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Summary. This paper is meant primarily as a tutorial on how to phrase problems
in association schemes in the language of Gröbner bases and use the computational
results provided by those bases, though it does contain fusion scheme computations
not previously found in the literature.
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1 Introduction

It is instructive to see how the use of Gröbner bases [2] can clarify certain com-
putational and theoretic aspects of various topics. Here the choice of topics
come from association schemes and fusion of flag algebras arising from gener-
alized n-gons and 2-(v, k, 1) designs [6]. Three different ways of using concepts
related to Gröbner bases are given as a guide for using such concepts in similar
types of problems.

Often it is the case that combinatorialists have to sort out some form of
truth about a given object based on its parameters. This can translate into
pages and pages of manipulations of intermediate results involving polyno-
mial equations, with the attendant derivations and justifications. But these
problems can usually be easily rephrased in terms of finding common zeros
of a system of polynomial equations, and knowing for what values of the
parameters this happens. This is exactly what Gröbner bases are meant to
accomplish. So Gröbner basis theory can provide direct computational an-
swers without the need for further justification, once problems are phrased in
terms of generators (polynomials that should be zero) for an ideal in a mul-
tivariate polynomial ring, and the need to know the corresponding varieties
(set of common zeros). This should be useful either to those wishing to use
Gröbner bases to clarify and/or simplify computations or to those interested
in seeing how Gröbner bases can be used in “applied theoretical” settings.
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And it could conceivably use the same system of equations to produce results
overlooked in some ad hoc approach to solving them.

Now consider the concrete problem of investigating a parameterized series
of association schemes, describing the structure constants, determining fusion
partitions, and investigating those fusions found. Much of this work was done
by the Soviet school for metric (one parameter) schemes (see, for example, the
survey [4] and http://www.ricam.oeaw.ac.at/specsem/SRS/groeb/download/
Muzychuk.pdf). See also [9].

The next natural stage is to investigate dihedral (two parameter) schemes
in the terminology of Zieschang, coming mainly from flag algebras, which were
introduced by a number of authors [5, 10, 7, 11, 13].

The paper [6], which started this investigation, used ad hoc methods to do
the computations. So here those methods have been replaced by the system-
atic Gröbner basis methods, which make the actual computations invisible to
the reader. There are new computations relative to fusion expanding on this
previous work, with the MAGMA [8] code that generated them, to whet the
appetite of the audience.

2 Gröbner Basis Preliminaries

There are many good books covering this material, with [3] being the first
author’s favorite. The following is a brief introduction to ideals and varieties
in polynomial rings for those unfamiliar with the topic. Given some variables
xn, . . . , x1 and a coefficient ring R, R[xn, . . . , x1] denotes the ring of (finite)
R-linear combinations of (finite) products in these variables, and seems to
be called either a multivariate polynomial ring or a free(associative)algebra,
depending on whether the variables commute with each other or not. Even to
be able to write down polynomials in a canonical way, it is necessary to have
a monomial order (a total order with obvious extra properties). The (default)
lexicogrphical monomial order is based on comparing products by considering
their indices (that is, exponents) lexicographically. So, for instance, in the
multivariate polynomial ring R[x3, x2, x1] the order looks like

1 ≺ x1 ≺ x2
1 ≺ · · · ≺ x2 ≺ x2x1 ≺ · · · ≺ x2

2 ≺ · · · ≺ x3 ≺ · · ·

which can be described by xi3
3 xi2

2 xi1
1 � xj3

3 xj2
2 xj1

1 iff (i3 > j3) or (i3 = j3 and
i2 > j2) or (i3 = j3 and i2 = j2 and i1 > j1). The generic total degree orders
are the grevlex and glex orders (short for graded reverse lexicographical and
graded lexicographical), in which total degree is the first concern. These give
orders that look like

1 ≺ x1 ≺ x2 ≺ x3 ≺ x2
1 ≺ x2x1 ≺ x3x1 ≺ x2

2 ≺ · · ·

and
1 ≺ x1 ≺ x2 ≺ x3 ≺ x2

1 ≺ x2x1 ≺ x2
2 ≺ x3x1 ≺ · · ·

http://www.ricam.oeaw.ac.at/specsem/SRS/groeb/download/Muzychuk.pdf
http://www.ricam.oeaw.ac.at/specsem/SRS/groeb/download/Muzychuk.pdf
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respectively. These can be defined in ways similar to those above; but the
non-singular matrices

Agrevlex :=

⎛
⎝

1 1 1
1 1 0
1 0 0

⎞
⎠ Aglex :=

⎛
⎝

1 1 1
1 0 0
0 1 0

⎞
⎠

can be used to reduce these to the lexicographical case by converting the
column vector of exponents

⎛
⎝

i3
i2
i1

⎞
⎠ to

⎛
⎝

i3 + i2 + i1
i3 + i2

i3

⎞
⎠ or

⎛
⎝

i3 + i2 + i1
i3
i2

⎞
⎠

respectively.
The leading monomial of f , denoted here by LM(f) is the largest mono-

mial occurring in f , relative to the given order. Its coefficient is called the lead-
ing coefficient, denoted by LC(f), and the product LC(f)LM(f) =: LT (f) is
called the leading term. (Warning: Some authors interchange the words term
and monomial, and there is no uniformity of notation in the literature.)

An ideal I (two-sided in the case of free algebras) is a subset of a ring
closed under addition of its elements and under multiplication by ring ele-
ments. Ideals describing finitely-presented algebras (that is, free associative
algebras modulo said ideals) are commonly given in terms of a (finite) set of
generators (referred to as relations when the variables are called generators!)
I := 〈g1, g2, . . . , gm〉, so that I consists of all (finite) R-linear combinations of
g1, . . . , gm.

As with vector spaces, where arbitrary generating sets are not as useful
as maximal linearly independent sets, called (vector space) bases, it should
be no surprise that arbitrary generating sets for ideals (which are unfortu-
nately called bases in some of the literature) are not as important or useful
as Gröbner bases, those generating sets B relative to which a “canonical” re-
mainder NormalForm(f, B) for f after division by the elements of B (in any
order) can be defined.

