Chapter 3
Gradient and Divergence Operators

In this chapter we construct an abstract framework for stochastic analysis
in continuous time with respect to a normal martingale (M;)cr, , using the
construction of stochastic calculus presented in Section 2. In particular we
identify some minimal properties that should be satisfied in order to connect
a gradient and a divergence operator to stochastic integration, and to apply
them to the predictable representation of random variables. Some applica-
tions, such as logarithmic Sobolev and deviation inequalities, are formulated
in this general setting. In the next chapters we will examine concrete exam-
ples of operators that can be included in this framework, in particular when
(M¢)ter, is a Brownian motion or a compensated Poisson process.

3.1 Definition and Closability

In this chapter, (M;)ier . denotes a normal martingale as considered in
Chapter 2. We let S, U, and P denote the spaces of random variables, simple
processes and simple predictable processes introduced in Definition 2.5.2, and
we note that S is dense in L?(£2) by Definition 2.5.2 and U, P are dense in
L?(0 x R,) respectively from Proposition 2.5.3.
Let now

D : L*(2,dP) — L*(£2 x Ry, dP x dt)

and
§: L2 x Ry, dP x dt) — L*(£2,dP)

be linear operators defined respectively on & and Y. We assume that the
following duality relation holds.

Assumption 3.1.1. (Duality relation) The operators D and ¢ satisfy the
relation

E[(DF,u)2r,)) = E[Fé(v)], FeS, uel. (3.1.1)
Note that D1 = 0 is equivalent to IE[§(u)] = 0, for all u € U. In the next

proposition we use the notion of closability for operators in normed linear
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114 3 Gradient and Divergence Operators

spaces, whose definition is recalled in Section 9.8 of the Appendix. The next
proposition is actually a general result on the closability of the adjoint of a
densely defined operator.

Proposition 3.1.2. The duality assumption 3.1.1 implies that D and § are
closable.

Proof. If (F,)nen converges to 0 in L2(£2) and (DF,),en converges to U €
L?(§2 x R,), the relation
E[(DF,, u)r2r,)) = E[F,0(u)], uel,

implies

| E[(U, U>L2(]R+)]|

<|E[(DE,,u)r2wr)] — E[U,u) L2 )]l + | E[(DF,, u) L2,

= [E{DFy = U,u) 2@l + [E[F6(u)]]

<|DF, - U|‘L2(Q><R+)HUHL2(Q><R+) + ||Fn||L2(Q)H(S(U)HLZ(Q)v
hence as n goes to infinity we get IE[(U, u) 2, )] =0, u € U, i.e. U = 0 since
U is dense in L?(£2 x R,). The proof of closability of § is similar: if (u,)nen

converges to 0 in L?(2 x Ry) and (§(uy,))nen converges to F € L%(£2), we
have for all G € S:

|E[FG]| < [E[(DG, up) 2] — BIFG]| + [E[(DG, un) L2
= [E[G((un) = E)l| + [ E[(DG, un) 2(02xr.)]|
S No(un) = FllL2 )Gl z2(2) + lunllz2(oxen) DGl L2 (2xry ) s
hence E[FG] =0, G € S, i.e. F =0 since S is dense in L*({2). O

From the above proposition these operators are respectively extended to their
closed domains Dom (D) and Dom (6), and for simplicity their extensions will
remain denoted by D and 4.

3.2 Clark Formula and Predictable Representation

In this section we study the connection between D, §, and the predictable
representation of random variables using stochastic integrals.

Assumption 3.2.1. (Clark formula). Every F' € § can be represented as

F:mﬂ+/mmmﬂmM@ (3.2.1)
0
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This assumption is connected to the predictable representation property
for the martingale (M;)icr,, cf. Proposition 3.2.8 and Proposition 3.2.6
below.

Definition 3.2.2. Given k > 1, let ID3 j([a,0)), a > 0, denote the comple-
tion of S under the norm

1/2

k S
IPIDs ey = Py + 3 ([ DiFPar)
i=1 a

where D}: = D;--- D, denotes the i-th iterated power of Dy, i > 1.

In other words, for any F' € D2 x([a,00)), the process (D¢ F')ig[q,00) exists in
L?(2 x [a,0)). Clearly we have Dom (D) = D2 1(]0,00)). Under the Clark
formula Assumption 3.2.1, a representation result for F' € Dy 1([a,00)) can
be stated as a consequence of the Clark formula:

Proposition 3.2.3. For allt € Ry >0 and F € Dy 1([t,00)) we have

t
E[FI7] = EIF + [ EID.FIAJM., (322)
0
and -
F = E[F|F)] +/ E[D,F|F.JdM,,  teR,. (3.2.3)
t
Proof. This is a direct consequence of (3.2.1) and Proposition 2.5.7. O

By uniqueness of the predictable representation of F' € L?({2), an expression
of the form

F=c +/ Utht
0
where ¢ € R and (u¢)¢er, is adapted and square-integrable, implies
Uy = ]E[DtFp—"t], dt x dP — a.e.

