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Special Cases

The problem of evaluating (1.1) or (1.3) can often be simplified by specializing
either k, R or a and b. In Section 2.1 we focus on the work that has been done
on bivariate and trivariate probabilities and not on general MVN and MVT
probabilities. In Section 2.2 we consider calculating probabilities over special
integration regions, such orthants, ellipsoids, and hyperboloids. Finally, in
Section 2.3 we discuss MVN and MVT problems involving special correlation
structures. We do not consider the univariate cases, which have been carefully
analyzed elsewhere; see Johnson and Kotz (1970a,b) for extensive discussions
and references. Highly accurate implementations for Φ(x), Φ−1(x), T (x; ν),
and T−1(x; ν) are available in standard statistical computing environments.
We assume the availability of these functions for many of the computational
methods that we discuss in this and later chapters.

2.1 Bivariate and Trivariate Probabilities

2.1.1 Bivariate Probabilities

The method developed by Owen (1956) was for a long time the most
widely used approach to calculate bivariate normal (BVN) probabilities. Owen
showed that

Φ2(−∞,b; ρ) =
Φ(b1) + Φ(b2)

2
− E(b1, b̂1) − E(b2, b̂2) − c,

where ρ is the correlation coefficient,

c =
{

0, if b1b2 > 0 or b1b2 = 0, b1 + b2 ≥ 0
1
2 , otherwise ,

b̂1 =
b2 − b1ρ

b1
√

1 − ρ2
, b̂2 =

b1 − b2ρ

b2
√

1 − ρ2
,
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8 2 Special Cases

and where the function E (called T−function by Owen) is defined as

E(h, a) =
1
2π

a∫

0

e−h2(1+x2)

1 + x2
dx. (2.1)

For numerical computations, Owen (1956) evaluated the integral in (2.1) by
expanding the exponential into a power series and integrating it term by term.
The resultant series expression

E(h, a) =
1
2π

⎧⎨
⎩tan−1(a) −

∞∑
j=0

cja
2j+1

⎫⎬
⎭

with

cj =
(−1)j

2j + 1

{
1 − e−h2/2

j∑
i=0

h2i

2ii!

}

converges for all h and a, although the convergence may be slow if neither h nor
a is small (Wijsman, 1996). Therefore, much effort has been devoted to more
efficient computations of E(h, a). Recent developments include the approaches
of Wijsman (1996) and Patefield and Tandy (2000). They proposed hybrid
methods based on different approaches of evaluating the integral in (2.1). The
(h, a)−plane is divided into disjoint subsets such that a minimum computing
effort is required by selecting an appropriate method for each subset.

Divgi (1979) developed an approximation that avoids the computation of
E(h, a). Let

R2 =
a2
1 − 2a1a2ρ+ a2

2

1 − ρ2
,

with
π/2 − θ = sin−1

(a1

R

)
and θ − γ = sin−1

(a2

R

)
.

Then,
Φ2(a,∞; ρ) = W (R, π/2 − θ) +W (R, θ − γ) + c′, (2.2)

where c′ is a constant dependent on a. The function W (R,ψ) was first intro-
duced by Ruben (1961) as the probability content of the sector

{X ≥ R} ∩ {(X −R) tan(ψ) ≥ Y ≥ 0}

for two standard normal variates X and Y . Divgi (1979) proposed to approx-
imate the function W with the help of a polynomial expansion of Mill’s ratio
(1 − Φ(x))/φ(x). Terza and Welland (1991) compared equation (2.2) with
several competing methods, including Owen’s original series expansion given
above. The study came to the conclusion that the method of Divgi (1979)
outperformed the other methods, achieving “... 14 digits accuracy 10 times
faster then its nearest competitor”.



2.1 Bivariate and Trivariate Probabilities 9

At approximately the same time, Drezner and Wesolowsky (1990) pre-
sented a simple method based on a reduction formula by Sheppard (1900),

Φ2(a,∞; ρ) =
1
2π

π∫

cos−1(ρ)

e
− a2

1−2a1a2 cos(x)+a2
2

2 sin2(x) dx.

