Chapter IX
Generalized Entropy Formula

The entropy and the Lyapunov exponents provide two different ways of measuring
the complexity of the dynamical behavior of a C> endomorphism f : M « asso-
ciated with an invariant measure {. Generally speaking, the entropy of the system
(M, f,u) is bounded up by the sum of positive Lyapunov exponents. This is the
famous Ruelle inequality introduced in Chapter II. In some cases such as the in-
variant measure being absolutely continuous with respect to the Lebesgue measure
(see Chapter V1), the inequality can become equality. The equality is the notable
Pesin’s entropy formula. As we have shown in Chapter VII, Pesin’s entropy formula
is equivalent to the SRB property of the invariant measure. Ledrappier and Young
[43] presented a generalized entropy formula, which looks like and covers Pesin’s
entropy formula, for any Borel probability measure invariant under a C? diffeomor-
phism. This result is successfully generalized to random diffeomorphisms [70].

In this chapter we will extend Ledrappier and Young’s result to the case of C?
endomorphisms following the line of [71] (see Theorem IX.1.3).

IX.1 Related Notions and Statements of the Main Results

Let M be an mp-dimensional smooth and compact Riemannian manifold without
boundary and f : M < be a C?> endomorphism. Throughout this chapter, it is al-
ways assumed that the invariant measure u of f satisfies the integrability condition
(V.V.1). We will resume the settings in Chapter V and employ the results in Chapters
V and VII in an essential way.

Let A1(x) > A2(x) > -+ > A,(x(x) be the Lyapunov exponents of f at x with
multiplicities my (x), - -+, m,(y) (x). Since condition (V.V.1) holds, T f is invertible for
u-a.e. x. Denote by (M, 0, i) the system (M/, 0) associated with fi. We can apply
the Oseledec multiplicative ergodic theorem to (M/, 0, i) yielding the following.
(See Appendix I, Proposition 1.3.5.) There exists a @-invariant Borel set Acmf
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with full fi-measure. For each ¥ € A , there is a splitting (which depends measurably

on %) of T,,M
T M =E ()P E(HEP - - PE ) (& (IX.1)

with dimE;(%) = m;(xo) for each i, such that

o1
i log T (8] = Ai(xo)
forany 0 #£v € E;(%) (i=1,---,r(x0)), where

T f", if n> 0,
(%) & id, if n=0,
(T, f~")~", otherwise.

For each & € A, £ is locally invertible along the full orbit ¥ = {xi}icz. On M, the
map f; ! can be defined along a trajectory X to be the “ inverse” map of f which
maps xo to x_p, wherever it makes sense, i.e.,

filof=id and fof'=

hold true on certain neighbors of x_; and xo respectively (see Chapter V.2). We

write e
_p de 1
f " fe g © f)?
. 0 def .
forn > 0 with f} = idy.
Let u(x),c(x) and s(x) be the number of positive, neutral and negative Lyapunov
exponents at x respectively, i.e.,

u(x) E#{1 < j < r(x): 4(x) > 0}, (IX.2)
c(x) E#{1 < j < r(x) 1 A(x) =0}, (IX.3)
s(x) {1 < j < r(x) 1 4;(x) < O} (IX.4)

When p is an ergodic measure, all numbers r(x), A; (x),m; (x), u(x), c(x),s(x) will
be constants for t-a.e. x. In this case, when writing them we will just omit x’s.

IX.1.1 Pointwise Dimensions and Transverse Dimensions

Definition IX.1.1 Wi(%) & {5 € M/ : lim sup | logd(x_y,y—n) < —Ai(x9)} is called
n— oo

the i"-unstable set of f at % in M/, where £ € A and 1 < i < u(xo). Wi(%) & pWi(x)

is called the i™-unstable manifold of f at % in M.
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W/(%)’s are all C""! immersed submanifolds of M tangent at xo to ©',_,E;(¥)

respectively (see Chapter V). Hence each W(%¥) inherits a Riemannian structure
from M. This gives rise to a Riemannian metric, written d%(-,-) , on each leaf of
Wi(%).

Definition IX.1.2 A measurable partition 17 of M/ is said to be subordinate to W'-
manifolds if for fi-a.e. X, 11(X) has the following properties:

(D) ply : n(x) — pn(X) is bijective;
i .
(2) There exists a Y. my(xo)-dimensional C! embedded submanifold Wi of M with
k=1
Wi C Wi(X) such that pn (%) C Wi and p1(X) contains an open neighborhood of

X in Wj", this neighborhood being taken in the topology of Wj" as a submanifold
of M.

We have included in Section IX.2.2 an outline of the construction of such parti-
tions. See also [73] for a similar construction.

Definition IX.1.3 A measurable partition 1) is said to be increasing, if 6~'n > n,
and to be a generator , if Z(n}) — B(M/),(fi —mod 0) as n — +oo, where n¢ o

n
\/ 67¥n and Z(n) denotes the 5-algebra generated by measurable 1-sets.
k=0

In what follows we will define notions of transverse dimensions along unstable
manifolds. _
Let € > 0. For each ¥ € A, define

Bi(ze) ¥ {5 € W(%) : di(x0,y0) < €} (IX.5)

Let 1 > 1o > --- > 1, be a sequence of measurable partitions of M/ with each
n; subordinate to the corresponding W -manifolds. The canonical system of condi-
tional measures of fi associated with 7; is denoted by {fi;"}. We define the lower
and upper pointwise dimension of fi along W'-manifolds at % € A with respect to
partition 7; by

8% ) Llim inflog 1" (B'(%;¢))/loge, (IX.6)
E—

Si(%m:) ©f lim suplog 1" (§i(i;£))/log£. (IX.7)
e—0

Sometimes we denote ;(%;1;) by 8,(%;n;,[l) to indicate the dependence of this
quantity on fi. Other notations have similar meanings.

The following proposition tells us that the lower and upper pointwise dimension
of [i along Wi-manifolds are coincident and in fact well defined on M. We call this
common value the pointwise dimension of u along W'-manifolds. It will be verified
in Sections IX.4 and IX.5.
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Proposition IX.1.1 If n; is an increasing generator subordinate to W'-manifolds,
then

0;(Xmi) =06,(Fmi), M—ae X

Sfurthermore the common value, writing 8;(X), is 0-invariant and depends [i-a.e. only
on xo, not on the choice of such ;. Therefore 8;(X) is simply denoted by &;(xy).

Proposition IX.1.2 Let 6;(x), 1 <i < u(x) be introduced as above, define

7(x) < §i(x) — 81 (x)

with &y (x) défOfor u-a.e. x and 1 <i <u(x), then
0 S %(x) S mi(x),fori: 17“',1/!()().

The number ¥ (x) is called the transverse dimension of L on Wi(%)/Wi~! at x.

IX.1.2 Statements of the Main Results

The main results of this chapter are the following theorems.

Theorem IX.1.3 Let (M, f, 1) be given such that log|det(Tf)| € L' (M, ). Then
entropy formula

() = [ ZA00* nodn (IX.8)
holds true.

Remark IX.1. Theorem ILIL.1.1, the notable Margulis-Ruelle inequality, follows di-
rectly from Theorem IX.1.3 and Proposition IX.1.2. So does Theorem VIL.VIL.1.1,
since the validity of Pesin’s entropy formula is equivalent to equations ¥;(x) = m;(x),
i=1,---,u(x), or equivalently &,(x) = X , m;(x) which is equivalent to the SRB
property of the invariant measure (.

We will prove Theorem IX.1.3 in Sections IX.2-1X.5. Before we start the proof,
we make in advance the assumption that ( (and hence fi) is ergodic for simplicity
of presentation. It is used only in Sections IX.2-IX 4.