The covariance identity proved in the next lemma is a consequence of
Proposition 3.2.3 and the It6 isometry (2.5.5).
Lemma 3.2.4. For allt € Ry and F € IDy1([t,0)) we have

E(E[F|F)?] = (E[F) + B [ / <1E[DSF|fs]>2ds] (3.2.)

= E[F?] - E [/too(]E[DsFlfs])st] : (3.2.5)
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Proof. From the It6 isometry (2.5.4) and Relation 3.2.2 we have

E[(E[F|F])’] = E

(IE[F] v t E[DSFVS]dMSﬂ

(/Ot E[DSFVS]dMSﬂ

= (E[F])*+E {/Ot(lE[DSFlfs])st} , teRy,

= (E[F])’ + E

which shows (3.2.4). Next, concerning (3.2.5) we have

E[FY =&

Culory E[DsFm]dMs)Q]

—E [(E[Fm])ﬂ +E [E[Fm] /too IE[DSF|]-"S]dMS]

(/too ]E[DSF|J-'s]dMs)2

— & [@lF17)] + | [ EFA ED.FA

+E

B | [ @ED.Fr) ]
=E [(]E[F|ft])2} + B Utoo (E[D,F|F,])* ds] , teRy,

since from (2.5.7) the It6 stochastic integral has expectation 0, which shows
(3.2.5). O

The next remark applies in general to any mapping sending a random variable
to the process involved in its predictable representation with respect to a
normal martingale.

Lemma 3.2.5. The operator
F— (]E[DtFlj:t])tERJr

defined on S extends to a continuous operator from L?(£2) into L?>(£2 x Ry).
Proof. This follows from the bound

I EID.FIF 2 (oxr,) = 1Fl7200) — (B[F])?
<IFIZ2 ()

that follows from Relation (3.2.4) with ¢ = 0. O
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As a consequence of Lemma 3.2.5, the Clark formula can be extended in
Proposition 3.2.6 below as in the discrete case, cf. Proposition 1.7.2.

Proposition 3.2.6. The Clark formula
F =E[F] +/ E[D.F|F:)dMs.
0

can be extended to all F in L*(12).

Similarly, the results of Proposition 3.2.3 and Lemma 3.2.4 also extend to
F e L*(0).

The Clark representation formula naturally implies a Poincaré type
inequality.

Proposition 3.2.7. For all F' € Dom (D) we have

Var (F) < [ DF|[32(ox, )

Proof. From Lemma 3.2.4 we have

Var (F) = E[|F — E[F])?]

= E </OOO ]E[DtF|ft]th)2]

EAWWWMEW4

<m|[ EnDtFWt]dt}
L/ O

o0

< | E[E[DF]IF]] dt

[}

< / E [|D,F|?] dt
0

<E U |DtF|2dt} ,
0

hence the conclusion. O

Since the space S is dense in L?(§2) by Definition 2.5.2, the Clark for-
mula Assumption 3.2.1 implies the predictable representation property of
Definition 2.6.1 for (M;);cr, as a consequence of the next corollary.

Corollary 3.2.8. Under the Clark formula Assumption 3.2.1 the martingale
(My)ier, has the predictable representation property.

Proof. Definition 2.6.1 is satisfied because S is dense in L?({2) and the process
(E[D:F | Fi])ier, in (3.2.1) can be approximated by a sequence in P from
Proposition 2.5.3.
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Alternatively, one may use Proposition 2.6.2 and proceed as follows. Consider
a square-integrable martingale (X¢)icr, with respect to (Fy)icr, and let

us = E[Ds Xy 4+1|Fnl, n<s<n+l1, teR,.

Then (u¢)ser, is an adapted process such that uly ) € L*(2 x Ry) for all
T > 0, and the Clark formula Assumption 3.2.1 and Proposition 3.2.6 imply

X =E[Xp41 | Fi

n+1
=E [XO +/ E[D X, 11 | Fo)dM, ft}
0

t
= X0+/ E D, X1 | Fo] dM,
0
n t
= Xo +/ E[Ds X1 | Fs] dM, —|—/ E[Ds X1 | Fs) dM;
0 n
t
= X, +/ E[Dy X i1 | Fo)dM,
e
:Xn—i—/udes, n<t<n+1l, neN
where we used the Chasles relation (2.5.6), hence
t
X, = X0+/ usdM,,  teR,, (3.2.6)
0
hence from Proposition 2.6.2, (M;);er, has the predictable representation

property. (]

In particular, the Clark formula Assumption 3.2.1 and Relation (3.2.3) of
Proposition 3.2.3 imply the following proposition.