Differentiating with respect to ρ and integrating from 0 to ρ yields

Φ2(a,∞; ρ) = Φ(−a1)Φ(−a2) +
1
2π

ρ∫

0

1√
1 − x2

e
− a2

1−2a1a2x+a2
2

2(1−x2) dx, (2.3)

which Wang and Kennedy (1990) considered “a competitor” to the Divgi al-
gorithm. Drezner and Wesolowsky showed that the use of low-order numerical
integration methods applied to (2.3) could produce very accurate Φ2(a,∞; ρ)
values. It is worth noting that equation (2.3) already appears in the deriva-
tion for E(h, a) in Owen (1956, p. 1078); it can also be determined from the
general MVN identity (Plackett, 1954)

∂φk(x;R)
∂ρij

=
∂2φk(x;R)
∂xi∂xj

. (2.4)

Genz (2004) modified (2.3) by additionally substituting x = sin(θ) so that
(2.3) becomes

Φ2(a,∞; ρ) = Φ(−a1)Φ(−a2) +
1
2π

sin−1(ρ)∫

0

e
− a2

1−2a1a2 sin(θ)+a2
2

2 cos2(θ) dθ.

The resulting modified method is believed to be slightly more accurate.
Other approaches for computing BVN probabilities were presented by

Moskowitz and Tsai (1989), Cox and Wermuth (1991) and Maghsoodloo and
Huang (1995). Albers and Kallenberg (1994) and Drezner and Wesolowsky
(1990) discussed simple approximations to BVN probabilities for large values
of ρ.

One of the few direct approaches for computing bivariate t (BVT) prob-
abilities was introduced by Dunnett and Sobel (1954). They succeeded in
expressing T2(−∞,b; ρ, ν) as a weighted sum of incomplete beta functions.
In addition, the authors provide asymptotic expressions (in ν) for T2 and for
the inverse problem of finding equi-coordinate quantiles b = (b, b)t, such that
T2(−∞,b; ρ, ν) = p for a given 0 < p < 1.

Genz (2004) considered the use of a bivariate generalization of Plackett’s
formula in the form

∂T2(−∞,b; ρ, ν)
∂ρ

=
1

2π
√

1 − ρ2

(
1 +

b21 + b22 − 2ρb1b2
ν(1 − ρ2)

)− ν
2
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as the basis for a BVT algorithm. Integration of this equation provides the
formula

T2(−∞,b; ρ, ν) =

T2(−∞,b;u, ν) +
1
2π

ρ∫

u

1√
1 − r2

(
1 +

b21 + b22 − 2rb1b2
ν(1 − r2)

)− ν
2

dr,

where u = sign(ρ) and

T2(−∞,b;u, ν) =
{
T (min(b1, b2); ν), if u = 1,
max(0, T (b1; ν) − T (−b2; ν)), if u = −1.

Genz studied the use of this formula with various numerical integration meth-
ods, but concluded that an implementation of the Dunnett and Sobel (1954)
algorithm was the most efficient.

2.1.2 Trivariate Probabilities

The trivariate integration problem has been addressed less often in the liter-
ature. For the triviariate normal (TVN) case, Gupta (1963a) conditioned on
the third integration variable and thereby obtained

Φ3(−∞,b; R ) = (2.5)
b1∫

−∞
Φ2

(
b2 − ρ21y√

1 − ρ2
21

,
b3 − ρ31y√

1 − ρ2
31

;
ρ32 − ρ21ρ31√

(1 − ρ2
21)(1 − ρ2

31)

)
φ(y)dy.

