
Chapter 2

Boundary Potential Theory
for Schrödinger Operators Based
on Fractional Laplacian

by K. Bogdan and T. Byczkowski

2.1 Introduction

Precise boundary estimates and explicit structure of harmonic functions are
closely related to the so-called Boundary Harnack Principle (BHP). The
proof of BHP for classical harmonic functions was given in 1977-78 by
H. Dahlberg in [65], A. Ancona in [3] and J.-M. Wu in [153] (we also re-
fer to [99] for a streamlined exposition and additional results). The results
were obtained within the realm of the analytic potential theory. A proba-
bilistic proof of BHP, one which employs only elementary properties of the
Brownian motion, was given in [11]. The proof encouraged subsequent at-
tempts to generalize BHP to other processes, in particular to the processes
of jump type.

BHP asserts that the ratio u(x)/v(x) of nonnegative functions harmonic
on a domain D which vanish outside the domain near a part of the domain’s
boundary, ∂D, is bounded inside the domain near this part of ∂D. The result
requires assumptions on the underlying Markov process and the domain.
For Lipschitz domains and harmonic functions of the isotropic α-stable Lévy
process (0 < α < 2), BHP was proved in [27]. Another proof, motivated
by [11], was obtained in [31] and extensions beyond Lipschitz domains were
obtained in [150] and [38]. In particular the results of [38] provide a conclusion
of a part of the research in this subject, and offer techniques that may be
used for other jump-type processes.

Lipschitz BHP leads to Martin representation of nonnegative α-harmonic
functions on Lipschitz domains ([28] and [56]). Another important conse-
quence of BHP are sharp estimates of the Green function of Lipschitz
domains and the so-called 3G Theorem (see (2.26) below). We give these
applications in the first part of the chapter, along with a self-contained proof
of BHP, following [27] and [38].

In the second part of the chapter we focus on the potential theory of
Schrödinger-type perturbations, Δα/2 +q, of the fractional Laplacian on sub-
domains of R

d. The main result we discuss here is the Conditional Gauge
Theorem (CGT), asserting comparability of the Green function of Δα/2 + q
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with that of Δα/2, under an assumption of “non-explosion”. Here 0 < α < 2,
and the proof of CGT relies on the 3G Theorem, thus on (Lipschitz) BHP.
In presenting these results we generally follow the approach of papers [32] and
[33]. The approach was modeled after [62], which deals with the Laplacian
and its underlying process of the Brownian motion (see [64] for Schrödinger
perturbations of elliptic partial differential operators of second order). For a
different technique we refer to [54]. It should be noted that there are many
algebraic similarities between the fractional Laplacian (α < 2) and the Lapla-
cian (α = 2), but there are also deep analytical differences between these two
cases, primarily due to the discontinuity of paths of the isotropic α-stable
Lévy process for 0 < α < 2.

2.2 Boundary Harnack Principle

Below we freely mix ideas from [27], [31], [32], [150], and [38], with some
didactic improvements and modifications aimed at the simplification of pre-
sentation. In particular we give perhaps the shortest existing proof of BHP
for α-harmonic functions.

In what follows nonempty D ⊂ R
d is open. We intend to present the main

ideas of the proof of BHP as given in [38] for arbitrary domains. However,
for the simplicity of the discussion in the remainder of this chapter unless
stated otherwise, we will assume that D is a Lipschitz domain, and we will
concentrate on finite nonnegative functions f on R

d, which are represented
on D as Poisson integrals of their values on Dc:

f(x) =
∫

Dc

f(y)PD(x, y)dy , x ∈ Dc . (2.1)

For instance, if (D is a Lipschitz domain and) f � 0 is bounded on D,
then f = PD[f ] on D, see [27]. For a general discussion of the notion of α-
harmonicity we refer the reader to [32, 38]. We should perhaps state a warning
that some aspects of the notion are richer and even counter-intuitive when
confronted with the properties of harmonic functions of local operators. In
particular, non-negativeness of functions which are α-harmonic on D is useful
only if assumed on the whole of R

d (rather than merely on D). For instance,
if |y| > r, then the function

Br 
 x �→
[

sup
v∈Br

PBr
(v, y)

]
− PBr

(x, y),

takes on the minimum of zero in a interior point of Br, in stark contrast
with the Harnack inequality. The reader may also want to consider (non-
Lipschitz) domains with boundary of positive Lebesgue measure and domains
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Fig. 2.1 D, Br, and
outer cone D

Br

with complement of zero Lebesgue measure but positive Riesz capacity, to ap-
prehend the complexity of the boundary problems for α-harmonic functions.

For function f � 0 satisfying (2.1) we have Δα/2f(x) = 0 on D, see [32].
Furthermore, for every open U ⊂ D we have

f(x) =
∫

Uc

f(y)ωx
U (dy) , x ∈ U . (2.2)

This follows from (1.51). We emphasize that for the above mean value prop-
erty of Poisson integrals it is not necessary that U be a compact subset of D,
and we to refer the reader to [38] for cautions needed to deal with the general
nonnegative α-harmonic functions.

When 0 < r � 1 we let Dr = D ∩ Br, a domain with the outer cone
property, see Figure 2.1. We will often use (2.2) for U = Dr. We note that
ωx

Dr
(∂Dr) = 0 for x ∈ Dr, in particular we can employ (1.53) for such U .

Consider B = B1 and assume that

f = 0 on B \D . (2.3)

Since GDr
� GBr

(see (1.45), (1.46)), by the definition of Poisson kernel
(1.49) we get

PDr
(x, y) � PBr

(x, y) , x ∈ Dr , y ∈ Bc
r .

By the mean value property and the assumption (2.3) we obtain

f(x) �
∫

Bc
r

f(y)PBr
(x, y)dy , x ∈ Br , 0 < r � 1 . (2.4)
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The function PBr
(x, y) has a singularity at |y| = r. To remove this inconve-

nience, we will consider an analogue of volume averaging used on occasions in
the classical potential theory. We fix a nonnegative function φ ∈ C∞

c ((1/2, 1))
such that

∫ 1

1/2
φ(r) dr = 1 and we define

ψ(x, y) =
∫ 1

1/2

φ(r)PBr
(x, y) dr

= Cd
α |y − x|−d

∫ |y|∧1

|y|∧1/2

(r2 − |x|2)α/2

(|y|2 − r2)α/2
φ(r)dr , x, y ∈ R

d .

It is not difficult to check that

|ψ(x, y)| � C

(1 + |y|)d+α
, |x| � 1/3 , y ∈ R

d . (2.5)

By Fubini’s theorem and (2.4) we obtain

f(x) �
∫

Bc
r

f(y)ψ(x, y)dy � C

∫
Rd

f(y)(1 + |y|)−d−α , x ∈ B1/3 . (2.6)

To obtain a reverse inequality for x ∈ D1 = D ∩ B being not too close
to ∂D1 we note that PBr

(0, y) � Cd
αrα|y|−d−α, see (1.57). If r0 > 0 and

B(2r0, x0) ∈ D1, then

f(x0)=
∫

Bc(x0,r0)

Pr0(0, y − x0)f(y)dy�
∫

Bc(x0,r0)

Cd
αrα

0 |y − x0|−d−αf(y)dy.

(2.7)

By the Harnack inequality for f on B(x0, r0) we can enlarge the domain of
integration so that

f(x0) � c

∫
Rd

(1 + |y|)−d−αf(y)dy .

Here and in what follows the constants (c, C etc.) depend on d, α and D, in
particular on r0.

This and (2.6) yield the following Carleson-type estimate.

Corollary 2.1. There is a constant C depending only on d, α, and x0 such
that

f(x) � Cf(x0) , x, x0 ∈ D1/3 . (2.8)

In what follows we will consider D1/4 and will fix x0 ∈ D1/5. We have

f(x) =
∫

Dc
1/4

f(y)PD1/4(x, y)dy =
∫

D1/4

GD1/4(x, v)κ(v)dv , (2.9)
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where
κ(v) =

∫
Dc

1/4

Ad,−α|y − v|−d−αf(y)dy , v ∈ D1/4 .

We thus have f expressed as the Green potential of the charge κ(v) inter-
preted as the intensity of jumps of Y “to” f on Dc. Let

κ1(v) =
∫

Bc
1/3

Ad,−α|y − v|−d−αf(y)dy , v ∈ D1/4 ,

κ2(v) =
∫

B1/3\D1/4

Ad,−α|y − v|−d−αf(y)dy , v ∈ D1/4 ,

and
fi(x) =

∫
D1/4

GD1/4(x, v)κi(v)dv , i = 1, 2 . (2.10)

We note that fi are α-harmonic, in fact Poisson integrals, on D1/4. We observe
that κ1 is bounded, in fact nearly constant on D1/4:

c−1κ1(v2) � κ1(v1) � cκ1(v2) , v1, v2 ∈ D1/4 , (2.11)

because |y − v|−d−α is nearly constant in v ∈ D1/4 (uniformly in y ∈ Bc
1/3).