IX.2 Preliminaries

In this section, we state some preliminary results which will be very useful in the
subsequent sections. First we state in Section IX.2.1 some propositions about unsta-
ble manifolds, each of which is analogous of certain statement in Chapter VII (see
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also [51, Chapter VI, Sections 3—4]) and can be proved following the same line.
Hence the proofs are omitted. In view of these propositions we can compare the
induced metric dL(-,-) on W(%) with the original metric d(-,-) on M via Lyapunov
charts. Then we include in Section IX.2.2 an outline of the construction of mea-
surable partitions subordinate to W -manifolds. Some useful measurable partitions
are also constructed. In Section IX.2.3 two types of transverse metrics are built on
quotient spaces. Finally we present some entropy properties of the related partitions
in Section 1X.2.4.

IX.2.1 Some Estimations on Unstable Manifolds

We write R™0 = R™ x ... x R™ and for each z € R™, let (z1,22,---,2,) be its co-
ordinates with respect to this splitting. The usual standard norm of Euclidean space
will always be denoted by || - ||. Since we want to employ the Lyapunov charts in-
troduced in Proposition VII.VIIL.4.2 to obtain estimations on the unstable and center
unstable sets, fori =1,---,c+ u write

R(l) def R+ Rri(i) d;f RMis 1+

and put

RO(p) & {z e RM o] < p},

er(i)(p) def {z € Rmst+mr |12 < o)

R(p) € {z=(z1,--,z) ER™: |zl| <p,1 <i < 1)

() def () def
For each z € R™0 write z()) < (z1,-+,zi) and 7" () = (zi+1,-+,2r); and define max-

imum norms ||- | and || - ||} on R™ = R™ x ... x R” and R" =R x R"~()
respectively by

def
Jell & max |z,

def ] —(i
lell; & max (<], 1"~

Let 0 < & <min{1,A4/100mq} and e~*+10¢ + ¢3¢ < 2 where A is defined

by (VIL.VIL18). Put 4 o max{|A;| : 1 <i<r}+2¢e. By Proposition VIL.VIL4.2,
there exists a 0-invariant set Ay C M/ of full fi-measure such that {@s}zca, is a
system of (g,¢)-charts. Fori=1,---,u, we introduce the local / h_unstable manifold
of (M, f,n) at X associated with ({@s}zca,,8), where 6 € (0,1]. It is defined to
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be the component of W'(~) N@:R(5/(x)"") that contains xo. The @ -image of
this set is denoted by W/ s (%). The following proposition characterizes W~ 5(%). See
Lemmas VIL.VILS.1 and VIL.VILS5.2 and also [51, pp. 146-147] for the proof of
similar results.

Proposition IX.2.1 Let { @;}zca, be a system of (€,()-charts and 1 <i < u.
() IfO< 8 <e M€ and i e Ay, then

(1) W~ (%) is the graph of a CY! function

gr:RUS(®™) - R (60%) ™)
with g-(0) = 0 and Lip(gt) < 1;

(i) Ws(%) C - C W 5(X) C S5(3);
Q) If0< 8 < e M2 gnd % € Ay, then

() HeWes (0RO ™) = Wy (x1):

(i) S§‘(% )ﬂCD~ (%)= W)m(x).

Fix & € 4. Let § € (0, ;]. Consider now j € Wg“(%), where Wg“(i) is de-
fined by (VILVIL19). Let W! ,5(7) be the @ !_image of the component of
WiF) N @RV (260(%) ") x R~ (48¢(%)~")] containing yo. Then ®W!,s(5)

contains an open neighborhood of y in Wi(§) and is also referred to as a local
h_unstable manifold of (M, f) at § along ¥ (although in general ®;W! 525 (yo) #

(D);Wi »5(¥)). The following proposition holds analogue of Proposition IX.2.1 and
can be proved following the line of the proof of Lemma VIIL.VIL5.3.

Proposition IX.2.2 Let¥€ Ay and 1 <i<u.
(1) Let 0 < § < e ™ 078 If j € WE(%), then
) W~ s(¥) isa graph of a C! function

ghs RS0 - R™O@S(R) )

with Lip(gi ) <1
(i) W,5(5) C -+ C Wi5() C SG5(3);

(2) Let 0 < § < }e 20728 [f§ € WS(5) with y| € DpzS$"(05), then

HeW,,5(5) ([RY(260(6%) ") x R™(480(0%) )] € Wi 15(69):
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(3) Let 0 < 0 < }Le’mﬂ’zs. For fi-a.e. X € A
() ify € W§"(%), then
S5O 'WH(F) CWi,5(9) C Sis(0) (@5 W)
(i) if § € Wg (%) with yo € @WL5(%), then
Wips(9) CWIES(E),i=1,u—1;
(iii) if .2 € W"(%) with yo,20 € DW (%), then either
Wios(3) = Wi,s(2)

or otherwise the two terms in the above equation are disjoint.

The following proposition describes the actions {HZ } 7.
Proposition IX.2.3 Ler 0 < 6 < e M Foreachie€ Ay and1 <i<u
() Ifz,7 € I_{(e’ll’%ﬁ(i)’l), then Hyz, Hz? € R(£(0%)~!) and

||H);Z*Hle||’Sell+2£”Z*ZIH/;

) If 2.2 € R(8(%) ") and ||z —Z|[} = ||z — 2

, then
|Hzz — HeZ ||} = || (He2) ) — (H:) D)) > X722~ 2 ||}

() ||Hy 'z — H 7|} < e 42|z — 2|1, V2,2 € W] 5(9);

@) |Hy 'z = Hy 2|y < €2 la =20y, V2,2 € S5(3);

) Lhet 0<8 < je 2072 Forfi-ae % € Ay, if § € W5 (%) with yo € D:W!5(%),
then

|Hy 2= H ' | < e M2 |2 = 2/|I], Ve, 2 € Wi ,y5(5).

The following lemma says that the metrics d%(-,-) and d(-,-) are locally equiva-
lent within @:W! < (%), a neighborhood of xo in W'(%).

Lemma IX.2.4 Ify,z € ®W! s(X), then
d(y,2) < di(y,2) < 2Ko|| @5 'y — @7 '2f; < 2Kol()d (v,2)-

Proof. The first inequality is obvious. We prove the other two. By Proposition
1X.2.1, we can assume

y=@:(vo,85(v0)), == Pe(v1,85(n1))
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for some vg,v; € R (84(%)). Let {v(t)}o<;<1 be a smooth curve in RO(84(%))
connecting vo and v;. Let % be a collection of such curves in R (§£(%)). Then

1

i _ d i
di(v.a) = inf 7] @x(0(0).gh00)) .

By Propositions VII.VIL.4.2 and IX.2.1, we have

f )|dr < K f )||dt
it [ @00 < Ko int [ 60,00

< 2K inf/ t)||dt

< 2K inf | Hdtv( i

= 2Ky |[vi — vo|| = 2Ko|®; 'y — @; 'z’

This together with || @'y — @ 'z||} < £(%)d(y,z) implies the last two inequalities
in the lemma. ad

I1X.2.2 Related Partitions

First we include here an outline of the construction of partitions subordinate to W'-
manifolds, which follows the same line presented in [73]. It is simpler because [i is
now assumed to be ergodic.

Fix an i with 1 <i <u. Let [j be large enough such that A = {& € A, : £(%) <
Ip} has positive measure. Then there exists an increasing sequence {AF}cz+ of
compact subsets of A such that fi(A\ [y AF) = 0. Fix a k with fi(AX) > 0. Let
po > 0 be as introduced in Chapter 11.2.