A different approach is based on Plackett’s identity (2.4). Plackett (1954)
integrated this identity to show that

Φ3(−∞,b;R) = Φ3(−∞,b;R′) (2.6)

+
1
2π

∑
i<j

1∫

0

ρij − ρ′ij√
1 − r2ij(y)

e
− x2

i −2rij(y)xixj+x2
j

2(1−r2
ij

(y)) Φ (x′l(y)) dy,

where rij(y) = (1 − y)ρ′ij + yρij , l is the third coordinate and

x′l(y) =
(1 − r2ij(y))xl − (ril(y) − rij(y)rjl(y))xi − (rjl(y) − rij(y)ril(y))xj√

1 − r2ij(y)|R|
.

The reference matrix R′ = (ρ′ij) is chosen so that the associated probability
Φ3 is easily computed. Equation (2.6) thus reduces the computational effort
to three univariate integrals. There are several choices for R′. Plackett proved
that ρ′32 can always be chosen so that the second term in (2.6) consists of
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one single integral. Other possibilities are R′ = I3, where Ik is the k× k unit
matrix, resulting in Φ3(−∞,b;R′) =

∏3
i=1 Φ(bi), or the use of the product

correlation structure (2.16). Drezner (1994) proposed using ρ′21 = ρ′31 = 0
and ρ′32 = ρ32, in which case ∂Φ3/∂r32(t) = 0 and the sum in (2.6) consists
of only two integrals instead of three. Detailed discussions on the numerical
stability of the various methods are given by Gassmann (2002). Genz (2004)
reported a comparison study of the Plackett identity methods and methods
based on the numerical evaluation of equation (2.5). The results of these stud-
ies indicate that a Plackett identity method which uses Drezner’s choice for
R′ with numerical integration can provide the most efficient general method
for computing TVN probabilities.

Genz (2004) also considered algorithms for efficient and accurate compu-
tation of trivariate t (TVT) probabilities. A generalization of Plackett’s TVN
identity was derived for the TVT case in the form

∂T3(−∞,b;R, ν)
∂ρ21

=
(1 + f3(ρ21)

ν )−
ν
2

2π
√

1 − ρ2
21

· T
(

u3(ρ21)

(1 + f3(ρ21)
ν )

1
2

; ν

)
, (2.7)

where

f3(r) =
b21 + b22 − 2rb1b2

(1 − r2)
and

u3(r) =
b3(1 − r2) − b1(ρ31 − rρ32) − b2(ρ32 − rρ31)
((1 − r2)(1 − r2 − ρ2

31 − ρ2
32 + 2rρ31ρ32))

1
2
.

Integration of this formula can provide formulas for TVT probabilities that
combine a reference matrix probability and univariate integrals, but the choice
of a reference matrix is more difficult, compared to the TVN case. The pre-
ferred R′ for TVN computations (Drezner, 1994) does not have an easily
computed TVT value. Genz (2004) recommends a hybrid method that uses
an initial reference R′′ with ρ′′21 = ρ′′31 = 0, and ρ′′32 = sign(ρ32). The singular
T3(−∞,b;R′′, ν) value can be computed using univariate t and BVT values.
Numerical integration of equation (2.7) from R′′ to R′, followed by integra-
tion from R′ to R provides an efficient and accurate numerical method for
TVT probability computations. Some software for the accurate computation
of TVN and TVT probabilities will be discussed in Section 5.5.

2.2 Special Integration Regions

2.2.1 Orthants

If the integral (1.1) is defined over the positive orthant [0,∞]k, the associ-
ated MVN integral is called a (centered) orthant probability Pk. The evalua-
tion of orthant probabilities is a classical problem whose history and applica-
tions are briefly summarized by Owen (1985). Note that Tk(−∞,0;R, ν) =
Φk(−∞,0;R) for all ν, as seen from (1.3).
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For integrals Pk with general correlation matrices, explicit formulas are
only available for small values of k:

P1 =
1
2
,

P2 =
1
4

+
sin−1(ρ12)

2π
and

P3 =
1
8

+
1
4π
{
sin−1(ρ12) + sin−1(ρ23) + sin−1(ρ13)

}
.