Proposition 3.2.9. For any Fr-measurable F € L*(£2) we have

E[D,F|Fr] =0, 0<T<t (3.2.7)
Proof. From from Relation (3.2.3) we have F' = E[F|Fr] if and only if

/ E[D; F|F]dM; = 0,
T

which implies E[D,F|F;], t > T, by the It6 isometry (2.5.4), hence (3.2.7)
holds as
E[D,F|Fr] = E[E[D:F|F]|Fr] = 0, t>T,

by the tower property of conditional expectations stated in Section 9.3. [
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The next assumption is a stability property for the gradient operator D.

Assumption 3.2.10. (Stability property) For all Fr-measurable F' € S,
D F is Fr-measurable for all ¢ > T.

Proposition 3.2.11. Let T' > 0. Under the stability Assumption 3.2.10, for
any Fr-measurable random variable F' € L?(§2) we have F € D7,y and

D,F=0, t>T.

Proof. Since F is Fp-measurable, D, F' is Fp-measurable, t > T, by the
stability Assumption 3.2.10, and from Proposition 3.2.9 we have

D,F =E[D,F|Fr]=0, 0<T<t.

3.3 Divergence and Stochastic Integrals

In this section we are interested in the connection between the operator §
and the stochastic integral with respect to (M;).cr, -

Proposition 3.3.1. Under the duality Assumption 3.1.1 and the Clark for-
mula Assumption 3.2.1, the operator & applied to any square-integrable
adapted process (u)ier, € L2,(2 x Ry) coincides with the stochastic in-
tegral

o(u) = / urd My, u€ L2, xRy), (3.3.1)
0

of (us)ier, with respect to (My)ier, , and the domain Dom (6) of 0 contains
L2,(2 x Ry).

Proof. Let u € P be a simple F;-predictable process. From the duality
Assumption 3.1.1 and the fact (2.5.7) that

E |:/ ’U,tht:| == 0,
0

we have:
E [F /OOO utht] = E[F|E UOOO utht} +E [(F — E[F)) /OOo utht}
- F [(F — E[F)) /OOO utht]

0 0
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r o0
LJO

_E / ]E[utDtF|}'t]dt]
LJO

L/ O

— E[(DF, u)12, )]
— E[F5(u)],

for all F' € S, hence by density of S in L?(§2) we have

(S(’LL) = / Utht
0

for all F;-predictable v € P. In the general case, from Proposition 2.5.3
we approximate u € L2 ,(£2 x Ry) by a sequence (u™),en C P of simple F-
predictable processes converging to u in L?(§2 x R ) and use the It6 isometry
(2.5.4). O

As a consequence of the proof of Proposition 3.3.1 we have the isometry
l6(u)llz2(2) = lullL2(2xr ), uwe L2y (02 xRy). (3.3.2)

We also have the following partial converse to Proposition 3.3.1.
Proposition 3.3.2. Assume that

i) (My)ier, has the predictable representation property, and
i1) the operator ¢ coincides with the stochastic integral with respect to
(My)ier, on the space L2 ,(2xRy) of square-integrable adapted processes.

Then the Clark formula Assumption 3.2.1 hold for the adjoint D of §.

Proof. For all F € Dom (D) and square-integrable adapted process u we
have:

E[(F — E[F))3(u)] = E[F5(u)
— E[(DF.u) 1, )]

0

=K / Utht/ ]E[DtF|.7:t]th:|
0 0

- E :5(u) /0 h IE[DtF|]-"t]th] :
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hence -
F—-E[F] = / E[D;F|F;|dM;,
0

since by (ii) we have
{6(u) : we L2 (2 xRy} = {/ ugdM; : u € L2,(92 x R+)} ,
0

which is dense in {F € L*(2) : E[F] =0} by (i) and Definition 2.6.1. [

3.4 Covariance Identities

Covariance identities will be useful in the proof of concentration and deviation
inequalities. The Clark formula and the Ito isometry imply the following
covariance identity, which uses the L? extension of the Clark formula, cf.
Proposition 3.2.6.

Proposition 3.4.1. For any F,G € L*(2) we have

Cov(F,G) = [/Oo E[D, F| 7] lE[DtG|J-"t]dt] . (3.4.1)
Proof. We have
Cov (F,G) = E[(F — E[F])(G — B[G])]

=E [/OOO E[D,F|F,]dM, /OOO IE[DtG|]-"t]th]

_E [/OOO E[D, F| 7] E[Dt(;m]dt] .

