
Chapter IX
Generalized Entropy Formula

The entropy and the Lyapunov exponents provide two different ways of measuring
the complexity of the dynamical behavior of a C2 endomorphism f : M ←↩ asso-
ciated with an invariant measure μ . Generally speaking, the entropy of the system
(M, f ,μ) is bounded up by the sum of positive Lyapunov exponents. This is the
famous Ruelle inequality introduced in Chapter II. In some cases such as the in-
variant measure being absolutely continuous with respect to the Lebesgue measure
(see Chapter VI), the inequality can become equality. The equality is the notable
Pesin’s entropy formula. As we have shown in Chapter VII, Pesin’s entropy formula
is equivalent to the SRB property of the invariant measure. Ledrappier and Young
[43] presented a generalized entropy formula, which looks like and covers Pesin’s
entropy formula, for any Borel probability measure invariant under a C2 diffeomor-
phism. This result is successfully generalized to random diffeomorphisms [70].

In this chapter we will extend Ledrappier and Young’s result to the case of C2

endomorphisms following the line of [71] (see Theorem IX.1.3).

IX.1 Related Notions and Statements of the Main Results

Let M be an m0-dimensional smooth and compact Riemannian manifold without
boundary and f : M ←↩ be a C2 endomorphism. Throughout this chapter, it is al-
ways assumed that the invariant measure μ of f satisfies the integrability condition
(V.V.1). We will resume the settings in Chapter V and employ the results in Chapters
V and VII in an essential way.

Let λ1(x) > λ2(x) > · · · > λr(x)(x) be the Lyapunov exponents of f at x with
multiplicities m1(x), · · · ,mr(x)(x). Since condition (V.V.1) holds, Tx f is invertible for
μ-a.e. x. Denote by (M f ,θ , μ̃) the system (M f ,θ ) associated with μ̃. We can apply
the Oseledec multiplicative ergodic theorem to (M f ,θ , μ̃) yielding the following.
(See Appendix I, Proposition I.3.5.) There exists a θ -invariant Borel set Δ̃ ⊂ M f
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174 IX Generalized Entropy Formula

with full μ̃-measure. For each x̃ ∈ Δ̃ , there is a splitting (which depends measurably
on x̃) of Tx0M

Tx0M = E1(x̃)
⊕

E2(x̃)
⊕
· · ·
⊕

Er(x0)(x̃) (IX.1)

with dimEi(x̃) = mi(x0) for each i, such that

lim
n→±∞

1
n

log |T n
0 (x̃)v|= λi(x0)

for any 0 �= v ∈ Ei(x̃) (i = 1, · · · ,r(x0)), where

T n
0 (x̃) def=

⎧
⎨

⎩

Tx0 f n, if n > 0,
id, if n = 0,

(Txn f−n)−1, otherwise.

For each x̃ ∈ Δ̃ , f is locally invertible along the full orbit x̃ = {xi}i∈Z. On M, the
map f−1

x̃ can be defined along a trajectory x̃ to be the “ inverse” map of f which
maps x0 to x−1, wherever it makes sense, i.e.,

f−1
x̃ ◦ f = id and f ◦ f−1

x̃ = id

hold true on certain neighbors of x−1 and x0 respectively (see Chapter V.2). We
write

f−n
x̃

def= f−1
θ−n+1 x̃

◦ · · · ◦ f−1
x̃

for n > 0 with f 0
x̃

def= idM.
Let u(x),c(x) and s(x) be the number of positive, neutral and negative Lyapunov

exponents at x respectively, i.e.,

u(x) def= #{1≤ j ≤ r(x) : λ j(x) > 0}, (IX.2)

c(x) def= #{1≤ j ≤ r(x) : λ j(x) = 0}, (IX.3)

s(x) def= #{1≤ j ≤ r(x) : λ j(x) < 0}. (IX.4)

When μ is an ergodic measure, all numbers r(x),λi(x),mi(x),u(x),c(x),s(x) will
be constants for μ-a.e. x. In this case, when writing them we will just omit x’s.

IX.1.1 Pointwise Dimensions and Transverse Dimensions

Definition IX.1.1 W̃ i(x̃) def= {ỹ∈M f : limsup
n→+∞

1
n logd(x−n,y−n)≤−λi(x0)} is called

the ith-unstable set of f at x̃ in M f , where x̃ ∈ Δ̃ and 1≤ i≤ u(x0). W i(x̃) def= pW̃ i(x̃)
is called the ith-unstable manifold of f at x̃ in M.
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W i(x̃)’s are all C1,1 immersed submanifolds of M tangent at x0 to ⊕i
j=1E j(x̃)

respectively (see Chapter V). Hence each W i(x̃) inherits a Riemannian structure
from M. This gives rise to a Riemannian metric, written di

x̃(·, ·) , on each leaf of
W i(x̃).

Definition IX.1.2 A measurable partition η of M f is said to be subordinate to W i-
manifolds if for μ̃-a.e. x̃, η(x̃) has the following properties:

(1) p |η(x̃) : η(x̃)→ pη(x̃) is bijective;

(2) There exists a
i
∑

k=1
mk(x0)-dimensional C1 embedded submanifold W i

x̃ of M with

W i
x̃ ⊂W i(x̃) such that pη(x̃)⊂W i

x̃ and pη(x̃) contains an open neighborhood of
x0 in W i

x̃ , this neighborhood being taken in the topology of W i
x̃ as a submanifold

of M.

We have included in Section IX.2.2 an outline of the construction of such parti-
tions. See also [73] for a similar construction.

Definition IX.1.3 A measurable partition η is said to be increasing, if θ−1η > η ,

and to be a generator , if B(ηn
0 )→B(M f ),(μ̃−mod 0) as n→+∞, where ηn

0
def=

n∨

k=0
θ−kη and B(η) denotes the σ -algebra generated by measurable η-sets.

In what follows we will define notions of transverse dimensions along unstable
manifolds.

Let ε > 0. For each x̃ ∈ Δ̃ , define

B̃i(x̃;ε) def= {ỹ ∈ W̃ i(x̃) : di
x̃(x0,y0) < ε}. (IX.5)

Let η1 > η2 > · · · > ηu be a sequence of measurable partitions of M f with each
ηi subordinate to the corresponding W i-manifolds. The canonical system of condi-
tional measures of μ̃ associated with ηi is denoted by {μ̃ηi

x̃ }. We define the lower
and upper pointwise dimension of μ̃ along W i-manifolds at x̃ ∈ Δ̃ with respect to
partition ηi by

δ i(x̃;ηi)
def= liminf

ε→0
log μ̃ηi

x̃

(
B̃i(x̃;ε)

)
/ logε, (IX.6)

δ i(x̃;ηi)
def= limsup

ε→0
log μ̃ηi

x̃

(
B̃i(x̃;ε)

)
/ logε. (IX.7)

Sometimes we denote δ i(x̃;ηi) by δ i(x̃;ηi, μ̃) to indicate the dependence of this
quantity on μ̃. Other notations have similar meanings.

The following proposition tells us that the lower and upper pointwise dimension
of μ̃ along W i-manifolds are coincident and in fact well defined on M. We call this
common value the pointwise dimension of μ along W i-manifolds. It will be verified
in Sections IX.4 and IX.5.
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Proposition IX.1.1 If ηi is an increasing generator subordinate to W i-manifolds,
then

δ i(x̃;ηi) = δ i(x̃;ηi), μ̃− a.e. x̃;

furthermore the common value, writing δi(x̃), is θ -invariant and depends μ̃-a.e. only
on x0, not on the choice of such ηi. Therefore δi(x̃) is simply denoted by δi(x0).

Proposition IX.1.2 Let δi(x),1 ≤ i≤ u(x) be introduced as above, define

γi(x)
def= δi(x)− δi−1(x)

with δ0(x)
def= 0 for μ-a.e. x and 1≤ i≤ u(x), then

0≤ γi(x)≤ mi(x), for i = 1, · · · ,u(x).

The number γi(x) is called the transverse dimension of μ on W i(x̃)/W i−1 at x.

IX.1.2 Statements of the Main Results

The main results of this chapter are the following theorems.

Theorem IX.1.3 Let (M, f ,μ) be given such that log
∣
∣det(Tx f )

∣
∣ ∈ L1(M,μ). Then

entropy formula

hμ( f ) =
∫

∑
i
λi(x)+γi(x)dμ (IX.8)

holds true.

Remark IX.1. Theorem II.II.1.1, the notable Margulis-Ruelle inequality, follows di-
rectly from Theorem IX.1.3 and Proposition IX.1.2. So does Theorem VII.VII.1.1,
since the validity of Pesin’s entropy formula is equivalent to equations γi(x) = mi(x),
i = 1, · · · ,u(x), or equivalently δu(x) = ∑u

i=1 mi(x) which is equivalent to the SRB
property of the invariant measure μ .

We will prove Theorem IX.1.3 in Sections IX.2–IX.5. Before we start the proof,
we make in advance the assumption that μ (and hence μ̃) is ergodic for simplicity
of presentation. It is used only in Sections IX.2–IX.4.

IX.2 Preliminaries

In this section, we state some preliminary results which will be very useful in the
subsequent sections. First we state in Section IX.2.1 some propositions about unsta-
ble manifolds, each of which is analogous of certain statement in Chapter VII (see
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also [51, Chapter VI, Sections 3–4]) and can be proved following the same line.
Hence the proofs are omitted. In view of these propositions we can compare the
induced metric di

x̃(·, ·) on W i(x̃) with the original metric d(·, ·) on M via Lyapunov
charts. Then we include in Section IX.2.2 an outline of the construction of mea-
surable partitions subordinate to W i-manifolds. Some useful measurable partitions
are also constructed. In Section IX.2.3 two types of transverse metrics are built on
quotient spaces. Finally we present some entropy properties of the related partitions
in Section IX.2.4.

IX.2.1 Some Estimations on Unstable Manifolds

We write R
m0 = R

m1 ×·· ·×R
mr and for each z ∈ R

m0 , let (z1,z2, · · · ,zr) be its co-
ordinates with respect to this splitting. The usual standard norm of Euclidean space
will always be denoted by ‖ · ‖. Since we want to employ the Lyapunov charts in-
troduced in Proposition VII.VII.4.2 to obtain estimations on the unstable and center
unstable sets, for i = 1, · · · ,c + u write

R̄(i) def= R
m1+···+mi , R̄r−(i) def= R

mi+1+···+mr

and put

R̄(i)(ρ) def= {z ∈ R
m1+···+mi : ‖z‖ ≤ ρ},

R̄r−(i)(ρ) def= {z ∈ R
mi+1+···+mr : ‖z‖ ≤ ρ},

R̄(ρ) def= {z = (z1, · · · ,zr) ∈ R
m0 : ‖zi‖ ≤ ρ ,1≤ i≤ r}.

For each z ∈R
m0 write z(i) def= (z1, · · · ,zi) and zr−(i) def= (zi+1, · · · ,zr); and define max-

imum norms ‖ · ‖′ and ‖ · ‖′i on R
m0 = R

m1 × ·· · ×R
mr and R

m0 = R̄(i)× R̄r−(i)

respectively by

‖z‖′ def= max
1≤i≤r

‖zi‖,

‖z‖′i def= max(‖z(i)‖,‖zr−(i)‖).