Also, κ1(v) � cf(x0), see (2.7). Thus

f1(x) � cf(x0)
∫

D1/4

GD1/4(x, v)dv = cf(x0)sD1/4(x) , x ∈ D1/4. (2.12)

We will see that sD1/4 faithfully represents the asymptotics of f = f1 + f2 at
∂D ∩B1/5. To this end we first note that by (2.8),

f2(x) � Cf(x0)ωx
D1/4

(Bc
1/4) , x ∈ D1/4 . (2.13)

Lemma 2.2. For every p ∈ (0, 1) there is a constant C such that if D ⊂ B
then

ωx
D(Bc) � C sD(x) , x ∈ Dp .

Proof. Let 0 < p < 1. We choose a function ϕ ∈ C∞
c (Rd) such that 0 � ϕ � 1,

ϕ(y) = 1 if |y| � p, and ϕ(y) = 0 if |y| � 1. Let x ∈ Dp. By (1.47) we have

ωx
D(Bc) =

∫
Bc

(ϕ(x)− ϕ(y))ωx
D(dy) �

∫
Dc

(ϕ(x)− ϕ(y))ωx
D(dy)

= −
∫

D

GD(x, y)Δα/2ϕ(y)dy .

It remains to observe that Δα/2ϕ is bounded and the lemma follows. ��
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By (2.13), scaling and Lemma 2.2 (with p = 4/5) we obtain that f2(x) �
cf(x0)sD1/4(x) for x ∈ D1/5. This, and (2.12) yield the following improvement
of Carleson estimate

c−1f(x0)sD1/4(x) � f(x) � cf(x0)sD1/4(x) , x ∈ D1/5 . (2.14)

Indeed, the lower bound in (2.14) follows from the inequality

f(x) �
∫

D1/4

GD1/4(x, v)κ3(v)dv ,

where

κ3(v) =
∫

B(x′,r′)
f(y)Ad,−α|y − v|−d−αdy � cf(x0) , v ∈ D1/4 ,

and B(2r′, x′) ⊂ D1/4 \D1/5 is a ball (if the set D1/4 \D1/5 is empty then
f2 ≡ 0, and we simply use (2.11) and (2.10)).

The following Boundary Harnack Principle is a direct analogue of (1.14).

Theorem 2.3 (BHP). If functions f1 and f2 satisfy the above assumptions
on f , then

f1(x)f2(y) � Cf1(y)f2(x) , x, y ∈ D1/5 .

Proof. We fix x0 ∈ D ∩B1/5. For x, y ∈ D ∩B1/5 we obtain from (2.14)

f1(x)f2(y) � c2f1(x0)f2(x0)sD1/4(x)sD1/4(y) ,

and
f1(y)f2(x) � c−2f1(x0)f2(x0)sD1/4(y)sD1/4(x) .

The result, translation and scaling invariance of the class of α-harmonic
functions, and the usual Harnack inequality, allow to estimate the growth of
α-harmonic functions vanishing at a part of the domain’s boundary up to
this part of the boundary. The constant C in our present proof depends on
D (and the choice of x0), however a more delicate and technical proof shows
that C may be so chosen to depend only on d and α. We refer the reader to
[38] for this important strengthening of BHP. An important consequence of
the domain-independent, or uniform BHP of [38] is given in the following
statement

lim
D	x→0

f1(x)/f2(x) exists. (2.15)

BHP and (2.15) were given in [27] (see also [31]) for Lipschitz domains,
generalized in [150] to the so-called κ-fat domains, and proved for arbitrary
open sets in [38]. The proof of (2.15) seems too technical to be discussed here,
but we will hopefully give some insight into its main idea, when discussing
the uniqueness of the Martin kernel with the pole at infinity for cones.
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Let ρ(x) = dist(x,Dc). Compared to BHP, the following local estimate
for individual (nonnegative) Poisson integral on Lipschitz domains, if not
sharp, is more explicit.

Lemma 2.4. Let Γ : R
d → R satisfy (1.12), and Γ(0) = 0. Let D = DΓ∩B,

and A = (0, 0, . . . , 0, 1/2) ∈ D. There are C = C(d, α, λ) and ε = ε(d, α, λ) ∈
(0, α) such that

C−1f(A)ρ(x)α−ε � f(x) � Cf(A)ρ(x)ε , x ∈ D1/2 . (2.16)

The right hand side of (2.16) is a strengthening of the Carleson estimate,
and it asserts a power-type decay of u at the boundary of D. This decay rate
is related to the existence of outer cones for the boundary points of D, and
steady escape of mass of the process when it approaches ∂D (see our discus-
sion above of the fact that ωx

D(∂D) = 0). For a class of domains including
domains with the boundary defined by a C2 function we have ε = α/2, which
may be verified by a direct calculation involving the Green function of the
ball, and of the complement of the ball, see [56], [109]. Then (2.16) becomes
sharp, meaning that all sides of the inequality are in fact comparable. The
exponent α/2 is also related to the fact that

f(x) = x
α/2
+ , x ∈ R , (2.17)

is α-harmonic on the half-line {x > 0}, see [30] for explicit calculations in-
volving Δα/2.

For general Lipschitz domains the exponent ε on the right-hand side of
(2.16) is usually not given explicitly. We like to note that ε > 0 may be arbi-
trarily small, e.g. for the complement of cone with sufficiently small opening
in dimension d > 2. For a more detailed study of the asymptotic behavior of
α-harmonic functions in cones, and some open problems we refer the reader
to [5] and [123].

We will briefly discuss the left hand side inequality in (2.16). We like to
emphasize the fact that the power-type decay cannot be arbitrarily fast, a
significant difference when compared with the classical harmonic functions
in narrow cones. Indeed, ε > 0 may be arbitrarily small (for very narrow
cones), but we always have α−ε < α! This is a noteworthy contrast with the
classical potential theory (α = 2). For an explanation of this phenomenon we
will consider exponentially shrinking disjoint balls Bk = B(Ak, crk), where
0 < r < 1 and c are such that Bk ⊂ Drk (k = 0, 1, . . .), see Figure 2.2. By
the mean value property, we have

f(Ak) �
k−1∑
l=0

∫
Bl

f(y)ωAk

Bk(dy) (2.18)

� C

k−1∑
l=0

∫
Bl

f(Al)r(k−l)α ,
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Fig. 2.2 Exponentially
shrinking balls

Ak

Bk

Bι

Aι

A0

B0

0

where we used the formula for the Poisson kernel of the ball. Thus, βk :=
f(Ak)r−kα � C

∑k−1
l=0 βl. By induction we see that βk � C(1+C)kβ0, which

yields the exponent α− ε < α on the left hand side of (2.16).
We note that the first term of the sum in (2.18) approximately equals

rkαf(A0), which is much smaller than the whole sum. Thus a direct jump (say,
to B0) has a negligible impact on the values of the α-harmonic function on
Bk. Instead, the many combined shorter jumps between the balls {Bl} yield
the main contribution. The geometry of Lipschitz domains plays a role here.
Domains which are “thinner” at some boundary points may show a different
decay rate of α-harmonic functions (i.e. that given by a few direct jumps
may prevail, see [125]). This observation leads to a notion of inaccessibility
developed in [38].

We want to point out after [38], that BHP can be studied as a property
of the Poisson kernel and the Green function, without even referring to the
notion of α-harmonicity. In fact, the main application of BHP is the following
one, to f1(x) = GD(x, x1) and f2(x) = GD(x, x2), for x (in a Lipschitz subset
of) D \ {x1, x2}. We fix an arbitrary reference point x0 ∈ D and we define
the Martin kernel of D,

MD(x, y) = lim
D	v→y

GD(x, v)
GD(x0, v)

, x ∈ R
d , y ∈ ∂D . (2.19)

Theorem 2.5. The limit in (2.19) exists. x �→ MD(x, y) is up to constant
multiples the only nonnegative α-harmonic function on D and equal to zero
on Dc which continuously vanishes at Dc \ {y}.
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The existence part of the result follows easily from (2.15). The α-
harmonicity of MD, however, depends delicately on the Lipschitz geometry
of the domain via the lower bound in (2.16), see [28]. We refer the reader
to [28] for an elementary study of the properties of MD(·, y) for Lipschitz
domains. We also refer to [38] for the case of arbitrary open set and for the
explanation of the role played by the accessibility of the point y from within
the set.