For general k, the following approach halves the dimensionality of the inte-
gration problem. If k = 2n, Childs (1967) showed that

22nP2n = 1 +
2
π

2n∑
i<j

sin−1(ρij) +
n∑

j=2

(
2
π

)j

+
2n∑

i1<...<i2j

I2j

(
Ri1,...,i2j

)
, (2.8)

where Ri1,...,i2j denotes the submatrix consisting of the ith1 , . . . , i
th
2j rows and

columns of R and

I2j(Λ2j) = (−2π)j

∫

R2j

exp(−ztΛ2jz)
2j∏

i=1

z−1
i dz,

where Λ2j is a covariance matrix with 2j covariates. Childs (1967) also devel-
oped a similar formula for k = 2n+1, but a result of David (1953) ensures that
the computation of any orthant probability of odd order 2n+1 can be reduced
to a sum of integrals of order at most 2n. Sun (1988a) extended formula (2.8)
and obtained the following recursive relationship among the I2j ’s,

I2j(Λ2j) =

1∫

0

2j∑
i=2

λ1i√
λ11λii − λ2

1ix
2
I2j−2(Λi

2j−2)dx. (2.9)

Therefore, by using (2.8) and the recursive application of (2.9), the compu-
tation of orthant probabilities can be reduced to the computation of several
multidimensional integrals of order at most n−1. In addition, the unbounded
integration region over the positive orthant is transformed to an integration
over the unit hypercube [0,1] and the methods of Section 4.2 can be applied.
Sun (1988a,b) established explicit formulas up to k = 9. These formulas were
extended to k = 11 by Sun and Asano (1989) when R is tridiagonal.

A few other methods shall be reviewed briefly. Evans and Swartz (1988)
developed a class of Monte Carlo estimators for the given integration problem.
The estimators take the form of a constant multiplied by ||Wz||−k, where z
is distributed on a (k−1)−dimensional manifold and W is the decomposition
W = Ddiag(||d1||−1, . . . , ||dk||−1) with D = R−1/2 = (d1, . . . ,dk) and where
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||.|| denotes the Euclidean norm. The different estimators arise based on dif-
ferent choices of the manifold as the authors try to stabilize the estimator as
much as possible. In particular the authors show that earlier results of Moran
(1984) arise naturally within the context of their estimators. Both importance
sampling and control variate methods are discussed. Another method was de-
veloped by Gibbons et al (1987, 1990). They modified the approximation by
Clark (1961) to the moments of the maximum of k jointly normal variables,
and used the formula Pk = P (min{X1, . . . , Xk} ≥ 0). Finally, Ni and Kedem
(1999) used the Cholesky decomposition of R, followed by a polar coordinate
transformation. These transformations are discussed for more general MVN
and MVT problems in Section 4.1. Some specific orthant probability problems
can be expressed in terms of simplified numerical expressions developed by Ni
and Kedem (1999, 2000).

2.2.2 Ellipsoids

General MVN probabilities for elliptical regions are defined by

Φk(A, c, t;Σ) =
1√|Σ|(2π)k

∫

{(x−c)tA(x−c)≤t}

e−
1
2xtΣ−1xdx,

for a positive semidefinite k × k matrix A, and t > 0, so that the integration
region is an ellipsoid centered at c. Several statistical applications require
Φk(A, c, t;Σ), and some of these are surveyed by Ruben (1960). This type of
problem can be put into a simpler standard form if we let Σ = LLt, where
L is the lower triangular Cholesky factor for Σ. If we determine a spectral
decomposition for LtAL = QDQt, with Q an orthogonal matrix and D a
diagonal matrix, then the result of the transformation x = LQz is

Φk(A, c, t;Σ) = Φk(D, δ, t; Ik)

=
1√

(2π)k

∫

{(z−δ)tD(z−δ)≤t}

e−
1
2ztzdz, (2.10)

where δ = QtL−1c, because

xtΣ−1x = ztQtLt(LLt)−1LQz = ztz

and

(x − c)tA(x − c) = (LQz − c)tA(LQz − c)
= (z − QtL−1c)tD(z − QtL−1c).