Proposition IX.2.5 Let {W/ (%)};cax be a continuous family of C"! embedded
23:1m j-dimensional disks described in Proposition V.V.4.5 with AK in place of

A,Ei) and suitable oy,.
(1) Foreach i € AK, Wi (%) C (D);W£5 (%), where § = }e~h0te;
(2) There exists Ay > 0 such that for all 5,7 € M7 with ygy,zo € Wl (%) andn >0

A (yonyzon) < Are "ML (g, 20);

(3) There exist 7 € (0,po/4),& € (0,1) and d > 27 such that for all p € (0,7] and
e Ak if ¥ € Bu(wep) € {5 AR d(%,5) < &p}, then Wi (¥)(\B(x0,p)

is connected, its d)’%,-diameter is less than d and the map

% s W (#) (B(xo0.p)

is a continuous map from Bai(%;€p) to the space of subsets of B(xo,p)
(endowed with the Hausdorff topology);



IX.2 Preliminaries 181

(4) Let p € (0,7] and ¥ € X, if # ' € Bpi(%;€p), then either

‘/Vll;)c(fl) mB(x()ap) = W/li)c(f”) ﬂB(X(),p)

or otherwise the two terms in the above equation are disjoint. In the later case,
if it is assumed moreover that x; € W' (%), then

L (y,2) > d > 27

foranyy € loc( )N B(x0,p) and z € Wi ()N B(xo,p);

(5) There exists R > 0 such that for each ¥ € AN¥ andy € M, if # € B k(X €p) and
yEe W (& )ﬂB(xo, #), then W (') contains the closed ball of center y and
dL,-radius RinWi(®).

We now choose in A a density point #*. For each p € [#/2, 7], put

def i
SP - U Vvloc ﬂ P xO?
XEB \x (x*:8p)

where Wz (%) = &f WIL;Cl (%) is defined by (V.V.32). Let &, denote the partition of M/
into all sets Wloc(i)ﬂp’l(B(x(*),p)),i € B«(¥*;€p) and the set M/ \ S,. We now
define a measurable function f, : S, — R™ by

By arguments analogous to those in the proof of Proposition IV.2.1 in [51], we know

. P _ o def
that there exists 7 € [#/2,7] such that 8, > 0 fi-almost everywhere on S; = S,.. Put

oo

EEE =\ 0",

n=0

Clearly, & is an increasing generator subordinate to Wi -manifolds of (M, f, ut).

Let us introduce some more related partitions in order to make use of the geome-
try of Lyapunov charts in the evaluation of local entropy in Sections IX.3-IX.4. Let
{@s}sea, be asystem of (¢,¢)-charts and 8 € (0, | e~2%07€)) be a reduction factor.
Then there exists a measurable partition 2 of M/ with Hy(2) < +eo such that

(1) p(2*(%)) C @:S§'(%) for fi-a.e. &, where 7 = def \/ 0",

2 {Sl,Mf \S} < Pfori=1,-
(3) {E,M/\E} < 9, where E w111 be specn‘ied later in Section IX.2.3.

We clearly have the following proposition.



182 IX Generalized Entropy Formula

Proposition IX.2.6 The partition &; is an increasing generator subordinate to W'-
manifolds of (M, f,L). Furthermore, zf%” (M, f, L) denotes the c-algebra of those
Borel sets A C M/ such that A = | Jzcy W' (), then

/\e"gl =B (M, f,u), fi—modO.

Now define n; &ef EN 9T fori=1,---,u. We have the following proposition.
Proposition IX.2.7 {n;}""_, satisfy the following statements:

MHm>m>->n '
(2) ni’s are increasing generators and p(1;(X)) C @zW{ 5(%) for fi-a.e. %
(3) ha(0,1m) =ha(0,&) fori=1,---,u, wherehﬂ(e,n)defH# (n|6n~) withn~ &
oo gk
ViZo0 n:
(4) For fi-a.e. ¥ and 2 <i <u, if § € n;(X) with § € Ay, then

(DW);zé ﬂp ﬂz ﬂz l( ))

and
0 (i1 () =ni-1(0”'5) ()0 (mi(®)).

The proof of item (3) in the above proposition is postponed later in subsection IX.2.4
(see the proof of Lemma IX.2.13); the other items are easy to be checked from the
construction itself. We collect them all together for the convenience of the readers.

IX.2.3 Transverse Metrics on M;(%)/ni—y with2 <i<u

Let {(I) }iea, be a system of (g,/)-charts. Fix a point ¥ € A. Let 1 <i < u and
& = 4e ~%0~¢_ Denote by L(R"),R"~()) the space of all linear maps from R to
R~ By Proposition IX.2.2(1)(i) we know that, if § € WC”( ¥), then there exists a
unique P)éy e LR R~ with || P 51l < 1 such that

Ty, @; IE;;. = Graph(P)éi).
Define o S
LW (%) — LR R—0)
Vi P};y.

The following proposition says that the map % is Lipschitz for all ¥ € A,.
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Proposition IX.2.8 Foreachic Ayand 1 <i<u, iﬂj’ is a Lipschitz map and
Lip(Z}) < Dol(%)?

where Dy > 0 is a number depending only on the exponents and €.

The proof is similar to that of Lemma VII.VIL.5.7 and hence is omitted.

Let n;’s be introduced as above. For 2 < i < u, we now define two metrics on the
factor-space 1;(X)/n;—; for fi-a.e. X. We shall actually deal with {n;}; restricted to
a certain measurable set with full fi-measure. Now we choose a -invariant mea-
surable set A~(') C Ay with ﬂ(A~(')) = 1 such that for each ¥ € A~(') the requirements of
Proposition [X.2.7 are satisfied. We then put

/def .
ni = ni'g(/))l:]a"'au'

In what follows we define two transverse metrics on n/(%)/1,_, for fi-a.e. ¥ € A},

First we give a point-dependent definition. Let X € A)). From Proposition IX.2.7,
we know that for every § € 1)/(%), W, 5(¥) intersects {0} x R"~("1) at exactly one
point. We denote the i coordinate of this point by ‘l € R™. Clearly iji = the "

S o

coordinate of the point (0, gf{yf (0)). For 3,7 € n/(x), define

. - d f . .
di(3.5) = 16— G

By Proposition 1X.2.7, d%(-,-) induces a metric on n/(%)/n,_, fori =2,---,u.
To introduce a second metric on 1/(x)/n/_, for i = 2,---,u, we state the fol-
lowing lemma (straightening out lemma) without proof. Here d > 2 is a fixed

integer. Let positive integers ny,---,ny and a number 0 < p < 1 be given. De-

note by Bi(p) the closed disk centered at 0 of radius p in R". Consider B(p) &f

B'(p) x --- x B4(p) as a subset of R™++d,

Lemma IX.2.9 (See [43, Lemma 8.3.1 |.) Fori=1,---,d — 1, let F; be a Lipschitz
foliation with C' leaves on some subset of RM T+ containing B(p). Assume that
each leaf of F; is the graph of a function

g :B'(2p) x - x Bi(2p) — R+ H1a
with ||Dg'|| < } and that the function x — T.F; has Lipschitz constant smaller than
some number C. Assume also that the F;’s are nested, i.e., if F;(x) denotes the leaf of

F; containing the point x, then

F]()C)CFz(x)C"'CFd,](x), VXEB(I))
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Define O = (0,---,04) : B(p) — R"*T 114 gg follows: for x = (x1,---,x4) € B(p),
let 01 (x) = x1, and let O;(x) be the i™ coordinate of the unique point of intersection
of F;i—1(x) and {0} x --- x {0} x R fori=2,--- d. Then

(1) O is a homeomorphism between B(p) and its image;
(2) Forevery x,y € B(p), Oj(x) = O;(y) for j=i+1,---,d ifand only if y € Fj(x);
(3) Both © and 0" are Lipschitz with Lipschitz constant depending only on C.

In light of the above lemma, now we can express the metric d}(-, -) in another
way. Let

p(u) - R™M0 — Rm1+...+m, N R(u) _ le+"'+mu
be the natural project map. Then for each ¥ € Av(’) fixed, p( |W~“5(f) is a lipeomor-

phism between W;fa (%) and its image. Fori = 1,---,u — 1, define foliations by

P e plOWLS(5) 15 € AW ()30 € W5 (5) ],

where 7 € (0, , 1 ’2“"*8)) By Proposition 1X.2.8, these foliations satisfy the re-
quirements of Lemma 1X.2.9 with p = 8/(%)~" and C = Dyl(%)?, providing &
and & small enough. Hence there exists a map 0; = (0},---,0%) : R¥(p) —
R™ such that

(1) O is a homeomorphism between R (p) and its image;

(2) Forevery z,7 € RW(p), 61(z) = 61() for j=i+1,---,uiff 7 € Fi(z) and
(3) Both 03 and 0 Iare Lipschitz with Lipschitz constant depending only on C.