It should be noted that MD(·, y) is not of the form (2.1). Nonnegative
α-harmonic functions vanishing on Dc are called singular α-harmonic. They
resemble classical Poisson integrals of singular measures on the sphere (and
also nonnegative martingales converging to zero almost surely).

We will cite after [28] the representation theorem for nonnegative α-
harmonic functions on bounded Lipschitz domains D (for arbitrary nonempty
open subsets of R

d see [38]).

Theorem 2.6. For every function u � 0 which is α-harmonic in D there
exists a unique finite measure μ � 0 on ∂D, such that

u(x) =
∫

Dc

PD(x, y)u(y)dy +
∫

∂D

MD(x, y)μ(dy) , x ∈ D . (2.20)

In view of the recent developments in [38] we like to make the following
comments. First,

∫
Dc PD(x, y)u(y)dy above may be generalized to Poisson

integrals of nonnegative measures:

∫
Dc

PD(x, y)λ(dy) < ∞ , (2.21)

and it is legitimate to regard Dc as the “Martin boundary” of (bounded
Lipschitz) D for Δα/2, with kernels MD(·, y), y ∈ ∂D, and PD(·, y) + δy(·),
y ∈ Dc \ ∂D. Second, for general domains in arbitrary dimension, inaccessi-
ble points of the Euclidean boundary will contribute a Poisson kernel, rather
than a Martin kernel. Third, for unbounded domains a Martin kernel may
be attributed to the point at infinity (if accessible). For details we refer the
reader to [38], which appears to finalize the problem of representing nonneg-
ative α-harmonic functions, and offers notions and methods appropriate for
handling more general Markov processes with jumps. To further encourage
the interested reader, we want to point out that for bounded domains their
“Martin boundary” decreases when the domain increases [38]. Comparing to
Δ, we see that the potential theory of Δα/2 is more compatible with the
Euclidean topology of R

d.
We return to considering a Lipschitz domain D ⊂ R

d in dimension d � 2.
For y ∈ ∂D, MD(x, y) is (up to constant multiples) the unique α-harmonic
function continuously vanishing on Dc \ {y} (and having a singularity at y,
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which “feeds” the function through (1.63)). As remarked above, a similar
function can be constructed for the point at infinity, if D is unbounded:

M(x) = MD(x,∞) = lim
D	v,|v|→∞

GD(x, v)
GD(x0, v)

, x ∈ R
d . (2.22)

In the case when D is an open cone C ⊂ R
d, the existence, uniqueness and

homogeneity properties of M were studied [5] and [123]. Below we will give a
flavor of the technique used in the study. We first note that the mean value
property holds for such M for every bounded open subset U of C, as the
pole is so far away. Let 1 �= 0 be a point in R

d (say 1 = (0, . . . , 0, 1)). For
x ∈ R

d\{0}, we denote by θ(x) the angle between x and 1. The right circular
cone of angle Θ ∈ (0, π) is the Lipschitz domain

C = CΘ = {x ∈ R
d : θ(x) < Θ} .

Clearly, for every r > 0 we have rC = C. In particular, by scaling, if u is
α-harmonic on C, then so is x �→ u(rx). We will prove the uniqueness of M .
To this end, we assume that there is another function m � 0 on R

d which
vanishes on Cc, satisfies m(1) = 1 and

m(x) = Exm(YτB
) , x ∈ R

d ,

for every open bounded B ⊂ C. By BHP,

C−1m(x) � M(x) � Cm(x) ,

for x ∈ B ∩ C. By scaling, this extends to all x ∈ C with the same constant.
We let a = infx∈C m(x)/M(x). For clarity, we note that C−1 � a � 1. Let
R(x) = m(x)− aM(x), so that R � 0 on R

d. Assume (falsely) that R(x) > 0
for some, and therefore for every x ∈ C. Then, by BHP and scaling,

R(x) � εM(x) , x ∈ R
d,

for some ε > 0. We have

a = inf
x∈C

m(x)
M(x)

= inf
x∈C

aM(x) + R(x)
M(x)

� a + ε ,

which is a contradiction. Thus R ≡ 0, m = aM , and the normalizing condi-
tion m(1) = M(1) = 1 yields a = 1. The uniqueness of M is verified.

We like to note that the existence of the limits of the ratios of nonnegative
α-harmonic functions, (2.15), is proved by a similar argument, see [27, 38].
This oscillation-reducing mechanism of BHP is well known for local op-
erators, e.g. Laplacian ([11]), but the non-local character of the fractional
Laplacian seriously complicates such arguments, except in some special cases,
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like that of the cone. Some elements of the proof (of vanishing of oscillations of
ratios of non-negative α-harmonic functions) are given in [27]. The complete
details in the generality of arbitrary domains are given in [38].

To appreciate the importance of uniqueness, we return to the discussion of
the Martin kernel with the pole at infinity for the cone. By scaling, for every
k > 0 the function M(kx)/M(k1) satisfies the hypotheses defining M . Thus
it is equal to M , or

M(kx) = M(x)M(k1) x ∈ R
d .

In particular, M(kl1) = M(l1)M(k1) for positive k, l. By continuity of α-
harmonic functions on the domain of harmonicity, there exists β such that
M(k1) = kβM(1) = kβ and

M(kx) = kβM(x) , x ∈ R
d ,

or
M(x) = |x|βM(x/|x|) , x �= 0 , (2.23)

compare (2.16). By (2.14), M is locally bounded and tends to zero at the
origin, thus

0 < β < α . (2.24)

It is known that β is close to α for very narrow cones, and it will be close to
0 for obtuse cones (for Θ close to π), at least in dimension d � 2. We refer
the reader to [5], [123], [35] for more information and a few explicit values of
β for specific cones (see (2.17) for the half-line).

2.3 Approximate Factorization of Green Function

In this section we will consider a bounded Lipschitz domain D ⊂ R
d, d � 2,

with Lipschitz constant λ. To simplify formulas, we recall the notation ≈: we
write f(y) ≈ g(y) for y ∈ A if there exist constants C1, C2 not depending on
y such that C1 f(y) � g(y) � C2 f(y), y ∈ A.

Let δ(x) = dist(x,Dc). We fix x0, x1 ∈ D, x0 �= x1, and we let κ =
1/(2

√
1 + λ2). For x, y ∈ D we denote r = r(x, y) = δ(x)∨δ(y)∨ | x−y |. For

small r > 0 we write B(x, y) for the set of points A such that B(A, κr) ⊂ D∩
B(x, 3r)∩B(y, 3r), see Figure 2.3, and we put B(x, y) = {x1} for large r [29].
The set B(x, y) is nonempty (see [98] or [29] for details). Informally speaking,
A ∈ B(x, y) dominates x and y similarly as A of Lemma 2.4 dominates the
points of D1/2, see Figure 2.3. Let G = GD, the Green function of D for the
fractional Laplacian. We define

φ(x) = G(x0, x) ∧ c .
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Fig. 2.3 A ∈ B(x, y)

x0 x1

A

x y

The following is a sharp, if not completely explicit, approximate factorization
of G(x, y).

C−1 φ(x)φ(y)
φ2(A)

|x− y|α−d � G(x, y) � C
φ(x)φ(y)
φ2(A)

|x− y|α−d . (2.25)

Here A is an arbitrary point of B(x, y). A proof of (2.25) is given in [98] (see
also [29] for the case of α = 2). We will sketch the proof.

If x and y are close to each other but far from the boundary, then (2.25)
is equivalent to G(x, y) ≈ |x − y|α−d, because the term subtracted in (1.45)
is small.

Another case to consider is the situation of |y − x| being large and δ(x),
δ(y) being small. By symmetry, G(x, y) is α-harmonic both in x, and in y
(on D \{y} and D \{x}, correspondingly). By BHP (and the usual Harnack
inequality) G(x, y)/G(x0, y) ≈ G(x, x1)/G(x0, x1). Since 0 < G(x0, x1) < ∞
is a constant, we obtain (2.25) in the considered case. If |y − x|, δ(x), and
δ(y) are all small then we use BHP in a similar way, but twice. If δ(x) is
small, and δ(y) is large, then G(x, y) = G(y, x) ≈ G(x0, x) by the Harnack
inequality.

We remark that φ(·) may be replaced by sD(·) in (2.25), compare
Lemma 2.2, [38]. For bounded C2 domains we may use φ(·) = δα/2(·),
obtaining an estimate which is both sharp and explicit, [109, 56].