Let 0 < ε < min
{

1,Δλ/100m0
}

and e−λu+10ε + e5ε < 2, where Δλ is defined

by (VII.VII.18). Put λ0
def= max{|λi| : 1 ≤ i ≤ r}+ 2ε . By Proposition VII.VII.4.2,

there exists a θ -invariant set Δ2 ⊂ M f of full μ̃-measure such that {Φx̃}x̃∈Δ2 is a
system of (ε, �)-charts. For i = 1, · · · ,u, we introduce the local ith-unstable manifold
of (M, f ,μ) at x̃ associated with ({Φx̃}x̃∈Δ2 ,δ ), where δ ∈ (0,1]. It is defined to
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be the component of W i(x̃)
⋂
Φx̃R̄(δ�(x̃)−1) that contains x0. The Φ−1

x̃ -image of
this set is denoted by W i

x̃,δ (x̃). The following proposition characterizes W i
x̃,δ (x̃). See

Lemmas VII.VII.5.1 and VII.VII.5.2 and also [51, pp. 146-147] for the proof of
similar results.

Proposition IX.2.1 Let {Φx̃}x̃∈Δ2 be a system of (ε, �)-charts and 1≤ i≤ u.

(1) If 0 < δ ≤ e−λ0−ε and x̃ ∈ Δ2, then

(i) W i
x̃,δ (x̃) is the graph of a C1,1 function

gi
x̃ : R̄(i)(δ�(x̃)−1)→ R̄r−(i)(δ�(x̃)−1)

with gi
x̃(0) = 0 and Lip(gi

x̃) < 1;
(ii) W 1

x̃,δ (x̃)⊂ ·· · ⊂W u
x̃,δ (x̃)⊂ Scu

δ (x̃);

(2) If 0 < δ ≤ e−2λ0−2ε and x̃ ∈ Δ2, then

(i) Hx̃W i
x̃,δ (x̃)

⋂
R̄(δ�(θ x̃)−1) = W i

θ x̃,δ (x1);
(ii) Scu

δ (x̃)
⋂
Φ−1

x̃ W i(x̃) = W i
x̃,δ (x̃).

Fix x̃ ∈ Δ2. Let δ ∈ (0, 1
4 ]. Consider now ỹ ∈ W̃ cu

δ (x̃), where W̃ cu
δ (x̃) is de-

fined by (VII.VII.19). Let W i
x̃,2δ (ỹ) be the Φ−1

x̃ -image of the component of

W i(ỹ)
⋂
Φx̃[R̄(i)(2δ�(x̃)−1)× R̄r−(i)(4δ�(x̃)−1)] containing y0. Then Φx̃W i

x̃,2δ (ỹ)
contains an open neighborhood of y0 in W i(ỹ) and is also referred to as a local
ith-unstable manifold of (M, f ) at ỹ along x̃ (although in general Φx̃W i

ỹ,2δ (y0) �=
Φx̃W i

x̃,2δ (ỹ)). The following proposition holds analogue of Proposition IX.2.1 and
can be proved following the line of the proof of Lemma VII.VII.5.3.

Proposition IX.2.2 Let x̃ ∈ Δ2 and 1≤ i≤ u.

(1) Let 0 < δ ≤ 1
4 e−λ0−ε . If ỹ ∈ W̃ cu

δ (x̃), then

(i) W i
x̃,2δ (ỹ) is a graph of a C1 function

gi
x̃,ỹ : R̄(i)(2δ�(x̃)−1)→ R̄r−(i)(4δ�(x̃)−1)

with Lip(gi
x̃,ỹ) < 1;

(ii) W 1
x̃,2δ (ỹ)⊂ ·· · ⊂W u

x̃,2δ (ỹ)⊂ Scu
4δ (x̃);

(2) Let 0 < δ ≤ 1
4 e−2λ0−2ε . If ỹ ∈ W̃ cu

δ (x̃) with y1 ∈Φθ x̃Scu
δ (θ x̃), then

Hx̃W
i
x̃,2δ (ỹ)

⋂
[R̄(i)(2δ�(θ x̃)−1)× R̄r−(i)(4δ�(θ x̃)−1)]⊂W i

θ x̃,2δ (θ ỹ);
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(3) Let 0 < δ ≤ 1
4 e−2λ0−2ε . For μ̃-a.e. x̃ ∈ Δ2

(i) if ỹ ∈ W̃ cu
δ (x̃), then

Scu
2δ (x̃)

⋂
Φ−1

x̃ W i(ỹ)⊂W i
x̃,2δ (ỹ)⊂ Scu

4δ (x̃)
⋂

Φ−1
x̃ W i(ỹ);

(ii) if ỹ ∈ W̃ cu
δ (x̃) with y0 ∈Φx̃W u

x̃,δ (x̃), then

W i
x̃,2δ (ỹ)⊂W i+1

x̃,2δ (ỹ), i = 1, · · · ,u−1;

(iii) if ỹ, z̃ ∈ W̃ cu
δ (x̃) with y0,z0 ∈Φx̃W u

x̃,δ (x̃), then either

W i
x̃,2δ (ỹ) = W i

x̃,2δ (z̃)

or otherwise the two terms in the above equation are disjoint.

The following proposition describes the actions {Hn
x̃ }n∈Z.

Proposition IX.2.3 Let 0 < δ ≤ e−λ0−ε . For each x̃ ∈ Δ2 and 1≤ i≤ u

(1) If z,z′ ∈ R̄(e−λ1−3ε�(x̃)−1), then Hx̃z,Hx̃z′ ∈ R̄(�(θ x̃)−1) and

‖Hx̃z−Hx̃z′‖′ ≤ eλ1+2ε‖z− z′‖′;

(2) If z,z′ ∈ R̄(δ�(x̃)−1) and ‖z− z′‖′i = ‖z(i)− z′(i)‖, then

‖Hx̃z−Hx̃z′‖′i = ‖(Hx̃z)(i)− (Hx̃z′)(i)‖ ≥ eλi−2ε‖z− z′‖′i;

(3) ‖H−1
x̃ z−H−1

x̃ z′‖′i ≤ e−λi+2ε‖z− z′‖′i,∀z,z′ ∈W i
x̃,δ (x̃);

(4) ‖H−1
x̃ z−H−1

x̃ z′‖′c+u ≤ e2ε‖z− z′‖′c+u,∀z,z′ ∈ Scu
δ (x̃);

(5) Let 0 < δ ≤ 1
4 e−2λ0−2ε . For μ̃-a.e. x̃ ∈ Δ2, if ỹ ∈ W̃ cu

δ (x̃) with y0 ∈ Φx̃W u
x̃,δ (x̃),

then
‖H−1

x̃ z−H−1
x̃ z′‖′i ≤ e−λi+2ε‖z− z′‖′i,∀z,z′ ∈W i

x̃,2δ (ỹ).

The following lemma says that the metrics di
x̃(·, ·) and d(·, ·) are locally equiva-

lent within Φx̃W i
x̃,δ (x̃), a neighborhood of x0 in W i(x̃).

Lemma IX.2.4 If y,z ∈Φx̃W i
x̃,δ (x̃), then

d(y,z)≤ di
x̃(y,z) ≤ 2K0‖Φ−1

x̃ y−Φ−1
x̃ z‖′i ≤ 2K0�(x̃)d(y,z).

Proof. The first inequality is obvious. We prove the other two. By Proposition
IX.2.1, we can assume

y = Φx̃(v0,g
i
x̃(v0)), z = Φx̃(v1,g

i
x̃(v1))



180 IX Generalized Entropy Formula

for some v0,v1 ∈ R̄(i)(δ�(x̃)). Let {v(t)}0≤t≤1 be a smooth curve in R̄(i)(δ�(x̃))
connecting v0 and v1. Let C be a collection of such curves in R̄(i)(δ�(x̃)). Then

di
x̃(y,z) = inf

v(·)∈C

∫ 1

0
| d
dt
Φx̃(v(t),gi

x̃(v(t)))|dt.

By Propositions VII.VII.4.2 and IX.2.1, we have

inf
v(·)∈C

∫ 1

0
| d
dt
Φx̃(v(t),gi

x̃(v(t)))|dt ≤ K0 inf
v(·)∈C

∫ 1

0
‖ d

dt
(v(t),gi

x̃(v(t)))‖dt

≤ 2K0 inf
v(·)∈C

∫ 1

0
‖ d

dt
v(t)‖dt

= 2K0‖v1− v0‖= 2K0‖Φ−1
x̃ y−Φ−1

x̃ z‖′i.

This together with ‖Φ−1
x̃ y−Φ−1

x̃ z‖′i ≤ �(x̃)d(y,z) implies the last two inequalities
in the lemma. ��

IX.2.2 Related Partitions

First we include here an outline of the construction of partitions subordinate to W i-
manifolds, which follows the same line presented in [73]. It is simpler because μ̃ is
now assumed to be ergodic.

Fix an i with 1 ≤ i ≤ u. Let l0 be large enough such that � = {x̃ ∈ Δ2 : �(x̃) ≤
l0} has positive measure. Then there exists an increasing sequence {�k}k∈Z+ of
compact subsets of � such that μ̃(�\⋃k�k) = 0. Fix a k with μ̃(�k) > 0. Let
ρ0 > 0 be as introduced in Chapter II.2.

Proposition IX.2.5 Let {W i
loc(x̃)}x̃∈�k be a continuous family of C1,1 embedded

∑i
j=1 m j-dimensional disks described in Proposition V.V.4.5 with �k in place of

Δ (i)
k and suitable αk.

(1) For each x̃ ∈�k, W i
loc(x̃)⊂Φx̃W i

x̃,δ (x̃), where δ = 1
4 e−λ0+ε ;

(2) There exists Ak > 0 such that for all ỹ, z̃ ∈M f with y0,z0 ∈W i
loc(x̃) and n≥ 0

di
θ−nx̃(y−n,z−n)≤ Ake−n(λi−2ε)di

x̃(y0,z0);

(3) There exist r̂ ∈ (0,ρ0/4), ε̂ ∈ (0,1) and d̂ ≥ 2r̂ such that for all ρ ∈ (0, r̂] and

x̃ ∈ �k, if x̃′ ∈ B�k(x̃; ε̂ρ) def= {ỹ ∈ �k : d(x̃, ỹ) < ε̂ρ}, then W i
loc(x̃

′)
⋂

B(x0,ρ)
is connected, its di

x̃′ -diameter is less than d̂ and the map

x̃′ �→W i
loc(x̃

′)
⋂

B(x0,ρ)

is a continuous map from B�k(x̃; ε̂ρ) to the space of subsets of B(x0,ρ)
(endowed with the Hausdorff topology);
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(4) Let ρ ∈ (0, r̂] and x̃ ∈�k, if x̃′, x̃′′ ∈ B�k(x̃; ε̂ρ), then either

W i
loc(x̃

′)
⋂

B(x0,ρ) = W i
loc(x̃

′′)
⋂

B(x0,ρ)

or otherwise the two terms in the above equation are disjoint. In the later case,
if it is assumed moreover that x′′0 ∈W i(x̃′), then

di
x̃′(y,z) > d̂ > 2r̂

for any y ∈W i
loc(x̃

′)
⋂

B(x0,ρ) and z ∈W i
loc(x̃

′′)
⋂

B(x0,ρ);
(5) There exists R̂ > 0 such that for each x̃ ∈�k and y ∈M, if x̃′ ∈ B�k(x̃; ε̂ρ) and

y ∈W i
loc(x̃

′)
⋂

B(x0, r̂), then W i
loc(x̃

′) contains the closed ball of center y and
di

x̃′ -radius R̂ in W i(x̃′).

