Chapter 2

Knowledge Management in Software
Architecture: State of the Art

Rik Farenhorst and Remco C. de Boer

Abstract Architectural knowledge has played a role in discussions on design, reuse,
and evolution for over a decade. Over the past few years, the term has significantly
increased in popularity and attempts are being made to properly define what con-
stitutes ‘architectural knowledge’. In this chapter, we discuss the state-of-the-art
in architectural knowledge management. We describe four main views on archi-
tectural knowledge based on the results of a systematic literature review. Based
on software architecture and knowledge management theory we define four main
categories of architectural knowledge, and discuss four distinct philosophies on
managing architectural knowledge, which have their origin in the aforementioned
views. Whereas traditionally tools, methods, and methodologies for architecture
knowledge management were confined to a single philosophy, a trend can be ob-
served that state-of-the-art approaches take a more holistic stance and integrate
different philosophies in a single architecture knowledge management approach.

2.1 Introduction

Over the past few years, the concept of ‘architectural knowledge’ has become more
prominent in literature and attempts are being made to arrive at a proper defini-
tion for this concept. In this chapter we present the state-of-the-art in architecture
knowledge management. To this end, we look at what precisely entails architectural
knowledge and what predominant philosophies exist for managing such knowledge.

In answer to the question ‘what is architectural knowledge?’, in Sect. 2.2 we de-
scribe four main views on architectural knowledge that emerged from a systematic
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literature review, and explore their commonalities and differences. Using two or-
thogonal architectural knowledge dimensions, we define four categories of archi-
tectural knowledge. The potential knowledge conversions between these categories,
which we describe in Sect. 2.3, together form a descriptive framework with which
different architecture knowledge management philosophies can be typified. This
framework shows that the differences between the four views on architectural
knowledge are very much related to the different philosophies they are based on.

Although there exist several single-philosophy approaches that have both their
origin and scope on only one of the main philosophies, in recent years a shift towards
more overarching approaches can be observed. Four of such trends for architecture
knowledge management are discussed in Sect. 2.4.

2.2 What Is ‘Architectural Knowledge’?

To be able to understand what architectural knowledge entails, we have conducted
a systematic literature review in which we explored the ‘roots’ architectural knowl-
edge has in different software architecture communities. Details on the protocol
followed in this systematic literature review can be found in Sect. 2.5. The review
revealed four primary views on architectural knowledge. In Sect.2.2.1 we elabo-
rate upon these views, and in Sect.2.2.2 we formulate a theory on architectural
knowledge by looking at the commonalities and differences between these views.

2.2.1 Different Views on Architectural Knowledge

Architectural knowledge is related to such various topics as architecture evolu-
tion, service oriented architectures, product line engineering, enterprise architec-
ture, and program understanding, to name but a few. In the literature, however,
there are four main views on the use and importance of architectural knowledge.
Those four views — pattern-centric, dynamism-centric, requirements-centric, and
decision-centric — are introduced in this section.

2.2.1.1 Pattern-Centric View

In the mid-nineties, patterns became popular as a way to capture and reuse design
knowledge. People were disappointed by the lack of ability of (object-oriented)
frameworks to capture the knowledge necessary to know when and how to apply
those frameworks. Inspired by the work of Christopher Alexander on cataloging
patterns used in civil architecture, software engineers started to document proven
solutions to recurring problems.
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Initially, patterns focused mainly on object oriented design and reuse; the canon-
ical work in this area is the book by the ‘Gang of Four’ [130]. The aim was to let
those design patterns capture expert and design knowledge, necessary to know when
and how to reuse design and code. Soon, however, the patterns community extended
its horizon beyond object-oriented design. Nowadays, patterns exist in many areas,
including patterns for analysis (e.g., [125]), architectural design (e.g., [128, 64]),
and the development process (e.g., [82, 81]).

Patterns in software development serve two purposes. Patterns are reusable so-
lutions that can be applied to recurring problems. They also form a vocabulary that
provides a common frame of reference, which eases sharing architectural knowl-
edge between developers. Although patterns are usually documented according to
certain templates, there is not a standard template used for all patterns. The way in
which patterns are codified make them very suitable for human consumption, but
less so for automated tools.

2.2.1.2 Dynamism-Centric View

A more formal approach to architectural knowledge can be found in discussions on
dynamic software architectures. Systems that exhibit such dynamism can dynam-
ically adapt their architecture during runtime, and for example perform upgrades
without the need for manual intervention or shutting down. Such systems must be
able to self-reflect and ‘reason over the space of architectural knowledge’ [132],
which invariably means that — unlike patterns — this architectural knowledge must
be codified for consumption by non-human agents.