Let iy = (i}, -+, ) : W 5(%) — R(®) be given by

Ty dif ﬁ 7O p( )
Clearly iji = mlo @ ! (yy) for each § € n!(¥) with 2 < i < u. We can conclude that
7z is a lipeomorphism between W' (%) and its image with Lip(m;),Lip(n; ) <
N(%), where N(X) depends only on /(%) and the Lyapunov exponents. Moreover,

7z (Wi 5(7)) lies on a Z m -dimensional plane parallel to R® x {0} x --- x {0};

and if Wf‘ (¥) # W)E 5(”) then 7z (W~ (7)) and 7z (Wf (7)) lie on distinct planes.

Though dL(-,-) is a metric on n/(%)/n,_,, in general di(-,-) # df,(~,~) for ¥ €
n/(¥) with ¥ # . Now we need to rectify this situation to give a point-independent
definition.

Let & be as introduced in Section IX.2.2 corresponding to /¥, Then there exist
positive numbers 7y and so with 0 < 79 < ie’z(ﬂﬂ“) and a set

EY A\ Bpxk(F550/2)

such that the following (a) and (b) hold true (where p = 19 516 1):
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(a) Let ¥ € A with xo € @ R(p). For i = 1,---,u— 1, if § € Aj\WS“(%) with
yo € W s®)N@xR(P), then there exists a map

with Lip(k% ;) < } and
Graph(h'. ;) = @' o DW] 5 (7)(R(2p):
(b) For each ¥ € E and 1 <i<u—1,define a foliation by

i
Fe 5

<L p) (Graph(ht5)) : 5 € A6 (W5 (3)
with yo € @WY, 53 <Df*l'{(ﬁ)}.
By Lemma IX.2.9, there exists a map
O 5 : RW(p) - R™
satisfying the requirements analogous of the above (1)-(3) for O%.
We then define a map # = (&',---, &) : UQ 6"E — RW ag following: for each
5 € E, suppose yo € (D);W;TOS()E) N@=R(p) r\l;i(ih %€ Ak put

L\ def _
() = O z0 p o @zl y

and in general, let 7(¥) &f #(6~"0)3), where n(5) &ef inf{k >0:07*j € E}. Thus
fori=2,---,u we can define a point-independent metric on 1/(%)/n/_, by

. - d f ~i ~i - »
&(5,5) = |7 (3) - 7)), v9.5 € nj(%).
Clearly the above metrics satisfy the following two propositions.

Proposition IX.2.10 Let z € W} ¢ B with0 <t < e M3 Thenfor1 <i<u
|7t 0 Hez| < €3¢ |miz]).

Proposition 1X.2.11 There exists No > 0 such that for all §,§ € n}(%) with ¥ € E
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1X.2.4 Entropies of the Related Partitions

About the entropies of the above partitions, we have the following

Proposition IX.2.12 Let &; and &/ be partitions subordinate to Wi-manifolds con-
structed following the procedure presented in Section IX.2.2. Then

hﬂ(eilaél) = hﬂ(eilvéiﬁ'

Proof. Let us first assume iy (f) = hp(6) < +oo. It suffices to prove

ha (67,86 v &) = hp(07".8).
Noting that for every n > 1

0"(&VE)<&EVOE <EVE

and

Hg@,»ve"é;|9(9"<§iv&;))*> Hy (& v 0"8/|6" (& v &)
Hy(&i|0™ (& v &) +Hu(0"E/1&i v 0"71E])
(&IG”“& +Hy (0"5/16"'E])
+ 1)ha(07, &) +ha(071,E))
+2)hg(07") < +oo
Hp(&VE6(&V0"E)T) (‘51 VE0E vV O"TIE])
Hy(&i|0& v 0" &) + Hu(&/|& v 6"'E))
Hy(&[0&) + Hu(&/10"1E))
hp(07",&) + (n+ Dha(67",&)
(n+2)ha(07") < 4o,

I
A

IN

I /\

IN

by [51, Theorem 0.5.2], we have

ha(6~, &V E])

ha(67',0"(&VE)

ha(67",& Vv 0"E)

Hy(& Vv 0"E/|0& v 0mTE])

Hy(&[0& v 0" E]) + Hy (E]|0E] v 07"&;).

In view of Proposition IX.2.6, as n — +oco we have

0V 0" IE N 05 v (N64E) = 05
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Hence

Hy(&i[0&V 0" '&)) — Hp(5[0&) = ha(67',&)
as n — +oo. Also by Proposition IX.2.6, 0&/ v 67"; tends increasingly to the par-
tition of M/ into single points. Thus

Hy(&/10&/v07"&) — 0

as n — oo,
For the case A (0) = +oo, since

M, = {xeM | LFE)|<ni=1,--,r&)}

is O-invariant and conditioned on M, the entropy hp,(0) < nm < +eo by Ruelle’s
inequality (where [i, is the conditional measure on M,,), we have

hﬂn (971 ) §l> = hﬂn (671 Y éi’) < +°<)
The proof is finished by letting n — +-oo. ad

Proposition IX.2.13 Let & be a measurable partition of MY with Hy(2) < +e0 and
let &; be partitions subordinate to W'-manifolds constructed following the procedure
presented in Section 1X.2.2. Then

ha(07' &V ) =ha(671,&).

Proof. The proof is similar to that of Proposition IX.2.12. One needs only to notice
that
0" (EVDT)<EVODT <EVDT

and

E<EVIP<EvIT
and check the conditions
Hy(EVODH |0 (&Y D7) < oo, Hy(EVDT|OEVODT)) < +oo
and
Hy(EV 2|08) < +oe.

Hence the proof is omitted. O
The following proposition is just Corollary VII.8.1.1 restated here.

Proposition IX.2.14 For any partition &, subordinate to W"-manifolds of the type
as constructed following the procedure presented in subsection 1X.2.2, we have

ha (07, &) =ha(07") = hyu(f).
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IX.3 Definitions of Local Entropies along Unstable Manifolds

In this section, we will define quantities named local entropy along unstable man-
ifolds. These quantities play an important role in our arguments. In ergodic case,
the notion of local entropy along Wi-manifolds is described by a number /; which
measures the amount of randomness along the leaves of W/-manifolds. As Ledrap-
pier and Young have done in [43], though there are several equivalent definitions,
we take a pointwise approach following [13].

Lete > 0.For¥ € Ay andn € Z*, put

B(wn,e) {y EWiR):dl

b (X, yi) < € for 0 <k < n}

Let ) be a measurable partition of M/ subordinate to W-manifolds. Define

1 ~.
hi(%:e,n) < liminf—  log i (B (¥:n,¢)),
n

n— oo

1 -
hi(%;€,1m) o limsup— logfi] (B'(%n,¢)).
n

n— oo

One can easily show that these functions are indeed measurable. Furthermore,
we define the lower and upper local entropy along W'-manifolds at ¥ with
Irespect to 1) by

~ def .. -
ht('x’n) é ;Lr%hi(X;ean)a
ni(®m) & lim a5 e, m).

e—0

These limits exist because k;(X;€,1) and h;(X;€,1) increase as € | 0.

Proposition IX.3.1 Let &; be an increasing generator subordinate to W'-manifolds.
Then

hi(%&) = hi(%:&;) =: hi = Hy(&|0&)), fi — a.e. X.

