped with a star operation defined on square matrices
such that when dagger is defined by (24) then it is a Conway theory (itera-
tion theory, respectively). A morphism of Conway matrix theories or matrix
iteration theories is a theory morphism which preserves star.

It follows that morphisms also preserve the additive structure.
Note that A∗ = A∗A + En holds for all n × n matrices A in any Con-

way matrix theory. As an immediate corollary to Theorem 3.3, Theorem 3.5,
Corollary 3.6, and Theorem 6.3 we obtain the following corollary.

Corollary 6.5. A matrix theory T equipped with a star operation is a Conway
theory iff one of the following three groups of identities holds in T .

1. The zero star (28), matrix star (29), and star transposition (or star per-
mutation (30)) identities.

2. The product star (27) and sum star (26) identities.
3. The scalar versions of the product star, sum star, and matrix star identities,

i.e., (27) with m = n = 1, (26) with n = 1, and (29) with m = 1.

Thus, all identities (25)–(30) hold in Conway matrix theories. By adding to
the axioms, the star group identities (31) associated with the finite groups,
one obtains three sets of equational axioms for matrix iteration theories.

We note the following version of the matrix star identity:
(

A B
C D

)∗
=

(
(A + BD∗C)∗ (A + BD∗C)∗BD∗

(D + CA∗B)∗CA∗ (D + CA∗B)∗

)

.

When n = m = 1, the product star and sum star identities only involve
elements of the semiring S. This consideration gives rise to the following
definitions; see also [21].

Definition 6.6. A ∗-semiring is a semiring S equipped with a unary star op-
eration ∗ : S → S. A Conway semiring [9] is a ∗-semiring S which satisfies
the (scalar) product star and sum star identities, i.e.,

(ab)∗ = a(ba)∗b + 1, (32)
(a + b)∗ = (a∗b)∗a∗, a, b ∈ S. (33)

An iteration semiring [9, 27] is a Conway semiring, which when the star
of a square matrix is inductively defined by the scalar version of the matrix
star identity (i.e., (29) with m = 1), satisfies each star group identity (31)
associated with a finite group G. A morphism of ∗-semirings also preserves the
star operation. A morphism of Conway or iteration semirings is a ∗-semiring
morphism.
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Corollary 6.7. When MATS is a Conway matrix theory or a matrix itera-
tion theory, then S is a Conway semiring or an iteration semiring. Suppose
that S is a Conway semiring (iteration semiring, resp.). Then there is a unique
way of extending the star operation on S to all square matrices over S such
that MATS becomes a Conway matrix theory, or a matrix iteration theory.

Proof. This follows from Theorems 3.5 and 6.3. 
�

Of course, the unique extension is given by the scalar version of the matrix
star identity (29) with m = 1. Using the above results, one can show that the
category of Conway semirings is equivalent to the category of Conway matrix
theories, and that the category of iteration semirings is equivalent to the
category of matrix iteration theories.

In any Conway matrix theory, the group identities follow from the functo-
rial star conditions defined below.

Definition 6.8. Suppose that MATS is equipped with a star operation. Let
C be a set of matrices in MATS. We say that MATS satisfies the functorial
star implication for C, or that MATS has a functorial star with respect to C,
if for all A ∈ MATS(n, n) and B ∈ MATS(m, m) and all C ∈ MATS(n, m)
in C,

AC = CB =⇒ A∗C = CB∗.

When MATS has a functorial star with respect to the set of all matrices
in MATS, then MATS is said to have a strong functorial star. And when
MATS has a functorial star with respect to the set of all base matrices,
MATS is said to have a weak functorial star.

Proposition 6.9. A Conway matrix theory MATS has a functorial star with
respect to C iff it has functorial dagger with respect to C when dagger is defined
by (24).

Thus, MATS has a strong or weak functorial star iff it has a strong or
weak functorial dagger. Moreover, MATS has a weak functorial star iff it has
a weak functorial star with respect to all n × 1 base matrices, n ≥ 2.

Corollary 6.10. If MATS is a Conway matrix theory with a weak functorial
star, then MATS is a matrix iteration theory.