We will give a short proof of the following celebrated inequality known as
3G Theorem:

Theorem 2.7 (3G).

G(x, y)G(y, z)
G(x, z)

� C
|x− y|α−d|y − z|α−d

|x− z|α−d
, x, y, z ∈ D . (2.26)

Proof. let x, y, z ∈ D and R ∈ B(x, y), S ∈ B(y, z), T ∈ B(x, z). By (2.25),

G(x, y)G(y, z)
G(x, z)

� C
|x− y|α−d|y − z|α−d

|x− z|α−d
W 2,
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where W = [φ(y)φ(T )]/[φ(R)φ(S)]. We will verify the boundedness of W . Let
r1 = δ(x)∨δ(y)∨|x−y|, r2 = δ(y)∨δ(z)∨|y−z|, and r3 = δ(x)∨δ(z)∨|x−z|
because φ is bounded. If R = x1 and S = x1 then W � C. If R �= x1, that is if
r1 is small, then we choose Q ∈ ∂D such that δ(y) = |y−Q|. By the Carleson
estimate φ(y) � Cφ(R). Consequently, if S = x1, then W � C. The same
holds true if S �= x1 and R = x1. By symmetry, to complete the proof, we
may assume that r1 � r2 are small. We have r3 � r1 + r2 � 2r2, so r3 is also
small. In fact |T−Q| � |T−z|+|y−z|+|y−Q| < 3r3+r2+r2 � 8r2, therefore
by the Carleson estimate and the Harnack inequality φ(T ) � Cφ(S). Recall
that φ(y) � Cφ(R), thus W is bounded in this case, too. This finishes the
proof. ��

Since |x − y|α−d|y − z|α−d/|x − z|α−d � 2d−α
(
|x− y|α−d + |y − z|α−d

)
,

we obtain the following version of 3G:

G(x, y)G(y, z)
G(x, z)

� C (Kα(x− y) + Kα(y − z)) , x, y ∈ D . (2.27)

The definition of the Martin kernel yields

G(x, y)MD(y, ξ)
MD(x, ξ)

� C (Kα(x− y) + Kα(y − ξ)) , x, y ∈ D , ξ ∈ ∂D .

(2.28)

As we have mentioned, the importance of 3G in potential theory was ob-
served in [64]. Below we will use a probabilistic framework of conditional
processes to employ 3G to construct and estimate the Green function of
Schrödinger perturbations of Δα/2. Before we take our chances in this en-
deavor, however, we like to notice that a purely analytic approach to this
problem also exists. The approach is based on the so called perturbation se-
ries, or Duhamel’s formula, whose application is greatly simplified if 3G is
satisfied. We refer the reader to a self-contained exposition of this technique
in [85] (see also [84]). Analogous consideration based on so-called 3P The-
orem of [36] yields comparability of the perturbed transition density with
the original one. We refer the interested reader to [36] and [37] for these
developments.

2.4 Schrödinger Operator and Conditional
Gauge Theorem

We will focus on the potential theory of Schrödinger operators, u �→ Δα/2u+
qu, on subdomains of R

d, following the development of [32, 33, 62]. The class
of admissible “potentials” q is tailor-made for the transition probability of
{Yt} (and Δα/2).
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Put in a general perspective we consider here “small” additive perturba-
tions of the generator of a semigroup and we expect the potential-theoretic
object to be similar before and after these perturbations. In particular, the
conditional gauge function defined below is the ratio between the Green func-
tions after and before the perturbation, and the Conditional Gauge Theorem
(CGT) asserts that the function is bounded under certain assumptions. Orig-
inally, many authors considered the Laplace operator and bounded q, or q in
a Kato class and smooth domains D, see the references in [64]. The paper
[64] made an essential progress by including Lipschitz domains in the case of
the Laplace operator. This direction of research is summarized in [62].

The paper [54] initiated in 1997 the study of CGT for rotation invariant
stable Lévy and more general processes for Schrödinger and more general
perturbations. The focus of [54] was on C1,1 domains. CGT for the stable
proceses in Lipschitz domains was proved in 1999 in [32]. We also like to note
that there is a recent non-probabilistic approach to CGT, see [85] and [37].

A (Borel) function q on R
d is said to belong to the Kato class Jα if

lim
t↓0

sup
x∈Rd

∫ t

0

Ex|q(Ys)| ds = 0 . (2.29)

Thus, (2.29) is a statement of negligibility of q in (small) time, with respect
to the given transition probability. To make (2.32) more explicit we recall the
following well-known estimate (see (1.29)):

C−1

(
t

|x|d+α
∧ t−d/α

)
≤ pt(x) ≤ C

(
t

|x|d+α
∧ t−d/α

)
. (2.30)

The estimate is proved by subordination (see, e.g., [39]). Noteworthy,

t

|x|d+α
≤ t−d/α iff t ≤ |x|α . (2.31)

We easily see that

∫ t

0

ps(x)ds ≈ t2

|x|d+α
∧ 1
|x|α−d

.

By the definition of Ex, and Fubini-Tonelli, q ∈ Jα if and only if

lim
t↓0

sup
x∈Rd

∫
Rd

[
t2

|y − x|d+α
∧ 1
|y − x|α−d

]
|q(y)|dy = 0 .
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It follows that (2.29) is equivalent to the following condition of negligibility
of q in (small) space with respect to the potential operator:

lim
γ↓0

sup
x∈Rd

∫
|x−y|≤γ

Kα(x− y) |q(y)| dy = 0 . (2.32)

We also note that L∞(Rd) ⊂ Jα ⊂ L1
loc(R

d).
For q ∈ Jα we define the additive functional

Aq(t) =
∫ t

0

q(Ys) ds ,

and the corresponding multiplicative functional

eq(t) = exp(Aq(t)) .

We have
eq(t + s) = eq(t) (eq(s) ◦ θt) , t, s � 0 .

Here θt is the usual shift operator acting on the process Y by the formula:
Ys ◦ θt = Yt+s.

For an open bounded set D we define the killed Feynman-Kac semigroup
Tt by the formula

Tt f(x) = Ex[t < τD; eq(t) f(Yt)] . (2.33)

Tt is a strongly continuous semigroup on Lp(D), 1 � p <∞, and on C(D)–
for regular D. For each t > 0, the operator Tt is determined by a symmetric
transition density function ut(x, y) which is in C0(D×D) for regular D. We
should note that {Tt , t > 0} is generated by Δα/2 + q, see [32]. The next
lemma is fundamental in the theory of Feynman-Kac semigroups– this is seen
in the development of [62], which we will follow quite closely below.

Lemma 2.8. [Khasminski lemma] Let τ be an optional time of Y such that

τ � t + τ ◦ θt , on {t < τ} , t > 0 . (2.34)

Suppose that q � 0 and ExA(τ) < ∞ for all x ∈ R
d. Then for each integer

n � 0 we have,
sup

x
Ex[A(τ)n] � n! sup

x
(ExA(τ))n . (2.35)

If supx ExA(τ) = α < 1 then

sup
x

ExeA(τ) � (1− α)−1 .
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The condition (2.34) is satisfied if τ is constant or if τ = τD for some
D ⊆ R

d.

Proof. Since q � 0, the functional A(·) is nonnegative and nondecreasing. By
Fubini-Tonelli and (2.29), A(τ) < ∞ a.s. We have

A(τ)n+1

n + 1
=
∫ τ

0

[A(τ)−A(t)]n dA(t) .

For t < τ , by (2.34),

A(τ)−A(t) � A(t + τ ◦ θt)−A(t) =
∫ t+τ◦θt

t

q(Ys) ds

= [
∫ τ

0

q(Ys) ds] ◦ θt = A(τ) ◦ θt .

By Fubini’s theorem,

Ex[A(τ)n+1]
n + 1

� Ex[
∫ τ

0

[A(τ) ◦ θt]n dA(t)] =
∫ ∞

0

Ex[t < τ ; [A(τ) ◦ θt]nq(Yt)] dt .

By the Markov property the last integral is equal to

∫ ∞

0

Ex[t < τ ;EYt [A(τ)n] q(Yt)] dt � sup
x

Ex[A(τ)n]
∫ ∞

0

Ex[t < τ ; q(Yt)] dt

= sup
x

Ex[A(τ)n]ExA(τ) .

It follows that

sup
x

Ex[A(τ)n+1] � (n + 1) sup
x

Ex[A(τ)n] sup
x

Ex[A(τ)] ,

hence (2.35) is proved by induction on n. The last assertion of the lemma is
an immediate consequence of (2.35). ��

We like to note that A(t) increases where q > 0, and eq(t) may be inter-
preted as the mass of a particle moving along the trajectories of the process
in the potential well given by q. If q � 0 then the mass is always bounded by
1 (subprobabilistic), which corresponds to Courrège’s theorem, see (1.25).