We now choose in�k a density point x̃∗. For each ρ ∈ [r̂/2, r̂], put

Sρ
def=

⋃

x̃∈B�k (x̃∗;ε̂ρ)

W̃ i
loc(x̃)

⋂
p−1(B(x∗0,ρ)),

where W̃ i
loc(x̃)

def= W̃ u,i
loc(x̃) is defined by (V.V.32). Let ξρ denote the partition of M f

into all sets W̃ i
loc(x̃)

⋂
p−1(B(x∗0,ρ)), x̃ ∈ B�k(x̃∗; ε̂ρ) and the set M f \ Sρ . We now

define a measurable function βρ : Sρ → R
+ by

βρ(ỹ)
def= inf

n≥0
{R̂,

1
2Ak

d(y−n,∂B(x∗0,ρ))en(λi−2ε),
ρ
Ak
}.

By arguments analogous to those in the proof of Proposition IV.2.1 in [51], we know

that there exists r′ ∈ [r̂/2, r̂] such that βr′ > 0 μ̃-almost everywhere on Ŝi
def= Sr ′ . Put

ξi
def= ξ+

r′ =
+∞∨

n=0

θ nξr′ .

Clearly, ξi is an increasing generator subordinate to W i-manifolds of (M, f ,μ).
Let us introduce some more related partitions in order to make use of the geome-

try of Lyapunov charts in the evaluation of local entropy in Sections IX.3–IX.4. Let
{Φx̃}x̃∈Δ2 be a system of (ε, �)-charts and δ ∈ (0, 1

16 e−2(λ0+ε)) be a reduction factor.
Then there exists a measurable partition D of M f with Hμ̃(D) < +∞ such that

(1) p(D+(x̃))⊂Φx̃Scu
δ (x̃) for μ̃-a.e. x̃, where D+ def=

+∞∨

n=0
θ nD ;

(2) {Ŝi,M f \ Ŝi}< D for i = 1, · · · ,u;
(3) {Ê,M f \ Ê}< D , where Ê will be specified later in Section IX.2.3.

We clearly have the following proposition.
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Proposition IX.2.6 The partition ξi is an increasing generator subordinate to W i-
manifolds of (M, f ,μ). Furthermore, if Bi(M, f ,μ) denotes the σ -algebra of those
Borel sets A⊂M f such that A =

⋃
x̃∈A W̃ i(x̃), then

B(
+∞∧

n=0

θ nξi) = Bi(M, f ,μ), μ̃−mod 0.

Now define ηi
def= ξi

∨
D+ for i = 1, · · · ,u. We have the following proposition.

Proposition IX.2.7 {ηi}u
i=1 satisfy the following statements:

(1) η1 > η2 > · · ·> ηu;
(2) ηi’s are increasing generators and p(ηi(x̃))⊂Φx̃W i

x̃,δ (x̃) for μ̃-a.e. x̃;

(3) hμ̃(θ ,ηi) = hμ̃(θ ,ξi) for i = 1, · · · ,u, where hμ̃(θ ,η) def= Hμ̃(η
∣∣θη−) with η− def=

∨+∞
k=0θ

kη;
(4) For μ̃-a.e. x̃ and 2≤ i≤ u, if ỹ ∈ ηi(x̃) with ỹ ∈ Δ2, then

Φx̃W
i−1
x̃,2δ (ỹ)

⋂
p(ηi(x̃)) = p(ηi−1(ỹ))

and
θ−1(ηi−1(ỹ)) = ηi−1(θ−1ỹ)

⋂
θ−1(ηi(x̃)).

The proof of item (3) in the above proposition is postponed later in subsection IX.2.4
(see the proof of Lemma IX.2.13); the other items are easy to be checked from the
construction itself. We collect them all together for the convenience of the readers.

IX.2.3 Transverse Metrics on ηi(x̃)/ηi−1 with 2≤ i≤ u

Let {Φx̃}x̃∈Δ2 be a system of (ε, l)-charts. Fix a point x̃ ∈ Δ2. Let 1 ≤ i ≤ u and
δ ′ = 1

4 e−λ0−ε . Denote by L(R̄(i),R̄r−(i)) the space of all linear maps from R̄(i) to
R̄r−(i). By Proposition IX.2.2(1)(i) we know that, if ỹ ∈ W̃ cu

δ ′ (x̃), then there exists a
unique Pi

x̃,ỹ ∈ L(R̄(i),R̄r−(i)) with ‖Pi
x̃,ỹ‖< 1 such that

Ty0Φ
−1
x̃ Ei

ỹ = Graph(Pi
x̃,ỹ).

Define
L i

x̃ : W̃ cu
δ ′ (x̃) → L(R̄(i),R̄r−(i))

ỹ �→ Pi
x̃,ỹ.

The following proposition says that the map L i
x̃ is Lipschitz for all x̃ ∈ Δ2.
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Proposition IX.2.8 For each x̃ ∈ Δ2 and 1≤ i≤ u, L i
x̃ is a Lipschitz map and

Lip(L i
x̃ )≤ D0�(x̃)2

where D0 > 0 is a number depending only on the exponents and ε .

The proof is similar to that of Lemma VII.VII.5.7 and hence is omitted.
Let ηi’s be introduced as above. For 2≤ i≤ u, we now define two metrics on the

factor-space ηi(x̃)/ηi−1 for μ̃-a.e. x̃. We shall actually deal with {ηi}i restricted to
a certain measurable set with full μ̃-measure. Now we choose a θ -invariant mea-
surable set Δ̃ ′0 ⊂ Δ2 with μ̃(Δ̃ ′0) = 1 such that for each x̃ ∈ Δ̃ ′0 the requirements of
Proposition IX.2.7 are satisfied. We then put

η ′i
def= ηi|Δ̃ ′0 , i = 1, · · · ,u.

In what follows we define two transverse metrics on η ′i (x̃)/η ′i−1 for μ̃-a.e. x̃ ∈ Δ̃ ′0.

First we give a point-dependent definition. Let x̃ ∈ Δ̃ ′0. From Proposition IX.2.7,
we know that for every ỹ ∈ η ′i (x̃), W i−1

x̃,2δ (ỹ) intersects {0}× R̄r−(i−1) at exactly one

point. We denote the ith coordinate of this point by ζ i
ỹ ∈ R

mi . Clearly ζ i
ỹ = the ith

coordinate of the point (0,gi−1
x̃,ỹ (0)). For ỹ, ỹ′ ∈ η ′i (x̃), define

d̂i
x̃(ỹ, ỹ

′) def= ‖ζ i
ỹ− ζ i

ỹ′‖

By Proposition IX.2.7, d̂i
x̃(·, ·) induces a metric on η ′i (x̃)/η ′i−1 for i = 2, · · · ,u.

To introduce a second metric on η ′i (x̃)/η ′i−1 for i = 2, · · · ,u, we state the fol-
lowing lemma (straightening out lemma) without proof. Here d ≥ 2 is a fixed
integer. Let positive integers n1, · · · ,nd and a number 0 < ρ < 1 be given. De-

note by Bi(ρ) the closed disk centered at 0 of radius ρ in R
ni . Consider B(ρ) def=

B1(ρ)×·· ·×Bd(ρ) as a subset of R
n1+···+nd .

Lemma IX.2.9 (See [43, Lemma 8.3.1 ].) For i = 1, · · · ,d−1, let Fi be a Lipschitz
foliation with C1 leaves on some subset of R

n1+···+nd containing B(ρ). Assume that
each leaf of Fi is the graph of a function

gi : B1(2ρ)×·· ·×Bi(2ρ)→ R
ni+1+···+nd

with ‖Dgi‖ ≤ 1
3 and that the function x �→ TxFi has Lipschitz constant smaller than

some number C. Assume also that the Fi’s are nested, i.e., if Fi(x) denotes the leaf of
Fi containing the point x, then

F1(x)⊂ F2(x)⊂ ·· · ⊂ Fd−1(x), ∀x ∈ B(ρ)
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Define O = (O1, · · · ,Od) : B(ρ)→R
n1+···+nd as follows: for x = (x1, · · · ,xd)∈B(ρ),

let O1(x) = x1, and let Oi(x) be the ith coordinate of the unique point of intersection
of Fi−1(x) and {0}× ·· ·×{0}×R

ni+···+nd for i = 2, · · · ,d. Then

(1) O is a homeomorphism between B(ρ) and its image;
(2) For every x,y ∈ B(ρ), O j(x) = O j(y) for j = i+1, · · · ,d if and only if y ∈ Fi(x);
(3) Both O and O−1 are Lipschitz with Lipschitz constant depending only on C.

In light of the above lemma, now we can express the metric d̂i
x̃(·, ·) in another

way. Let
p(u) : R

m0 = R
m1+···+mr → R̄(u) = R

m1+···+mu

be the natural project map. Then for each x̃ ∈ Δ̃ ′0 fixed, p(u)|Wu
x̃,δ (x̃) is a lipeomor-

phism between W u
x̃,δ (x̃) and its image. For i = 1, · · · ,u−1, define foliations by

Fi
x̃

def=
{

z ∈ p(u)W i
x̃,δ (ỹ) : ỹ ∈ Δ̃ ′0

⋂
W̃ cu

δ (x̃),y0 ∈Φx̃W
u
x̃,τδ (x̃)

}
,

where τ ∈ (0, 1
4 e−2(λ0+ε)). By Proposition IX.2.8, these foliations satisfy the re-

quirements of Lemma IX.2.9 with ρ = δ�(x̃)−1 and C = D0�(x̃)2, providing δ
and ε small enough. Hence there exists a map Ox̃ = (O1

x̃ , · · · ,Ou
x̃ ) : R̄(u)(ρ) →

R̄(u) such that

(1) Ox̃ is a homeomorphism between R̄(u)(ρ) and its image;
(2) For every z,z′ ∈ R̄(u)(ρ), O j

x̃ (z) = O j
x̃ (z
′) for j = i+ 1, · · · ,u iff z′ ∈ Fi

x̃(z) and
(3) Both Ox̃ and O−1

x̃ are Lipschitz with Lipschitz constant depending only on C.

Let πx̃ = (π1
x̃ , · · · ,πu

x̃ ) : W u
x̃,τδ (x̃)→ R̄(u) be given by

πx̃
def= Ox̃ ◦ p(u).