As the software itself must understand the architectural knowledge, architecture-
based adaptation has to rely on rather formal ways of codification. A 2004 survey
by Bradbury et al. [50] reveals that almost all formal specification approaches for
dynamic software architectures are based on graph representations of the architec-
tural structure. Purely graph-based approaches use explicit graph representations
of components and connectors. In those approaches, architectural reconfiguration
is expressed with graph rewriting rules. Other approaches, which use implicit
graph representations, rely mainly on process algebra or logic to express dynamic
reconfiguration of the architecture.

A particular family of formal languages for representing architectures is formed
by so-called ‘architecture description languages’ (ADLs). Although not all ADLs
are suitable for use in run-time dynamic systems, all ADLs are based on the same
component-connector graph-like representation of architectures (cf. [224]).

2.2.1.3 Requirements-Centric View
The architecture is, ultimately, rooted in requirements. Therefore, architectural

knowledge plays a role in enabling traceability in the transition from requirements to
architecture. But there is an inverse relation too, namely the fact that ‘stakeholders
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are quite often not able to specify innovative requirements in the required detail
without having some knowledge about the intended solution’ [254]. Hence, in or-
der to specify sufficiently detailed requirements, one needs knowledge about about
the (possible) solutions, which means that requirements and architecture need to
be co-developed. This is a subtle, but important difference: the transition-view is
a bit older and denotes the believe that problem is followed by solution, whereas
the more recent co-development view emphasizes that both need to be considered
concurrently.

The relation between requirements and architecture has been a popular subject
of discourse since the early 2000s. Although the related STRAW workshop series
is no longer organized, many researchers still focus on bridging the gap between
requirements and architecture. A 2006 survey by Galster et al. [129] identified and
classified the methodologies in this area, including Jackson’s problem frames (later
extended to ‘architectural frames’ [262]), goal-oriented requirements engineering,
and the twin peaks model for weaving architecture and requirements [235].

2.2.1.4 Decision-Centric View

For many years, software architecture has mainly been regarded as the high-level
structure of components and connectors. Many architectural description frame-
works, such as the IEEE-1471 standard [155] therefore have a particular focus on
documenting the end result of the architecting process.

Nowadays, the view on architecture seems to be shifting from the end result
to the rationale behind that end result. More and more researchers agree that one
should consider not only the resulting architecture itself, but also the design deci-
sions and related knowledge that represent the reasoning behind this result. All such
architectural knowledge needs to be managed to guide system evolution and prevent
knowledge vaporization [48].

The treatment of design decisions as first-class entities enables the consideration
of a wide range of concerns and issues, including pure technical issues, but also
business, political and social ones. Architects need to balance all these concerns in
their decision making. To justify the architectural design to other stakeholders, com-
munication of the architectural design decisions plays a key role. In that sense, the
decision-centric view is very much related to the (broader) field of design rationale.

2.2.2 So, What Is Architectural Knowledge?

If there’s anything clear from the four views on architectural knowledge, it must be
that there is not a single encompassing definition of what this knowledge entails.
A 2008 survey of definitions of architectural knowledge revealed that most studies
circumstantially define architectural knowledge. Those studies that do give a di-
rect definition are of recent date, and all of them have roots in the decision-centric
view [43].
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The apparent importance of the decision-centric view in discussing and defin-
ing architectural knowledge may be explained when we look at the links between
this view and the other views; decisions appear to be the linking pin between the
different views.

The relation between patterns and decisions is discussed by Harrison et al. Their
conclusion is that the two are complementary concepts, and that ‘[u]sing a pattern in
system design is, in fact, selecting one of the alternative solutions and thus making
the decisions associated with the pattern in the target systems specific context’ [144].
Ran and Kuusela proposed a hierarchical ordering of design patterns in what they
call a ‘design decision tree’ [261].

The relation between design decisions and requirements can be approached from
two directions. Bosch conceptually divides an architectural design decision into a
‘solution part’ and a ‘requirements part’ [48]. The requirements part represents the
subset of the system’s requirements to which the solution part provides a solution.
Van Lamsweerde, on the other hand, argues that for alternative goal refinements and
assignments, ‘decisions have to be made which in the end will produce different
architectures’ [199].

Formal graph-based architecture representations are especially suitable for au-
tomated reasoning. In other words, those representations enable automated agents
either take design decisions themselves [50], or to inform human architects about
potential problems and pending decisions [267].

Decisions may indeed be an umbrella concept that unify parts of those different
views on architectural knowledge, because they closely relate to various manifesta-
tions of architectural knowledge concepts. Of course, there are differences between
the views too: patterns are individual solution fragments, formal representations fo-
cus on the end result only, and requirements engineering is more occupied with
problem analysis than solution exploration. If we want to better compare the dif-
ferent manifestations of architectural knowledge, it helps to distinguish between
different types of architectural knowledge. Two distinctions are particularly use-
ful: tacit vs. explicit knowledge, and application-generic vs. application-specific
architectural knowledge.