The proposition above tells us that the lower and upper local entropy along W'-
manifolds with respect to &; are coincident. From the proof below and the ergodic
decompositions of u and [i in Section 5, we know that in general 4; depends only
on xp and is an f-invariant function independent of the choice of & or {fi7'} (see
Propositions 1X.2.12-1X.2.14). So we write h; = h;(xo) and call it the local entropy
along W'-manifolds at xo. This completes the definition of ;.

Let us first introduce some facts and postpone the proof of Proposition IX.3.1 at
the end of this section.

Lemma IX.3.2 Let o be a measurable partition of M/ with Hp (o) < +eo and let
& be an increasing generator. Then
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1
lim — logyx a\/& =Hy(£|0), i—ae. fem’.

n—-oo

Lemma IX.3.3 There exists a measurable partition o of M/ with Hy(ct) < +oo
such that

[og \/ &il(% ) C B'(%n,8), Vn>ny(%)

for fi-a.e. %, where ng : M — 7% is a measurable function.

Proof of Lemma IX.3.2. Define I(n|&) (%) & —log 5( (%)). One has

Ll )@ = 1)@+ ZlaVEWEVa” J04%),  aX.9)

where o k \/ 0~/ o. Put I, (% ) a\/f’@é\/a “1 (%) and I* (% ) supI( %).
j=—k n>1

One can prove that
/ ()it < H (ol \/ €|08) +

and that {I,,2(a,\/ &)} is a supermartingale. Therefore

Ll
I, — ..

—ae.

Hence the second term in the right side of equation (IX.9) tends fi-a.e. to a
6-invariant Borel function F € L!. Then by the ergodicity of fi, one has

lim I([o\/EJG|E) (% /Fdﬁ:/lwdﬂ.

n—r+too n

So the limit function in (IX.9) is constant almost everywhere and is therefore
equal to

Jim (e €518)

which can be written as

1 1
lim ~ Hy(&5|8) + 11m H# (o5 |07"E).

n—-+oop

The first term is equal to H (& ‘ 0&). The second term goes to 0 since 8 "*& gener-
ates. R O

Proof of Lemma 1X.3.3.  Without loss of generality, let & and S; be as introduced
in Section IX.2 and 0 < d < ie’mﬂ*ze, Let {®z}zca, be a system of (g,¢)-charts.

Put ' &5, iN{X € Ay : £(%) <o}, where [y is large enough such that i(S") > 0.
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First we define ny,n_ and ng : 8’ — Z* by

n (%) =
n_(3) €

no(%) £

inf{n>0:0"veS'},
inf{n>0:0"xeS'},
inf{n>0:0"veS'}.

Then let v : M/ — R be given by

)

w(x) < sy € eI maxn (D -9) if g e s,
2Kolp? otherwise.

Finally we define y; by replacing max(n.,n_) in the definition of y by n.. .
Since [ —logydfi < o, there exists a measurable partition o of M/ with
Hp (o) < oo such that p (a(%)) C B(xo, y(X)) for almost every .
Let ¥ € §'. We will write ny = n (%) and ng = ng(¥) for simplicity of notation in
the rest of this section. We assert that

Claim 11f § € W'(%) with yo € QW 5(%) satisfies || @; 'yol|} < low (%), then
déjj(xj,yj) <dfor0<j<ny

and y,, € <Dgn+gWé',,+j,5 (0™ %),
Claim 2 If § € W (%) with y € plogy (%)) N @:Wi 5 (%) for some n > 0, then

déji(xj,yj) <dfor0<j<nm
Claim 3 If § € [&)° \/ &](%), then
déji(xj,yj) <6for0<j<ng

and y,,, € Pgro W, 1.5(070%).

Let’s postpone the proof of the above claims and first proceed the proof of
Lemma IX.3.3. Consider now an arbitrary point ¥ with the property that 6"% € S’
infinitely often as n — oo, If § € [off \/ §](X) with n > ng, then by Claim 3

dé_,y(xj,yj) <6for0<j<ng
and y,, € Dgno )?Wé'no/€ 5(6"0)2). Then we can apply Claim 2 to 6”03 yielding that

dgji(xj,yj) <6 fornyg<j<n,

which implies § € Bi(%;n,8) for all 5 € [og! \/ &](%). 0
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Proof of Claim 1. It follows from our assumptions on j and Proposition
1X.2.3(1) that H (D;]yo EWy;. 5(6192) and (note that Ay > Ay +2¢)

1H] @ yoll} < e[ ' yol; for j >0

provided that || @ 'y exp(kAg) < e M1 73€1(6%) ! forall 0 < k < j. This is guar-
anteed for j <n.. Since ngw(efx) is a graph over RY) (81(6/%)~ 1) with slope< 1,
one has '

s (x),3) < 2Ko]| @ ylli < 8 for0 < j <m0

Proof of Claim 2. First if § € o(%), then || @5 yo|| < low (%) < low (£). So we
have the desired conclusion for 0 < j < n,. Furthermore, if n > n, and j € oy (X,
then

Y € p (@67 5) [ Pors Wi, 1 5(6"45)

and we can apply Claim 1 to 6"+§ with 6"+%,x,, and y,, in place of %,x¢ and yo
respectively. An inductive argument completes the proof of Claim 2. a

Proof of Claim 3. To prove this claim, let us assume that ¥ ¢ S’ and for sim-
plicity of notation write k = ng —n_(6"0%). That is, k is the largest integer< 0 such
that 6§ € §'. Clearly, n, (6*%) = ng — k = n_(6™X%). Since 0" is increasing as
n — +oo, we have 055 € £(6%%) and y, € d)okaékf 6(6")?) by our choice of S;. Also

v is chosen in such a way that p[0~/(a(6™%))] lies well inside the charts at x,,—;
for j=1,2,---,n9p— k. Hence

k 4—1 k+1 4—1
| @gusyilli = [|Hz @5 yolli < [[Hy @ yolli < -+
—1 ~1
< [|H @ yoll; = [ @y 2y Il
< low(0"%) < lyy, (6*%).

Therefore by Claim 1, Claim 3 holds true. a

Proof of Proposition IX.3.1. 1t follows directly from the definition of &;(%; &;)
together with Lemmas 1X.3.2 and IX.3.3 that ;(%;&;) < Hp(&|0&;) for fi-ae. .
What remains is to verify

hi(% &) > Hp(&]0&), 1 —aexe M/ (IX.10)
We know that
Hu(&108) = Ha(67'51%) = [ ~log¥((67'&) (D).

where the item behind log is a conditional measure of the denoted set. Put

g(%) = —log 7 (671 &) (%)),
As Y ise M Bi(%8) c &)}
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Since &; is an increasing generator subordinate to Wi-manifolds, one has Ag T and
[i(As) 1 1 as 6 | 0. Hence given € > 0, there exists 6’ > 0 such that for each § €
(0,6")
|, e®an = Ha(5108) -
6145
Define Ui(#n,8) & N (07%&)(%). Then Bi(%:n,8) C Ui(%:n,d).
0<k<n,0kicAg

Hence _
—log 1% (B'(%:n,8)) > —log fi¥ (U (%:n,5)). (IX.11)

Furthermore, we will prove that for ji-a.e. ¥
£ n—1
—log ity (U'(%1,8)) > Y (1g-14, - 8)(6*%), (IX.12)
k=0
which combined with inequality (IX.11) implies
1 : ks
1Og "lx ( xsn > 2 'A5 9 )

=0

Then applying Birkhoff’s ergodic theorem, one has for each 6 € (0,6’)
me8.8) > [ | s(0di = Hy(&l0&) e
5

Now we return to the proof of the assertion (IX.12). Let

T(%n) dgmax{o <k<n:6'%eAs),

f - - oy . . .
where max® %' oo, For fi-a.e. X fixed, T(%;n) is a finite number with sufficiently
large n by Poincaré’s recurrence theorem. This together with the condition that &; is
an increasing generator yields

) T(%n)—1
~logE (U (En,8) = Y, —logh! E((67FE&)(®)
k=0
wn)—1
> 2 0145 -2)(6%%)
k=0
n—1
= ¥ (Ig-145-8)(6%9).0

k=0
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IX.4 Estimates of Local Entropies along Unstable Manifolds

In this section we will estimate local entropy along unstable manifolds through Lya-
punove exponents and transverse dimensions. To be explicit, we will prove in this
section via Propositions IX.4.1, IX.4.3, IX.4.6 and IX.4.7 that

6i:5l’::6i,1§l.§l/l
where §; = 6;(%) and §; = 6,;(%), and

S — & = (hi—hiy) A <mi 1 <i<u (IX.13)

with 8 = 0 and ko = 0. Thus identity

(f) = Z;Li%
i=1

follows from h, = h(0) = hy(f).