A more useful computational definition of Gröbner bases is in terms of
SPolynomials. If h is a least common multiple of LM(f) and LM(g), then
SPoly(f, g) := h

LT (f)f − g h
LT (g) (with suitable generalization in the non-

commutative case). Then B is a Gröbner basis if SPoly(f, g) reduces to 0
after division by the elements of B for all choices of f, g ∈ B. In fact this is
the foundation for all forms of the Buchberger algorithm; namely that given
any generating set, it is possible to produce a Gröbner basis by computing
SPolynomials, reducing them by division relative to the current generating
set, and appending the results to the generating set if necessary, possibly re-
ducing the other elements along the way, until the set is closed under this
combined operation of computing SPolynomials and reducing them.

If one has a collection of equations of the form fi = hi that can be written
in polynomial form in terms of some (not necessarily polynomial) variables,
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then it is possible to use gi := fi −hi as generators for an ideal in a polynomial
ring. Common solutions to the collection of equations then become common
zeros of the elements of the ideal I or equivalently of the elements of the
Gröbner basis B. These common zeros are called points of the variety V (I) :=
{v : g(v) = 0 for all g ∈ I}. This variety is generally computed by finding
a Gröbner basis relative to some easy ordering, changing it to a (factored)
Gröbner basis relative to a lex order, and recursively computing coordinates
of the elements of the variety.

The importance of all this to a field such as algebraic combinatorics is
that in the study of a collection of objects relative to a set of parameters, it is
typical that questions may be phrased in terms of what parameter values are
necessary or sufficient to guarantee the feasibility or existence of such objects.
Then equations satisfied by the parameters can be turned into generators for
an ideal for which the variety gives such parameter values. That means that
rather than haphazardly sorting through a collection of equations, looking for
results about the parameters, it is possible to merely compute a Gröbner basis
and a variety, letting the Gröbner basis theory replace all the intermediate
results, derivations, and justifications.

Sometimes there are unexpected added benefits beyond this, in that proper
phrasing of problems in terms of Gröbner bases may give insight into the
combinatorial structures, definitions, or other aspects of a problem. This will
be exemplified below by considering generalized n-gons and 2-(v, k, 1) designs.

3 Algebraic Combinatorics Preliminaries

A matrix algebra W over the field C of complex numbers is called a coherent
algebra iff the identity matrix, I, is in W , the all-ones matrix, J is in W , the
transpose, AT of A is in W , if A is, and the entry-wise products of elements of
W are in W . It is well known that each coherent algebra W contains an unique
basis of (0, 1) matrices {A0, A2, . . . , Ar−1} such that A0 +A1 + · · · +Ar−1 = J
and AT

i = Ai′ . The use of this standard basis can be used to reformulate
the notion of a coherent algebra in terms of relations and their graphs, called
coherent configurations. And if A0 = I, these are called association schemes.

Many significant examples of classes of combinatorial objects may be re-
formulated in terms of coherent configurations or association schemes, a few
being discussed below.

The fact that W is an algebra implies the existence of (non-negative in-
teger) structure constants pi,j,k such that AiAj =

∑r
k=1 pi,j,kAk. If the Ai’s

are treated as variables instead of (0, 1) matrices, the algebras are called table
algebras [1]. While in many cases it is crucially important to keep track of
all combinatorial information about a coherent algebra W , many significant
feasible conditions are obtained by viewing it merely as a table algebra. In
particular, a question about the existence of coherent subalgebras of a given
coherent algebra (fusions) may be solvable based only on the knowledge of
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the structure constants. Classes of table algebras may be defined in terms of
parameters and relations among those parameters, which suggests applying
Gröbner basis techniques to produce feasibility conditions.

4 Definitions

Start with finite sets V , of v vertices, and B, of b blocks. The basic combina-
torial structure called a 1-design is merely a subset D of V × B such that r :=
#{l ∈ B : (p, l) ∈ D } is independent of p ∈ V and k := #{p ∈ B : (p, l) ∈ D }
is independent of l ∈ V . Elements (p, l) ∈ D are called flags; and there are
vr = bk such.

A 1-design such that any two vertices are incident with at most one block
and any two blocks are incident with at most one vertex is called a partial
linear space. (Geometers tend to use the word point in place of vertex, the
word line in place of block, and the parameters s := k − 1 and t := r − 1
instead of k and r respectively.) Normally the study of vertices is linked to
the study of the (symmetric) (0, 1) adjacency matrix, A, with

A(pi, pj) = 1 if and only if (pi, l), (pj , l) ∈ D for some l ∈ B.

But here the focus is initially on flags; so let L denote the (symmetric) (0, 1)
collinearity matrix indexed by the flags, with

L((p1, l1), (p2, l2)) = 1 if and only if l1 = l2, p1 �= p2;

and let N denote the (symmetric) (0, 1) concurrence matrix indexed by the
flags, with

N((p1, l1), (p2, l2)) = 1 if and only if p1 = p2, l1 �= l2.

These matrices already satisfy the conditions

L2 = (s − 1)L + sI, N2 = (t − 1)N + tI

(with I denoting the vr × vr identity matrix).
Generalized n-gons were first introduced by Tits [12] in 1959. Standard

definitions are in terms of distance and adjacency, and are geometric in flavor,
descriptive of the fact that each point should be contained in an n-gon and
in no smaller polygon. In terms of flags and the matrices L and N above this
translates into the following matrix-theoretic definition, which obscures the
geometric origin. Let

A4i := (NL)i, A4i+1 := L(NL)i,

A4i+2 := N(LN)i, A4i+3 := (LN)i+1,

denote the various flag adjacency matrices (a possibly unexpected benefit
of this non-geometric approach). Then D will be called a generalized n-gon
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if (Aj , 0 ≤ j ≤ 2n − 1) is a linearly independent set over Z, and hence a
basis for the Z-module it generates; but A2n = A2n−1. (It is a straightforward,
instructive exercise to see that this really corresponds to the geometric concept
above.)

Since A0 = I, AT
4i+1 = A4i+1, AT

4i+2 = A4i+2, AT
4i+3 = A4i+4, and∑2n−1

j=0 Aj = J , the all 1’s matrix; the ordered set (Aj : 0 ≤ j ≤ 2n − 1)
is a basis for the Z-module it generates, lacking only a multiplication to be
the adjacency algebra of an association scheme.