Clearly ζ i
ỹ = π i

x̃ ◦Φ−1
x̃ (y0) for each ỹ ∈ η ′i (x̃) with 2 ≤ i≤ u. We can conclude that

πx̃ is a lipeomorphism between W u
x̃,τδ (x̃) and its image with Lip(πx̃),Lip(π−1

x̃ ) ≤
N(x̃), where N(x̃) depends only on �(x̃) and the Lyapunov exponents. Moreover,

πx̃
(
W i

x̃,δ (ỹ)
)

lies on a
i
∑
j=1

m j-dimensional plane parallel to R̄(i)×{0}× ·· · × {0};
and if W i

x̃,δ (ỹ) �= W i
x̃,δ (ỹ

′), then πx̃
(
W i

x̃,δ (ỹ)
)

and πx̃
(
W i

x̃,δ (ỹ
′)
)

lie on distinct planes.

Though d̂i
x̃(·, ·) is a metric on η ′i (x̃)/η ′i−1, in general d̂i

x̃(·, ·) �= d̂i
x̃′(·, ·) for x̃′ ∈

η ′i (x̃) with x̃′ �= x̃. Now we need to rectify this situation to give a point-independent
definition.

Let x̃∗ be as introduced in Section IX.2.2 corresponding to �k. Then there exist
positive numbers τ0 and s0 with 0 < τ0 < 1

4 e−2(λ0+ε) and a set

Ê
def= Δ̃ ′0

⋂
B�k(x̃∗;s0/2)

such that the following (a) and (b) hold true (where ρ̂ = τ0δ l−1
0 ):
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(a) Let x̃ ∈ �k with x0 ∈ Φx̃∗ R̄(ρ̂). For i = 1, · · · ,u− 1, if ỹ ∈ Δ̃ ′0
⋂

W̃ cu
δ (x̃) with

y0 ∈Φx̃W u
x̃,τ0δ

(x̃)
⋂
Φx̃∗ R̄(ρ̂), then there exists a map

hi
x̃,ỹ : R̄(i)(2ρ̂)→ R̄r−(i)(2ρ̂)

with Lip(hi
x̃,ỹ) < 1

3 and

Graph(hi
x̃,ỹ) = Φ−1

x̃∗ ◦Φx̃W
i
x̃,δ (ỹ)

⋂
R̄(2ρ̂);

(b) For each x̃ ∈ Ê and 1≤ i≤ u−1, define a foliation by

Fi
x̃∗,x̃

def=
{

p(u)(Graph(hi
x̃,ỹ)) : ỹ ∈ Δ̃ ′0

⋂
W̃ cu

δ (x̃)

with y0 ∈Φx̃W
u
x̃,τ0δ (x̃)

⋂
Φx̃∗ R̄(ρ̂)

}
.

By Lemma IX.2.9, there exists a map

Ox̃∗,x̃ : R̄(u)(ρ̂)→ R̄(u)

satisfying the requirements analogous of the above (1)-(3) for Ox̃.

We then define a map π̃ = (π̃1, · · · , π̃u) :
+∞⋃

n=0
θ nÊ → R̄(u) as following: for each

ỹ ∈ Ê , suppose y0 ∈Φx̃W u
x̃,τ0δ

(x̃)
⋂
Φx̃∗ R̄(ρ̂) with x̃ ∈�k, put

π̃(ỹ) def= Ox̃∗,x̃ ◦ p(u) ◦Φ−1
x̃∗ y0

and in general, let π̃(ỹ) def= π̃(θ−n(ỹ)ỹ), where n(ỹ) def= inf{k ≥ 0 : θ−kỹ ∈ Ê}. Thus
for i = 2, · · · ,u we can define a point-independent metric on η ′i (x̃)/η ′i−1 by

d̃i
x̃(ỹ, ỹ

′) def= ‖π̃ i(ỹ)− π̃ i(ỹ′)‖, ∀ỹ, ỹ′ ∈ η ′i (x̃).

Clearly the above metrics satisfy the following two propositions.

Proposition IX.2.10 Let z ∈W u
x̃,τδ (x̃) with 0 < τ < e−λ1−3ε . Then for 1≤ i≤ u

‖π i
θ x̃ ◦Hx̃z‖ ≤ eλi+3ε‖π i

x̃z‖.

Proposition IX.2.11 There exists N0 > 0 such that for all ỹ, ỹ′ ∈ η ′i (x̃) with x̃ ∈ Ê

N−1
0 d̂i

x̃(ỹ, ỹ
′)≤ d̃i

x̃(ỹ, ỹ
′)≤ N0d̂i

x̃(ỹ, ỹ
′).
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IX.2.4 Entropies of the Related Partitions

About the entropies of the above partitions, we have the following

Proposition IX.2.12 Let ξi and ξ ′i be partitions subordinate to W i-manifolds con-
structed following the procedure presented in Section IX.2.2. Then

hμ̃(θ−1,ξi) = hμ̃(θ−1,ξ ′i ).

Proof. Let us first assume hμ( f ) = hμ̃(θ ) < +∞. It suffices to prove

hμ̃(θ−1,ξi∨ξ ′i ) = hμ̃(θ−1,ξi).

Noting that for every n≥ 1

θ n(ξi∨ξ ′i ) < ξi∨θ nξ ′i < ξi∨ξ ′i
and

Hμ̃(ξi∨θ nξ ′i |θ
(
θ n(ξi∨ξ ′i )

)+) = Hμ̃(ξi∨θ nξ ′i |θ n+1(ξi∨ξ ′i ))
= Hμ̃(ξi|θ n+1(ξi∨ξ ′i ))+ Hμ̃(θ nξ ′i |ξi∨θ n+1ξ ′i )
≤ Hμ̃(ξi|θ n+1ξi)+ Hμ̃(θ nξ ′i |θ n+1ξ ′i )
= (n + 1)hμ̃(θ−1,ξi)+ hμ̃(θ−1,ξ ′i )
≤ (n + 2)hμ̃(θ−1) < +∞

Hμ̃(ξi∨ξ ′i |θ (ξi∨θ nξ ′i )
+) = Hμ̃(ξi∨ξ ′i |θξi∨θ n+1ξ ′i )

= Hμ̃(ξi|θξi∨θ n+1ξ ′i )+ Hμ̃(ξ ′i |ξi∨θ n+1ξ ′i )
≤ Hμ̃(ξi|θξi)+ Hμ̃(ξ ′i |θ n+1ξ ′i )
= hμ̃(θ−1,ξi)+ (n + 1)hμ̃(θ−1,ξ ′i )
≤ (n + 2)hμ̃(θ−1) < +∞,

by [51, Theorem 0.5.2], we have

hμ̃(θ−1,ξi∨ξ ′i ) = hμ̃(θ−1,θ n(ξi∨ξ ′i ))
= hμ̃(θ−1,ξi∨θ nξ ′i )
= Hμ̃(ξi∨θ nξ ′i |θξi∨θ n+1ξ ′i )
= Hμ̃(ξi|θξi∨θ n+1ξ ′i )+ Hμ̃(ξ ′i |θξ ′i ∨θ−nξi).

In view of Proposition IX.2.6, as n→+∞ we have

θξi∨θ n+1ξ ′i ↘ θξi∨ (∧+∞
k=0θ

kξ ′i ) = θξi.
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Hence
Hμ̃(ξi|θξi∨θ n+1ξ ′i )→ Hμ̃(ξi|θξi) = hμ̃(θ−1,ξi)

as n→+∞. Also by Proposition IX.2.6, θξ ′i ∨θ−nξi tends increasingly to the par-
tition of M f into single points. Thus

Hμ̃(ξ ′i |θξ ′i ∨θ−nξi)→ 0

as n→+∞.
For the case hμ̃(θ ) = +∞, since

M̃n := {x̃ ∈M f : |λi(x̃)| ≤ n, i = 1, · · · ,r(x̃)}

is θ -invariant and conditioned on M̃n the entropy hμ̃n(θ ) ≤ nm < +∞ by Ruelle’s
inequality (where μ̃n is the conditional measure on M̃n), we have

hμ̃n(θ
−1,ξi) = hμ̃n(θ

−1,ξ ′i ) < +∞.

The proof is finished by letting n→+∞. ��
Proposition IX.2.13 Let D be a measurable partition of M f with Hμ̃(D)<+∞ and
let ξi be partitions subordinate to W i-manifolds constructed following the procedure
presented in Section IX.2.2. Then

hμ̃(θ−1,ξi∨D+) = hμ̃(θ−1,ξi).

Proof. The proof is similar to that of Proposition IX.2.12. One needs only to notice
that

θ n(ξi∨D+) < ξ ∨θD+ < ξ ∨D+

and
ξ < ξ ∨D < ξ ∨D+

and check the conditions

Hμ̃(ξ ∨θD+|θ n+1(ξi∨D+)) < +∞, Hμ(ξ ∨D+|θ (ξ ∨θD+)) < +∞

and
Hμ̃(ξ ∨D |θξ ) < +∞.

Hence the proof is omitted. ��
The following proposition is just Corollary VII.8.1.1 restated here.

Proposition IX.2.14 For any partition ξu subordinate to W u-manifolds of the type
as constructed following the procedure presented in subsection IX.2.2, we have

hμ̃(θ−1,ξu) = hμ̃(θ−1) = hμ( f ).
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IX.3 Definitions of Local Entropies along Unstable Manifolds

In this section, we will define quantities named local entropy along unstable man-
ifolds. These quantities play an important role in our arguments. In ergodic case,
the notion of local entropy along W i-manifolds is described by a number hi which
measures the amount of randomness along the leaves of W i-manifolds. As Ledrap-
pier and Young have done in [43], though there are several equivalent definitions,
we take a pointwise approach following [13].

Let ε > 0. For x̃ ∈ Δ2 and n ∈ Z
+, put

B̃i(x̃;n,ε) def=
{

ỹ ∈ W̃ i(x̃) : di
θ kx̃(xk,yk) < ε for 0≤ k≤ n

}
.

Let η be a measurable partition of M f subordinate to W i-manifolds. Define

hi(x̃;ε,η) def= liminf
n→+∞

−1
n

log μ̃η
x̃ (B̃i(x̃;n,ε)),

hi(x̃;ε,η) def= limsup
n→+∞

−1
n

log μ̃η
x̃ (B̃i(x̃;n,ε)).

One can easily show that these functions are indeed measurable. Furthermore,
we define the lower and upper local entropy along W i-manifolds at x̃ with
lrespect to η by

hi(x̃;η) def= lim
ε→0

hi(x̃;ε,η),

hi(x̃;η) def= lim
ε→0

hi(x̃;ε,η).

These limits exist because hi(x̃;ε,η) and hi(x̃;ε,η) increase as ε ↓ 0.

Proposition IX.3.1 Let ξi be an increasing generator subordinate to W i-manifolds.
Then

hi(x̃;ξi) = hi(x̃;ξi) =: hi = Hμ̃(ξi|θξi), μ̃−a.e. x̃.

The proposition above tells us that the lower and upper local entropy along W i-
manifolds with respect to ξi are coincident. From the proof below and the ergodic
decompositions of μ and μ̃ in Section 5, we know that in general hi depends only

on x0 and is an f -invariant function independent of the choice of ξi or {μ̃ξi
x̃ } (see

Propositions IX.2.12–IX.2.14). So we write hi = hi(x0) and call it the local entropy
along W i-manifolds at x0. This completes the definition of hi.

Let us first introduce some facts and postpone the proof of Proposition IX.3.1 at
the end of this section.