We mention one more property of Conway and iteration semirings. The
dual of a ∗-semiring S is equipped with the same sum and star operation and
constants as S, but multiplication, denoted ◦, is defined by a ◦ b = ba, the
product of a and b in S in the reverse order.

Proposition 6.11. The dual of a Conway or iteration semiring is also a Con-
way or iteration semiring.

See [27]. In the rest of this section, we will exhibit three subclasses of
iteration semirings.
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6.1 Inductive ∗-Semirings

Recall from [21] that an ordered monoid is a commutative monoid
(M, +, 0) such that the sum operation is monotone. An ordered semiring is a
semiring which is an ordered monoid such that the product operation is also
monotone. Moreover, an ordered semiring S is positively ordered if 0 ≤ s for
all s ∈ S. A morphism of ordered semirings is a monotone semiring morphism.
This section is based on [31].

Definition 6.12. An inductive ∗-semiring is an ordered semiring S which is
a ∗-semiring such that for any a, b ∈ S, a∗b is the least prefixed point of
the function S → S, x �→ ax + b. A morphism of inductive ∗-semirings is a
morphism of ordered semirings which is a ∗-semiring morphism.

Proposition 6.13. Any inductive ∗-semiring S is positively ordered.

Proof. The least solution of the equation x = x is 1∗ ·0 = 0. Since any element
of S is a solution, it follows that 0 is the least element of S. 
�

Proposition 6.14. When S is an inductive ∗-semiring, the star operation is
monotone.

Proof. This follows from Proposition 2.8. 
�

The dual of an inductive ∗-semiring is not necessarily an inductive
∗-semiring.

Definition 6.15. A symmetric inductive ∗-semiring is an inductive ∗-semi-
ring whose dual is also an inductive ∗-semiring.

Proposition 6.16. An inductive ∗-semiring S is symmetric iff for all
a, b, x ∈ S, if xa + b ≤ x, then ba∗ ≤ x.

If S is an ordered semiring, MATS is equipped with the pointwise par-
tial order. It is clear that the theory operations are monotone as is the sum
operation on matrices.

Theorem 6.17. Let S be an ordered semiring which is a ∗-semiring. Then
S is an inductive ∗-semiring iff MATS is a Park theory when the dagger is
defined by (24).

Proof. This follows from Theorem 6.3 and the Bekić identity (5). 
�

Corollary 6.18. Thus, when S is an inductive ∗-semiring, then for each A ∈
MATS(n, n) and B ∈ MATS(n, p), (A, B)† = A∗B is the least prefixed point
solution of the equation X = AX + B.

Corollary 6.19. Any inductive ∗-semiring S is an iteration semiring, so that
MATS is a matrix iteration theory.
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Proof. By Theorem 4.3. 
�

Corollary 6.20. If S is an inductive ∗-semiring, so is Sn×n, for each n ≥ 0.

Recall from [21] that an ordered semiring S is continuous if S is a cpo
with least element 0 and the sum and product operations are continuous.

Proposition 6.21. Every continuous semiring is a symmetric inductive
∗-semiring where a∗ =

∨
{
∑n

i=1 ai : n ≥ 0}.

Proof. This follows from Corollary 2.6. When S is a continuous semiring, then
for each a, b ∈ S, the function f(x) = ax + b is continuous with least prefixed
point

∨
fn(0, b). But for each n, fn(0, b) =

∑n
i=1 aib = (

∑n
i=1 ai)b, so that by

continuity,
∨

fn(0, b) = (
∨
{
∑n

i=1 ai : n ≥ 0})b. Since the dual of a continuous
semiring is also continuous, it follows now that any continuous semiring is a
symmetric inductive ∗-semiring. 
�

Kozen [40] defines a Kleene algebra as an idempotent symmetric inductive
∗-semiring. In [39], it is shown that there is an idempotent inductive ∗-semiring
which is not a Kleene algebra.