If the two matrices L and N are not known, and the parameters t and s are
not known either, then it is possible to study generalized n-gons by starting
with the coefficient ring Z[t, s] (with a lex monomial order t � s), and then a
free (associative) algebra Z[t, s][y, x] in two non-commutative variables (with a
total degree monomial order with y � x). The former means that when writing
polynomials in the variables t and s, tisj should be treated as larger than tksl

if either (i > k) or (i = k and j > l) (and that one shouldn’t write sjti). The
latter means that when writing polynomials in the (non-commuting) variables
y and x monomials, a string such as yxxyx should be treated as larger than
either yxy or yxxxy, the first because the total degree is greater, the second
because the total degree is the same but at the leftmost difference in the
strings y � x. (One of the first important lessons one learns when working
with multivariate polynomial rings is that a proper choice of monomial order
is perhaps the most critical step in any problem, and the step most easily
ignored completely by those not used to this area.)

Then this should be made into a finitely-presented algebra (quotient ring in
two non-commuting variables, representing the two non-commuting matrices
N and L respectively)

Z[t, s][y, x]/〈f1, f2, f3〉
with f1 := x2 − (s − 1)x − s, f2 := y2 − (t − 1)y − t, and f3 := (yx)l − (xy)l if
n = 2l or f3 := y(xy)l − (xy)lx if n = 2l +1. The import here is that the ideal
I := 〈f1, f2, f3〉 consists of all those polynomials that are supposed to be equal
to zero under the given assumptions. (Such a (table) algebra, depending only
on the structure constants and not on some (0, 1) matrices, may exist whether
or not a corresponding n-gon does. At this stage it is not even necessary to
assume knowledge of classical necessary conditions for the existence of such
n-gons.)

5 An Application of SPolynomials and Reduction

Buchberger’s algorithm for computing Gröbner bases for ideals (such as
〈f1, f2, f3〉 above) is based on the central observation above that bases (as
opposed to generating sets) for ideals should be closed under the operation of
reduction of SPolynomials. Consider an example of this type of computation
for the n-gon case with n = 2l +1. Since LM(yf3) = y2(xy)l = LM(f2(xy)l),
the corresponding (non-commutative) SPolynomial would be
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SPolynomial(f3, f2) := yf3 − f2(xy)l = −y(xy)lx + (t − 1)y(xy)l + t(xy)l,

which would then be reduced to a remainder

(yf3 − f2(xy)l) + f3x + (xy)lf1 − (t − 1)f3 = (t − s)
(
(xy)lx + (xy)l

)

using the explicit division by the set {f1, f2, f3} given.
Thus a single SPolynomial computation, and the use of the assumption

that (xy)lx and (xy)l are linearly independent, already forces t − s = 0. So it
follows that:

Proposition 1. Generalized (2l+1)-gons with parameter pairs (t, s) can only
exist if t = s.

Remark. Again, this can be viewed as a result about table algebras.

6 Structure Constants of Association Schemes

In light of the proposition above, consider only generalized 2l-gons in their
finitely-presented algebra form. If a total degree monomial order (with ai � aj

for i > j) is used, then a minimal, reduced Gröbner basis (that is, one with
a minimal number of elements, and no leading monomial of one dividing any
monomial of another) for the ideal of relations, I, will have all its elements of
the form

aiaj − NormalForm(aiaj , I)

with

NormalForm(aiaj , I) =
2n−1∑
k=0

pi,j,kak,

describing the multiplication in the algebra, as well as determining the struc-
ture constants pi,j,k that make this the adjacency algebra of an association
scheme. (If this is not immediately obvious, see the proof below.)

Thus a simple Gröbner basis computation relative to an appropriate total
degree monomial order gives constructively the following result (with concrete
examples below):

Proposition 2.
Z[t, s][a4l−1, . . . , a1]/I

with I the ideal of relations with generating set containing the basis relations
from the definition of a generalized 2l-gon:

f1 := a2
1 − (s − 1)a1 − s,

f2 := a2
2 − (t − 1)a2 − t,

f3 := (a2a1)l − (a1a2)l;
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together with the relations gotten from the definitions of the aj’s:

(a2a1)i − a4i, a1(a2a1)i − a4i+1, a2(a1a2)i − a4i+2,

(a1a2)i+1 − a4i+3, 0 ≤ i < l,

corresponds to the adjacency algebra of an association scheme. (Note that
a0 = 1 is implicit in the calculations, and sometimes explicit in the theory.)

Moreover, if a total degree monomial order (with ai � aj for i > j) is
used, then a minimal, reduced Gröbner basis for I will have all its elements
of the form

aiaj − NormalForm(aiaj , I)

with

NormalForm(aiaj , I) =
4l−1∑
k=0

pi,j,kak,

which corresponds to a complete description of the algebra multiplication and
a determination of the structure constants pi,j,k.

Proof. Given that the ai are linearly independent, there can be no relations
with leading monomial of degree 1. Given that the ai’s form an algebra, aiaj

must be expressible as a linear combination
∑

k pi,j,kak, since all elements of
the algebra are of this form. Hence aiaj −

∑4l−1
k=0 pi,j,kak must be basis elements

in any total degree monomial order Gröbner basis. And any monomial of total
degree greater than 2 is divisible by one of degree 2, so can’t be a leading
monomial in any minimal total degree Gröbner basis. 	


7 Fusion

Now consider a partition Π of the set {0, . . . , 4l − 1}, and the corresponding
fusion of classes (sum of their respective matrices)

Bγ :=
∑

{Ak : k ∈ γ}, γ ∈ Π.

This could conceivably determine a fusion scheme; that is, be an association
scheme with fewer classes than the original, if {0} is a part, γ′ := {k′ :
k ∈ γ, AT

k = Ak′ } is a part for each γ ∈ Π, and the structure constant
Pα,β,γ :=

∑
i∈α

∑
j∈β pi,j,k is independent of the choice of k ∈ γ, for all parts

α, β, and γ in Π.
This can be viewed as another Gröbner basis problem, but this time in the

multivariate polynomial coefficient ring Z[t, s] (with two commuting variables
t and s, the integer parameters). The ideal in question is generated by the
relations (forced by the third item above):

∑
i∈α

∑
j∈β

pi,j,k1 −
∑
i∈α

∑
j∈β

pi,j,k2
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for all α, β, and γ in Π and all k1, k2 ∈ γ, provided Π is a good partition (that
is, satisfying the first two items above). (This is a slightly different condition
than that of good sets in [6].) Then the variety of this ideal determines all
possible parameter pairs (t, s) for which the good partition Π produces a
fusion scheme. Of course, it is necessary to restrict the variety to pairs of
positive integers, and probably to ignore the trivial case t = 1 = s in which
the original generalized 2l-gon is merely a 2l-gon, and fusion corresponds to
Schur rings over the dihedral group of order 2l. The varieties involved are
computed most easily using a lexicographical monomial order on Z[t, s] and a
factored, minimal, reduced Gröbner basis.