Lemma IX.3.2 Let α be a measurable partition of M f with Hμ̃(α) < +∞ and let
ξ be an increasing generator. Then
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lim
n→+∞

−1
n

log μ̃ξ
x̃ ([α

∨
ξ ]n0(x̃)) = Hμ̃(ξ

∣
∣θξ ), μ̃− a.e. x̃ ∈M f .

Lemma IX.3.3 There exists a measurable partition α of M f with Hμ̃(α) < +∞
such that

[αn
0

∨
ξi](x̃)⊂ B̃i(x̃;n,δ ), ∀n≥ n0(x̃)

for μ̃-a.e. x̃, where n0 : M f → Z
+ is a measurable function.

Proof of Lemma IX.3.2. Define I(η
∣
∣ξ )(x̃) def= − log μ̃ξ

x̃ (η(x̃)). One has

1
n

I([α
∨

ξ ]n0
∣∣ξ )(x̃) =

1
n

I(α
∣∣ξ )(x̃)+

1
n

n

∑
k=0

I(α
∨

ξ
∣∣θξ

∨
α−1
−k )(θ kx̃), (IX.9)

where α l
−k

def=
l∨

j=−k
θ− jα . Put In(x̃)

def= I(α
∨
ξ
∣
∣θξ

∨
α−1
−n )(x̃) and I∗(x̃) def= sup

n≥1
In(x̃).

One can prove that ∫
I∗(x̃)dμ̃ ≤ Hμ̃(α

∨
ξ
∣
∣θξ )+ 1

and that {In,B(α0−n
∨
ξ )} is a supermartingale. Therefore

L1

In −→ I∞.
μ̃− a.e.

Hence the second term in the right side of equation (IX.9) tends μ̃-a.e. to a
θ -invariant Borel function F ∈ L1. Then by the ergodicity of μ̃ , one has

lim
n→+∞

1
n

I([α
∨

ξ ]n0
∣
∣ξ )(x̃) =

∫
Fdμ̃ =

∫
I∞dμ̃ .

So the limit function in (IX.9) is constant almost everywhere and is therefore
equal to

lim
n→+∞

1
n

Hμ̃([α
∨

ξ ]n0
∣
∣ξ )

which can be written as

lim
n→+∞

1
n

Hμ̃(ξ n
0

∣
∣ξ )+ lim

n→+∞

1
n

Hμ̃(αn
0

∣
∣θ−nξ ).

The first term is equal to Hμ̃(ξ
∣
∣θξ ). The second term goes to 0 since θ−nξ gener-

ates. ��
Proof of Lemma IX.3.3. Without loss of generality, let ξi and Ŝi be as introduced

in Section IX.2 and 0 < δ < 1
4 e−2λ0−2ε . Let {Φx̃}x̃∈Δ2 be a system of (ε, �)-charts.

Put S′ def= Ŝi
⋂{x̃ ∈ Δ2 : �(x̃)≤ l0}, where l0 is large enough such that μ̃(S′) > 0.
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First we define n+,n− and n0 : S′ → Z
+ by

n+(x̃) def= inf{n > 0 : θ nx̃ ∈ S′},
n−(x̃) def= inf{n > 0 : θ−nx̃ ∈ S′},
n0(x̃)

def= inf{n≥ 0 : θ nx̃ ∈ S′}.

Then let ψ : M f → R be given by

ψ(x̃) def=

{
δ

2K0l0
e−(λ0+ε)max(n+(x̃),n−(x̃)), if x̃ ∈ S′,

δ
2K0l0

, otherwise.

Finally we define ψ+ by replacing max(n+,n−) in the definition of ψ by n+.
Since

∫ − logψdμ̃ < ∞, there exists a measurable partition α of M f with
Hμ̃(α) < ∞ such that p(α(x̃))⊂ B(x0,ψ(x̃)) for almost every x̃.

Let x̃ ∈ S′. We will write n+ = n+(x̃) and n0 = n0(x̃) for simplicity of notation in
the rest of this section. We assert that

Claim 1 If ỹ ∈ W̃ i(x̃) with y0 ∈Φx̃W i
x̃,δ (x̃) satisfies ‖Φ−1

x̃ y0‖′i ≤ l0ψ+(x̃), then

di
θ j x̃(x j,y j) < δ for 0≤ j ≤ n+

and yn+ ∈Φθn+ x̃W i
θn+ x̃,δ (θ n+ x̃);

Claim 2 If ỹ ∈ W̃ i(x̃) with y0 ∈ p(αn
0 (x̃))

⋂
Φx̃W i

x̃,δ (x̃) for some n≥ 0, then

di
θ j x̃(x j,y j) < δ for 0≤ j ≤ n;

Claim 3 If ỹ ∈ [αn0
0
∨
ξi](x̃), then

di
θ j x̃(x j,y j) < δ for 0≤ j ≤ n0

and yn0 ∈Φθn0 x̃W
i
θn0 x̃,δ (θ

n0 x̃).

Let’s postpone the proof of the above claims and first proceed the proof of
Lemma IX.3.3. Consider now an arbitrary point x̃ with the property that θ nx̃ ∈ S′
infinitely often as n→±∞. If ỹ ∈ [αn

0
∨
ξi](x̃) with n≥ n0, then by Claim 3

di
θ j x̃(x j,y j) < δ for 0≤ j ≤ n0

and yn0 ∈Φθn0 x̃W
i
θn0 x̃,δ (θ

n0 x̃). Then we can apply Claim 2 to θ n0 ỹ yielding that

di
θ j x̃(x j,y j) < δ for n0 ≤ j ≤ n,

which implies ỹ ∈ B̃i(x̃;n,δ ) for all ỹ ∈ [αn
0
∨
ξi](x̃). ��
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Proof of Claim 1. It follows from our assumptions on ỹ and Proposition
IX.2.3(1) that H j

x̃Φ
−1
x̃ y0 ∈W i

θ j x̃,δ (θ
j x̃) and (note that λ0 ≥ λ1 + 2ε)

‖H j
x̃Φ
−1
x̃ y0‖′i ≤ e jλ0‖Φ−1

x̃ y0‖′i for j > 0

provided that ‖Φ−1
x̃ y0‖′i exp(kλ0)≤ e−λ1−3ε l(θ kx̃)−1 for all 0≤ k < j. This is guar-

anteed for j≤ n+. Since W i
θ j x̃,δ (θ

j x̃) is a graph over R̄(i)(δ l(θ j x̃)−1) with slope< 1,
one has

di
θ j x̃(x j,y j)≤ 2K0‖Φ−1

θ j x̃
y j‖′i < δ for 0≤ j ≤ n+.�

Proof of Claim 2. First if ỹ ∈ α(x̃), then ‖Φ−1
x̃ y0‖ ≤ l0ψ(x̃) ≤ l0ψ+(x̃). So we

have the desired conclusion for 0 ≤ j ≤ n+. Furthermore, if n ≥ n+ and ỹ ∈ αn
0 (x̃),

then
yn+ ∈ p(α(θ n+ x̃))

⋂
Φθn+ x̃W

i
θn+ x̃,δ (θ

n+ x̃)

and we can apply Claim 1 to θ n+ ỹ with θ n+ x̃,xn+ and yn+ in place of x̃,x0 and y0

respectively. An inductive argument completes the proof of Claim 2. ��
Proof of Claim 3. To prove this claim, let us assume that x̃ �∈ S′ and for sim-

plicity of notation write k = n0−n−(θ n0 x̃). That is, k is the largest integer< 0 such
that θ kỹ ∈ S′. Clearly, n+(θ kx̃) = n0− k = n−(θ n0 x̃). Since θ−nξ is increasing as
n→+∞, we have θ kỹ∈ ξ (θ kx̃) and yk ∈Φθ kx̃W

i
θ kx̃,δ (θ

kx̃) by our choice of Ŝi. Also

ψ is chosen in such a way that p[θ− j(α(θ n0 x̃))] lies well inside the charts at xn0− j

for j = 1,2, · · · ,n0− k. Hence

‖Φθ kx̃yk‖′i = ‖Hk
x̃Φ
−1
x̃ y0‖′i ≤ ‖Hk+1

x̃ Φ−1
x̃ y0‖′i ≤ ·· ·

≤ ‖Hn0
x̃ Φ−1

x̃ y0‖′i = ‖Φ−1
θn0 x̃yn0‖′i

≤ l0ψ(θ n0 x̃)≤ l0ψ+(θ kx̃).

Therefore by Claim 1, Claim 3 holds true. ��
Proof of Proposition IX.3.1. It follows directly from the definition of hi(x̃;ξi)

together with Lemmas IX.3.2 and IX.3.3 that hi(x̃;ξi) ≤ Hμ̃(ξi|θξi) for μ̃-a.e. x̃.
What remains is to verify

hi(x̃;ξi)≥ Hμ̃(ξi|θξi), μ̃− a.e.x̃ ∈M f (IX.10)

We know that

Hμ̃(ξi|θξi) = Hμ̃(θ−1ξi|ξi) =
∫
− log μ̃ξi

x̃ ((θ−1ξi)(x̃))dμ̃ ,

where the item behind log is a conditional measure of the denoted set. Put

g(x̃) def= − log μ̃ξi
x̃ ((θ−1ξi)(x̃)),

Aδ
def= {x̃ ∈M f : B̃i(x̃;δ )⊂ ξi(x̃)}.
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Since ξi is an increasing generator subordinate to W i-manifolds, one has Aδ ↑ and
μ̃(Aδ ) ↑ 1 as δ ↓ 0. Hence given ε > 0, there exists δ ′ > 0 such that for each δ ∈
(0,δ ′) ∫

θ−1Aδ
g(x̃)dμ̃ ≥ Hμ̃(ξi|θξi)− ε.

Define Ui(x̃;n,δ ) def=
⋂

0≤k≤n,θ kx̃∈Aδ

(θ−kξi)(x̃). Then B̃i(x̃;n,δ ) ⊂ Ui(x̃;n,δ ).

Hence
− log μ̃ξi

x̃ (B̃i(x̃;n,δ )) ≥− log μ̃ξi
x̃ (Ui(x̃;n,δ )). (IX.11)

Furthermore, we will prove that for μ̃-a.e. x̃

− log μ̃ξi
x̃ (Ui(x̃;n,δ ))≥

n−1

∑
k=0

(1θ−1Aδ
·g)(θ kx̃), (IX.12)

which combined with inequality (IX.11) implies

−1
n

log μ̃ξi
x̃ (B̃i(x̃;n,δ ))≥ 1

n

n−1

∑
k=0

(1θ−1Aδ
·g)(θ kx̃).

Then applying Birkhoff’s ergodic theorem, one has for each δ ∈ (0,δ ′)

hi(x̃;δ ,ξi)≥
∫

θ−1Aδ
g(x̃)dμ̃ ≥ Hμ̃(ξi|θξi)− ε.