IX.4.1 Estimate of Local Entropy h

The local entropy 4 measures the amount of randomness along the leaves of W!-
manifolds and can be formulized as the following.

Proposition IX.4.1 For fi-a.e. %, §{(%) = 6,(X) =: 6; =: y1 and hy = L1%. By
Lemma VILVIL7.5 and from the definition of 81 and 8, it is clear that 0 <y <my.

Proof. Let & > 0 be a sufficiently small number. We divide the proof into two parts.

(i) First for each § € B'(%;p,) with p, = QKO’IE( t)~le"(M1+28)§, one has yg €
WL (%) and d!(x0,y0) < pa. Hence by Proposition IX.2.3 and Lemma I1X.2.4, for
each k <n, y, € W} _(6*%) and

dy vk, 1) < 2Ko|| @y, 0 frxo — @y o fryolly = 2Ko || HE 0 @ ' yoll}
< 2K0€(~) (xo Yo)e k(A1 +22)
< 2[(05( )d ()C() y()) KA+28) < §

Therefore B! (% p,) C B (%;n,8) for fi-a.e. & and all n > 0. This implies 7; < A, 5,.

(i1) We then prove that iy > A18. Let &’s be as introduced in Section 3.3 and let
o be as introduced in Lemma IX.3.3. By Lemma IX.3.3, one has

O‘o\/éz ) C Bi(%n,8), Vn>ny(%).
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Therefore for each § € (og \/ &)(%) with n > ng(%), one has y, € W/,.(6"%) and
diyn:(Xn,yn) < 0. By Proposition IX.2.3(3)

di(x0,y0) < 2Kol|®; yol|; = 2Ko| | Hy,
< 2K()ein(/liizg H‘DenfynHl

ng o (DanxynH 1

where by Lemma IX.2.4 || @y, ||} < 1(87%)d, . (xa, yn) < 8(X)e". Hence
di(xo,y0) < 2Koe "3 (%),
This implies for fi-a.e. ¥
lof\/ &](®) C Bl (%:2K08¢(%)e " H73¢)), Wi > ny (%)

and hence

log \/ &](%) “nAi—4e)) > (%) (IX.14)
ef

with n((X) def max{no(i),[élog(2K05€(i))] + 1}. By Lemma IX.3.2, equation
(IX.14) with i = 1 implies h; > A10;. O

IX.4.2 Estimate of Local Entropy h; from Below with 2 <i < u

Based on Proposition IX.4.1, we will then prove the coincidence of §; and §; for
i=2,---,u. For this end, let us assume from here on that we have proved inductively
the coincidence of 6 ; and §; for j=1,2,---,i— 1,1,

6;,=6;=:0;, forj=1,2,---,i— 1.

Then, in view of (IX.14), Proposition IX.3.1 and Lemmas IX.3.2 and IX.3.3, the
following lemma holds.

Lemma IX.4.2 For each sufficiently small € > 0, let o be as introduced in Lemma
1X.3.3 (with 8 > 0 small enough). There exists a Borel function n: M/ — 7% satis-
fying the following for [i-a.e. X (wWhere 2 <i < u):

D [&Vogl(x) C Bi(%;e " %49 for any n > A(%);

2) — 1log,uf (0 (%)) > hi—y — € for any n > n(%);

3) -1 ]og‘ﬂf’( (%)) < hi+ € for any n > n(X);

4) L(Jlet B (g "i=4€)) C & () for any n > A(%);

(5) log fis " (L) /[~n(Ai — 4€)] < 81 + & for any n > i(%);

(6) log fi; ~°‘E” (Bi(%; 2e7(ki=4€))) [[—n(A; — 4€)] > 8; — & for infinitely many n > 7i(%).
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We then give a lower bound of the local entropy 4; in terms of Lyapunov expo-
nents and pointwise dimensions.

PI‘OpOSitiOH 1X.4.3 For?2 < i <u and [J-a.e. X, (hi — hi,1 )//’Ll > 5,’ — 61',1.
Below is the famous Borel density lemma on a manifold M.
Lemma IX.4.4 (Borel Density Lemma;, See [7, Proposition 3] or [23].) Let m be a

Borel probability measure on a manifold M and let A C M be a measurable set with
m(A) > 0. Then for m-almost every x € A

 m(ANB(x.p) _
2 m(B(x,p))

Furthermore, for each 8 > 0 there is a set A C A with m(A) > m(A) — 8 and a
number p* such that for all x € A and 0 < p < p* one has

m(A(\B(x.p)) > ) m(B(x,p))

But in general, the inverse limit space M/ is not a finite dimensional manifold.
In the proof of Proposition IX.4.3, one has to overcome this deficiency of a Borel
Density Lemma on M/; Thus we establish the following slight variant of Density
Lemma.

Lemma IX.4.5 Let A C M/ be a measurable set with [L(A) > 0. Then for fi-almost
everyX €A
AT (AN (F.p))
PO (Bi(%.p))
where 1 < i < u and each & is a measurable partition subordinate to the corre-

sponding Wi-manifolds. Furthermore, for each 8§ > 0 there is a set A C A with
[(A) > [i(A) — 6 and a number p* such that for all X € A and 0 < p < p* one has

=1, (IX.15)

IR Lo

AANB(E.p) > u(B'(%p))-
Proof. Let A’ be the set consisting of those points in A satisfying (IX.15). It is
clearly measurable. Fix a point ¥ with the properties described in Definition X.1.2

and write C = &;(%). The induced distance on pC will be denoted as d¢(+,-), which
is di(-,-) restricted on pC. We write a ball in pC centered at y with radius p as

B.(y,p):={z€ pC:dc(y,z) <p}.
In view of (IX.5), we have

pCNpB (5:p) = B.(o,p), V5.
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Since p,, 1= plc : C — pC is bijective, we can define a measure I on pC C M
by W= p.fi.. p.: (C,fi;) — (pC, i) becomes a measure preserving bijection.
Obviously

i1, (B'(5:p) NA) = [(pB'(5:p) N p,(A)) = L(B,(y0,p) N p,(A)).
Therefore Borel Density Lemma on M [23] gives

u(B.(yo,p)Np.(A

i u( g\(y() p)Np.(A)) . (IX.16)
p=0  I(B.(yo.p))
for fi-a.e. yo € p,.(A). For such y, define j := p;' (y0) € C. Then (IX.16) is equiva-
lent to .

B(B(p)nA) _

PO fic(B'(¥:p))

Clearly each §# € CNA satisfying the above equation must be a point in A’. Of
course each € CNA’ satisfies (IX.17). The assertion that fi-a.e. yp € P, (A) sat-
isfies (IX.16) is equivalent to

(IX.17)

H(p.(A") =H(p.(A)),

which can be rewritten as fi.(A") = fi.(A). Since this holds for fig,-a.e. C, we have

/ fie(A")dfe, (€ / fi-(A)dfg, (C) = [i(A),

which implies the validity of (IX.15) for fi-a.e. ¥ € A. a
Proof of Proposition IX.4.3. Let

I, := {X: (%) < n and ¥ satisfies the requirements (1)—(6) of Lemma IX.4.2}.