Remark 6.22. Kozen showed in [40] that for each alphabet A, the semiring
of regular languages over A, equipped with the partial order of set inclusion
is the free Kleene algebra on A. Krob [41] proved that the same semiring is
the free iteration semiring on A satisfying the identity 1∗ = 1, and thus also
the free idempotent inductive ∗-semiring on A. See also [14, 15] and [10]. For
recent extensions of these results, see [12, 29]. It is shown in [12] that for each
alphabet A, the ∗-semiring of rational power series [33] over the semiring N

∞ is
the free iteration semiring over A satisfying three additional simple identities.
Moreover, an identity holds in these semirings iff it holds in all continuous (or
complete, see below) semirings. And the same semirings, equipped with the
sum order, are the free symmetric inductive ∗-semirings. The paper [12] also
contains a characterization of the semirings of rational power series over the
semiring N as the free “partial iteration semirings.”

6.2 Complete Semirings

For the definition of complete semirings and their morphisms, we refer to [21]
where original references can be found. When S is a complete semiring, then
we may equip each hom-set MATS(n, m) = Sn×m with the pointwise sum
operation, so that the straightforward generalizations of the defining axioms
of complete semirings hold. In particular,
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∑

j∈J

∑

i∈Ij

Ai =
∑

i∈
⋃

j∈J Ij

Ai,

B

(∑

i∈I

Ai

)

=
∑

i∈I

BAi,

(∑

i∈I

Ai

)

C =
∑

i∈I

AiC,

where I is any set which is the disjoint union of sets Ij , j ∈ J , and where
Ai, i ∈ I is a family of matrices in MATS(m, n), and B ∈ MATS(p, m) and
C ∈ MATS(n, q).

Now, any complete semiring S can be turned into a ∗-semiring by defining
s∗ =

∑
sk. By the above remark, if S is complete, then each semiring Sn×n is

also complete and is thus a ∗-semiring with A∗ =
∑

Ak, for each A ∈ Sn×n.
We can use the star operation on S and the scalar version of the matrix
star identity to define another star operation on Sn×n. However, the two star
operations coincide as noticed in [17, 37]. We have the following result, cf. [9].

Theorem 6.23. When S is a complete semiring, then S is an iteration semi-
ring with a strong functorial star. Thus, S is an iteration semiring and MATS

is a matrix iteration theory.

In a rationally additive semiring S, only certain sums are required to exist
including the geometric sums s∗ =

∑
n≥0 sn, for all s ∈ S. It is shown in [30]

that they are also iteration semirings with a strong functorial star.

6.3 Iterative Semirings

An ideal of a semiring S is a set I ⊆ S which is closed under the sum operation
and contains 0. Moreover, SI = IS = I. Let I be an ideal of S and S0 a
subsemiring of S. Below, we will say that S is the direct sum of S0 and I if
each s ∈ S can be written in a unique way in the form s0 + a, where s0 ∈ S0

and a ∈ I. The following result is from [9].

Theorem 6.24. Suppose that S is the direct sum of S0 and I, where S0 is a
subsemiring of S and I is an ideal. Moreover, suppose that each fixed point
equation x = ax + b with a ∈ I has a unique solution in S. If S0 is a Conway
semiring, then there is a unique way to extend the star operation on S0 to the
whole semiring S such that S becomes a Conway semiring. Moreover, when
S0 is an iteration semiring, then so is S.

Proof. First, we define a∗ for all a ∈ I as the unique solution of the equation
x = ax + 1. When a ∈ I ∩ S0, the star fixed point identity guarantees that
this unique solution is just a∗ taken in the Conway semiring S0. Moreover, it
follows that the unique solution of x = ax + b is a∗b, for all b. Then the star
operation on S is defined as follows. Given s ∈ S, write s in the unique way
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as a sum s0 + a with s0 ∈ S0 and a ∈ I. Then by the sum star identity we are
forced to define s∗ = (s∗0a)∗s∗0, where s∗0 is taken in S0 and s∗0a is in I, since
I is an ideal. For more details, the reader is referred to [9]. 
�

Thus, under the above assumptions, if S0 is a Conway semiring, then
MATS is a Conway matrix theory and if S0 is an iteration semiring then
MATS is a matrix iteration theory. In either case, we have the following
proposition.

Proposition 6.25. Under the assumptions of Theorem 6.24, for any matrices
A ∈ MATS(n, n) and B ∈ MATS(n, p) such that each entry of A is in I,
A∗B is the unique solution of the fixed point equation X = AX + B.