The gauge function of D and q is defined as follows:

u(x) = Exeq(τD) .

We can interpret u(x) as the expected mass of the particle when it leaves
the domain. We note that since τD is an unbounded random variable, the
mass may be infinite if q is (say, positive and) large enough. When the gauge



2 Boundary Potential Theory for Schrödinger Operators 41

function satisfies u(x) < ∞ for (some, hence for all) x ∈ D, we call the pair
(D, q) gaugeable.

We consider ut(x, y) = Ex[1t<τD
eq(t)|Yt = y], the integral kernel of Tt.

We define the Green function of the Schrödinger operator on D,

V (x, y) =
∫ ∞

0

ut(x, y) dt .

The potential operator of the the Feynman-Kac semigroup Tt killed off D is,
by definition

V f(x) =
∫ ∞

0

Ttf(x) dt =
∫ ∞

0

Ex[t < τD; eq(t) f(Yt)] dt

= Ex

∫ τD

0

eq(t) f(Yt) dt =
∫

D

V (x, y) f(y) dy .

Both functions V and ut are symmetric in (x, y) ∈ D×D and ut is continuous
whenever D is regular.

The theorem below provides the fundamental property of the gauge and
clarifies conditions on gaugeability. For the proof, we refer to [62] (see § 5.6
and Theorem 4.19), or [33, Theorem 4.2], where it can be seen that the result
is analogous to the Harnack inequality.

Theorem 2.9 (Gauge Theorem). Let D be a domain with m(D) < ∞
and let q ∈ J α. If u(x0) < ∞ for some x0 ∈ D, then u is bounded in Rd.
Moreover, the following conditions are equivalent:

(i) (D, q) is gaugeable;
(ii) The semigroup Tt satisfies

∫∞
0
||Tt||∞ dt < ∞;

(iii) V 1 ∈ L∞(Rd);
(iv) V |q| ∈ L∞(Rd).

Thus, for the sake of brevity, we can write V 1 ∈ L∞(Rd) to indicate that
(D, q) is gaugeable. In what follows we always assume that (D, q) is gaugeable
indeed. We like to remark that gaugeability is difficult to express explicitly.
However a useful connection exists of gaugeability to the existence of positive
functions harmonic on D for Δα/2 +q, which can be used to give natural and
simple examples of the gauge function for some (not-so-natural) potentials q,
see Figure 2.4 and [33].

The following estimate for the kernel ut(x, y) of the Feynman-Kac
strengthens Lemma 4.7 in [32] and enables us to simplify the proof of
CGT, compared to [32].

Theorem 2.10. Let D ⊆ R
d be open with finite Lebesgue measure and q ∈

Jα. If (D, q) is gaugeable and 0 < δ < 1 then for x, y ∈ R
d

ut(x, y) � C1 t−d/α [(t−1/α |x− y|)−d−α ∧ 1]δ for 0 < t � t0 , (2.36)
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Fig. 2.4 A gauge function for q � 0, see [33]

where t0 = t0(δ, q, α), C1 = C1(d, α) and

ut(x, y) � C2 exp (−β t), for t > t0 , (2.37)

where C2 = C2(D, d, α), β = β(δ, q, α) . Furthermore, if D is additionally
bounded then

V (x, y) � C3 |x− y|α−d . (2.38)

Proof. Let p > 1 be fixed. Choose t0 > 0 such that for 0 < t � t0

sup
x∈D

Ex[e2pq(t)] � 2 .

For 0 < t � t0 and f ∈ L2(D) define Stf(x) = Ex[t < τD; epq(t) f(Yt)]. By
Schwarz inequality, for 0 < t < t0 we have

|Stf(x)|2 � Ex[t < τD; e2pq(t)]Ex[t < τD; f(Yt)2] � 2Ex[f(Yt)2]

= 2
∫

f(y)2 pt(x, y) dy � 2 t−d/α ||f ||22 sup
x

p1(x) .

Thus, we have obtained

||St||2,∞ � C t−d/2α .
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Now, observe that for positive f ∈ L1 and positive φ ∈ L2 we have
∫

φ Stf dx =
∫

f Stφ dx � ||Stφ||∞
∫

f dm � ||St||2,∞ ||φ||2 ||f ||1 .

This shows that Stf ∈ L2 and ||St||1,2 � ||St||2,∞. If f ∈ L1 we have Stf =
St/2St/2f ∈ L∞ so

||St||1,∞ � ||St/2||1,2 ||St/2||2,∞ � ||St/2||22,∞ � C t−d/α .

Let B be a Borel subset of D. Then

Tt1B(x) � Ex[t < τD; epq(t)1B(Yt)]1−δ Ex[t < τD; 1B(Yt)]δ

= (St1B(x))1−δ (
PD

t 1B(x)
)δ

� ||St||1−δ
1,∞ m(B)1−δ [C1 t−d/α ((t−1/α ρ)−d−α ∧ 1)m(B)]δ

� C t−(1−δ)d/α m(B) [C1 t−d/α ((t−1/α ρ)−d−α ∧ 1)]δ

� C3 t−d/α m(B) [(t−1/α ρ)−d−α ∧ 1]δ ,

where ρ = supy∈B |x− y| and we applied the fact that

pD
t (x, y) � pt(x, y) = t−d/α p1(t−1/α(x− y))

� C1 t−d/α [(t−1/α|x− y|)−d−α ∧ 1] , t > 0 , x, y ∈ R
d .

Thus, we have obtained

1
m(B)

∫
B

ut(x, y) dy � C3 t−d/α m(B) [(t−1/α ρ)−d−α ∧ 1]δ .

Consider B = B(y0, δ) and x, y0 ∈ D. Letting δ ↓ 0, we obtain

ut(x, y) � C3 t−d/α [(t−1/α |x− y|)−d−α ∧ 1]δ ,

which gives (2.36). Since (D, q) is gaugeable, by Theorem 2.5 we obtain

||Tt||1 � C e−εt ,

for t > t0 and for some ε > 0. On the other hand

1
m(B)

∫
ut(x, y)1B(y) dy = ||Tt||1,∞ .

As before, this gives ut(x, y) � ||Tt||1,∞ . Since

||Tt||1,∞ � ||Tt0 ||1,∞ ||Tt−t0 ||1 � ||Tt0 ||1,∞ C e−ε(t−t0) ,
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we obtain (2.37). To prove (2.38) we apply (2.36) to estimate

C−1
1

∫ t0

0

ut(x, y) dt �
∫ t0

0

t−d/α[1 ∧ (t−1/α|x− y|)−d−α]δ dt

=
∫ t0

0

t−d/α[1 ∧
(

t

|x− y|α
)−d−α

]δ dt

= |x− y|−δ(d+α)

∫ |x−y|α∧t0

0

tδ−(1−δ)d/α dt

+
∫ t0

|x−y|α∧t0

t−d/α dt .

In the first integral on the right hand-side we take a δ > 0 such that d/α <
1+δ
1−δ , and we then see that the first integral is convergent. We obtain the
upper bound

C4|x− y|−δ(d+α)|x− y|(1−d/α+δ(1+d/α))α

+ C5|x− y|α−d = C |x− y|α−d .

To finish the proof we observe that (2.37) yields
∫ ∞

t0

ut(x, y) dt � β−1e−βt0 ,

which, together with the observation that |x− y| � diam(D), concludes the
proof of (2.38). ��

We note that since ut(x, y) is continuous, the above estimate yields the
continuity of V (x, y) for x, y ∈ R

d, x �= y, under the assumption that D is
regular (and bounded).

We should also mention that there exists a new method of estimating ut

based on the notion of conditional smallness of q which yields comparability
of ut and pt in finite time, see [36].

The following lemma is a well-known but fundamental relationship be-
tween GD and V , see [62], Ch. 6. For an analyst, the lemma is an instance of
the (implicit) perturbation formula for V , compare [85].

Lemma 2.11. Suppose that q ∈ Jα and V 1 ∈ L∞(D). If V |q|GD |f | < ∞
on D then

V f = GD f + V q GD f .

Proof. By Fubini’s theorem we obtain

V q GD f(x) = Ex

∫ τD

0

eq(t) q(Yt)EYt [
∫ τD

0

f(Ys) ds] dt

= Ex

∫ τD

0

eq(t) q(Yt)
∫ τD

t

f(Ys) ds dt
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= Ex

∫ τD

0

f(Ys)
∫ τD

s

eq(t) q(Yt) dt ds

= Ex

∫ τD

0

f(Ys) [eq(s)− 1] ds = V f(x)−GDf(x) .