8 2-(v, k, 1) Designs

Consider a similar problem of flag adjacency matrices for 2-(v, k, 1) designs
(also called Steiner systems S(2, k, v) or just 2-designs); that is, 1-designs for
which every 2 vertices determine an unique block. The matrices for this are
similar in flavor to those for the generalized n-gons:

A0 := I, A1 := L, A2 := N, A3 := LN,

A4 := NL, A5 := LNL, A6 := NLN − LNL

with

LNLN = sA6 + (s − 1)A5 + sA4, NLNL = sA6 + (s − 1)A5 + sA3.

Since A0 = I, AT
1 = A1, AT

2 = A2, AT
3 = A4, AT

5 = A5, AT
6 = A6, and∑6

j=0 Aj = J , the all 1’s matrix; the ordered set (Aj : 0 ≤ j ≤ 6) is a basis for
the Z-module it generates, lacking only a multiplication to be the adjacency
algebra of an association scheme.

Then this should be made into a finitely-presented algebra as before

Z[t, s][y, x]/〈f1, f2, f3, f4〉

with f1 := x2 − (s − 1)x − s, f2 := y2 − (t − 1)y − t, and f3 := (yx)2 − s(yxy −
xyx) − (s − 1)xyx) − sxy), f4 := (xy)2 − s(yxy − xyx) − (s − 1)xyx − syx.

Remark. When s < t, A6 �= 0, so this is a rank 7 association scheme. How-
ever, if s = t, then A6 = 0 and the 2-(v, k, 1) design is a projective plane or
equivalently a generalized 3-gon, covered earlier.

9 Code and Output

There are also technical difficulties to be considered when using existing com-
puter algebra packages. For instance, in MAGMA, the coefficient ring of a
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finitely-presented algebra needs to be a field. So it is necessary to use Q(t, s),
the function field in two variables over the rational field Q, with a total degree
monomial order, and then map results to Q[t, s] with the desired lex monomial
order, where factorization can be done.

The MAGMA code below has been automated so that the only parameter
input necessary is l (meaning n/2). The output is a list of partitions giving
rise to fusion schemes, together with a factored Gröbner basis from which
it is relatively easy to read the corresponding parameter pairs (t, s), if such
positive integer pairs exist.

Although the computations are (for better or worse) no longer visible to the
reader, it is instructive to have some idea of what is happening. As an example
from the generalized quadrangle case, the partition Π := [[1, 2, 3, 4, 7][5, 6]]
could only give a fusion scheme if ts2 − 2ts, t2 − 2t − s2 + 2s, t2s − ts2, and
t2 − ts2 + 3ts − 4t + s2 − 4s + 4 (gotten from the fusion condition 3 above)
are all zero. An interreduction of these generators already gives a Gröbner
basis (t2 − 2t, ts − 2t, s2 − 2s) for the ideal they generate. And a recursive
calculation of s and t gives s = 0, t = 0, s = 2, t = 0, or s = 2, t = 2. Of
these 3 rational points in the variety, clearly only (t, s) = (2, 2) is useful in
this fusion context. (Currently the code actually produces a modified Gröbner
basis (t − 2, s − 2) by removing factors such as t and s which can’t ever lead to
positive integer solutions.) There are examples for which the solutions must be
done by hand. For instance, in partition 48 in the hexagon output below, one
factor is T 2 − TS +2T +1 which gives a one dimensional variety s = (t+1)2/t
over the rationals, but only the single positive integer solution s = 4, t = 1.

The code is written to search for a good partition, compute differences of
coefficients that should be equal for fusion to occur, find a Gröbner basis for
ideal of all such differences, and output same, at least in the cases in which
there might conceivably be an element in the variety with all coordinates
positive. In most cases, it is relatively easy to read off any parameter pairs
with both entries positive integers, and to ignore those with only the trivial
solution t = 1 = s.

Note that the code produces a Gröbner basis describing the original adja-
cency algebra before tackling the fusion problem (an expected benefit); so it
is possible to see the structure constants, not in a table or even in the form
aiaj =

∑
k pi,j,kak, but in the form aiaj −

∑
k pi,j,kak.

10 Concluding Remarks

There are further computations available at the author’s home page:
http://www.dms.auburn.edu/∼leonada. Interpretation of the results obtained
is of independent interest. Such interpretation for 4-gons and Steiner designs
is contained in [6]. But as a striking example of the significance of this inter-
pretation step, note that 3-gons with s = t = 4, [4] correspond to a sporadic

http://www.dms.auburn.edu/~leonada
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strongly regular graph with v = 105, k = 32, λ = 4, μ = 12. This graph is a
subgraph of the famous sporadic McLaughlin graph on 275 vertices.

Note also that even though a scheme itself may not exist, some fusion of
the table algebra may have a combinatorial interpretation.
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Appendix A

//common code to search for fusion
R<T,S>:=PolynomialRing(Q,2);
co:=function(f,mon) return MonomialCoefficient(f,mon);
end function;
fusion:=function(J) return &+[A.(N+1-j): j in J];
end function;
prod:=function(I,J) return NormalForm(fusion(I)*fusion(J),ID);
end function;
relations:=function(I,J,K)

W:=prod(I,J);
return [(co(W,A.(N+1-K[1]))-co(W,A.(N+1-k)))
@hom<FF->R|T,S>: k in K];

end function;
RELATIONS:=function(part)

rel:=[];
for i in [1..#part] do for j in [1..#part]
do for k in [1..#part] do

rel:=rel cat relations(part[i],part[j],part[k]);
end for; end for; end for;
return rel;

end function;
max:=function(PV,j)

if j gt 1 then
return Maximum({PV[i]: i in [1..j-1]});

else
return -1;

end if;
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end function;
partno:=0; goodpartno:=0; vector:=[1:i in [1..N]]; v1:=N;
while v1 gt 1 do