An application of Theorem 6.24 is that if S is a Conway semiring or an
iteration semiring, then so is the power series semiring S〈〈A∗〉〉 (for the de-
finition of power series semirings, see [21]) for any set A. This follows since
S〈〈A∗〉〉 is the direct sum of S and the ideal I of proper power series, and when
s is a proper power series and r is any power series in S〈〈A∗〉〉, the function
x �→ sx + r is a proper contraction with respect to the complete metric on
S〈〈A∗〉〉 defined by d(s, s′) = 2−n, where n is the length of the shortest word
w with (s, w) �= (s′, w), for all distinct series s, s′.

Definition 6.26. We call a semiring S an iterative semiring if S is the direct
sum of an iteration semiring S0 generated by 1 and an ideal I such that each
equation x = ax + b with a ∈ I has a unique solution.

Corollary 6.27. Each iterative semiring is an iteration semiring.

7 Fixed Points of Affine Functions

In this section, we will consider pairs (S, V ) consisting of a semiring S and a
(left) S-semimodule V . An affine function is a function f : V n → V of the
form

f(x1, . . . , xn) = s1x1 + · · · + snxn + v,

where each si is in S and v is in V . An affine function V n → V m is a target
tupling of affine functions V n → V . The collection of all affine functions is a
theory of functions over V denoted TV .

Each affine function V n → V m may be represented by a pair (A, v) consist-
ing of a matrix A ∈ Sm×n and a column vector v ∈ V m. This representation
gives rise to the following definition.

Definition 7.1. Let (S, V ) be a semiring–semimodule pair. The matricial the-
ory MatrS,V [23] over (S, V ) has as morphisms n → m all pairs (A, v) where
A ∈ MATS(m, n) and v ∈ V m. Composition is defined by
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(A, v) ◦ (B, w) = (AB, v + Aw),

where AB is the usual matrix product and Aw is the action of A on w, i.e.,
(Aw)i =

∑n
j=1 Aijwj. The projection morphism prn

i is the pair (ei, 0), where
ei is the ith n-dimensional unit row vector considered as a row matrix. Mor-
phisms between matricial theories are theory morphisms which preserve the
additive structure.

It can be seen that a morphism MatrS,V → MatrS′,V ′ is completely
determined by a semiring morphism hS : S → S′ and a semimodule morphism
hV : V → V ′ such that (sv)hV = (shS)(vhV ) for all s ∈ S and v ∈ V . Thus,
the category of matricial theories is equivalent to the category of semiring–
semimodule pairs.

Proposition 7.2. The theory TV is a quotient of MatrS,V . A surjective the-
ory morphism MatrS,V → TV maps (A, v) ∈ MatrS,V (m, n) to the function
〈f1, . . . , fm〉 : V n → V m with fi(u1, . . . , un) = Ai1u1 + · · · + Ainun + vi, for
all i.

The above morphism is usually not injective. To get a faithful repre-
sentation, one can use (A, v) ∈ MatrS,V (m, n) to induce a function (S ×
V )n → (S × V )m. Indeed, we can map (A, v) ∈ MatrS,V (m, n) to the func-
tion g = 〈g1, . . . , gm〉 : (S × V )n → (S × V )m, gi((x1, u1), . . . , (xn, un)) =
(Ai1x1 + · · · + Ainxn, Ai1u1 + · · · + Ainun + vi). This mapping (A, v) �→ g is
always injective.

Below, we will show that when MatrS,V is equipped with a dagger opera-
tion such that it is a Conway or an iteration theory, then the dagger operation
determines and is determined by a star and an omega operation satisfying
certain natural axioms. For all omitted details we refer to [9]. Each matricial
theory MatrS,V has MATS as its underlying matrix theory.

Suppose that MatrS,V is equipped with a dagger operation. Hence the
dagger operation applied to (A, v) ∈ MatrS,V (n, n + p) produces f† = (C, z)
where C ∈ MATS and z ∈ V n. Two operations are implicitly defined by
the dagger operation. For each A ∈ MATS , consider ((A, En), 0n), where all
entries of 0n ∈ V n are 0. Then we define A∗ and Aω by

(
(A, En), 0n

)† =
(
A∗, Aω

)
. (34)

Thus, A �→ A∗ is a map MATS(n, n) → MATS(n, n), and A �→ Aω is a map
from MATS(n, n) to V n, for each n ≥ 0.