Nonaka and Takeuchi draw the distinction between tacit and explicit knowl-
edge [234] (see also Chap. 1). This distinction is applicable to knowledge in general,
and its application to architectural knowledge allows us to distinguish between the
(tacit) knowledge that an architect and other stakeholders built up from experi-
ence and expertise, and the (explicit) architectural knowledge that is produced and
codified — for example in artifacts such as architecture descriptions.

The distinction between application-generic and application-specific architec-
tural knowledge has been proposed by Lago and Avgeriou [195]. This distinction,
which is not necessarily applicable to other knowledge than ‘architectural’ knowl-
edge, allows us to distinguish between (application-generic) knowledge that is
“a form of library knowledge” that “can be applied in several applications inde-
pendently of the domain” and (application-specific) knowledge that involves “all
the decisions that were taken during the architecting process of a particular sys-
tem and the architectural solutions that implemented the decisions”. In summary,
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Application-specific

application-generic knowledge is all knowledge that is independent of the applica-
tion domain, application-specific knowledge is all knowledge related to a particular

system.

Since the two distinctions are orthogonal, a combination of the two results in
four main categories of architectural knowledge, which are depicted in Fig. 2.1. That
figure also provides examples of the type of architectural knowledge that fits each

of the four categories.

e Application-generic tacit architectural knowledge includes the design knowledge
an architect gained from experience, such as architectural concepts, methodolo-

gies, and internalized solutions.

e Application-specific tacit architectural knowledge concerns contextual domain
knowledge regarding forces on the eventual architectural solution; it includes
business goals, stakeholder concerns, and the application context in general.

e Application-generic explicit knowledge is design knowledge that has been made
explicit in discussions, books, standards, and other types of communication. It in-
cludes reusable solutions such as patterns, styles and tactics, but also architecture
description languages, reference architectures, and process models.
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e Application-specific explicit architectural knowledge is probably the most tan-
gible type of architectural knowledge. It includes all externalized knowledge
of a particular system, such as architectural views and models, architecturally
significant requirements, and codified design decisions and their rationale.

2.3 Philosophies of Architecture Knowledge Management

Knowledge from each of the four architectural knowledge categories can be con-
verted to knowledge in another (or even in the same) category. This conversion
lies at the basis of different architecture knowledge management philosophies.
For some, architecture knowledge management may be mainly intended to sup-
port the transition from application-generic to application-specific knowledge. For
others, the interplay between tacit and explicit knowledge may be the essence of
architecture knowledge management.

Nonaka and Takeuchi defined four modes of conversion between tacit and ex-
plicit knowledge: socialization (tacit to tacit), externalisation (tacit to explicit), inter-
nalisation (explicit to tacit), and combination (explicit to explicit; cf. Chap. 1). Based
on the distinction between application-generic and application-specific knowledge,
we can define four additional modes of conversion:

e Utilization is the conversion from application-generic to application-specific
knowledge. It is a common operation in the architecting process where back-
ground knowledge and experience are applied to the problem at hand.

e Abstraction is the conversion from application-specific to application-generic
knowledge. In this conversion, architectural knowledge is brought to a higher
level of abstraction so that it has value beyond the original application domain.

e Refinement is the conversion from application-specific to application-specific
knowledge. Here, the architectural knowledge for a particular application is
analyzed and further refined and related.

e Maturement is the conversion from application-generic to application-generic
knowledge. It signifies the development of the individual architect as well as the
architecture field as a whole; a kind of learning where new generic knowledge is
derived and becomes available for application in subsequent design problems.

In total, there are 16 architectural knowledge conversions. Each conversion is
formed by pairing one of the four conversions between tacit and explicit knowledge
with one of the four conversions between application-generic and application-
specific knowledge. Together, the 16 conversions form a descriptive framework with
which different architecture knowledge management philosophies can be typified.