Ruben (1962) derived a series solution for the problem (2.10) in the form

Φk(D, δ, t; Ik) =
∞∑

j=0

cjF (k′ + 2j, t/β).
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In this formula, F (l, y) is a central χ2 distribution function with l degrees of
freedom, k′ is the rank of D and β is a parameter. If we denote the nonzero
diagonal entries in D by d1, d2, . . . , dk′ , it follows from Ruben that 0 < β <
2mini di is a sufficient condition for uniform convergence of the series. The
series coefficients are given by

c0 = Ae−λ/2 and cj = j−1

j−1∑
i=0

gj−ici for j > 0,

where

A =
k′∏

i=1

√
β/di, λ =

k′∑
i=0

δ2i , and gj =
k′∑

i=1

γj−1
i (jδ2i (1 − γi) + γi)/2,

with γi = 1 − β/di. An implementation of this method has been provided
by Sheil and O’Muircheartaigh (1977), where the choice β = 29mini di/32 is
used.

Simulation methods for Φk(A, c, t;Σ) based on spherical-radial integration
were provided by Lohr (1993) and Somerville (2001) and will be discussed later
in Section 4.1.1. Ruben (1960, 1961, 1962) also discussed related problems of
determining the probability contents over other geometrical regions (simplices,
polyhedral cones, etc.) under spherical normal distributions.

General MVT probabilities for elliptical regions can be defined in a way
that is similar to Φk(A, c, t;Σ), by

Tk(A, c, t;Σ, ν) = (2.11)

Γ (ν+k
2 )

Γ (ν
2 )
√|Σ|(νπ)k

∫

{(x−c)tA(x−c)≤t}

(
1 +

xtΣ−1x
ν

)− ν+k
2

dx.

An equivalent definition, in terms of Φk(A, c, t;Σ), can be determined if the
integral in (2.11) is multiplied by a χ integral term (with value 1), so that

Tk(A, c, t;Σ, ν) =
21− k+ν

2

Γ (k+ν
2 )

∞∫

0

rk+ν−1e−
r2
2 dr,

If we then change variables using r = s
√

1 + xtΣ−1x/ν, change the order of
integration, cancel the Γ (ν+k

2 ) terms, and separate the exponential terms,

Tk(A, c, t;Σ, ν) =

21− k+ν
2

Γ (ν
2 )
√|Σ|(νπ)k

∞∫

0

sk+ν−1e−
s2
2

∫

{(x−c)tA(x−c)≤t}

e−
s2
2ν xtΣ−1xdxds.

After a final transformation x =
√
νy/s, and some further cancelations in the

constant terms
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Tk(A, c, t;Σ, ν) =

21− ν
2

Γ (ν
2 )

∞∫

0

sk+ν−1e−
s2
2

1√
|Σ|(2π)k

∫

{(y− s√
ν
c)tA(y− s√

ν
c)≤ s2t

ν }

e−
1
2ytΣ−1ydyds,

which can be written in terms of Φk as

Tk(A, c, t;Σ, ν) =
21− ν

2

Γ (ν
2 )

∞∫

0

sν−1e−
s2
2 Φk

(
A,

sc√
ν
,
s2t

ν
;Σ
)
ds. (2.12)

Simulation methods for Tk(A, c, t;Σ, ν) are discussed in Sections 4.1.1 and 4.1.2.