Now we return to the proof of the assertion (IX.12). Let

τ(x̃;n) def= max{0≤ k ≤ n : θ kx̃ ∈ Aδ},

where max /0
def= +∞. For μ̃-a.e. x̃ fixed, τ(x̃;n) is a finite number with sufficiently

large n by Poincaré’s recurrence theorem. This together with the condition that ξi is
an increasing generator yields

− log μ̃ξi
x̃ (Ui(x̃;n,δ )) =

τ(x̃;n)−1

∑
k=0

− log μ̃θ−kξi
x̃ ((θ−k−1ξi)(x̃))

≥
τ(x̃;n)−1

∑
k=0

(1θ−1Aδ
·g)(θ kx̃)

=
n−1

∑
k=0

(1θ−1Aδ
·g)(θ kx̃).�
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IX.4 Estimates of Local Entropies along Unstable Manifolds

In this section we will estimate local entropy along unstable manifolds through Lya-
punove exponents and transverse dimensions. To be explicit, we will prove in this
section via Propositions IX.4.1, IX.4.3, IX.4.6 and IX.4.7 that

δ i = δ i =: δi,1≤ i≤ u

where δ i = δ i(x̃) and δ i = δ i(x̃), and

γi
def= δi− δi−1 = (hi−hi−1)/λi ≤ mi,1≤ i≤ u (IX.13)

with δ0 = 0 and h0 = 0. Thus identity

hμ( f ) =
u

∑
i=1

λiγi

follows from hu = hμ̃(θ ) = hμ( f ).

IX.4.1 Estimate of Local Entropy h1

The local entropy h1 measures the amount of randomness along the leaves of W 1-
manifolds and can be formulized as the following.

Proposition IX.4.1 For μ̃-a.e. x̃, δ 1(x̃) = δ 1(x̃) =: δ1 =: γ1 and h1 = λ1γ1. By
Lemma VII.VII.7.5 and from the definition of δ 1 and δ 1, it is clear that 0≤ γ1 ≤m1.

Proof. Let δ > 0 be a sufficiently small number. We divide the proof into two parts.
(i) First for each ỹ ∈ B̃1(x̃;ρn) with ρn = 1

2 K−1
0 �(x̃)−1e−n(λ1+2ε)δ , one has y0 ∈

W 1
loc(x̃) and d1

x̃ (x0,y0) < ρn. Hence by Proposition IX.2.3 and Lemma IX.2.4, for
each k≤ n, yk ∈W 1

loc(θ
kx̃) and

d1
θ kx̃

(xk,yk) ≤ 2K0‖Φ−1
θ kx̃
◦ f kx0−Φ−1

θ kx̃
◦ f ky0‖′1 = 2K0‖Hk

x̃ ◦Φ−1
x̃ y0‖′1

≤ 2K0�(x̃)d(x0,y0)ek(λ1+2ε)

≤ 2K0�(x̃)d1
x̃ (x0,y0)ek(λ1+2ε) < δ

Therefore B̃1(x̃;ρn)⊂ B̃1(x̃;n,δ ) for μ̃-a.e. x̃ and all n≥ 0. This implies h1 ≤ λ1δ 1.
(ii) We then prove that h1 ≥ λ1δ 1. Let ξi’s be as introduced in Section 3.3 and let

α be as introduced in Lemma IX.3.3. By Lemma IX.3.3, one has

[αn
0

∨
ξi](x̃)⊂ B̃i(x̃;n,δ ), ∀n≥ n0(x̃).



194 IX Generalized Entropy Formula

Therefore for each ỹ ∈ (αn
0
∨
ξi)(x̃) with n ≥ n0(x̃), one has yn ∈W i

loc(θ
nx̃) and

di
θnx̃(xn,yn) < δ . By Proposition IX.2.3(3)

di
x̃(x0,y0) ≤ 2K0‖Φ−1

x̃ y0‖′i = 2K0‖H−n
θnx̃ ◦Φ−1

θnx̃yn‖′1
≤ 2K0e−n(λi−2ε)‖Φ−1

θnx̃yn‖′1

where by Lemma IX.2.4 ‖Φ−1
θnx̃yn‖′i ≤ l(θ nx̃)di

θnx̃(xn,yn) < δ�(x̃)enε . Hence

di
x̃(x0,y0) < 2K0δe−n(λi−3ε)�(x̃).

This implies for μ̃-a.e. x̃

[αn
0

∨
ξi](x̃)⊂ B̃i(x̃;2K0δ�(x̃)e−n(λi−3ε)), ∀n≥ n0(x̃)

and hence
[αn

0

∨
ξi](x̃)⊂ B̃i(x̃;e−n(λi−4ε)), ∀n≥ n′0(x̃) (IX.14)

with n′0(x̃)
def= max{n0(x̃), [ 1

ε log(2K0δ�(x̃))] + 1}. By Lemma IX.3.2, equation

(IX.14) with i = 1 implies h1 ≥ λ1δ 1. ��

IX.4.2 Estimate of Local Entropy hi from Below with 2≤ i≤ u

Based on Proposition IX.4.1, we will then prove the coincidence of δ i and δ i for
i = 2, · · · ,u. For this end, let us assume from here on that we have proved inductively
the coincidence of δ j and δ j for j = 1,2, · · · , i−1, i.e.,

δ j = δ j =: δ j, for j = 1,2, · · · , i−1.

Then, in view of (IX.14), Proposition IX.3.1 and Lemmas IX.3.2 and IX.3.3, the
following lemma holds.

Lemma IX.4.2 For each sufficiently small ε > 0, let α be as introduced in Lemma
IX.3.3 (with δ > 0 small enough). There exists a Borel function n̂ : M f → Z

+ satis-
fying the following for μ̃-a.e. x̃ (where 2≤ i≤ u):

(1) [ξi
∨
αn

0 ](x̃)⊂ B̃i(x̃;e−n(λi−4ε)) for any n≥ n̂(x̃);
(2) − 1

n log μ̃ξi−1
x̃ (αn

0 (x̃))≥ hi−1− ε for any n≥ n̂(x̃);

(3) − 1
n log μ̃ξi

x̃ (αn
0 (x̃))≤ hi + ε for any n≥ n̂(x̃);

(4) L
def= B̃i−1(x̃;e−n(λi−4ε))⊂ ξi−1(x̃) for any n≥ n̂(x̃);

(5) log μ̃ξi−1
x̃ (L)

/
[−n(λi−4ε)]≤ δ i−1 + ε for any n≥ n̂(x̃);

(6) log μ̃ξi
x̃ (B̃i(x̃;2e−n(λi−4ε)))

/
[−n(λi−4ε)]≥ δ i− ε for infinitely many n≥ n̂(x̃).
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We then give a lower bound of the local entropy hi in terms of Lyapunov expo-
nents and pointwise dimensions.

Proposition IX.4.3 For 2≤ i≤ u and μ̃-a.e. x̃, (hi−hi−1)/λi ≥ δ i− δ i−1.

Below is the famous Borel density lemma on a manifold M.

Lemma IX.4.4 (Borel Density Lemma; See [7, Proposition 3] or [23].) Let m be a
Borel probability measure on a manifold M and let A⊂M be a measurable set with
m(A) > 0. Then for m-almost every x ∈ A

lim
ρ→0

m(A
⋂

B(x,ρ))
m(B(x,ρ))

= 1.

Furthermore, for each δ > 0 there is a set Â ⊂ A with m(Â) > m(A)− δ and a
number ρ∗ such that for all x ∈ Â and 0 < ρ < ρ∗ one has

m(A
⋂

B(x,ρ))≥ 1
2

m(B(x,ρ)).

But in general, the inverse limit space M f is not a finite dimensional manifold.
In the proof of Proposition IX.4.3, one has to overcome this deficiency of a Borel
Density Lemma on M f ; Thus we establish the following slight variant of Density
Lemma.

Lemma IX.4.5 Let A⊂M f be a measurable set with μ̃(A) > 0. Then for μ̃-almost
every x̃ ∈ A

lim
ρ→0

μ̃ξi
x̃ (A

⋂
B̃i(x̃,ρ))

μξi
x̃ (B̃i(x̃,ρ))

= 1, (IX.15)

where 1 ≤ i ≤ u and each ξ is a measurable partition subordinate to the corre-
sponding W i-manifolds. Furthermore, for each δ > 0 there is a set Â ⊂ A with
μ̃(Â) > μ̃(A)− δ and a number ρ∗ such that for all x̃ ∈ Â and 0 < ρ < ρ∗ one has

μ̃(A
⋂

B̃i(x̃,ρ))≥ 1
2
μ(B̃i(x̃,ρ)).

Proof. Let A′ be the set consisting of those points in A satisfying (IX.15). It is
clearly measurable. Fix a point x̃ with the properties described in Definition IX.1.2
and write C = ξi(x̃). The induced distance on pC will be denoted as dC(·, ·), which
is di

x̃(·, ·) restricted on pC. We write a ball in pC centered at y with radius ρ as

BC(y,ρ) := {z ∈ pC : dC(y,z) < ρ}.

In view of (IX.5), we have

pC∩ pB̃i(ỹ;ρ) = BC(y0,ρ), ∀ỹ.



196 IX Generalized Entropy Formula

Since p
C

:= p|C : C → pC is bijective, we can define a measure μ̂ on pC ⊂ M
by μ̂ := p

C
μ̃C . p

C
: (C, μ̃C ) → (pC, μ̂) becomes a measure preserving bijection.

Obviously

μ̃C(B̃i(ỹ;ρ)∩A) = μ̂(pB̃i(ỹ;ρ)∩ p
C
(A)) = μ̂(BC(y0,ρ)∩ p

C
(A)).

Therefore Borel Density Lemma on M [23] gives

lim
ρ→0

μ̂(BC(y0,ρ)∩ p
C
(A))

μ̂(BC(y0,ρ))
= 1 (IX.16)

for μ̂-a.e. y0 ∈ p
C
(A). For such y0 define ỹ := p−1

C
(y0) ∈C. Then (IX.16) is equiva-

lent to

lim
ρ→0

μ̃C(B̃i(ỹ;ρ)∩A)

μ̃C(B̃i(ỹ;ρ))
= 1. (IX.17)

Clearly each ỹ ∈ C ∩ A satisfying the above equation must be a point in A′. Of
course each ỹ ∈ C∩A′ satisfies (IX.17). The assertion that μ̂-a.e. y0 ∈ p

C
(A) sat-

isfies (IX.16) is equivalent to

μ̂(p
C
(A′)) = μ̂(p

C
(A)),

which can be rewritten as μ̃C(A′) = μ̃C(A). Since this holds for μ̃ξi
-a.e. C, we have

μ̃(A′) =
∫

μ̃C(A′)dμ̃ξi
(C) =

∫
μ̃C(A)dμ̃ξi

(C) = μ̃(A),

which implies the validity of (IX.15) for μ̃-a.e. x̃ ∈ A. ��
Proof of Proposition IX.4.3. Let

Γn := {x̃ : n̂(x̃)≤ n and x̃ satisfies the requirements (1)–(6) of Lemma IX.4.2}.