The identity (3.4.1) can be rewritten as

Cov(F,G) =FE _/Oo E[D,F|F,] lE[DtG|}'t]dt]
LJO

=l /O ]E[]E[DtF|]-"t]DtG|]-"t]dt]

:lE/ ]E[DtF|J-}]DtGdt],
L/ O

provided G € Dom (D).
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As is well known, if X is a real random variable and f,g are monotone
functions then f(X) and g(X) are non-negatively correlated. Lemma 3.4.2,
which is an immediate consequence of (3.4.1), provides an analog of this result

for normal martingales, replacing the ordinary derivative with the adapted
process (E[D: F|F:])ieio,1]-

Lemma 3.4.2. Let F,G € L?({2) such that

E[DtF|.7:t] . E[DtG|.7:t] >0, dt x dP — a.e.

Then F' and G are non-negatively correlated:

Cov (F,G) > 0.

If G € Dom (D), resp. F,G € Dom (D), the above condition can be re-
placed by

E[D:F|F] >0 and D,G>0,  dtxdP—ae.,

resp.
DiF >0 and DG >0, dt x dP — a.e..

Tterated versions of Lemma 3.2.4 can also be proved. Let

Ap=A{(t1,...,tn) €RY : 0< 1t <+ <ty},

and assume further that

Assumption 3.4.3. (Domain condition) For all F' € § we have

Dy, Dy, F € Dyq([tn, ), ae. (t1,...,tn) € A,.

n

We denote by Dz ;(Ax) the L? domain of D¥ i.e. the completion of S under

the norm

11D, a0 = B L]+ B UA Dy -+ Dy, F|*dty - - diy
k
Note the inclusion Dy ;(Ay) C D21 (Ag), k> 1.

Next we prove an extension of the covariance identity of [56], with a shortened
proof.
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n+1
Theorem 3.4.4. Letn €N and F,G € ﬂ Dy, (Ag). We have
k=1

Cov (F,G) = i(q)’c“]E UA

(Dy, -+ Dty F)(Dy,, - Dy, G)dty - - dtk} (3.4.2)
k=

k

1
+(-1)"E [/ D,y Dy FIE Dy, - Dy, G|Fy, ] dts - .dtnﬂ] )
JAp

Proof. By polarization we may take F' = G. For n = 0, ((3.4.2)) is a
consequence of the Clark formula. Let n > 1. Applying Lemma 3.2.4 to
Dy, --- D, F with t = ¢, and ds = dty, 41, and integrating on (¢1,...,t,) € A,

n

we obtain
E U (E[Dy, --- Dy, F|F,]) dty -- ~dtn}
Ap

=E [/ |Dy, - Dy, F|2dt; - - ~dtn}
Ap
B[ @ pr ) ],
Apt1

which concludes the proof by induction. O

The variance inequality

2n 2n—1
S (D)MIDRF 324y < Var (F) < Y (=D DFF|[72(,),
k=1 k=1
2n
for I' € ﬂ D, 1 (Ag), is a consequence of Theorem 3.4.4, and extends (2.15)
k=1

in [56]. It also recovers the Poincaré inequality Proposition 3.2.7 when n = 1.

3.5 Logarithmic Sobolev Inequalities

The logarithmic Sobolev inequalities on Gaussian space provide an infi-
nite dimensional analog of Sobolev inequalities, cf. e.g. [77]. In this section
logarithmic Sobolev inequalities for normal martingales are proved as an
application of the It6 and Clark formulas. Recall that the entropy of a suffi-
ciently integrable random variable F' > 0 is defined by

Ent [F] = E[Flog F| — E[F]logE[F].
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Proposition 3.5.1. Let F € Dom (D) be lower bounded with F > n a.s. for
some 11 > 0. We have

1_[1 [
Ent[F] < ) B {F/ (2 = 1yg,—0y)|D:F|2dt ] . (3.5.1)
0

Proof. Let us assume that F is bounded and Fpr-measurable, and let
t
Xt:]E[F|ft]:XO+/USdMS, t€R+,
0

with us = IE[DsF | ], s € R4. The change of variable formula Proposition
2.12.1 applied to f(z) = zlogx shows that

Flog F — E[F]log E[F] = f(X7) — f(Xo)