Clearly we have fi(I;,) T 1 as n tends to +oo. Therefore for any €’ € (0, 1), there is an
integer Ny such that I'" := Iy, has fi-measure> 1 — ¢’/2. Then by Lemma IX.4.5,

there is another integer N, > N; and a subset r C I'! of fi-measure > 1 — ¢’ such
that for any ¥ € I" fixed, we have

O = ~fl (L)

for any n > N,, where L = B! (i;e’”(li"‘e)). Then according to Lemma IX.4.2(5)
one has

LﬂF exp n(Ai —4€)(6i-1+¢€)).
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By Lemma IX.4.2(2) it is clear that

AE (o (7)) = A5 (o (7)) < exp(—n(hi1 —£))

for each §# € LNI". Hence for any % € I andn >N,
#{og(5) : 5 LT} > G5 (LO\T)/ exp(—n(hi 1 —€))
> ; exp{nlhi-1 —e— (L —4€)(8;—1 +€)]}.
On the other hand, according to Lemma IX.4.2(1), one has
&\ o)) C Bi(gre ")) wyer,
Clearly di(xo,y0) < d)’;:' (x0,y0) for any ¥ € L. Therefore
&\ og](5) C Bi(%2e "% %)) vy e LT,
Hence for any X € T andn > N>

log f1f' (B (%;2¢ "))
> log#{[&V/ ](5) : 7 € LI} +logmin i (& e)(7))
> log#{eg)(7) :3 € L} +logmin i (o) ()
> —log2 —n[hi—hi_1 +2e+ (A —4€)(6;—1 + €)].

Comparing the above inequality with Lemma IX.4.2(6), we obtain
1
(Si —8i_1— 28)()Li — 48) < log2+h;—hi_;+2¢,
n

which implies Proposition IX.4.3 by letting n — +oo, € — 0 and finally ¢’ — 0. O

I1X.4.3 Estimate of Local Entropy h; from Above with 2 <i < u

Let number Ny, map 7' : 1;(¥) — R and metrics d.(-,-) and dL(-,-) on m;(%)/n;_1
be as introduced in Section IX.2. We denote fi;" by /1}? for simplicity of notations.

Write 7 & (7!, #) : 7;(%) — R and put

B'(%,p) € (7 € mi(®) : di(%,5) < p}.

o

Then we define transverse dimensions as the following.
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. o oy def . AL(B' (%)) . . .
Definition IX.4.1 (%) = 11m1(1)1f loght ’{(()g p(x’p ) is called the transverse dimension of

p—
ni/Mi-1 at x.

Definition IX.4.2 For each € 1;(%), %(5;%) &ef limi(r)1f logv({ZEle;H‘gzgﬁi(i)H<p}) is
pﬂ

. . o Jrie ] ar def —; ~—1.
called the transverse dimension of W'(¥)/W'=" at §, where v = filo &, ! is a Borel

probability on R,
Now we introduce the main results for this subsection.

Proposition IX.4.6 Given 3 € (0,1). One has for sufficiently small § and fi-a.e. %

(4i+B)%(E) > (1= B)(hi—hi-1 —B)

and 0 < §,(X) < m;. Hence

hi - hi,1 S l,'m,'. (IX]S)
Proposition IX.4.7 Given 8 € (0,1). For fil-a.e. § € 1n;(%), one has 7(%) = %(§;%)
and
Sy~ U=B)(hi—hi-1—B)
8;— 08, 1 >2%(3:%) > A,-l+ﬁl . (IX.19)
Hence by letting  — 0 we obtain
(/’li—hl;l)/li <6,—0;_;- (IX.20)

In order to prove the above two proposition, we need the following results; since
they are of pure measure theoretical nature and are simple consequences of the
above Borel Density Lemma, we state them here without proof.

Lemma IX.4.8 (See [43, Lemma 11.3.1].) Let U be a probability measure on RP X
RY, 7 : RP x R? — RP the natural projection. Let {{;} be a canonical system of
conditional measures of |l associated with {{t} x R?:t € RP}. Define

: 1 —1Br(¢
7(6) & liminf oght(z'B"(1.p))
p—0 logp

and let § > 0 be such that at [l-a.e. (t,x)

log 11, (BY
5 < liminf °2H (B7(5P))
p—0 logp

holds true, where B (t,p) is the open disk in RP centered at t of radius p. Then at
u-a.e. z=(t,x)
1 BpPta
5+ (1) < limint °EH (87 (@P))
p—0 logp
holds true.
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Lemma IX.4.9 (See [43, Lemma 11.3.2].) Let (Q,P) be an abstract probability
space which is a Polish space. Let L be a probability measure on € x R? with
marginal measure P on Q. Let ¥ > 0 be such that at {t-a.e. (®,x)

I B
7 < liminf ogHo (BY(x.p))
p—0 logp

holds. Then at |1-a.e. (®,x)

1 Q x B
7 < liminf ogh( (v.p).
p—0 logp
Proof of Proposition IX.4.6. Let e=%+BENE) < 1 with B € (0, 1) (this holds
true provided [L(E ) small enough). We will prove that for fi-a.e. X

Gt ytimigt TP - gy g axan

The first conclusion then follows immediately from this together with Proposition
IX.2.7. The second conclusion follows from the definition of % and Lemma
VILVIL7.5 since the point-independent metric d'(-,-) on 1;(%)/m;_; makes it
isometric to a subset of (R™ || -||).

Now we come to the proof of (IX.21). First fix € € (0,/3). Let Av(') be a set as
chosen in Section IX.2. Recalling that [L(A~(’)) =1 and 6A~6 = A~(’), for the sake of

presentation we may assume that Aj = M’

We divide the proof into four parts following the line presented in [51].

(A) Before proceeding with the main argument, we record some estimates anal-
ogous of those in [51, pp. 171]. For § > 0, define g,gs and g, : M/ — R by

g € a0 m) (),

w0 <§fty~- ) [ B 67 IR

where 0 & {e’(liJrﬁ)lNgj LjeZt}.

According to Proposition IX.2.7, one has g(7) = ﬂ;’l((e’lni,l)(y)) for fi-
a.e. y. For each § > 0, one can check that the functions § — [i;(B'(#;6)) and
y— ﬂ;iln"(ﬁi(y;&) are measurable and ﬂy’é(gi(f);&) > 0 for fi-a.e. y. Since
Hy(67';|n;) < +eo, one has ﬂy’i((e’lni)()?)) > 0 for fi-a.e. § and
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L EEEINOME) K EE)
) BB (5:8)) pde) O WO

g5 is therefore measurable for each fixed 6 > 0. The measurability of g, is obvious.

We assert that g5 — g fi-a.e. on M/ when § € Q and § — 0 and that
— [logg.dfi < +-oe. To see this, first consider one element of 1; at a time. Fix
X. Substitute (1;(%), fit) for (X,m) in Lemma VILVIL7.4, let & = 7; : n;(¥) — R
and let o = 0~ '1;|p,,. Then we can conclude that g5(-) — g(-) fi-a.e. as § € Q and
0 — 0 and that for fi-a.e. ¥

- [togg.()piaz) < - / log( inf ¢5(2)f(d2)
i
Hyi (6~ i) +1ogc2 )41 < oo,

where c(+) is the multiplicity defined in Theorem VILVIL7.1.
(B) The purpose of this step is to study the induced action of 6 on

0~ (ni(%))/Mi—1 — Mi(%)/Ni-1

with respect to the metrics Jg,,f(~,~) and d.(-,-). Consider ¥ € M/. The point ¥
will be subjected to a finite number of fi-a.e. assumptions. Let 7o < #; < --- be the
successive times 7 when 0'% € E with to < 0 < #;. Note that 7, is constant on ni(%).
For large n and 0 < k < n, define a(X;k) as follows: if t; < k < t;1, then

a( k) defBl(ekx N2] —(A +ﬁ)(n7tj))-
We now claim that
- ~1 ke -1 (=
a(®k) (07 'n:)(6"%) Cc 6~ a(&k+1) (1X.22)

In fact, if k # ¢; — 1 for any j, then 8a(%k) \n:(0X"1%) = a(¥k + 1) automati-
cally since cf’ékf( -) and d@k+l (+,-) are defined by pulling back to E. The case when
k =t;— 1 for some j reduces to the following consideration: Let j € E and lett > 0
be the smallest integer such that 8’5 € E. Let Z € (6'n;)(§). It suffices to show that

lyis(60'5,02) < Noe' %P5, 2).
First d}i(y, 7)< Noci;;((y),z). Then for k = 1,2,--- ¢, Proposition IX.2.1 tells us

that .
s (6°5,642) < AR5, 2).
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We pick up another factor of Ny when converting back to the d'-metric at 6’ (see
Proposition IX.2.11). What we claimed above is thus proved.