2.2.3 Hyperboloids

There are applications in financial mathematics (Albanese and Seco, 2001;
Brummelhuis et al, 2002; Sadefo Kamdem, 2005; Sadefo Kamdem and Genz,
2008) where the integration region is determined by a set of the form {x :
(x − c)tA(x − c) ≤ t}, with A a symmetric indefinite matrix. Following the
notation in the previous section, after Cholesky decomposition of Σ = LLt,
the spectral decomposition of LtAL = QDQt, and the transformation x =
LQz, we obtain the same (MVN case) equation (2.10)

Φk(A, c, t;Σ) = Φk(D, δ, t; Ik)

=
1√

(2π)k

∫

{(z−δ)tD(z−δ)≤t}

e−
1
2ztzdz,

with δ = QtL−1c, but now we assume that the diagonal matrix D has
some negative entries. The variables can be now reordered so that D =
diag{d+

1 , d
+
2 , . . . , d

+
k+
,−d−1 ,−d−2 , . . . ,−d−k−} with all d+

i ≥ 0 and all d−i > 0,
and the z and δ vectors are partitioned into components associated with
the non-negative and negative diagonal entries in D with z = (z+, z−) and
δ = (δ+, δ−). Then the hyperboloid integration region can be written in the
form

R = {z : zt
+D+z+ ≤ t̂+ zt

−D−z−},
with D± = diag(d±i ) and t̂ = t + δt

−D−δ− − δt
+D+δ+. Now, Φk(D, δ, t; Ik)

can be written as

Φk(D, δ, t; Ik) =
∫

{t̂+zt
−D−z−≥0}

e−
1
2zt

−z−√
(2π)k−

∫

{zt
+D+z+≤t̂+zt

−D−z−}

e−
1
2zt

+z+√
(2π)k+

dz,

with dz = (dz+, dz−) so that the z− integral is the outer integral. The method
from Ruben (1960) could be used for the numerical evaluation of the inner
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z+ integral, combined with another method for the outer integral. Simulation
methods for these integrals will be discussed in Chapter 5. A similar analysis
can also be applied to MVT problems over hyperboloid regions, working with
either equation (2.11) or (2.12).

2.3 Special Correlation Structures

There are several cases, where a special correlation matrix R leads to sim-
plified computational problems. In some cases the dimensionality of the inte-
gration problem can be reduced, and in other cases a special structure for R
allows a faster algorithm to be used. We consider two main classes of special
correlation structures. In Section 2.3.1 we consider problems involving cor-
relation matrices that can be written as the sum of a diagonal matrix and
a reduced rank matrix. In Section 2.3.2 we review methods for correlation
matrices that have a banded structure.

2.3.1 Diagonal and Reduced Rank Correlation Matrices

In this section we assume that R can be written as

R = D + VVt, (2.13)

where D denotes a diagonal matrix with nonzero diagonal entries di, and V
is a k × l matrix with l ≤ k − 1. Marsaglia (1963) showed that for the MVN
case

Φk(a,b;R) =
∫

Rl

φl(y; Il)

b−Vy∫

a−Vy

φk(x;D)dxdy.

The inner integral can be written as a product of one-dimensional integrals.
After the change of variables x = D−1/2z, the previous formula becomes

Φk(a,b;R) = (2.14)
∫

Rl

φl(y; Il)
k∏

i=1

[
Φ

(
bi −
∑l

j=1 vijyj√
di

)
− Φ

(
ai −
∑l

j=1 vijyj√
di

)]
dy.

Note that any correlation matrix can be written as R = eIk + VVt with
l ≤ k − 1, where e denotes the smallest eigenvalue of R.

There is a natural generalization of formula (2.14) for the MVT problem
in the form given by equation (1.3), which can be rewritten as

Tk(a,b;R, ν) =
21− ν

2

Γ (ν
2 )

∞∫

0

sν−1e−
s2
2 (2.15)

∫

Rl

φl(y; I)
k∏

i=1

⎡
⎣Φ
⎛
⎝

sbi√
ν
−∑l

j=1 vijyj√
di

⎞
⎠− Φ

⎛
⎝

sai√
ν
−∑l

j=1 vijyj√
di

⎞
⎠
⎤
⎦ dyds.
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If l = 1, the problem is said to have product correlation structure. Problems
with this form arise in a number of statistical applications (Dunnett, 1989).
In this case, ρij = λiλj for i 
= j. If all |λi| < 1, then R can be written as
R = D + vvt, with di = 1 − λ2

i and vi = λi, and equation (2.14) takes the
simplified form

Φk(a,b;R) =
∫

R

φ(y)
k∏

i=1

[
Φ

(
bi − λiy√

1 − λ2
i

)
− Φ

(
ai − λiy√

1 − λ2
i

)]
dy. (2.16)

Expressions similar to equation (2.16) were derived independently by several
authors. We refer to Curnow and Dunnett (1962) and Marsaglia (1963) for
additional references. If λi = 1 for some i, then the problem becomes a singular
problem, see Section 5.2 for further details.