Clearly we have μ̃(Γn) ↑ 1 as n tends to +∞. Therefore for any ε ′ ∈ (0,1), there is an
integer N1 such that Γ ′ := ΓN1 has μ̃-measure≥ 1− ε ′/2. Then by Lemma IX.4.5,
there is another integer N2 ≥ N1 and a subset Γ̂ ⊂ Γ ′ of μ̃-measure ≥ 1− ε ′ such
that for any x̃ ∈ Γ̂ fixed, we have

μ̃ξi−1
x̃ (L

⋂
Γ ′)≥ 1

2
μ̃ξi−1

x̃ (L)

for any n≥ N2, where L = B̃i−1(x̃;e−n(λi−4ε)). Then according to Lemma IX.4.2(5)
one has

μ̃ξi−1
x̃ (L

⋂
Γ ′)≥ 1

2
exp(−n(λi−4ε)(δ i−1 + ε)).
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By Lemma IX.4.2(2) it is clear that

μ̃ξi−1
x̃ (αn

0 (ỹ)) = μ̃ξi−1
ỹ (αn

0 (ỹ))≤ exp(−n(hi−1− ε))

for each ỹ ∈ L
⋂
Γ ′. Hence for any x̃ ∈ Γ̂ and n≥ N2

#{αn
0 (ỹ) : ỹ ∈ L

⋂
Γ ′} ≥ μ̃ξi−1

x̃ (L
⋂

Γ ′)
/

exp(−n(hi−1− ε))

≥ 1
2

exp{n[hi−1− ε− (λi−4ε)(δ i−1 + ε)]}.

On the other hand, according to Lemma IX.4.2(1), one has

[ξi

∨
αn

0 ](ỹ)⊂ B̃i(ỹ;e−n(λi−4ε)), ∀ỹ ∈ Γ ′.

Clearly di
x̃(x0,y0)≤ di−1

x̃ (x0,y0) for any ỹ ∈ L. Therefore

[ξi

∨
αn

0 ](ỹ)⊂ B̃i(x̃;2e−n(λi−4ε)), ∀ỹ ∈ L
⋂

Γ ′.

Hence for any x̃ ∈ Γ̂ and n≥ N2

log μ̃ξi
x̃ (B̃i(x̃;2e−n(λi−4ε)))

≥ log#{[ξi

∨
αn

0 ](ỹ) : ỹ ∈ L
⋂

Γ ′}+ logmin
ỹ

μ̃ξi
x̃ ([ξi

∨
αn

0 ](ỹ))

≥ log#{αn
0 (ỹ) : ỹ ∈ L

⋂
Γ ′}+ logmin

ỹ
μ̃ξi

x̃ (αn
0 (ỹ))

≥ − log2−n[hi−hi−1 + 2ε+(λi−4ε)(δ i−1 + ε)].

Comparing the above inequality with Lemma IX.4.2(6), we obtain

(δ i− δ i−1−2ε)(λi−4ε)≤ 1
n

log2 + hi−hi−1 + 2ε,

which implies Proposition IX.4.3 by letting n→+∞, ε→ 0 and finally ε ′ → 0. ��

IX.4.3 Estimate of Local Entropy hi from Above with 2≤ i≤ u

Let number N0, map π̃ i : ηi(x̃)→ R
mi and metrics d̃i

x̃(·, ·) and d̂i
x̃(·, ·) on ηi(x̃)/ηi−1

be as introduced in Section IX.2. We denote μ̃ηi
x̃ by μ̃ i

x̃ for simplicity of notations.

Write π̃i
def= (π̃1, · · · , π̃ i) : ηi(x̃)→ R̄(i) and put

B̂i(x̃,ρ) def= {ỹ ∈ ηi(x̃) : d̃i
x̃(x̃, ỹ) < ρ}.

Then we define transverse dimensions as the following.
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Definition IX.4.1 γ̃i(x̃)
def= liminf

ρ→0

log μ̃ i
x̃(B̂

i(x̃;ρ))
logρ is called the transverse dimension of

ηi/ηi−1 at x̃.

Definition IX.4.2 For each ỹ ∈ ηi(x̃), γ̂i(ỹ; x̃) def= liminf
ρ→0

logν({z∈R̄(i):‖zi−π̃ i(ỹ)‖<ρ})
logρ is

called the transverse dimension of W i(x̃)/W i−1 at ỹ, where ν def= μ̃ i
x̃ ◦ π̃−1

i is a Borel
probability on R̄(i).

Now we introduce the main results for this subsection.

Proposition IX.4.6 Given β ∈ (0,1). One has for sufficiently small δ and μ̃-a.e. x̃

(λi +β )γ̃i(x̃)≥ (1−β )(hi−hi−1−β )

and 0≤ γ̃i(x̃)≤ mi. Hence
hi−hi−1 ≤ λimi. (IX.18)

Proposition IX.4.7 Given β ∈ (0,1). For μ̃ i
x̃-a.e. ỹ ∈ ηi(x̃), one has γ̃i(x̃) = γ̂i(ỹ; x̃)

and

δ i− δ i−1 ≥ γ̂i(ỹ; x̃)≥ (1−β )(hi−hi−1−β )
λi +β

. (IX.19)

Hence by letting β → 0 we obtain

(hi−hi−1)/λi ≤ δ i− δ i−1. (IX.20)

In order to prove the above two proposition, we need the following results; since
they are of pure measure theoretical nature and are simple consequences of the
above Borel Density Lemma, we state them here without proof.

Lemma IX.4.8 (See [43, Lemma 11.3.1].) Let μ be a probability measure on R
p×

R
q, π : R

p×R
q → R

p the natural projection. Let {μt} be a canonical system of
conditional measures of μ associated with {{t}×R

q : t ∈R
p}. Define

γ(t) def= liminf
ρ→0

logμ
(
π−1Bp(t,ρ)

)

logρ

and let δ ≥ 0 be such that at μ-a.e. (t,x)

δ ≤ liminf
ρ→0

logμt
(
Bq(x,ρ)

)

logρ

holds true, where Bp(t,ρ) is the open disk in R
p centered at t of radius ρ . Then at

μ-a.e. z = (t,x)

δ + γ(t)≤ liminf
ρ→0

logμ
(
Bp+q(z,ρ)

)

logρ
holds true.
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Lemma IX.4.9 (See [43, Lemma 11.3.2].) Let (Ω ,P) be an abstract probability
space which is a Polish space. Let μ be a probability measure on Ω ×R

q with
marginal measure P on Ω . Let γ̃ ≥ 0 be such that at μ-a.e. (ω ,x)

γ̃ ≤ liminf
ρ→0

logμω
(
Bq(x,ρ)

)

logρ

holds. Then at μ-a.e. (ω ,x)

γ̃ ≤ liminf
ρ→0

logμ
(
Ω ×Bq(x,ρ)

)

logρ
.

Proof of Proposition IX.4.6. Let e−(λi+β )εN4μ̃(Ê)
0 < 1 with β ∈ (0,1) (this holds

true provided μ̃(Ê) small enough). We will prove that for μ̃-a.e. x̃

(λi +β ) liminf
ρ→0

log μ̃ i
x̃(B̂

i(x̃;ρ))
logρ

≥ (1−β )(hi−hi−1−β ). (IX.21)

The first conclusion then follows immediately from this together with Proposition
IX.2.7. The second conclusion follows from the definition of γ̃i and Lemma
VII.VII.7.5 since the point-independent metric d̃i(·, ·) on ηi(x̃)/ηi−1 makes it
isometric to a subset of (Rmi ,‖ · ‖).

Now we come to the proof of (IX.21). First fix ε ∈ (0,β/3). Let Δ̃ ′0 be a set as
chosen in Section IX.2. Recalling that μ̃(Δ̃ ′0) = 1 and θΔ̃ ′0 = Δ̃ ′0, for the sake of
presentation we may assume that Δ̃ ′0 = M f .

We divide the proof into four parts following the line presented in [51].
(A) Before proceeding with the main argument, we record some estimates anal-

ogous of those in [51, pp. 171]. For δ > 0, define g,gδ and g∗ : M f → R by

g(ỹ) def= μ̃ i−1
ỹ ((θ−1ηi)(ỹ)),

gδ (ỹ)
def=

1

μ̃ i
ỹ(B̂i(ỹ;δ ))

∫

B̂i(ỹ;δ ))
μ̃ i−1

z̃ ((θ−1ηi)(ỹ))dμ̃ i
ỹ(z̃),

g∗(ỹ)
def= inf

δ∈Q
gδ (ỹ),

where Q
def= {e−(λi+β )lN2 j

0 : l, j ∈ Z
+}.

According to Proposition IX.2.7, one has g(ỹ) = μ̃ i−1
ỹ ((θ−1ηi−1)(ỹ)) for μ̃-

a.e. ỹ. For each δ > 0, one can check that the functions ỹ → μ̃ i
ỹ(B̂

i(ỹ;δ )) and

ỹ → μ̃θ−1ηi
ỹ (B̂i(ỹ;δ )) are measurable and μ̃ i

ỹ(B̂
i(ỹ;δ )) > 0 for μ̃-a.e. ỹ. Since

Hμ̃(θ−1ηi|ηi) < +∞, one has μ̃ i
ỹ((θ−1ηi)(ỹ)) > 0 for μ̃-a.e. ỹ and
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gδ (ỹ) =
μ̃ i

ỹ(B̂
i(ỹ;δ )

⋂
(θ−1ηi)(ỹ))

μ̃ i
ỹ(B̂i(ỹ;δ ))

=
μ̃θ−1ηi

ỹ (B̂i(ỹ;δ ))

μ̃ i
ỹ(B̂i(ỹ;δ ))

· μ̃ i
ỹ((θ−1ηi)(ỹ)).

gδ is therefore measurable for each fixed δ > 0. The measurability of g∗ is obvious.
We assert that gδ → g μ̃-a.e. on M f when δ ∈ Q and δ → 0 and that

−∫ logg∗dμ̃ < +∞. To see this, first consider one element of ηi at a time. Fix
x̃. Substitute (ηi(x̃), μ̃ i

x̃) for (X ,m) in Lemma VII.VII.7.4, let π = π̃i : ηi(x̃)→ R̄(i)

and let α = θ−1ηi|ηi . Then we can conclude that gδ (·)→ g(·) μ̃ i
x̃-a.e. as δ ∈Q and

δ → 0 and that for μ̃-a.e. x̃

−
∫

logg∗(z̃)μ̃ i
x̃(dz̃) ≤ −

∫
log( inf

δ>0
gδ (z̃))μ̃ i

x̃(dz̃)

≤ Hμ̃ i
x̃
(θ−1ηi|ηi)+ logc(

i

∑
j=1

m j)+ 1 < +∞,

where c(·) is the multiplicity defined in Theorem VII.VII.7.1.
(B) The purpose of this step is to study the induced action of θ on

θ−1(ηi(x̃))/ηi−1→ ηi(x̃)/ηi−1

with respect to the metrics d̃i
θ−1x̃

(·, ·) and d̃i
x̃(·, ·). Consider x̃ ∈ M f . The point x̃

will be subjected to a finite number of μ̃-a.e. assumptions. Let t0 < t1 < · · · be the
successive times t when θ t x̃ ∈ Ê with t0 ≤ 0 < t1. Note that t0 is constant on ηi(x̃).
For large n and 0≤ k < n, define a(x̃;k) as follows: if t j ≤ k < t j+1, then

a(x̃;k) def= B̂i(θ kx̃;N2 j
0 e−(λi+β )(n−t j)).