Theorem 7.3. Suppose that MatrS,V is equipped with a dagger operation and
that the star and omega operations are defined as above. Then the parameter
identity holds in T if and only if the dagger operation is determined by the
star and omega operations:

(
(A, B), v

)† =
(
A∗B, A∗v + Aω

)
, (35)
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for all ((A, B), v) ∈ MatrS,V (n, n + p) with A ∈ MATS(n, n), B ∈
MATS(n, p) and v ∈ V n.

Suppose that the dagger, star, and omega operations are related by (35).

• The star fixed point identity (25) and the omega fixed point identity

AAω = Aω, A ∈ MATS(n, n), (36)

hold if and only if the fixed point identity holds.
• The product star identity (27) and the product omega identity

(AB)ω = A(BA)ω, (37)

A ∈ MATS(n, m), B ∈ MATS(m, n), hold if and only if the composition
identity holds.

• The sum star identity and the sum omega identity

(A + B)ω = (A∗B)ω + (A∗B)∗Aω, (38)

A, B ∈ MATS(n, n), hold if and only if the double dagger identity holds.
• The zero star identity and the zero omega identity

0ω
nn = 0n (39)

hold if and only if (10) holds.
• The matrix star identity (29) and the matrix omega identity (40) hold if

and only if the pairing identity holds.
(

A B
C D

)ω

=
(

A∗B(D + CA∗B)ω + A∗B(D + CA∗B)∗CAω + Aω

(D + CA∗B)ω + (D + CA∗B)∗CAω

)

(40)

for all A ∈ MATS(n, n), B ∈ MATS(n, m), C ∈ MATS(m, n), D ∈
MATS(m, m).

• The star permutation identity (30) and the omega permutation identity
(41) hold if and only if the permutation identity holds.

(
πAπT

)ω = πAω, (41)

where π ∈ MATS(n, n) is a permutation matrix and A ∈ MATS(n, n).
• The star transposition identity and the omega transposition identity hold

iff the transposition identity holds, where the omega transposition identity
is (41) with π restricted to matrices of the form

( 0 Ep

Eq 0

)
.

• The star group identity (31) and the omega group identity (42) associated
with a finite group G hold if and only if the group identity associated with
G holds.

e1M
ω
G = (a1 + · · · + an)ω (42)

where a1, . . . , an ∈ S and MG is defined above.
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Conversely, if MatrS,V is a matricial theory equipped with star and omega
operations defined for all square matrices in MATS, and if the dagger opera-
tion is defined by (35), then MatrS,V satisfies the parameter identity and all
of the above equivalences hold.

If the star and omega sum and product identities hold, then the omega
pairing identity can be expressed in either of the following two forms:

(
A B
C D

)ω

=
(

(A + BD∗C)ω + (A + BD∗C)∗BDω

(D + CA∗B)ω + (D + CA∗B)∗CAω

)

,

(
A B
C D

)ω

=
(

(A∗BD∗C)∗Aω + (A∗BD∗C)∗A∗BDω + (A∗BD∗C)ω

(D∗CA∗B)∗D∗CAω + (D∗CA∗B)∗Dω + (D∗CA∗B)ω

)

.

Definition 7.4. A matricial iteration theory is a matricial theory which is
also an iteration theory. A Conway matricial theory is a matricial theory which
is a Conway theory. Morphisms of matricial iteration theories and Conway
matricial theories are matricial theory morphism which preserve dagger and
thus star and omega.

The following results follow from Theorem 7.3, and the axiomatization
results in Sect. 3 (Theorems 3.3 and 3.5).

Corollary 7.5. Let MatrS,V be a matricial theory. Suppose that either
MatrS,V is equipped with a star and an omega operation and dagger is defined
by (35), or that MatrS,V is equipped with a dagger operation satisfying the
parameter identity in which the star and omega operations are defined by (34).
Then T is a Conway matricial theory if and only if T satisfies either of the
following groups of equational axioms:

1. The zero star (28) and zero omega (39) identities, the matrix star (29)
and matrix omega (40) identities, and the star and omega transposition
identities.