The computation of MVN probabilities in the form (2.16) reduces to the
computation of a one-dimensional integral over R with a Gaussian weight
function. Gauss-Hermite integration rules (Davis and Rabinowitz, 1984) can
be used to approximate integrals in this form. Another method for this type
of integral involves first applying the transformation y = Φ−1(t) so that

Φk(a,b;R) =

1∫

0

k∏
i=1

[
Φ

(
bi − λiΦ

−1(t)√
1 − λ2

i

)
− Φ

(
ai − λiΦ

−1(t)√
1 − λ2

i

)]
dt, (2.17)

and then using a selected one-dimensional integration method for the finite
integration interval [0, 1].

In the equicorrelated case, where ρij = ρ for all i and j, equation (2.16) is
valid for ρ ≥ 0 with λi =

√
ρ. Steck and Owen (1962) have shown that (2.16)

continues to hold for ρ > −(k − 1)−1, where the arising complex normal
integral with argument z = x+ iy is defined by

Φ(z) =
1
2π
e−

y2

2

x∫

−∞
e−ity− t2

2 dt,

with i2 = −1. Extending this result, Nelson (1991) proved that (2.16) remains
valid for ρij = −λiλj in the nonsingular case

∑k
i=1 λ

2
i /(1 + λ2

i ) < 1 (nega-
tive product correlation structure). Nelson (1991) further tried to prove by
induction that (2.16) is also valid in the singular case

∑k
i=1 λ

2
i /(1 + λ2

i ) = 1
but only the induction step was completed. The missing analytical proof for
k = 2 to start the induction was given by Soong and Hsu (1998). The lat-
ter authors also provided numerical details particular to the present complex
integration problem. Further relationships to evaluate negative product cor-
related probabilities were given by Kwong (1995) and Kwong and Iglewicz
(1996).

Yang and Zhang (1997) extended the above results to quasi-decomposable
correlation matrices with ρij = λiλi + τij , where τij are nonzero deviations
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for some i and j. This case is also covered by the general formula (Marsaglia,
1963)

Φk(a,b;A + B) =
∫

Rk

φk(y;B)

b−y∫

a−y

φk(x;A)dxdy.

Curnow and Dunnett (1962) provided a method for reducing the dimension
by a factor of two when ρij = γi/γj with |γi| < |γj | for i < j.

2.3.2 Banded Correlation Matrices

Banded correlation matrices satisfy the condition ρij = 0 whenever |i−j| > l,
for some l ≥ 0. The simplest nontrivial case is l = 1, where Σ is tri-diagonal. In
this case, the Φk values have been called orthoscheme probabilities. Problems
in this form have been studied by several authors (Schläfli, 1858; Abrahamson,
1964; Hayter and Liu, 1996; Miwa et al, 2003; Hayter, 2006; Craig, 2008).

If we determine the Cholesky decomposition for Σ = LLt, then L is a
lower bi-diagonal matrix. After the transformation x = Ly, equation (1.1)
becomes

Φk(a,b;Σ) =

b1/l11∫

a1/l11

φ(y1)

(b2−l21y1)/l22∫

(a2−l21y1)/l22

φ(y2) · · ·
(bk−lk,k−1yk−1)/lk,k∫

(ak−lk,k−1yk−1)/lk,k

φ(yk)dy.