We now claim that

a(x̃;k)
⋂

(θ−1ηi)(θ kx̃)⊂ θ−1a(x̃;k + 1) (IX.22)

In fact, if k �= t j−1 for any j, then θa(x̃;k)
⋂
ηi(θ k+1x̃) = a(x̃;k + 1) automati-

cally since d̃i
θ kx̃

(·, ·) and d̃i
θ k+1x̃

(·, ·) are defined by pulling back to Ê . The case when

k = t j−1 for some j reduces to the following consideration: Let ỹ ∈ Ê and let t > 0
be the smallest integer such that θ t ỹ∈ Ê . Let z̃ ∈ (θ−tηi)(ỹ). It suffices to show that

d̃i
θ t ỹ(θ

t ỹ,θ t z̃)≤ N2
0 et(λi+β )d̃i

ỹ(ỹ, z̃).

First d̂i
ỹ(ỹ, z̃) ≤ N0d̃i

ỹ((ỹ), z̃). Then for k = 1,2, · · · , t, Proposition IX.2.1 tells us
that

d̂i
θ kỹ(θ

kỹ,θ kz̃)≤ ek(λi+β )d̂i
ỹ(ỹ, z̃).
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We pick up another factor of N0 when converting back to the d̃i-metric at θ t ỹ (see
Proposition IX.2.11). What we claimed above is thus proved.

(C) It is easy to see that there exists a θ -invariant Borel set �̃ ⊂ M f with full
μ̃-measure such that, if x̃∈ �̃, then μ̃ i

x̃(B̂
i(x̃;δ )) > 0 for all δ ∈Q. We now estimate

μ̃ i
x̃(B̂

i(x̃;e−(λi+β )(n−t0(x̃)))) = μ̃ i
x̃(a(x̃;0)) for x̃∈�̃which will be subjected to a finite

number of a.e. assumptions. Write

μ̃ i
x̃(a(x̃;0)) =

T−1

∏
k=0

μ̃ i
θ kx̃

(a(x̃;k))

μ̃ i
θ k+1x̃

(a(x̃;k + 1))
· μ̃ i

θT x̃(a(x̃;T ))

where T = [n(1− ε)] (here [x] denotes the integer part of x). First note that the
last term ≤ 1. For each 0 ≤ k < T , by the θ -invariance of μ̃ and by uniqueness of
conditional measures one has

μ̃ i
θ kx̃

(a(x̃;k))

μ̃ i
θ k+1 x̃

(a(x̃;k + 1))
= μ̃ i

θ kx̃(a(x̃;k))
μ̃ i
θ k x̃

(θ−1(ηi(θ k+1x̃)))

μ̃ i
θ kx̃

(θ−1a(x̃;k + 1))
.

This is

≤ μ̃ i
θ kx̃

(a(x̃;k))

μ̃ i
θ kx̃

((θ−1ηi)(θ kx̃)
⋂

a(x̃;k))
· μ̃ i

θ kx̃((θ
−1ηi)(θ kx̃)) (IX.23)

by (IX.22). If gδ is defined as in (A), the first quotient in (IX.23) is equal to

[gδ (x̃;n,k)(θ kx̃)]−1,

where δ (x̃;n,k) = e−(λi+β )(n−t jk
(x̃))N2 jk

0 with jk
def= #{0 < i≤ k : θ ix̃ ∈ Ê}.

Write I(x̃) def= − log μ̃ i
x̃((θ−1ηi)(x̃)). Then the second term in (IX.23) is equal to

e−I(θ kx̃). Hence

log μ̃ i
x̃(B̂

i(x̃;e−(λi+β )(n−t0(x̃))))≤−
T−1

∑
k=0

loggδ (x̃;n,k)(θ kx̃)−
T−1

∑
k=0

I(θ kx̃).

Multiplying by − 1
n and taking liminf on both sides of this inequality,

(λi +β ) liminf
ρ→0

log μ̃ i
x̃(B̂

i(x̃;ρ))
logρ

= (λi +β ) liminf
n→+∞

μ̃ i
x̃(B̂

i(x̃;e−(λi+β )(n−t0(x̃))))
loge−(λi+β )n

≥ liminf
n→+∞

[n(1−ε)]
∑
k=0

loggδ (x̃;n,k)(θ kx̃)

+ lim
n→+∞

1
n

[n(1−ε)]
∑
k=0

I(θ kx̃).
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The last limit = (1− ε)Hμ̃(θ−1ηi|ηi) = (1− ε)hi by Birkhoff’s ergodic theorem.
Hence Proposition IX.4.6 is proved if we show that

limsup
n→+∞

−1
n

[n(1−ε)]
∑
k=0

loggδ (x̃;n,k)(θ kx̃)≤ (1− ε)(hi−1 + 2ε). (IX.24)

(D) We now prove the last assertion (IX.24). It follows from (A) that there is a
measurable function δ : M f → R

+ such that for μ̃-a.e. x̃, if δ ∈ Q and δ ≤ δ (x̃),
then − loggδ (x̃) ≤ − logg(x̃)+ ε . Since

∫ − logg∗dμ̃ < +∞, there is a number δ∗
such that if A = {x̃ : δ (x̃) > δ∗}, then

∫
M f \A− logg∗dμ̃ ≤ ε .

We claim that for μ̃-a.e. x̃, if n is sufficiently large, then δ (x̃;n,k) ≤ δ∗ for all
k ≤ n(1− ε). First by Birkhoff ergodic theorem, there is a positive integer N1(x̃)
such that for n ≥ N1(x̃), #{0 ≤ i < n : θ ix̃ ∈ Ê} ≤ 2nμ̃(Ê). If n ≥ N1(x̃), then for
each k≤ n(1− ε) one has t jk(x̃)≤ k ≤ n(1− ε) and

δ (x̃;n,k) = e−(λi+β )(n−t jk
(x̃))N2 jk

0 ≤ e−(λi+β )εnN4nμ̃(Ê)
0 .

Since e−(λi+β )εN4μ̃(Ê)
0 < 1, δ (x̃;n,k) is less than δ∗ for sufficiently large n. Thus

[n(1−ε)]
∑
k=0

− loggδ (x̃;n,k)(θ kx̃)≤
[n(1−ε)]
∑

k = 0
θ kx̃ ∈ A

(− logg(θ kx̃)+ ε)+
[n(1−ε)]
∑

k = 0
θ kx̃ �∈ A

− logg∗(θ kx̃)

and the limsup we wish to estimate in (IX.24) is bounded above by

(1− ε)[
∫
− loggdμ̃ + ε +

∫

M f \A
− logg∗dμ̃ ].

Recalling that g(x̃) = μ̃ i−1
x̃ ((θ−1ηi−1)(x̃)) for μ̃-a.e. x̃,

∫
− loggdμ̃ = Hμ̃(θ−1ηi−1|ηi−1) = Hμ̃(ηi−1|θηi−1) = hi−1.

This completes the proof. ��
Proof of Proposition IX.4.7. It follows from the Lipschitz property of π̃i to-

gether with the definition of γ̃i and γ̂i that for μ̃-a.e. fixed x̃ and μ̃ i
x̃-a.e. ỹ ∈ ηi(x̃)

γ̂i(ỹ; x̃) = γ̃i(x̃),

if we assume μ̃ i
x̃(
⋃

n≥0
θ nÊ) = 1. Hence from Proposition IX.4.6 we may assume that

γ̂i(π̃−1
i z, x̃)≥ (1−β )[hi−hi−1−β ]

λi +β
, ν− a.e. z ∈ R̄(i).
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Consider now the partition of π̃i(ηi(x̃)) ⊂ R̄(i) = R̄(i−1)×R
mi into planes of the

form {z = (z1,z2, · · · ,zi) ∈ R̄(i) : zi = const}. Using the Lipschitz property of π̃i and
the definition of δ i and ν , one can easily verify that at ν-a.e. z ∈ R̄(i)

δ i−1(x̃)≤ liminf
ρ→0

logνzi({w ∈ R̄(i−1) : ‖w− z(i−1)‖< ρ})
logρ

and

δ i(x̃) = liminf
ρ→0

logν({w ∈ R̄(i) : ‖w− z‖< ρ})
logρ

,

where νc is the conditional measure of ν on {z = (z1, · · · ,zi) ∈ R̄(i) : zi = c} (hence
νc can be viewed as a Borel probability measure on R̄(i−1)). Lemma IX.4.8 then
tells us that inequality (IX.19) holds for μ̃ i

x̃-a.e. ỹ. ��

IX.5 The General Case: without Ergodic Assumption

Now we prove Theorem IX.1.3 in the general case without ergodic assumption via
ergodic decompositions of μ and μ̃ . If μ is not ergodic, then according to Rokhlin
[75], there exists a (μ-mod 0) unique measurable partition ζ0 of M such that f−1C =
C and f |C : (C,μ |C)←↩ is ergodic for μζ0

-a.e. C ∈ ζ0. Let ζ = p−1ζ0. Then θC̃ = C̃

for μζ0
-a.e. C ∈ ζ0, where C̃

def= p−1C ∈ ζ . μ̃C̃
def= p−1μC is an ergodic measure on C̃

for μζ0
-a.e. C ∈ ζ0.

Since ξu is a partition of M f subordinate to W u-manifolds of f , ξu refines ζ by
Corollary 3.1.1 in [73]. Hence the transitivity of conditional measures implies that

μ̃ξi
x̃ = (μ̃C̃)ξi

x̃ , for μ̃ζ − a.e. C̃ and μ̃C̃− a.e. x̃.

Then results in Sections IX.3 and IX.4 tell us that for μ̃ζ -a.e. C̃ ∈ ζ and μ̃C̃-a.e.

x̃ ∈ C̃

hi(x̃;ξi, μ̃) = hi(x̃;ξi|C̃, μ̃C̃) = hμ̃C̃
(θ |C̃,ξi|C̃) = hi(x̃;ξi|C̃, μ̃C̃) = hi(x̃;ξi, μ̃)

and

δ i(x̃;ξi, μ̃) = δ i(x̃;ξi|C̃, μ̃C̃) = δ i(x̃;ξi|C̃, μ̃C̃) = δ i(x̃;ξi, μ̃) =: δi(x̃;ξi, μ̃).

Since γi(x̃; μ̃) def= δi(x̃;ξi, μ̃)− δi−1(x̃;ξi−1, μ̃), it follows from equation (IX.13) that

γi(x̃; μ̃) = γi(x̃; μ̃C̃) =
hμ̃C̃

(θ |C̃,ξi|C̃)−hμ̃C̃
(θ |C̃,ξi−1|C̃)

λi(x0)
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holds true for μ̃ζ -a.e. C̃ ∈ ζ and μ̃C̃-a.e. x̃ ∈ C̃. Hence γi’s are a.e. θ -invariant func-
tions. It is easy to see that γi’s are indeed a.e. functions well defined on M.

Furthermore, the entropy map hμ̃(θ ) is affine with respect to μ̃, i.e.

hμ̃(θ ) =
∫

hμ̃C̃
(θ )dμ̃ζ (C̃).

Hence by hμ( f ) = hμ̃(θ ) and hμ̃C̃
(θ ) = hμ̃C̃

(θ |C̃,ξu|C̃), Theorem IX.1.3 holds. ��
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