We saw earlier that the four views on architectural knowledge can all be related
to decision making. At the same time, we saw that there are also obvious differ-
ences between those views. Those differences are very much related to the different
architecture knowledge management philosophies they are based on.
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The pattern-centric view, for example, is mainly geared towards the development
of a shared vocabulary of reusable, abstract solutions. As such, the development
of a shared tacit mental model is a major goal. This goal is achieved by sharing
application-generic patterns that are mined from application-specific solutions. A
second goal is the development of libraries of reusable solutions, which is made
possible by maturement of documented patterns by cataloging them. The knowl-
edge management philosophy in this view is primarily based on the following
architectural knowledge conversions, which are also visualized in Fig. 2.2:

(a) Abstraction and combination. The most obvious example of this conversion
is the process of pattern mining. Patterns are inherently abstractions. They
are mined from existing architectural solutions and described in a clear and
structured way to improve the reusability.
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(b) Utilization and combination.  One of the ways in which patterns can be reused
in new designs is by looking them up in books, catalogs, or other repositories.
Architects who wish to design a system comprised of several independent pro-
grams that work cooperatively on a common data structure could look up one of
the many books available on architectural patterns (e.g., [64]) to find out that the
‘blackboard’ pattern is just what they need. Grady Booch works on the creation
of a Handbook of software architecture, of which the primary goal is “to fill this
void in software engineering by codifying the architecture of a large collection
of interesting software-intensive systems, presenting them in a manner that ex-
poses their essential patterns and that permits comparisons across domains and
architectural styles” [47].

(c) Maturement and combination. Documented patterns may be organized in pat-
tern catalogs. These catalogs present a collection of relatively independent so-
lutions to common design problems. As more experience is gained using these
patterns, developers and authors will increasingly integrate groups of related pat-
terns to form so-called pattern languages [276]. Although each pattern has its
merits in isolation, the strength of a pattern language is that it integrates solutions
to particular problems in important technical areas. An example is provided by
Schmidt and Buschmann in the context of development of concurrent networked
applications [275]. Each design problem in this domain — including issues related
to connection management, event handling, and service access — must be resolved
coherently and consistently and this is where pattern languages are particularly
helpful.

(d) Maturement and internalisation. Experienced architects know numerous pat-
terns by heart. Such architects have no trouble discussing designs in terms of
proxies, blackboard architectures, or three-tier CORBA-based client-server ar-
chitectures. Their exposure to and experience with those patterns has led to
internalised and matured pattern knowledge. The consequent shared, tacit vo-
cabulary can be employed at will, without the need to look up individual patterns
in order to understand what the other party means.

(e) Utilization and externalisation. ~'When an architect has internalized several pat-
terns, the use of those patterns as a means for communication or design is a
combination of utilization (of the pattern) and externalisation (of the knowledge
about the pattern and its existence).

While the pattern-centric view aims to support the development of tacitly shared
application-generic architectural knowledge, the dynamism-centric view is much
more focused on explicit application-specific architectural knowledge. Although
some application-generic knowledge is utilized, the actual reasoning and reconfig-
uration uses application-specific knowledge. This architecture knowledge manage-
ment philosophy is therefore primarily based on two conversions:

(f) Refinement and combination. ~Corresponds to the formal reasoning over codi-
fied architectural solutions in terms of models that are consumable by non-human
agents. According to Bradbury et al., in a self-management system all dy-
namic architectural changes have four steps (initiation of change, selection of
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architectural transformation, implementation of reconfiguration, and assessment
of architecture after reconfiguration) which should all occur within the automated
process [50].

(g) Utilization and combination. ~ Corresponds to formally specifying the applica-
tion’s components and connectors in generic languages such as ADLs or other
graph representations. Medvidovic and Taylor propose a comparison and clas-
sification framework for ADLs, enabling the identification of key properties of
ADLSs and to show the strength and weaknesses of these languages [224]. In
their comparison, Medvidovic and Taylor point out that at one end of the spec-
trum some ADLs specifically aim to aid architects in understanding a software
system by offering a simple graphical syntax, some semantics and basic analyses
of architectural descriptions. At the other end of the spectrum, however, ADLs
provide formal syntax and semantics, powerful analysis tools, model checkers,
parsers, compilers, code synthesis tools and so on.

For the requirements-centric view, the primary goal is tracing knowledge about the
problem to knowledge about the solution. In co-development, an additional goal is
to connect knowledge about problem and solution so that a stakeholder’s image of
the problem and solution domain is refined. In this view, the primary architectural
knowledge conversions are:

(h) Refinement and socialization. Especially in co-development, architects and
stakeholders will interact to align system goals and architectural solutions. Such
interaction between ‘customer’ and ‘product developer’ is a prime example of a
situation in which tacit knowledge is shared (cf. [234]). Pohl and Sikora discuss
the need for co-development of requirements and architecture. They argue that
such co-design is only possible is there is sufficient knowledge about the (course)
solution when defining (detailed) system requirements: “instead of defining re-
quirements based on implicit assumptions about the solution, requirements and
architectural artifacts need to be developed concurrently” [235].