The application of Fubini’s theorem is justified by the condition V |q|GD |f |
< ∞. ��

An important consequence of the above lemma and Theorem 2.10 is the
following

Lemma 2.12. Suppose that q ∈ Jα and V 1 ∈ L∞(D). Assume that D is
bounded and regular. Then for every x, y ∈ D, x �= y we have

V (x, y) = GD(x, y) +
∫

D

V (x,w) q(w)GD(w, y) dw . (2.39)

Proof. Applying the preceding lemma we obtain that for every x ∈ D the
equation (2.39) holds y-almost everywhere. Assume that |x − y| > δ > 0.
Then either |x− w| > δ/2 or |w − y| > δ/2. Suppose that the first condition
holds. Then, by Theorem 2.10 we obtain

V (x,w) � C Kα(x,w) � C Kα(δ/2) so

V (x,w) |q(w)|GD(w, y) � C Kα(δ/2) |q(w)|Kα(w − y) .

In the second case we obtain

V (x,w) |q(w)|GD(w, y) � C Kα(x− w) |q(w)|Kα(δ/2) .

Consequently, when |x− y| > δ we have

V (x,w) |q(w)|GD(w, y) � C Kα(δ/2) |q(w)| [Kα(w − y) + Kα(x− w)] .

Since D is bounded, it follows that the set of functions

{w �→ V (x,w) q(w)GD(w, y); (x, y) ∈ D ×D, |x− y| > δ}

is uniformly integrable on D. On the other hand, for each w ∈ D, the function

(x, y) �→ V (x,w) q(w)GD(w, y)

is continuous except possibly at x = w or y = w. Therefore, the integral on
the right-hand side of (2.39) is continuous in (x, y) ∈ D × D, |x − y| > δ.
Since δ is arbitrary, both members of (2.39) are continuous in (x, y) ∈ D×D,
x �= y. The proof is complete. ��
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Let h be an α-harmonic and positive on a bounded domain D. By pD
t (x, y)

we denote the transition density function of (Yt) killed on exiting D. For
x, y ∈ D and t > 0 we define time-homogeneous transition density (of Doob’s
h-process)

ph(t;x, y) = h(x)−1 pD
t (x, y)h(y) .

This defines a strong Markov process on D∂ = D∪{∂}. Here ∂ is the absorb-
ing state (cemetery) attached to the state space to accommodate for the loss
of mass (the conditional process is generally subprobabilistic if considered
on the original state space, [23]). The h-process is denoted also by Yt, while
the corresponding expectations and probabilities are denoted by Ex

h , P x
h . We

should note that even though we use the same generic notation for the condi-
tional process, there is no pathwise correspondence between the original and
the conditional processes, and theorems involving the conditional process are
usually more difficult.

The definition of the h-process yields,

Ex
h [t < τD; f(Yt)] = h(x)−1 Ex[t < τD; f(Yt)h(Yt)] . (2.40)

Let D be a bounded Lipschitz domain; for fixed ξ ∈ ∂D we put

h(y) = MD(y, ξ) .

Here MD(·, ξ) is Martin’s kernel of D, which is α-harmonic in D [27, 38].
We also need another version of conditioning: for fixed y ∈ D we let

h(y) = GD(y, z) .

The function h above is α-harmonic in D \ {z}, and superharmonic in D, see
[56]. In the sequel, we will use the notation Ex

ξ , P x
ξ (Ex

z , P x
z , respectively) to

indicate conditioning by Martin kernel (Green function, respectively).
We redefine α-stable ξ-Lévy motion Yt by putting Ys = ξ for s � τD to get

the process on D∪{ξ}. Analogously, α-stable z-Lévy motion Yt is defined on
D and Ys = z for s � τD\{z}.

For a stopping time T � τD\{y} we obtain a specialization of the formula
(2.40):

Ex
z [T < τD\{y}; f(YT )] = GD(x, z)−1 Ex[T < τD; f(YT )GD(YT , z))] . (2.41)

A similar formula holds true for the ξ-process.

As an instructive exercise we compute the Green function of α-stable
z-Lévy motion.

Proposition 2.13 (Green function for conditional process). Let D
be a bounded Lipschitz domain in R

d, α < d, Yt - α-stable z-Lévy motion.
The Green function of D, as the function of y, computed for the process Y
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(starting at x ∈ D and exiting at z ∈ D) has the following form:

GD(x, y)GD(y, z)
GD(x, y)

.

Proof. Indeed, we obtain

Ex
z

∫ τD\{z}

0

f(Yt) dt =
∫ ∞

0

Ex
z [t < τD\{z}; f(Yt)] dt

=
∫ ∞

0

GD(x, z)−1Ex[t < τD\{z}; f(Yt)GD(Yt, z)] dt

= GD(x, z)−1Ex

∫ τD

0

f(Yt)GD(Yt, z) dt

= GD(x, z)−1GD(f(·)GD(·, z))(x)

=
∫

D

GD(x, y)GD(y, z)
GD(x, y)

f(y) dy .

��
By the above calculations, we obtain

Ex
z τD\{z} = Ex

z

∫ τD\{z}

0

1(Yt) dt =
∫

D

GD(x, y)GD(y, z)
GD(x, y)

dy

� C

∫
D

[Kα(x− y) + Kα(y − z)] dy � 2C

∫
D∩B(0,R)

Kα(y) dy < ∞ .

The calculations provide the proof of the second formula in Theorem 2.14
below (the proof of the first formula is similar and will be omitted).

Theorem 2.14.

Ex
ξ τD < ∞ , P x

ξ ( lim
t↑τD

Yt = ξ) = 1 ,

Ex
z τD\{z} < ∞ , P x

z ( lim
t↑τD\{z}

Yt = z) = 1 .

Theorem 2.14 shows that the behavior of the conditional process is dramat-
ically different from that of the original process. In particular, the conditional
process exits through the pole of the function h and does so in a continuous
manner.

Lemma 2.15. Let D,U be bounded regular (e.g. Lipschitz) domains such
that U ⊆ D and z ∈ U . Put D0 = D \ U and let ζ = τD\{z}. Let u ∈ D,
u �= z and x ∈ D0. Then we have

Pu
z {τU\{z} = ζ} =

GU (u, z)
GD(u, z)

, (2.42)

P x
z {τD0 = ζ} = 0 . (2.43)
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Let us remark that the second formula states that the conditional process
cannot reach the point z jumping from outside a certain neighborhood of this
point. The first formula gives the precise value of the probability of reaching
the point z when starting from a point within a neighborhood of this point.
The formulas are essential in proving CGT for the operator Δα/2, 0 < α < 2.

Proof. To prove the first formula we observe that

GD(u, v) = Kα(u− v)− Eu[Kα(YτD
− v)] .

Consequently, we obtain

Eu[τU < τD;GD(YτU
, z)] = Eu[τU < τD;Kα(YτU

− z)]
−Eu[τU < τD;EYτU [Kα(YτD

− z)]
= Eu[τU < τD;Kα(YτU

− z)]
−Eu[τU < τD;Eu[Kα(YτD

− z) ◦ θτU
|FτU

]]
= Eu[τU < τD;Kα(YτU

− z)−Kα(YτD
− z)]

= Eu[Kα(YτU
− z)−Kα(YτD

− z)]
= GD(u, z)−GU (u, z) .

Taking into account

Pu
z {τU\{z} �= ζ} = GD(u, z)−1Eu[τU < τD;GD(YτU

, z)] ,

we obtain the first formula. To prove the second formula we observe that
GD(·, z) is α-harmonic and bounded on D0 = D \ U so

ExGD(YτD0
, z) = GD(x, z)

and

P x
z {τD0 < ζ} = GD(x, z)−1Ex[τD0 < τD;GD(YτD0

, z)]

= GD(x, z)−1ExGD(YτD0
, z) = GD(x, z)−1GD(x, z) = 1 .

��

As a corollary we obtain (compare Lemma 4.4 in [64]):

Corollary 2.16. Assume that y ∈ D with d(y,Dc) > 3δ. Put U = B(y, 3δ).
Then we have

inf
u∈B(y,δ)

Pu{τU = τD} > 0 , inf
u∈B(y,δ)\{y}

Pu
y {τU\{y} = ζ} > 0 . (2.44)

Proof. We first prove the second part of (2.44). In view of Lemma 2.15 we
have that
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Pu
y {τU\{y}= ζ} =

GU (u, y)
GD(u, y)

� GU (u, y)
Kα(u, y)

= 1−A−1
d,α|u− y|d−αEuKα(YτU

, y) .