If we define

gk(y) = Φ

(
bk − lk,k−1y

lk,k

)
− Φ

(
ak − lk,k−1y

lk,k

)
,

and

gj(y) =

(bj−lj,j−1y)/lj,j∫

(aj−lj,j−1y)/lj,j

φ(t)gj+1(t)dt,

for j = k − 1, k − 2, . . . , 2, then

Φk(a,b;Σ) =

b1/l11∫

a1/l11

φ(t)g2(t)dt.

If the gj(y) functions are successively computed for j = k, k − 1, . . . , 2 at
selected y values using an appropriately chosen one-dimensional integration
method, then the total computational work can be significantly reduced, com-
pared to methods for the general MVN problem. If, for example, the inte-
gration method for each gj(y) value requires m integrand values, then the
time complexity for an MVN computation is O(km2). An application of this
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method with cubic polynomial integration for the one-dimensional integrals is
given in Miwa et al (2000). Craig (2008) has described further refinements of
this recursive integration method with implementations using the fast Fourier
transform to reduce the time complexity to O(km log(m)). Miwa et al (2000)
and Craig (2008) also show that any MVN cdf probability can be written
as a combination of at most (k − 1)! orthoscheme probabilities. We discuss
these methods in more detail in Section 4.1.4. Similar techniques are possi-
ble for MVT probabilities if the separation-of-variables method discussed in
Section 4.1.2 is used.

If we consider the l = 2 case, then Σ is a quin-diagonal matrix, and the
Cholesky factor L is lower tri-diagonal. Thus,

Φk(a,b;Σ) =

b1/l11∫

a1/l11

φ(y1)

(b2−l21y1)/l22∫

(a2−l21y1)/l22

φ(y2)

(b3−l31y1−l32y2)/l33∫

(a3−l31y1−l32y2)/l33

φ(y3)

· · ·
(bk−lk,k−2yk−2−lk,k−1yk−1)/lk,k∫

(ak−lk,k−2yk−2−lk,k−1yk−1)/lk,k

φ(yn)dy.

If we define

hk(x, y) = Φ

(
bk − lk,n−2x− lk,k−1y

lk,k

)
− Φ

(
ak − lk,k−2x− lk,k−1y

lk,k

)
,

hj(x, y) =

(bj−lj,j−2x−lj,j−1y)/lj,j∫

(aj−lj,j−2x−lj,j−1y)/lj,j

φ(t)hj+1(y, t)dt,

for j = k − 1, k − 2, . . . 3, and

h2(y) =

(b2−l21y)/l22∫

(a2−l21y)/l22

φ(t)h3(y, t)dt,

then

Φk(a,b;Σ) =

b1/l11∫

a1/l11

φ(t)h2(t)dt.

If tables of the hj(x, y) values are computed and the integration method for
each hj(x, y) value requires m integrand values, then the time complexity
for a MVN computation is O(km3). A similar technique is possible for MVT
probabilities if the separation-of-variables method discussed in Section 4.1.2 is
used. When k is large, a similar analysis shows that if Σ is a (2l+1)-diagonal
matrix then an O(kml+1) time complexity method can be constructed for the
computation of MVN and MVT probabilities.
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A related class of problems, where Σ−1 is banded, has also been studied.
If Σ−1 is tridiagonal, then

xtΣ−1x = r11x
2
1 + 2r21x1x2 + r22x

2
2 + . . .+ 2rk,k−1xk−1xk + rkkx

2
k,

where Σ−1 = (rij), and

Φk(a,b;Σ) =
1√|Σ|

b1∫

a1

φ(r11x2
1)

b2∫

a2

φ(2r21x1x2 + r22x
2
2)

· · ·
bk∫

ak

φ(2rk,k−1xk−1xk + rkkx
2
k)dx.

This class of MVN and MVT probabilities can also be computed using a
sequence of iterated one-dimensional integrals, and the result is an O(km2)
method if an m-point one-dimensional numerical integration method is used.
Problems in this form have been studied by Genz and Kahaner (1986) and
Craig (2008).
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