(i) Refinement and combination. Adding and maintaining traceability from re-
quirements to architecture is a refinement step that combines explicit knowledge
about elements from the problem and the solution space. Several techniques exist
to guide the transition from requirements engineering to software architecture. In
their 2006 survey, Galster et al. use architectural knowledge as knowledge about
(previous) architectural solutions that can be reused when encountering simi-
lar requirements in a new project. They present patterns as a useful container
for these reusable assets. Another approach for guiding the transition between
requirements and architecture is that of feature-solution graphs [56]. De Bruin
and Van Vliet use architectural knowledge as knowledge about quality concerns
(represented as features) and solution fragments at the architectural level (rep-
resented as solutions). These are modeled together as Feature-Solution graphs
in order to guide the explicit transition (or alignment) between the problem and
solution world.

(j) Refinement and externalisation. — Externalisation of application-specific tacit
knowledge — such as concerns, goals, and the like — is an important part of
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the requirements process. Externalisation of tacit knowledge (problem-related
as well as solution-related) is a precondition for maintaining traceability.

(k) Refinement and internalisation.  The interaction between architects and stake-
holders is not purely a matter of socialization. In co-development, for example,
specifications and design artifacts play a major role as well and may be an aid to
let the parties ‘re-experience’ each other’s experiences (cf. [234]). This internal-
ization of explicit application-specific architectural knowledge may consequently
lead to ‘new ideas and insights concerning both the envisioned system usage and
the architectural solution’ [254].

Finally, the essential philosophy of the decision-centric view is externalizing the ra-
tionale behind architectural solutions (i.e. ‘the why of the architecture’) that can then
be internalized and shape other people’s mental models, so as to prevent knowledge
vaporization. The architectural knowledge conversions central to this philosophy
are:

(1) Refinement and combination. ~ Corresponds to reasoning about codified archi-
tectural solutions, which need not be fully automated but may involve decision
support. One such decision support approach is introduced by Robbins et al.,
who introduce the concept of ‘critics’ [267]. Critics are active agents that support
decision-making by continuously and pessimistically analyzing partial architec-
tures. Each critic checks for the presence of certain conditions in the partial
architecture. Critics deliver knowledge to the architect about the implications
of, or alternatives to, a design decision. Often, critics simply advise the archi-
tect of potential errors or areas needing improvement in the architecture. One
could therefore see critics as an automated form of the backlog that architects
use in the architecting process to acquire and maintain overview of the prob-
lem and solution space [146]. Another approach that fits this conversion is the
Archium tool proposed by Jansen et al. which is aimed at establishing and main-
taining traceability between design decision models and the software architecture
design [163].

(m) Utilization and combination. This conversion amounts to the reuse of codi-
fied, generic knowledge (decision templates, architectural guidelines, patterns,
etc.) ‘to take decisions for a single application and thus construct application-
specific knowledge’ [195] (see Chap. 12).

(n) Internalisation and abstraction. Based on experience and expertise, an archi-
tect may quickly jump to a ‘good’ solution for a particular problem. Such a good
solution can be a combination of several finer grained design decisions. This
combination of design decisions may become so common for the architect that
the solution is no longer seen as consisting of individual decisions. It may be hard
for the architect to reconstruct why a certain solution fits a particular problem;
the architect ‘just knows’.

(o) Utilization and externalisation. When a solution has been internalized, and
the architect ‘just knows’ when to apply it, it becomes difficult to see which
other solutions are possible. Part of the decision-centric philosophy (e.g., in [56])
is therefore to reconstruct and document the constituting design decisions.
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(p) Refinement and internalisation. This ‘consumption’ of architectural knowl-
edge takes place when people want to ‘learn from it or carry out some quality
assessment’ [195].

(q) Refinement and externalisation.  The rationalization of taken architectural de-
cisions, i.e. reconstruction and explanation of the ‘why’ behind them, is a crucial
part of the decision-centric philosophy in which tacit knowledge is made explicit.
In this respect, the software architecting can apply the best practices known from
the ‘older’ and well-known field of design rationale. Regli et al. present a survey
of design rationale systems, in which they distinguish between process-oriented
and feature-oriented approaches [264]. Process-oriented design rationale systems
emphasize the design rationale as a ‘history’ of the design process, which is de-
scriptive and graph-based. A well-known example is the Issue-Based Information
System (IBIS) framework for argumentation. A feature-oriented approach starts
from the design space of an artifact, where the rules and knowledge in the specific
domain must be considered in design decision making. Often these type of design
rationale systems offer support for automated reasoning. A more recent survey
on architecture design rationale by Tang et al. provides information about how
practitioners think about, reason with, document and use design rationale [314].
It turns out that although practitioners recognize the importance of codifying de-
sign rationale, a lack of appropriate standards and tools to assist them in this
process acts as barrier to documenting design rationale. Fortunately, the field of
design rationale is working hard on developing more mature support. Recent de-
velopments have led to the creation of mature tooling such as Compendium and
SEURAT [63], and models such as AREL [316] (see also Chap. 9).