Observe that we have |u − y| � δ for u ∈ B(y, δ) and also |YτU
− y| > 3δ

which yields EuKα(YτU
, y) � Ad,α(3δ)α−d. This completes the proof of the

second part of (2.44). We now prove the first part. We denote R = diam(D).
Then, by the explicit formula for Poisson kernel for balls (1.57), we obtain

Pu{τU = τD} = Pu{YτU
∈ Dc}

= Pu−y{YτB(0,3δ) ∈ Dc − y} � Pu−y{YτB(0,3δ) ∈ B(0, R)c}

= Cd
α

∫
|z|>R

(
(3δ)2 − |u− y|2
|z|2 − (3δ)2

)α/2
dz

|u− y − z|d

� Cd
α(8δ)α/2ωd

∫ ∞

R

ρd−1 dρ

ρα (ρ + δ)d
� Cd

α (8δ)α/2ωd

(7/6)d α Rα
,

because we have ρ � R > 6δ under the integral sign. By ωd we denote the
surface measure of the unit sphere in Rd. ��

The following lemma is a “conditional” version of Khasminski’s lemma
(see Lemma 2.8). The proof relies on 3G Theorem (2.26) as in [64].

Lemma 2.17. For every ε > 0 there exists η = η(ε,D, q) such that for every
open set U ⊆ D with m(U) < η we have

sup
u∈D,u 
=y

Eu
y

∫ τU\{y}

0

|q(Yt)| dt < ε

and if 0 < ε < 1 then exp(−ε) � Eu
y eq(ζ) � (1− ε)−1.

Proof. Let x, y be in D, x �= y. Applying the definition of transition proba-
bility pD

h of the process conditioned by the function h(·) = G(·, y) and using
Fubini’s Theorem we obtain

Ex
y [
∫ τU

0

|q(Yt)| dt] � Ex
y [
∫ τD

0

1U (Yt)|q(Yt)| dt]

=
∫ ∞

0

∫
U

pD
G(·,y)(t;x, u) |q(u)| du dt

= G(x, y)−1

∫ ∞

0

∫
U

pD(t;x, u) |q(u)|G(u, y) du dt

= G(x, y)−1

∫
U

G(x, u) |q(u)|G(u, y) du .

By 3G Theorem, the last integral is estimated by

C

∫
U

[Kα(x, u) + Kα(u, y)] |q(u)| du ,



50 K. Bogdan and T. Byczkowski

with C depending only on D and q. However, by the properties of Kato class,
we obtain

sup
x∈D

∫
U

Kα(x, u) |q(u)| du −→ 0 ,

as m(U) −→ 0. The last part of the lemma now follows from Khasminski’s
Lemma. ��

By the above lemma, Lemma 2.8 and Corollary 2.44, we easily obtain the
following result (compare Lemma 4.3 in [64]).

Lemma 2.18. Under the notation of Corollary 4.4 there exist constants C1

and C2 such that for every u, v ∈ B(y, δ), v �= y, with δ > 0 small enough we
have

C1 � Eu[τU = τD; eq(τD)] � C2 , C1 � Ev
y [τU\{y} = ζ; eq(ζ)] � C2 .

(2.45)

Proof. We prove the second part of (2.18). The other case is similar and is left
to the reader. Applying Lemma 2.17 with ε = 1/2, we obtain Eu

y [e|q|(τU )] � 2.
Denote the infimum in Corollary 2.16 by C. Then, in view of Jensen’s inequal-
ity, we obtain

Eu
y [eq(τU )|τU = ζ] � exp{Eu

y [
∫ τU

0

q(Yt) dt|τU = ζ]}

� exp{−Eu
y [
∫ τU

0

|q(Yt)| dt|τU = ζ]}

� exp{− 1
C

Eu
y [τU = ζ;

∫ τU

0

|q(Yt)| dt]}

� exp{− 1
C

Eu
y [
∫ τU

0

|q(Yt)| dt]} � exp{− 1
2C

} .

Before stating the next lemma, we introduce some notation. For y ∈ Rd,
|y| > 1 let

I1(y) =
∫

B(0,1)

Ad,α du

|u− y|d+α|u|d−α
, I2(y) =

∫
B(0,1)

Ad,α du

|u− y|d+α
. (2.46)

Lemma 2.19. For all y ∈ Rd such that |y| > 1 we have

I1(y) ≈ I2(y) .

Proof. Clearly, we have I1(y) � I2(y). To show a reverse inequality, de-
note A(y) = B(y/|y|, 1/2) ∩ B(0, 1) , B(y) = B(0, 1) \ A(y) and M(y)
= supu∈B(y) |y − u|−d−α , m(y) = infu∈B(y) |y − u|−d−α . It is not difficult
to see that M(y) � Cm(y). Consequently,
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∫
B(y)

du

|u− y|d+α|u|d−α
� M(y)

∫
|u|<1

du

|u|d−α
� C

ωd

α
m(y)

� C
ωd

α |B(y)|

∫
B(y)

du

|u− y|d+α
.

However, for u ∈ A(y) we have |u| > 1/2, so
∫

A(y)

du

|u− y|d+α|u|d−α
� 2d−α

∫
A(y)

du

|u− y|d+α
.

��

We define the conditional gauge as the gauge function for the conditional
process:

u(x, y) = Ex
y eq(τD\{y}) , x ∈ D , y ∈ D .

Recall the Ikeda-Watanabe formula (1.52): for a bounded domain D with the
exterior cone property the density function of the P x-distribution of YτD

is
given, for x ∈ D, by

Ad,−α

∫
D

GD(x, v)
|v − y|d+α

dv , y ∈ Dc .

The following explains the role of the conditional gauge function (compare
[62, Theorem 6.3]).

Lemma 2.20. If (D, q) is gaugeable then

V (x, y) = u(x, y)GD(x, y) , x, y ∈ D , x �= y . (2.47)

Proof. Since x �= y, by the proof of Lemma 2.12 we obtain that

V (x, ·) |q|(·)GD(·, y) <∞

on the set {(x, y) ∈ D ×D, |x− y| > δ}, for a fixed δ > 0. Applying Fubini’s
theorem,

Ex
y

∫ ζ

0

eq(t) q(Yt) dt =
∫ ∞

0

Ex
y [t < ζ; eq(t) q(Yt)] dt

= GD(x, y)−1

∫ ∞

0

Ex[t < τD; eq(t) q(Yt)GD(Yt, y)] dt

= GD(x, y)−1

∫
D

V (x,w) q(w)GD(w, y) dw .

Since

Ex
y

∫ ζ

0

eq(t) q(Yt) dt = Ex
y

∫ ζ

0

d eq(t)
dt

dt = Ex
y [eq(ζ)− 1] = u(x, y)− 1 ,

by Lemma 2.12 we obtain (2.47). ��
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The preceding lemma yields the following.

Lemma 2.21. Let D be an open regular bounded subset of R
d. Then the

gauge function u(x, y) is continuous and symmetric on D ×D, x �= y.

We thus arrive at the main conclusion of this section: Conditional Gauge
Theorem (CGT).

Theorem 2.22 (CGT). Let D be a bounded Lipschitz domain, q ∈ J α. If
(D, q) is gaugeable (i.e. Exeq(τD) < ∞) then

sup
x,y∈D

u(x, y) < ∞ ,

and, moreover, u has a symmetric continuous extension to D ×D.

Proof. The proof is carried out in several steps.
Step 1. For δ > 0 we put Dδ = {x ∈ D; d(x,Dc) > 3δ}. We choose and fix

throughout the proof δ and a Lipschitz domain U δ such that D\Dδ ⊆ U δ ⊆ D
and for all y ∈ D

sup
u∈D,u 
=y

Eu
y [
∫ τ

0

|q(Yt)| dt] < 1/2 , sup
u∈Rd

Eu[
∫ τ

0

|q(Yt)| dt] < 1/2 ,

with τ = τUδ\{y} or τ = τB(y,3δ)\{y}. By Lemma 2.8 and Lemma 2.17 we
obtain

sup
u∈D,u 
=y

Eu
y e|q|(τ) � 2 , sup

u∈Rd

Eue|q|(τ) � 2 .

We show for x, y ∈ Dδ, x �= y the following:

u(x, y) < C , where C = C(D,α, q, δ) .

Fix x, y ∈ Dδ and denote D0 = D \B(y, δ), U = B(y, 3δ) \ {y} and

T1 = τD0 , Tn = Sn−1 + τD0 ◦ θSn−1 ,

S0 = 0 , Sn = Tn + τU ◦ θTn
, n = 1, 2, ...