(C) Tt is easy to see that there exists a §-invariant Borel set A C M/ with full
fi-measure such that, if ¥ € A, then 1i(B'(%;8)) > 0 for all § € Q. We now estimate
[L(B (% e~ MtP)n—0(9))) = fi(a(%;0)) for £ € A which will be subjected to a finite
number of a.e. assumptions. Write

o Apgla(wk)
=T ol ot

where T = [n(1 — €)] (here [x] denotes the integer part of x). First note that the
last term < 1. For each 0 < k < T, by the O-invariance of [i and by uniqueness of
conditional measures one has

Byla®h)
fib,., (a(®k+1)) = Rgig(a(¥:k))

fib, (071 (mi(641%)))
i (0 la(Bk+ 1))

This is

l:lékj (a(¥:k))

<
Tl (071 (04%) Na(%:k))

e ((07'm) (64%)) (IX.23)

by (IX.22). If g5 is defined as in (A), the first quotient in (IX.23) is equal to
(86 (n i) (05%)] !

where 8(%:n,k) = e~ MA@ wih i (0 < i <k: 0% € E}.

Write /(%) &f —log fii((6~'m;)(%)). Then the second term in (IX.23) is equal to

k=
e 1(0"%) Hence

T-1 T-1
log (B! (%~ HHPI=00))) < — 3 log g5 (6°7) — Y, 1(6"%)
k=0

Multiplying by —rll and taking liminf on both sides of this inequality,

log fii(B'(%;p)) [i(Bi (7,0~ %itB)(n—10(D)))
(A —l—ﬁ)hmmf logp = (A —l—ﬁ)lrllgir;f loge-GirtBn

[r(1—¢)]
> liminf Z log g5 )(Qki)

n——oo

+ lim Z 19"

n—+eopp
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The last limit = (1 — &)Hz (6~ 'n;|n;) = (1 — €)h; by Birkhoff’s ergodic theorem.
Hence Proposition IX.4.6 is proved if we show that

[n(1—¢)]

. 1 -
llmsup—n D loggg(j;n,k)(ekx) <(1—¢g)(hi—1 +2¢). (IX.24)
n—-ee k=0

(D) We now prove the last assertion (IX.24). It follows from (A) that there is a
measurable function & : M/ — R™ such that for fi-a.e. %, if § € Q and § < §(%),
then —loggs(X) < —logg(¥)+ €. Since [ —logg.dfi < +oo, there is a number 0,
such thatif A = {¥: 6(%) > 8.}, then [y, , —logg.dfi < &.

We claim that for fi-a.e. %, if n is sufficiently large, then &(%;n,k) < J, for all
k < n(1 — ¢€). First by Birkhoff ergodic theorem, there is a positive integer N (%)
such that for n > Ny (%), #{0 <i < n: 0k € E} < 2nfi(E). If n > Nj (%), then for
eachk <n(1—¢)onehas (¥) <k <n(l—¢)and

§(%in, k) = e BB, () N2ik < ef(itiwtﬁ)enNgnﬂ(E).
Since e’(lﬁﬁ)gNgﬂ(E) < 1, 8(%;n,k) is less than J, for sufficiently large n. Thus
[(1=e)] . [r(1-¢)] . [r(1-¢)] .
Y —loggsan (0 < D (—logg(0 ) +e)+ B —logg.(6%)
k=0 k=0 k=0
0k c A kg g A

and the limsup we wish to estimate in (IX.24) is bounded above by
(1—8)[/—10ggdﬂ+£+/ —logg.dji].
. JMNA
Recalling that g(%) = il '((67'n,_1)(%)) for fi-ae. %,

/—loggdﬁ = Hg (07 'mis1|ni1) = Ha(ni-1|0Mim1) = iy

This completes the proof. O
Proof of Proposition 1X.4.7. It follows from the Lipschitz property of 7; to-
gether with the definition of % and % that for fi-a.e. fixed % and fit-a.e. § € 1;(%)

K%)= %),
if we assume fii( U 0"E ) = 1. Hence from Proposition IX.4.6 we may assume that
n>0
~ 1—B)[hi—hi-1— _
WA %) > (=Pl =hizy B], v—ae ze R,

Ai+PB
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Consider now the partition of m(nl( 7)) € RO = RE=D x R™ into planes of the
form {z = (z1,22,---,z) € R¥ : z; = const}. Using the Lipschitz property of 7; and
the definition of §; and v, one can easily verify that at v-a.e. z € RO

1 RGED (i1
0, (%) <liminf ogVy({w € Hw—2"D) < p})

p—0 logp
and
logv R <
6.() — timint 02V (1Y € RO w2l <))
p—0 logp

where V, is the conditional measure of v on {z = (z1,--+,2) € :zi = ¢} (hence
Ve can be viewed as a Borel probability measure on R =Dy, Lemma IX.4.8 then
tells us that inequality (IX.19) holds for fii-a.e. ¥. a

IX.5 The General Case: without Ergodic Assumption

Now we prove Theorem IX.1.3 in the general case without ergodic assumption via
ergodic decompositions of u and fi. If i is not ergodic, then according to Rokhlin
[75], there exists a (4-mod 0) unique measurable partition {y of M such that f~ 1C =
Cand f|c: (C,t|c) <« is ergodlc for ug -a.e. C G &.Let £ = p~'¢. Then 6C =C

for pg-ae. C € o, where c¥ p*'C €g. iz &f p~'Uc is an ergodic measure on c
for Ug,-a.e. Cec C().

Since &, is a partition of M/ subordinate to W*-manifolds of f, &, refines { by
Corollary 3.1.1 in [73]. Hence the transitivity of conditional measures implies that

ﬁf’ = (yc)f’, for fiy —a.e. C and fz—ae. X

Then results in Sections IX.3 and IX.4 tell us that for fi¢-a.e. Ce ¢ and fiz-a.e.
feC

hi(%:8i, 1) = hi(%: 8l &, i) = hp (06,8l @) = hi(%:6il s, Be) = hi(%:8, 1)
and

6;(%: 8, 1) = 6,(%: il fig) = 6i(% il fig) = 8i(%: 6, ) =: §(%:. 6, ).
Since ¥ (%; 1) &, 6i(% & ) — 61 (&1, ), it follows from equation (IX.13) that

hi(0)|=&i| =) —hy-(0]|~Ei-1]|~
Y% ) = 'yi(jg;ljg) _ llc( |c §|C);Li(x:;( |C & 1|C)
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holds true for fis-a.e. Ce § and fzae X € C. Hence %’s are a.e. O-invariant func-
tions. It is easy to see that ¥;’s are indeed a.e. functions well defined on M.
Furthermore, the entropy map /() is affine with respect to i, i.e.

na(8) = [ (6)dfic(C).

Hence by hy(f) = hg(6) and by (6) = hp. (6], &ulg), Theorem IX.1.3 holds. O



2 Springer
http://www.springer.com/978-3-642-01953-1

Smooth Ergodic Theory for Endomorphisms
Qian, M.; Xie, |.-S.; Zhu, S,

2009, X, 277 p., Softcover

ISBN: 978-3-642-01953-1