(r) Abstraction and combination. The construction of high-level structures (tem-
plates, ontologies, models) to capture and store architecture design decisions.
Various approaches to codify architectural design decisions in such as way have
been reported. Tyree and Akerman present a template to codify architectural de-
sign decisions together with their rationale and several other properties relevant
to that decision, such as the associated constraints, a timestamp, and a short de-
scription [325]. Kruchten proposes a more formal approach of codifying design
decisions by using an ontology [190] (see Chap. 3. Ran and Kuusela present work
on design decision trees [261].

2.4 State-of-the-Art in Architecture Knowledge Management

Based on the discussion of the four philosophies on architecture knowledge man-
agement and the primary architectural knowledge conversions of these philosophies,
we can identify a few single-philosophy approaches to architecture knowledge
management:

e Rationale management systems. In order to achieve refinement and externalisa-
tion of architectural knowledge, design rationale needs to be managed. Various
tools and methods have been proposed over the last decade for doing exactly this.
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e Pattern languages and catalogs. To allow for utilization and combination of ar-
chitectural knowledge architectural knowledge needs to be categorized in pattern
languages or catalogs. From these sources it can be quickly used in specific
applications. In addition it enables learning and reasoning.

e Architecture description languages. ADLs enable utilization and combination of
architectural knowledge in a formal way. Various types of ADLs exist, which
range in level of formality and purpose, the latter ranging from aiding under-
standing of software systems to enabling powerful analyses.

e Design decision codification. To support refinement and combination of archi-
tectural knowledge much effort has been put in methods, tools, and techniques
to codify architectural knowledge concepts. Design decisions are central to these
methods and tools, but also related concepts such as rationale and alternative
solutions are captured.

We saw earlier how the concept of ‘decisions’ seem to be an umbrella concept for all
views on architectural knowledge. We can now explain this better: ‘mature’ archi-
tecture knowledge management unifies conversions from all architecture knowledge
management philosophies, and is not merely limited to just one philosophy. This
concept, which we call ‘decision-in-the-large’, is related more to the architecting
process than to pure rationale management (which we could call ‘decision-in-the-
narrow’), even though codifying rationale and preventing knowledge vaporization
has been one of the prime drivers for the decision-centric philosophy. A focus on
‘decision-in-the-large’ seems driven more by architectural knowledge use cases than
by anything else, often under the concept ‘knowledge sharing’. A classification
of such use cases is presented by Lago et al. [195], which distinguishes between
architecting, sharing, assessing, and learning.

Obviously, some ‘decision-in-the-large’ approaches evolved from ‘decision-in-
the-narrow’ approaches. But the former starts to play a more prominent role in the
other philosophies, and hence the other views, too. In recent years, a shift towards
more overarching state-of-the-art approaches can be observed. Four main trends for
architecture knowledge management can be identified that mostly focus on specific
use cases for architecture knowledge management. These trends will be elaborated
upon in Sections. 2.4.1-2.4.4.

2.4.1 Sharing Architectural Knowledge

The trend of sharing architectural knowledge is focused on providing support for
management of various types of architectural knowledge (both application-generic
and application-specific). De Boer et al. propose a core model of architectural
knowledge that provides further insight in what architecting entails (e.g. how de-
sign decisions are made) and which knowledge concepts are worth focusing on in
support for architecture knowledge management [44]. This includes concepts that
have their origin in the pattern-centric, requirements-centric and decision-centric
view.
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From knowledge management literature it is known that knowledge sharing can
be achieved through codification or personalization [143]. Farenhorst et al. have
come to the conclusion that a hybrid strategy might work best. They propose a
platform for architectural knowledge sharing that combines codification techniques
(design decision repositories, document management facilities) with personalization
mechanisms (yellow pages, discussion forums) in order to enable Just-In-Time ar-
chitectural knowledge: delivery of and access to the right architectural knowledge,
to the right people, at the right time [113]; see also Chap. 8.

Another platform that allows managing different types of architectural knowl-
edge concepts is the process-based architecture knowledge management environ-
ment (PAKME) proposed by Ali Babar et al. [8]. This environment allows storing
application-generic architectural knowledge (such as general scenarios, patterns,
and quality attributes), and application-specific architecture knowledge (such as
concrete scenarios, contextualized patterns, and quality factors).

2.4.2 Aligning Architecting with Requirements Engineering

We observe a trend in architecture knowledge management literature towards align-
ing the architecting process with requirements engineering, since the two practices
seem to have much in common. Pohl et al. propose COSMOD-RE, a method for
co-designing requirements and architecture [253]. This methods supports the de-
velopment of detailed requirements based on the specified architecture and the
specified goals and scenarios. This co-design focus is fundamentally different from
the focus on traceability from requirements to architecture, a predominant focus in
the requirements-centric view.