2. The sum and product star and omega identities, (26), (27), (37), (38).
3. The scalar versions of the sum and product star and omega identities (i.e.,

the identities (26), (38), (27), and (37) with n = m = 1), and the scalar
version of the matrix star and matrix omega identities, i.e., (29) and (40)
with m = 1.

Moreover, MatrS,V is a matricial iteration theory iff it is a Conway matricial
theory satisfying the star and omega group identities (31), (42) associated with
finite groups. In either case, the dagger, star, and omega operations are related
by (34) and (35).

Note that the star and omega fixed point identities hold in any Conway
matricial theory. Also, if MatrS,V is a Conway matricial theory, then MATS

is a Conway matrix theory, and if MatrS,V is a matricial iteration theory
then MATS is a matrix iteration theory.
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If MATS is equipped with a star operation, we may equip MatrS,V with
an omega operation such that Aω = 0n, for all A ∈ MATS(n, n). When
MATS is a matrix iteration theory, MatrS,V is a matricial iteration the-
ory. Similarly, if MATS is a Conway matrix theory, MatrS,V is a Conway
matricial theory. In particular, any matrix iteration theory MATS may be
viewed as the matricial iteration theory MatrS,V where V = {0} is the trivial
S-semimodule.

In a matricial theory MatrS,V , any morphism 0 → 1 may be identified
with an element of V . Similarly, each morphism 1 → 1 in the underlying
matrix theory MATS may be considered to be an element of the semiring S.
Thus, when the matrix star and omega identities hold, the star and omega
operations are determined by operations ∗ : S → S and ω : S → V .

Definition 7.6. A Conway semiring–semimodule pair consists of a Conway
semiring S, an S semimodule V and an operation ω : S → V which satisfies
the sum and product omega identities

(a + b)ω = (a∗b)∗aω + (a∗b)ω, (43)
(ab)ω = a(ba)ω (44)

for all a,b in S. An iteration semiring–semimodule pair is a Conway semiring–
semimodule pair such that S is an iteration semiring, which when star and
omega on matrices are defined by the matrix star and matrix omega identities
(29) and (40) with m = 1, satisfies the omega group identity associated with
any finite group. Morphisms of Conway and iteration semiring–semimodule
pairs are morphisms of semiring–semimodule pairs which preserve star and
omega.

Proposition 7.7.

• When MatrS,V is a matricial iteration theory, (S, V ) is an iteration semi-
ring–semimodule pair, and when MatrS,V is a Conway matricial theory,
(S, V ) is a Conway semiring–semimodule pair.

• Let (S, V ) be an iteration (or Conway) semiring–semimodule pair. There
is a unique way to extend the star and omega operations on S to all square
matrices in MATS so that MatrS,V becomes a matricial iteration theory
(or Conway matricial theory, respectively).

In fact, the category of Conway matricial theories is equivalent to the category
of Conway semiring–semimodule pairs, and the category of matricial iteration
theories is equivalent to the category of iteration semiring–semimodule pairs.

In any Conway matricial theory, the group identities follow from the func-
torial star and omega conditions.

Definition 7.8. Suppose that MatrS,V is equipped with a star and omega
operation. Let C be a set of matrices in MATS. We say that MatrS,V satisfies
the functorial star implication for C, or has a functorial star with respect to C if
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MATS does. We say that MatrS,V satisfies the functorial omega implication
for C, or that MatrS,V has a functorial omega with respect to C, if for all
A ∈ MATS(n, n) and B ∈ MATS(m, m) and all C ∈ MATS(n, m) in C,

AC = CB =⇒ Aω = CBω.

When MatrS,V has a functorial star and omega with respect to the set of all
matrices (all base matrices, respectively) in MATS, then MatrS,V is said to
have a strong functorial star and omega (weak functorial star and omega,
respectively).

Proposition 7.9. Suppose that MatrS,V is a Conway matricial theory.

• For any set C ⊆ MATS, MatrS,V has a functorial dagger with respect
to C if and only if MatrS,V has a functorial star and omega with respect
to C.

• MatrS,V has a functorial star and omega with respect to all injective base
matrices.

• If MatrS,V has a functorial star and omega with respect to all n × 1 base
matrices, n ≥ 2, then the star and omega group identities hold in MatrS,V .