Bound:=max(vector,N+1);
B:=[[]: i in [1..Bound]];
for i in [1..N] do Append(~B[vector[i]],i); end for;
symmetric:=true;
for i in [1..Bound] do

if #{vector[AT[j]]: j in B[i]} ne 1
then symmetric:=false; break; end if;

end for;
if symmetric then

partno+:=1;
id:=ideal<R|RELATIONS(B)>;
gb:=GroebnerBasis(id);
pos_sol:=true;
if #gb ne 0 then

for i in [1..#gb] do
m:=Minimum(Coefficients(gb[i]));
if m gt 0 then pos_sol:=false; break; end if;

end for;
end if;
if pos_sol then

goodpartno+:=1;
partno, "partition" cat IntegerToString(goodpartno)
cat "=",B;
if #gb ne 0 then

for i in [1..#gb] do Factorization(gb[i]);
end for;

end if;
end if;

end if;
v2:=v1;
bound:=1+max(vector,v1);
if vector[v1] ge bound then

while vector[v1] ge bound and v1 gt 1 do
vector[v1]:=1;
v1-:=1;
v2:=N;
if v1 gt 1 then bound:=1+max(vector,v1); end if;

end while;
if v1 gt 1 then

vector[v1]+:=1;
v1:=v2;

end if;
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else
if v1 gt 1 then

vector[v1]+:=1;
end if;

end if;
end while;
//preamble code for generalized n-gons
l:=2;//the only parameter that needs to be changed from
//one run to the next n-gons for n=2l, as rank N+1
//association schemes of flags
N:=4*l-1;
AT:=[i : i in [1..N]];
for i in [1..l-1] do AT[4*i]:=4*i-1; AT[4*i-1]:=4*i; end for;
Q:=RationalField();
FF<t,s>:=FunctionField(Q,2);
A:=FreeAlgebra(FF,N);
AssignNames(~A,["a" cat IntegerToString(N+1-i): i in [1..N]]);
a1:=A.N;a2:=A.(N-1);
rel1:=a1^2-s-(s-1)*a1;
rel2:=a2^2-t-(t-1)*a2;
rel3:=(a2*a1)^l-(a1*a2)^l;
def1:=[(a1*a2)^i-A.(N-4*i+2): i in [1..l]];
def2:=[(a2*a1)^i-A.(N-4*i+1): i in [1..l-1]];
def3:=[a1*(a2*a1)^i-A.(N-4*i): i in [1..l-1]];
def4:=[a2*(a1*a2)^i-A.(N-4*i-1): i in [1..l-1]];
ID:=ideal<A|rel1,rel2,rel3,def1,def2,def3,def4>;
G:=GroebnerBasis(ID);G;#G;
//Gr\"obner basis for the association scheme of a generalized
//quadrangle
a7^2 -(t^2s^2-t^2s+t^2-ts^2-t+s^2-s+1)*a7

-(t^2s^2-t^2s-ts^2+ts+s^2-s)*a6
-(t^2s^2-t^2s+t^2-ts^2+ts-t)*a5-(t^2s^2-t^2s-ts^2+ts)*a4
-(t^2s^2-t^2s-ts^2+ts)*a3-(t^2s^2-ts^2)*a2
-(t^2s^2-t^2s)*a1-(t^2s^2)*a0,

a7*a6-(t^2s-t^2-ts+t+s-1)*a7-(t^2s-2ts+s)*a6
-(t^2s-t^2-ts+t)*a5-(t^2s-ts)*a4
-(t^2s-ts)*a3-(t^2s)*a1,

a7*a5-(ts^2-ts+t-s^2+s-1)*a7-(ts^2-ts-s^2+s)*a6
-(ts^2-2ts+t)*a5-(ts^2-ts)*a4
-(ts^2-ts)*a3-(ts^2)*a2,

a7*a4-(ts-t-s+1)*a7-(ts-s)*a6-(ts-t)*a5-(ts)*a3,
a7*a3-(ts-t-s+1)*a7-(ts-s)*a6-(ts-t)*a5-(ts)*a4,
a7*a2-(t-1)*a7-(t)*a5,
a7*a1-(s-1)*a7-(s)*a6,
a6*a7-(t^2s-t^2-ts+t+s-1)*a7-(t^2s-2ts+s)*a6
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-(t^2s-t^2-ts+t)*a5
-(t^2s-ts)*a4-(t^2s-ts)*a3-(t^2s)*a1,

a6^2 -(t^2-2t+1)*a7-(ts-t)*a6-(t^2-t)*a5-(t^2s-ts)*a2
-(t^2s)*a0,

a6*a5-(ts-t-s+1)*a7-(ts-s)*a6-(ts-t)*a5-(ts)*a3,
a6*a4-(t-1)*a7-(ts-t)*a4-(ts)*a2,
a6*a3-(t-1)*a7-(t)*a5,
a6*a2-(t-1)*a6-(t)*a4,
a6*a1-(1)*a7,
a5*a7-(ts^2-ts+t-s^2+s-1)*a7-(ts^2-ts-s^2+s)*a6