With the transition from traceability to co-development/co-design the require-
ments engineering community appears to look beyond their own philosophy. In an
attempt to better understand the relationship of requirements and architecture, De
Boer and Van Vliet explore similarities between the two [46]. Based on their study
they argue that there is no fundamental difference between architecturally significant
requirements and architectural decisions, which also pleads for integrated meth-
ods and tools for architecture knowledge management that overarch requirements
engineering and architecting.

2.4.3 Intelligent Support for Architecting

This trend focuses on specific architecting use cases related to intelligent and/or
real-time support for architects. One of the state-of-the-art approaches focuses on
providing architects or reviewers with a reading guide when looking for specific ar-
chitectural knowledge [45]. To save time, architects use this intelligent discovery
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method to quickly get to the important knowledge while skipping less relevant
documentation.

Other intelligent support approaches focus on modeling architectural knowledge
concepts in such a way that learning and reasoning is stimulated. One exam-
ple is provided by Kruchten, who proposes an ontology of architectural design
decisions [190]. The templates he proposes allow acquiring insights in not only im-
portant properties of design decisions (e.g. the status), but also in the relationships
between design decisions (e.g. ‘enables’ or ‘conflicts with’). When proper visualiza-
tion techniques are used this information is very useful for architects in the decision
making process, for example to model the backlog [146].

2.4.4 Towards a Body of Architectural Knowledge

The last trend relates to establishing a body of architectural knowledge, to enable
both learning and reuse. Recently, several approaches for setting up such a body of
knowledge have been introduced. Lenin Babu et al. propose ArchVoc, an ontology
for software architecture [24]. Based on knowledge from major textbooks on soft-
ware architecture and by parsing parts of the web, they have constructed a software
architecture vocabulary for reuse purposes. Their ontology of software architecture
enables the architect in understanding the existing best practices and the relation-
ships between them and also provide a means to apply them to the new systems to
be developed.

The need for cataloging architectural knowledge is also expressed by Shaw and
Clements, who argue that Booch” Handbook (cf. Sect.2.3) “can provide impor-
tant exemplars, but engineers also need reference material that organizes what we
know about architecture into an accessible, operational body of knowledge” [295].
Chapter 12 gives a successful example hereof in the area of SOA infrastructure. This
body of knowledge is thus not comprised of only patterns, but also other types of
explicit application-generic architectural knowledge that can be utilized effectively.
In an attempt to further define these types of architectural knowledge, Clements
et al. have conducted empirical research to find out what set of duties, skills and
knowledge is most important for an architect [73]. Codification of this architec-
tural knowledge is perceived as “the beginnings of a road map for training and
mentoring.”

2.5 Justification

Our state-of-the-art overview on architecture knowledge management is the result
of an extensive literature review conducted based on a predefined protocol. More
details on this protocol can be found in [43]. The main phases executed are discussed
in the remainder of this section.
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In a systematic literature review of studies that define or discuss ‘architectural
knowledge’, we identified 115 such studies [43]. These 115 studies form the basis
for our discussion in this chapter. Consequently we will refer to these studies as the
set of core studies (C).

Since we are interested in the community structures that underly the topic of
architectural knowledge, we enriched our dataset with bibliographical links. We
assume the community structure can be found, or approximated, by taking into ac-
count the bibliographical references that various authors make to each others work.
Strong communities will display many intra-community references, and relatively
few references to work outside the community. There are two types of bibliographi-
cal references: references from studies in C to other studies, and references fo studies
in C from other studies. We will use B (for ‘bibliography’) to denote studies that are
referred to from studies in C, and R (for 'referring’) to denote studies that refer to
studies in C. Hence, the mapping R — C — B summarizes the enriched data set used
throughout this chapter.'

To determine B, we simply took all references listed in the 115 studies from
C. To determine R, however, we had to do a ‘reverse search’ on the studies in C,
since the information needed is not present in C itself. For construction of R, we
used the Google Scholar search engine which provides such a reverse search facility
through its ‘cited by’ feature. While constructing R and B, we also obtained results
not necessarily found in sources from the sources list identified in our systematic
review (cf. [43]). We do not see this as a limitation of our methodology. The goal of
the dataset enrichment is different from the initial identification of primary studies in
the systematic review; in the enrichment we are interested in community structures,
and the different communities need not be limited to studies published through and
indexed by the sources used for the review.