• MatrS,V has a weak functorial star and omega if and only if MatrS,V has
a functorial star and omega with respect to all n× 1 base matrices, n ≥ 2.

Corollary 7.10. Any Conway matricial theory with a weak functorial star
and omega is a matricial iteration theory.

We end this section by exhibiting two classes of iteration semiring–semi-
module pairs.

7.1 Complete Semiring–Semimodule Pairs

This section is based on [32]. Recall the definition of a complete monoid and
that of a complete semiring. We call a semiring–semimodule pair (S, V ) a com-
plete semiring–semimodule pair if S is a complete semiring, V is a complete
monoid, and the action is completely distributive, so that (

∑
i∈I si)(

∑
j∈J vj) =∑

(i,j)∈I×J sivj . Moreover, we require that an infinite product operation S ×
S × · · · → S,

(s1, s2, . . .) �→
∏

j≥1

sj

is given mapping infinite sequences over S to V subject to the following con-
ditions:

∏

j≥1

sj =
∏

j≥1

(snj−1+1 · · · snj ), (45)

s1 ·
∏

i≥1

si+1 =
∏

i≥1

si, (46)

∏

j≥1

∑

ij∈Ij

sij =
∑

(i1,i2,...)∈I1×I2×···

∏

j≥1

sij , (47)
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where in the first equation 0 = n0 ≤ n1 ≤ n2 ≤ · · · and I1, I2, . . . are sets.
(Complete semimodules of complete semirings without an infinitary product
operation on the semiring are studied in Chap. 23 of [35]. When (S, V ) is a
complete semiring–semimodule pair, then equipped only with the binary and
infinitary multiplication operations, (S, V ) is an ω-semigroup [46].)

Suppose that (S, V ) is complete. Then we define

s∗ =
∑

i≥0

si and sω =
∏

i≥1

s,

for all s ∈ S.

Theorem 7.11. Every complete semiring–semimodule pair (S, V ) is an iter-
ation semiring–semimodule pair.

Proof. We already know that S is an iteration semiring. We establish the sum
omega and product omega identities and leave the proof of the group identities
to the reader. So, suppose that a, b ∈ S. We also consider the set {a, b} as an
alphabet Σ. When w is a finite or infinite word over this alphabet, we let w
denote the corresponding product over S which is either an element of S (finite
product) or an element in V (infinite product). Our proof of the sum omega
identity uses the fact that {a, b}ω = ({a}∗{b})ω ∪ ({a}∗{b})∗{a}ω = K ∪ L
holds over the alphabet Σ.3

(a + b)ω =
∏

j≥1

(a + b)

=
∑

w∈{a,b}ω

w

=
∑

u∈K

u +
∑

v∈L

v

=
∏

j≥1

∑

u∈{a}∗{b}
u +

( ∑

v∈({a}∗{b})∗
v

) ∏

j≥1

a

= (a∗b)ω + (a∗b)∗aω.

As for the product omega identity, let cj = a if j ≥ 1 is odd, and let cj = b if
j ≥ 1 is even. Then

(ab)ω =
∏

j≥1

(ab) =
∏

j≥1

cj = a
∏

j≥2

cj = a(ba)ω. 
�

Thus, MatrS,V is a matricial iteration theory, so that when the dagger
is defined by (24), then all iteration theory identities hold over any complete
semiring–semimodule pair. Without proof, we mention the following proposi-
tion.
3 Here, for any language X of nonempty finite words, we denote by Xω the set
{x1x2 . . . : xi ∈ X} of ω-words.
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Proposition 7.12. When (S, V ) is a complete semiring–semimodule pair then
for each n, (Sn×n, V n) is also a complete semimodule pair with infinitary
product such that for each A1, A2, . . . ∈ Sn×n, and for each i, the ith entry
of A1 · A2 · · · is the sum of all elements of the form (A1)i,j1 · (A2)j1,j2 · · · .
Moreover, for each A ∈ MATS(n, n), Aω in MatrS,V is the same as Aω in
the complete semiring–semimodule pair (Sn×n, V n).

7.2 Bi-inductive Semiring–Semimodule Pairs

This section is based on [32]. We call a semiring–semimodule pair (S, V ) or-
dered if S is an ordered semiring and V is an ordered monoid, ordered by ≤,
such that sv ≤ s′v′ whenever s ≤ s′ in S and v ≤ v′ in V .