Put ζ = τD\{y}. Because of the second formula in Lemma 2.15, the (condi-
tional) process exits from D \ {y} first entering B(y, δ). Hence ζ = Sn, for
some n. Thus, we obtain

Ex
y eq(ζ) =

∞∑
n=1

Ex
y [Tn < ζ, Sn = ζ; eq(ζ)] . (2.48)
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For n = 1, by strong Markov property, we obtain

G(x, y)Ex
y [T1 < ζ, S1 = ζ; eq(ζ)]

= G(x, y)Ex
y [τD0 < ζ; eq(T1){τU = ζ; eq(τU )} ◦ θT1 ]

= G(x, y)Ex
y [τD0 < ζ; eq(T1)E

YT1
y [τU = ζ; eq(τU )]]

= Ex[τD0 < τD; eq(T1)G(YT1 , y)EYT1
y [τU = ζ; eq(τU )]] .

Since τD0 < τD yields YT1 ∈ B(y, δ), using Lemma 2.44 we obtain that the
last term above is equivalent to

Ex[τD0 < τD; eq(T1)G(YT1 , y)] � Ex[eq(T1)G(YT1 , y)] .

Taking into account one term of the series (2.48), we get

G(x, y)Ex
y [Tn < ζ, Sn = ζ; eq(ζ)]

= G(x, y)Ex
y [Tn < ζ; eq(Tn){τU = ζ; eq(τU )} ◦ θTn

]

= G(x, y)Ex
y [Tn < ζ; eq(Tn)E

YTn
y [τU = ζ; eq(ζ)] ]

= Ex[Tn < τD; eq(Tn)G(YTn
, y)EYTn

y [τU = ζ; eq(ζ)] ] .

Since YTn
∈ B(y, δ), whenever Tn < τD, so by Lemma 4.5 we obtain

Ex[Tn < τD; eq(Tn)G(YTn
, y)EYTn

y [τU = ζ; eq(ζ)] ]
≈ Ex[Tn < τD; eq(Tn)G(YTn

, y)]
= Ex[Sn−1 < τD; eq(Sn−1){τD0 < τD; eq(τD0)G(YτD0

, y)} ◦ θSn−1 ]

= Ex[Sn−1 < τD; eq(Sn−1)EYSn−1 [τD0 < τD; eq(τD0)G(YτD0
, y)] ]

= Ex[Sn−1 < τD; eq(Sn−1)EYSn−1 [eq(τD0)G(YτD0
, y)] ] .

Using Ikeda-Watanabe formula for D0 and Lemma 2.19, we have for z ∈ D0

Ez[eq(τD0)G(YτD0
, y)] =

∫
D0

∫
Dc

0∩D

ũ(z, v)G(w, y)
Ad,−α

|v − w|d+α
GD0(z, v) dw dv

�
∫
D0

∫
B(y,δ)̃

u(z, v)Kα(w, y)
Ad,−α

|v − w|d+α
GD0(z, v) dw dv

=
∫
D0

ũ(z, v)Ad,−α δ−d I1

(
y − v

δ

)
GD0(z, v) dv

≈
∫

D0

ũ(z, v)Ad,−α δα−d δ−α I2

(
y − v

δ

)
GD0(z, v) dv

≈ δα−d

∫
D0

∫
B(y,δ)

ũ(z, v)
Ad,−α

|v − w|d+α
GD0(z, v) dw dv

� δα−d

∫
D0

∫
Dc

0

ũ(z, v)
Ad,−α

|v − w|d+α
GD0(z, v) dw dv

= δα−d Ezeq(τD0) ≈ δα−d Ezeq(τD) ≈ δα−d ;
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by gaugeability. Here ũ(z, v) = Ẽz
veq(τD0\{v}) is the conditional gauge of the

set D0.
If Tn−1 < τD, for n � 2, then YTn−1 ∈ B(y, δ) hence by (4) and Lemma

4.5 we obtain

G(x, y)Ex
y [Tn < ζ, Sn = ζ; eq(ζ)] � Cδα−dEx[Sn−1 < τD; eq(Sn−1)]

= Cδα−dEx[Tn−1 < τD; eq(Tn−1){τU < τD; eq(τU )} ◦ θTn−1 ]

= Cδα−dEx[Tn−1 < τD; eq(Tn−1)EYTn−1 [τU < τD; eq(τU )] ]
� 2Cδα−dEx[Tn−1 < τD; eq(Tn−1)]

≈ 2Cδα−dEx[Tn−1 < τD; eq(Tn−1)EYTn−1 [τU = τD; eq(τU )] ]
= 2Cδα−dEx[Tn−1 < τD, Sn−1 = τD; eq(τD)] .

Thus

G(x, y)Ex
y eq(ζ) = G(x, y)

∞∑
n=1

Ex
y [Tn < ζ, Sn = ζ; eq(ζ)]

� Cδα−d (1 +
∞∑

n=2

Ex[Tn−1 < τD, Sn−1 = τD; eq(τD)])

� Cδα−d (1 + Exeq(τD)) .

Recall that x, y satisfy the conditions d(x,Dc) > 3δ, d(y,Dc) > 3δ and
|x− y| � diam(D) < ∞. We obtain (compare [62], Lemma 6.7)

G(x, y) � C ′|x− y|α−d � C ′ (diam(D))α−d ,

with C ′ = C ′(D,α, q, δ). This clearly ends the proof of Step 1.
Step 2. In this step we remove the condition d(x,Dc) > 3δ imposed on

x ∈ D in (5).
To do this, assume that y ∈ Dδ but d(x,Dc) � 3δ. Let U δ be as in Step 1.

Denote U = U δ \ {y}. Then we have

u(x, y) = Ex
y [τU = ζ; eq(τU )] + Ex

y [τU < ζ; eq(τU )u(YτU
, y)]

� Ex
y e|q|(τU ) (1 + sup

w∈Dδ,w 
=y
u(w, y)) .

By Step 1 and properties of U δ, we obtain the conclusion.
Step 3. In this step we apply the symmetry of the function u(x, y) in

x , y ∈ D to finish the proof of the boundedness of u.
Observe that the symmetry of u along with Step 2 settle the case when

x ∈ Dδ and y ∈ Dc
δ. It remains only the case when x �= y, x, y ∈ Dc

δ.
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To resolve this case, we proceed exactly as in Step 2 to obtain

u(x, y) = Ex
y [τU = ζ; eq(τU )] + Ex

y [τU < ζ; eq(τU )u(YτU
, y)] .

If τU < ζ then d(YτU
,Dc) > 3δ which reduces the proof to the case x ∈

Dδ, y ∈ Dc
δ. By Step 2 and symmetry of u, we obtain the conclusion. This

completes the proof of the theorem. ��

Concluding remarks. We like to note that in the proof of CGT for
Δ ([62]) one first considers conditioning by the boundary (Martin kernel).
The boundedness of the conditional gauge for interior points of the domain
is then obtained as an easy corollary by considering the further evolution
of the Brownian motion till it hits the boundary. For Δα/2 (0 < α < 2),
due to the jumps of the process, the more important is the boundedness
of the conditional gauge in the interior of D (conditioning by the Green
function), and it cannot be obtained easily from the boundary behavior of
the conditional gauge. Instead, we obtain the boundedness of the conditional
gauge on the boundary as an easy corollary by approximation from within
the domain.

We should also observe that the recent advances in the understanding of
the role of the 3G Theorem allow for analytic proofs of CGT in this and
other settings, by using the perturbation series. We refer the reader to [85] for
details, and to [84] for the general perspective on the role of BHP in proving
3G. Such an approach has the advantage of being more explicit, algebraic,
and discrete, paralleling the definition of the exponential function in terms
of the power series, rather than differential equations. On the other hand,
the probabilistic setting allows for intrinsic interpretations and verbalization
of the proofs in terms of mass and trajectories of stochastic processes. The
authors may only wonder which of these two approaches is more the reality,
and which is more the language.

We want to conclude our discussion by mentioning a few directions of
further research. First, it seems important to obtain an approximate factor-
ization of the Green function for general (non-Lipschitz) domains, by using
[38]. Second, it is of interest to study the asymptotics of the Martin kernel
for narrow cones, and use the setup of [5] to complete the results of [111].
Third, it is of paramount importance to give sharp estimates for the transi-
tion density of the killed process. Fourth, it seems important to generalize the
results discussed above to other stable Lévy processes ([40]), to more general
jump type Markov processes, and to more general additive perturbations of
their generators ([36, 52, 102, 82, 83]).
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