Together, B, C, and R comprise a ‘social network’ of scholarly publications and
their interconnections. We analyzed this network using the Girvan—Newman algo-
rithm [134]. The Girvan—Newman algorithm discovers communities in a graph,
based on the ‘betweenness’ of edges, i.e., the number of shortest paths that run
through an edge. The algorithm iteratively calculates the edge betweenness and re-
moves the edge with the highest betweenness value, thereby eliminating edges that
act as connections between different communities. Eventually, the algorithm results
in a fully disconnected graph of ‘communities’ that consist of a single node.

Obviously, a disconnected graph is not the strongest community structure possi-
ble. Newman defines the modularity (Q) as a measure of strength of the community
structure discovered in a network [233]. High values of O (0 < Q < 1) indicate net-
works with a strong community structure. Newman’s empirical evidence shows that
local maxima of Q correspond to reasonable community divisions, hence it is good
practice to stop the Girvan—Newman algorithm when a (local or global) maximum
Q-value has been obtained. In our case, the first local maximum of Q occurred when
the graph had been split up in 52 communities, while the global maximum occurred

! Note that B, C, and R are not completely disjoint; there are several occurrences of studies from C
referring to other studies from C. Also, publications that are referred to from one study in C may
themselves refer to other (earlier) studies from C.
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at 59 communities (Q ~ 0.7832), which is extremely high (according to Newman,
values above 0.7 are rare; typical values fall in the range 0.3 — 0.7). Because of the
data enrichment process we followed and the way the Girvan—Newman algorithm
works, each of these 59 communities consists of at least one study from C, plus zero
or more publications from either B or R.

In order to assign meaning to the 59 communities that came out of the algorithm
we examined the set of papers for each of these communities in turn, and gave
them a label that corresponded best to the papers in that community. Often, the
non-core papers in the community did help in further characterizing the community
and helped in phrasing a suitable label. When this was more difficult (for example
when the non-core papers varied too much in subject), we looked more specifically
at the core papers in that community since these actually talk about architectural
knowledge and can therefore lead to more fitting for the community name. In the
end we ended up with 59 labels for the communities, although some of those did
overlap to a certain extent with each other.

In order to find out how exactly the communities had been discovered by the
Girvan—Newman algorithm we examined the hierarchical structure of the identified
communities. The hierarchical relations capture the order in which the communities
have been identified. Based on the order of community-split-ups we could assign
names to larger-order (i.e. parent) communities as well.

According to our definition a community should consist of at least two core pa-
pers (that talk about architectural knowledge) written by different authors. Based on
this rule we further analyzed the data. We limited the number of main communities
by removing the single-core-paper ones and the ones consisting of merely papers
by the same author(s). In the end this refinement culminated into the four main
communities discussed throughout this chapter: pattern-centric, dynamism-centric,
requirements-centric, and decision-centric.

2.6 Summary

In this chapter we have analyzed the state-of-the-art in architecture knowledge
management, and have shown that the concept of ‘architectural knowledge’ is be-
coming more prominent in literature. In Sect.2.2.1 we have identified four main
views on architectural knowledge: a pattern-centric view, a dynamism-centric view,
a requirements-centric view, and a decision-centric view. The concept of ‘decision’
was found to be an umbrella concept that unifies parts of these views.

To better understand the concept of architectural knowledge in Sect.2.2.2 we
have defined four main categories (or types) of architectural knowledge based on a
distinction between tacit and explicit knowledge on the one hand, and application-
generic and application-specific architectural knowledge on the other hand. In
total 16 knowledge conversions are possible between these four types of archi-
tectural knowledge. To articulate the commonalities and differences between the
four views, in Sect. 2.3 we stated their main philosophies of architecture knowledge
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management and elaborated upon the architectural knowledge conversions that are
central for these views. The conversions were further illustrated by examples of
related work.

Based on the discussion of the main philosophies we identified four single-
philosophy approaches for architecture knowledge management: rationale manage-
ment systems, pattern languages and catalogs, architectural description languages,
and design decision codification. All these approaches have both their origin in
and scope on only one of the main philosophies. In recent years, however, a shift
towards more overarching approaches can be observed. Four main trends for archi-
tecture knowledge management can be identified that mostly focus on specific use
cases for architecture knowledge management (e.g. sharing, learning, traceability).
This state of the art in architecture knowledge management indicates a shift from
‘decision-in-the-narrow’ to ‘decision-in-the-large’.

We expect the interest in architectural knowledge to keep increasing over the
coming years. Although it is unlikely that we will see a unified view on architectural
knowledge anytime soon, the observed trends in architecture knowledge manage-
ment indicate that future developments on managing architectural knowledge may
further align the different views. We expect the trend towards ‘decision-in-the-large’
to continue, since both researchers and practitioners aim for a better understanding
of what architects do, what their knowledge needs are, and how this architectural
knowledge can best be managed in the architecting process.
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