-(ts^2-2ts+t)*a5-(ts^2-ts)*a4-(ts^2-ts)*a3-(ts^2)*a2,
a5*a6-(ts-t-s+1)*a7-(ts-s)*a6-(ts-t)*a5-(ts)*a4,
a5^2 -(s^2-2s+1)*a7-(s^2-s)*a6-(ts-s)*a5-(ts^2-ts)*a1-(ts^2),
a5*a4-(s-1)*a7-(s)*a6,
a5*a3-(s-1)*a7-(ts-s)*a3-(ts)*a1,
a5*a2-(1)*a7,
a5*a1-(s-1)*a5-(s)*a3,
a4*a7-(ts-t-s+1)*a7-(ts-s)*a6-(ts-t)*a5-(ts)*a3,
a4*a6-(t-1)*a7-(t)*a5,
a4*a5-(s-1)*a7-(ts-s)*a4-(ts)*a1,
a4^2 -(1)*a7,
a4*a3-(s-1)*a6-(ts-s)*a2-(ts)*a0,
a4*a2-(1)*a6,
a4*a1-(s-1)*a4-(s)*a2,
a3*a7-(ts-t-s+1)*a7-(ts-s)*a6-(ts-t)*a5-(ts)*a4,
a3*a6-(t-1)*a7-(ts-t)*a3-(ts)*a2,
a3*a5-(s-1)*a7-(s)*a6,
a3*a4-(t-1)*a5-(ts-t)*a1-(ts)*a0,
a3^2 -(1)*a7,
a3*a2-(t-1)*a3-(t)*a1,
a3*a1-(1)*a5,
a2*a7-(t-1)*a7-(t)*a5,
a2*a6-(t-1)*a6-(t)*a3,
a2*a5-(1)*a7,
a2*a4-(t-1)*a4-(t)*a1,
a2*a3-(1)*a6,
a2^2 -(t-1)*a2-(t)*a0,
a2*a1-(1)*a4,
a1*a7-(s-1)*a7-(s)*a6,
a1*a6-(1)*a7,
a1*a5-(s-1)*a5-(s)*a4,
a1*a4-(1)*a5,
a1*a3-(s-1)*a3-(s)*a2,
a1*a2-(1)*a3,
a1^2 -(s-1)*a1-(s)*a0
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//edited fusion partitions for generalized 4-gons,
//eliminating those with only t=1=s
//with the Gr\"obner basis for each to describe those pairs
//(t,s) for which fusion occurs
partition1=[[1,2,3,4,5,6,7]]
[]
partition3=[[1,2,3,4,5,7],[6]]
[T-1]
partition4=[[1,2,3,4,6,7],[5]]
[S-1]
partition5=[[1,2,3,4,7],[5,6]]
[T-2,S-2]
partition10=[[1,2,7],[3,4],[5,6]]
[T-2,S-2]
partition11=[[1,2],[3,4],[5,6],[7]]
[T-S]
partition13=[[1,3,4,5,6,7],[2]]
[]
partition14=[[1,3,4,6],[2,5,7]]
[S-1]
partition15=[[1,3,4,6],[2,5],[7]]
[S-1]
partition17=[[1,3,4,6],[2,7],[5]]
[S-1]
partition18=[[1,3,4,6],[2],[5,7]]
[]
partition19=[[1,3,4,6],[2],[5],[7]]
[S-1]
partition20=[[1,6,7],[2,3,4,5]]
[T-1]
partition21=[[1,6],[2,3,4,5],[7]]
[T-1]
partition22=[[1],[2,3,4,5,6,7]]
[]
partition23=[[1,7],[2,3,4,5],[6]]
[T-1]
partition24=[[1],[2,3,4,5],[6,7]]
[]
partition25=[[1],[2,3,4,5],[6],[7]]
[T-1]
partition27=[[1,5,6],[2],[3,4,7]]
[T-1,S^2-4*S+3]=[T-1,(S-3)(S-1)]
partition29=[[1,6,7],[2,5],[3,4]]
[T-1,S-3]
partition30=[[1,6],[2,5,7],[3,4]]
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[T-3,S-1]
partition32=[[1],[2,5,6],[3,4,7]]
[T^2-4*T+3,S-1]=[(T-3)(T-1),S-1]
partition33=[[1],[2,5,7],[3,4,6]]
[S-1]
partition34=[[1],[2,5],[3,4],[6],[7]]
[S-1]
partition35=[[1,6,7],[2],[3,4,5]]
[T-1]
partition36=[[1,6],[2],[3,4],[5],[7]]
[T-1]
partition38=[[1],[2],[3],[4],[5],[6],[7]]
[]