Definition 7.13. Suppose that (S, V ) is an ordered semiring–semimodule pair
equipped with a star operation ∗ : S → S and an omega operation ω : S → V
such that

aa∗ + 1 ≤ a∗ (48)
ax + y ≤ x =⇒ a∗y ≤ x, (49)

for all a ∈ S and x, y ∈ S or x, y ∈ V , and

aaω ≥ aω (50)
ax + y ≥ x =⇒ aω + a∗y ≥ x, (51)

for all a ∈ S and x, y ∈ V . Then we call (S, V ) a bi-inductive semiring–
semimodule pair. A morphism of bi-inductive semiring–semimodule pairs is
a morphism of semiring–semimodule pairs which preserves the order and the
star and omega operations.

The terminology is due to the fact that bi-inductive semiring–semimodule
pairs satisfy both an induction axiom (49) and a coinduction axiom (51).
Affine functions x �→ ax + v over V have both a least prefixed point and
a greatest post-fixed point, namely a∗v and aω + a∗v, where a∗ is the least
prefixed point solution of x = ax + 1 over S and aω is the greatest post-
fixed point solution of x = ax over V . Note that if (S, V ) is a bi-inductive
semiring–semimodule pair then S is an inductive ∗-semiring.

Proposition 7.14. If (S, V ) is bi-inductive, then 0 is the least and 1ω is the
greatest element of V .

Proof. The fact that 0 is least follows from Proposition 6.13. The fact that 1ω

is the greatest element of V follows by noting that any element of V solves
the equation x = 1x. 
�

Theorem 7.15. Every bi-inductive semiring–semimodule pair (S, V ) is an
iteration semiring–semimodule pair. Moreover, the star and omega operations
are monotone.
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Proof. We already know that S is an iteration semiring and that ∗ is monotone.
The fact that ω is monotone follows from (the dual of) Proposition 2.8.

We prove that the product omega identity holds. Indeed, if a, b ∈ S, then
aba(ba)ω = a(ba)ω, thus (ab)ω ≥ a(ba)ω. Thus, (ab)ω ≥ a(ba)ω ≥ ab(ab)ω =
(ab)ω, proving (ab)ω = a(ba)ω.

Next, we prove that the sum omega identity holds. Given a, b ∈ S,

(a + b)[(a∗b)∗aω + (a∗b)ω]
= a(a∗b)∗aω + a(a∗b)ω + b(a∗b)∗aω + b(a∗b)ω

= a[a∗(ba∗)∗b + 1]aω + aa∗(ba∗)ω + (ba∗)∗baω + (ba∗)ω

= aa∗(ba∗)∗baω + aaω + aa∗(ba∗)ω + (ba∗)∗baω + (ba∗)ω

= (aa∗ + 1)(ba∗)∗baω + (aa∗ + 1)(ba∗)ω + aω

= [a∗(ba∗)∗b + 1]aω + a∗(ba∗)ω

= (a∗b)∗aω + (a∗b)ω.

It follows by (51) that (a+b)ω ≥ (a∗b)∗aω +(a∗b)ω. As for the reverse inequal-
ity, note that for all x ∈ V , if (a + b)x = ax + bx ≥ x, then aω + a∗bx ≥ x, so
that (a∗b)ω +(a∗b)∗aω ≥ x. Taking x = (a+ b)ω, we have (a∗b)ω +(a∗b)∗aω ≥
(a + b)ω.

We omit the verification of the group identities. 
�

Thus, when (S, V ) is a bi-inductive semiring–semimodule pair, then
MatrS,V is an iteration semiring–semimodule pair. Thus, MatrS,V is a matri-
cial iteration theory, so that when dagger is defined by (24), then all iteration
theory identities hold.

Theorem 7.16. Suppose that (S, V ) is a bi-inductive semiring–semimodule
pair. Then for any (A, v) : n → n in MatrS,V , A∗v is the least prefixed point
solution and Aω + A∗v is the greatest post-fixed point solution of x = Ax + v.
Thus, each (Sn×n, V n) is also a bi-inductive semiring–semimodule pair.
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