//edited fusion partitions for generalized 6-gons,
//eliminating those with only t=1=s
//with the Gr\"obner basis for each to describe those pairs
//(t,s) for which fusion occurs
partition1=[[1,2,3,4,5,6,7,8,9,10,11]]
[]
partition7=[[1,2,3,4,5,7,8,9,10,11],[6]]
[T-1]
partition8=[[1,2,3,4,6,7,8,9,10,11],[5]]
[S-1]
partition26=[[1,2],[3,4],[5,6],[7,8],[9,10],[11]]
[T-S]
partition30=[[1,3,4,5,6,7,8,9,10,11],[2]]
[]
partition34=[[1,3,4,5,6,7,8,10],[2],[9,11]]
[T-S]
partition37=[[1,3,4,6,9,11],[2,5,7,8,10]]
[S-1]
partition41=[[1,3,4,6,9,11],[2,5,10],[7,8 ]]
[T^2-5*T+4,S-1]=[(T-1)(T-4),S-1]
partition42=[[1,3,4,6,9,11],[2,5],[7,8],[10]]
[S-1]
partition45=[[1,3,4,6,9,11],[2,7,8,10],[5]]
[S-1]
partition46=[[1,3,4,6,9,11],[2,7,8],[5,10]]
[T-2,S-1]
partition47=[[1,3,4,6,9,11],[2,10],[5,7,8]]
[T-2,S-1]
partition48=[[1,3,4,6,9,11],[2],[5,7,8,10]]
[T^2*S-T^2-T*S^2+3*T*S-2*T+S-1]=[(S-1)(T^2-TS+2T+1)] so S=1
or (T=1,S=4)
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partition49=[[1,3,4,6],[2],[5,7,8,10],[9,11]]
[]
partition54=[[1,3,4,6,9,11],[2],[5],[7],[8],[10]]
[S-1]
partition55=[[1,3,4,9],[2,7,8,10],[5],[6,11]]
[S-1]
partition58=[[1,6,7,8,9],[2,3,4,5,10,11]]
[T-1]
partition62=[[1,6,9],[2,3,4,5,10,11],[7,8]]
[T-1,S^2-5*S+4]=[T-1,(S-4)(S-1)]
partition63=[[1,6],[2,3,4,5,10,11],[7,8],[9]]
[T-1]
partition67=[[1],[2,3,4,5,6,7,8,9,10,11]]
[]
partition69= [[1],[2,3,4,5,6,7,8,9],[10,11]]
[T-S]
partition72=[[1,7,8,9],[2,3,4,5,10,11],[6]]
[T-1]
partition73=[[1,7,8],[2,3,4,5,10,11],[6,9]]
[T-1,S-2]
partition74=[[1,9],[2,3,4,5,10,11],[6,7,8]]
[T-1,S-2]
partition75=[[1],[2,3,4,5,10,11],[6,7,8,9]]
[T^2*S-T*S^2-3*T*S-T+S^2+2*S+1]=[(T-1)(TS-S^2-2S-1)] so T=1
or (S=1,T=4)
partition76=[[1],[2,3,4,5],[6,7,8,9],[10,11]]
[]
partition81=[[1],[2,3,4,5,10,11],[6],[7],[8],[9]]
[T-1]
partition83=[[1,7,8,9],[2,3,4,10],[5,11],[6]]
[T-1]
partition100=[[1],[2,5,7,8,10],[3,4,6,9,11]]
[S-1]
partition105=[[1],[2,5,10],[3,4,11],[6,9],[7,8]]
[T^2-5*T+4,S-1]=[(T-4)(T-1),S-1]
partition106=[[1],[2,5],[3,4],[6,9],[7,8],[10],[11]]
[S-1]
partition108=[[1,6,7,8,9],[2],[3,4,5,10,11]]
[T-1]
partition113=[[1,6,9],[2],[3,4,11],[5,10],[7,8]]
[T-1,S^2-5*S+4]=[T-1,(S-4)(S-1)]
partition114=[[1,6],[2],[3,4],[5,10],[7,8],[9],[11]]
[T-1]
partition124=[[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
[]
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//edited fusion partitions for generalized 6-gons,
//eliminating those with only t=1=s
//with the Gr\"obner basis for each to describe those pairs
//(t,s) for which fusion occurs
partition1=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
[]
partition10=[[1,2,3,4,5,7,8,9,10,11,12,13,14,15],[6]]
[T-1]
partition16=[[1,2,3,4,6,7,8,9,10,11,12,13,14,15],[5]]
[S-1]
partition40=[[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],
[15]]
[T-S]
partition49=[[1,3,4,5,6,7,8,9,10,11,12,13,14,15],[2]]
[]
partition53=[[1,3,4,5,6,7,8,9,10,11,12,14],[2],[13,15]]
[T-S]
partition55=[[1,3,4,5,6,7,8,10,13,15],[2],[9,11,12,14]]
[T-1,S-2]
partition56=[[1,3,4,6,9,11,12,14],[2,5,7,8,10,13,15]]
[S-1]
partition61=[[1,3,4,6,9,11,12,14],[2,5,7,8,15],[10,13]]
[T-2,S-1]
partition67=[[1,3,4,6,9,11,12,14],[2,5,15],[7,8],[10,13]]
[T-2,S-1]
partition68=[[1,3,4,6,9,11,12,14],[2,5],[7,8],[10,13],
[15]]
[S-1]
partition73=[[1,3,4,6,9,11,12,14],[2,7,8,10,13,15],[5]]
[S-1]
partition78=[[1,3,4,6,9,11,12,14],[2,7,8,13],[5],[10,15]]
[S-1]
partition82=[[1,3,4,6,9,11,12,14],[2],[5,7,8,10,13,15]]
[S-1]
partition84=[[1,3,4,6,9,11,12,14],[2],[5,7,8,10],[13,15]]
[S-1]
partition87=[[1,3,4,6,13,15],[2],[5,7,8,10],[9,11,12,14]]
[T-1,S-2]
partition88=[[1,3,4,6],[2],[5,7,8,10],[9,11,12,14],[13,15]]
[]
partition100=[[1,3,4,6,9,11,12,14],[2],[5],[7],[8],[10],[13],[15]]
[S-1]
partition101=[[1,3,4,9],[2,7,8,13],[5],[6,11,12,14],[10,15]]
[S-1]
partition104=[[1,6,7,8,9,14,15],[2,3,4,5,10,11,12,13]]
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[T-1]
partition110=[[1,6,7,8,15],[2,3,4,5,10,11,12,13],[9,14]]
[T-1,S-2]
partition115=[[1,6,15],[2,3,4,5,10,11,12,13],[7,8],[9,14]]
[T-1,S-2]
partition116=[[1,6],[2,3,4,5,10,11,12,13],[7,8],[9,14],
[15]]
[T-1]
partition120=[[1],[2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
[]
partition122=[[1],[2,3,4,5,6,7,8,9,10,11,12,13],[14,15]]
[T-S]
partition124=[[1],[2,3,4,5,6,7,8,9,14,15],[10,11,12,13]]
[T-2,S-1]
partition125=[[1,7,8,9,14,15],[2,3,4,5,10,11,12,13],[6]]
[T-1]
partition130=[[1,7,8,14],[2,3,4,5,10,11,12,13],[6],[9,15]]
[T-1]
partition134=[[1],[2,3,4,5,10,11,12,13],[6,7,8,9,14,15]]
[T-1]
partition136=[[1],[2,3,4,5,10,11,12,13],[6,7,8,9],[14,15]]
[T-1]
partition138=[[1],[2,3,4,5,14,15],[6,7,8,9],[10,11,12,13]]
[T-2,S-1]
partition139=[[1],[2,3,4,5],[6,7,8,9],[10,11,12,13],[14,15]]
[]
partition152=[[1],[2,3,4,5,10,11,12,13],[6],[7],[8],[9],
[14],[15]]
[T-1]
partition156=[[1,7,8,14],[2,3,4,10],[5,11,12,13],[6],[9,15]]
[T-1]
partition183=[[1],[2,5,7,8,10,13,15],[3,4,6,9,11,12,14]]
[S-1]
partition185=[[1],[2,5,7,8,15],[3,4,6,9,14],[10,13],[11,12]]
[T-2,S-1]
partition197=[[1],[2,5,15],[3,4,14],[6,9],[7,8],[10,13],
[11,12]]
[T-2,S-1]
partition198=[[1],[2,5],[3,4],[6,9],[7,8],[10,13],[11,12],
[14],[15]]
[S-1]
partition203=[[1,6,7,8,9,14,15],[2],[3,4,5,10,11,12,13]]
[T-1]
partition205=[[1,6,7,8,15],[2],[3,4,5,10,13],[9,14],[11,12]]
[T-1,S-2]



132 Douglas A. Leonard

partition221=[[1,6,15],[2],[3,4,13],[5,10],[7,8],[9,14],
[11,12]]
[T-1,S-2]
partition222=[[1,6],[2],[3,4],[5,10],[7,8],[9,14],[11,12],
[13],[15]]
[T-1]
partition259=[[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],
[12],[13],[14],[15]]
[]

//preamble code for 2-(v,k,1) designs
N:=6;
AT:=[1,2,4,3,5,6];
Q:=RationalField();
FF<t,s>:=FunctionField(Q,2);
A:=FreeAlgebra(FF,N);
AssignNames(~A,["a" cat IntegerToString(N+1-i): i in
[1..N]]);
a1:=A.6;
a2:=A.5;
a3:=A.4;
a4:=A.3;
a5:=A.2;
a6:=A.1;
rel1:=a1^2-s-(s-1)*a1;rel1;
rel2:=a2^2-t-(t-1)*a2;rel2;
rel3:=(a2*a1)^2-s*a6-(s-1)*a5-s*a3;rel3;
rel4:=(a1*a2)^2-s*a6-(s-1)*a5-s*a4;rel4;
def1:=a1*a2-A.4;def1;
def2:=a2*a1-A.3;def2;
def3:=a1*a2*a1-A.2;def3;
def4:=(a2*a1*a2)-(a1*a2*a1)-A.1;def4;
ID:=ideal<A|rel1,rel2,rel3,rel4,def1,def2,def3,def4>;
G:=GroebnerBasis(ID);G;#G;
//Gr\"obner basis for the association scheme of a 2-(v,k,1)
//design with parameters (t,s)
a6^2 -(t^2s-2ts^2-2ts-t+s^3+3s^2+2s)*a6

-(t^2s-2ts^2-ts+s^3+s^2)*a5-(t^2s-2ts^2-ts+s^3+s^2)*a4
-(t^2s-2ts^2-ts+s^3+s^2)*a3-(t^2s-2ts^2-ts+s^3+s^2)*a2
-(t^2s-ts^2)*a1-(t^2s-ts^2)*a0,

a6*a5-(ts^2-s^3-s^2)*a6-(ts^2-ts-s^3+s^2)*a5
-(ts^2-ts-s^3+s^2)*a4
-(ts^2-s^3)*a3-(ts^2-s^3)*a2,

a6*a4-(ts-s^2-s)*a6-(ts-t-s^2+s)*a5-(ts-t-s^2+s)*a4
-(ts-s^2)*a3-(ts-s^2)*a2,
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a6*a3-(ts-s^2-s)*a6-(ts-s^2)*a5-(ts-s^2)*a4,
a6*a2-(t-s-1)*a6-(t-s)*a5-(t-s)*a4,
a6*a1-(s)*a6,
a5*a6-(ts^2-s^3-s^2)*a6-(ts^2-ts-s^3+s^2)*a5-(ts^2-s^3)*a4

-(ts^2-ts-s^3+s^2)*a3
-(ts^2-s^3)*a2,

a5^2 -(s^3-s^2)*a6-(ts+s^3-3s^2+2s-1)*a5-(s^3-2s^2+s)*a4
-(s^3-2s^2+s)*a3
-(s^3-s^2)*a2-(ts^2-ts)*a1-(ts^2)*a0,

a5*a4-(s^2)*a6-(s^2-2s+1)*a5-(s^2-s)*a4-(s^2-s)*a3-(s^2)*a2,
a5*a3-(s^2-s)*a6-(s^2-2s+1)*a5-(s^2-s)*a4-(ts- s)*a3-(ts)*a1,
a5*a2-(s)*a6-(s-1)*a5-(s)*a4,
a5*a1-(s-1)*a5-(s)*a3,
a4*a6-(ts-s^2-s)*a6-(ts-s^2)*a5-(ts-s^2)*a3,
a4*a5-(s^2-s)*a6-(s^2-2s+1)*a5-(ts-s)*a4-(s^2-s)*a3-(ts)*a1,
a4^2 -(s)*a6-(s-1)*a5-(s)*a3,
a4*a3-(s-1)*a6-(s-1)*a5-(ts-s)*a2-(ts)*a0,
a4*a2-(1)*a6-(1)*a5,
a4*a1-(s-1)*a4-(s)*a2,
a3*a6-(ts-s^2-s)*a6-(ts-t-s^2+s)*a5-(ts-s^2)*a4-(ts-t-s^2+s)

*a3-(ts-s^2)*a2,
a3*a5-(s^2)*a6-(s^2-2s+1)*a5-(s^2-s)*a4-(s^2-s)*a3-(s^2)*a2,
a3*a4-(t-1)*a5-(ts-t)*a1-(ts)*a0,
a3^2 -(s)*a6-(s-1)*a5-(s)*a4,
a3*a2-(t-1)*a3-(t)*a1,
a3*a1-(1)*a5,
a2*a6-(t-s-1)*a6-(t-s)*a5-(t-s)*a3,
a2*a5-(s)*a6-(s-1)*a5-(s)*a3,
a2*a4-(t-1)*a4-(t)*a1,
a2*a3-(1)*a6-(1)*a5,
a2^2 -(t-1)*a2-(t)*a0,
a2*a1-(1)*a4,
a1*a6-(s)*a6,
a1*a5-(s-1)*a5-(s)*a4,
a1*a4-(1)*a5,
a1*a3-(s-1)*a3-(s)*a2,
a1*a2-(1)*a3,
a1^2 -(s-1)*a1-(s)*a0
//fusion partitions for 2-(v,k,1) designs (with t>s),
//except for those partitions with only t=1=s
partition1=[[1,2,3,4,5,6]]
[]
%partition2=[[1,2,3,4,5],[6]]
%[T-S]
partition3=[[1,2,3,4,6],[5]]
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[S-1]
%partition4=[[1,2,3,4],[5,6]]
%[T-1]
%partition6=[[1,2,5],[3,4],[6]]
%[T-S,S^2-5*S+4]=[T-1,(S-4)(S-1)]
%partition7=[[1,2],[3,4],[5],[6]]
%[T-S]
partition9=[[1,3,4,5,6],[2]]
[]
%partition11=[[1,3,4,5],[2],[6]]
%[T-S]
%partition12= [[1,3,4],[2,5],[6]]
%[T-2,S-2]
partition13=[[1,5],[2,3,4,6]]
[S-2]
%partition14=[[1,5],[2,3,4],[6]]
%[T-2,S-2]
partition15=[[1,6],[2,3,4,5]]
[T-S-1]
partition16=[[1],[2,3,4,5,6]]
[]
partition17=[[1],[2,3,4,5],[6]]
[]
partition18=[[1,6],[2,3,4],[5]]
[T-2,S-1]
partition20=[[1,6],[2,5],[3,4]]
[T-4,S-3]
partition21=[[1],[2,5],[3,4],[6]]
[S-1]
partition22=[[1,6],[2],[3,4,5]]
[T-S-1]
partition23= [[1],[2],[3],[4],[5],[6]]
[]
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