:/Tﬂxt+¢maﬂxt>
0 on

T i 1T w?
+ U(X, , byug)dt + i " ar,
/0 o7 (K- drue) 2o 'X:

with the convention 0/0 = 0, and

T
th + / itutf’(th )th
0

U(u,v) = (u+v)log(u+v) —ulogu — v(1 + logu), u,u+v > 0.
Using the inequality
¥ (u,v) < v?/u, u>0, u+wv>0,

and applying Jensen’s inequality (9.3.1) to the convex function (u,v) — v?/u
on R x (0,00) we obtain

Tjt 1 T u%
Ent [F] = E U (X, dt ) dt
nt [F] A oy i

1 T u?
E 2—1i,) [Ldt
JE|[ iy ]

IN

1 [ |DFP?
<,F /0 ]E{(ta)| }' ‘ft}dt]
—11E_1/T(2 i) | Dy F|*dt
To R, Rl '

Finally we apply the above to the approximating sequence F,, = FFAn,n € N,
and let n go to infinity. g
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If ¢ = 0,1e iy =1,t € Ry, then (M;)icr, is a Brownian motion and we
obtain the classical modified Sobolev inequality

1 1

If ¢y =1,t € Ry then i, =0, t € Ry, (M;)er, is a standard compensated
Poisson process and we obtain the modified Sobolev inequality

1
But [F) < B, [ LIDFIE )| (35.3)

More generally, the logarithmic Sobolev inequality (3.5.2) can be proved for
any gradient operator D satisfying both the derivation rule Assumption 3.6.1
below and the Clark formula Assumption 3.2.1, see Chapter 7 for another
example on the Poisson space.

3.6 Deviation Inequalities

In this section we assume that D is a gradient operator satisfying both the
Clark formula Assumption 3.2.1 and the derivation rule Assumption 3.6.1
below. Examples of such operators will be provided in the Wiener and Poisson
cases in Chapters 5 and 7.

Assumption 3.6.1. (Derivation rule) For all F,G € S we have
D(FG) = FD:G + GD\F, teRy. (3.6.1)
Note that by polynomial approximation, Relation (3.6.1) extends as
D.f(F) = f(F)D,F,  teRy, (3.6.2)

for f € CL(R).
Under the derivation rule Assumption 3.6.1 we get the following deviation
bound.

Proposition 3.6.2. Let F' € Dom (D). If | DF||2r, 1)) < C for some
C >0, then

1.2

P(F —E[F] > z) < B
(B 20 <o ( <y T

), >0, (3.6.3)

In particular we have

1

E[e*] < 0, A< .
o 2C||DF||L2(ry L= (2)

(3.6.4)
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Proof. We first consider a bounded random variable F' € Dom (D). The
general case follows by approximating F € Dom (D) by the sequence
(max(—n, min(F,n))),>1. Let

nF(t):Ep[DtF|]:t]; te [O,T]
Since F' is bounded, the derivation rule (3.6.2) shows that
DtCSF = SCSFDtF, S,t S ]R+,

hence assuming first that IE[F] = 0 we get
T
E[Fe’f] = [/ De’t. nF(u)du]
0

T
—sE leSF/ D,F - 77F(U)d’U;|
0
<sE [ DF & [nr|u]
< SE [ Inpll e wm | DF| 2w, L (2))
< SCE [eF] | DF| 2w, 1= (02))-
In the general case, letting
L(s) = Elexp(s(F — E[F]))],  s€Ry,
we obtain:

log (IE [exp (t(F — E[F]))]) :/0 IL/

/
S
0

1
= QtQCHDFHL2(R+,L°°(Q))a teRy.

E[F]) exp (¢(F — E[F]))]

ep ((F ~E[F))]  ©

(s)
(s) ds
[(F =
E[
We now have for all 2 € Ry and ¢t € [0,7]:
P(F — E[F] > 2) < o E [exp (¢(F — E[F]))]

1
S exXp (2t2C|DF|L2(R+7Loc(Q)) — t:z:) ,

which yields (3.6.3) after minimization in ¢ € [0,T]. The proof of (3.6.4) is
completed as in Proposition 1.11.3. 0
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3.7 Markovian Representation

This subsection presents a predictable representation method that can be
used to compute E[D;F|F], based on the Ité formula and the Markov
property, cf. Section 9.6 in the appendix. It can applied to Delta hedging
in mathematical finance, cf. Proposition 8.2.2 in Chapter 8, and [120]. Let
(Xt)tepo,r) be a R™-valued Markov (not necessarily time homogeneous) pro-
cess defined on §2, generating a filtration (F;);cr, and satisfying a change of
variable formula of the form

f(Xt):f(XO)+/O Lsf(Xs)dMs+/0 Usf(Xg)ds, te[0,T], (3.7.1)

where L, Us are operators defined on f € C?(R"). Let the (non homo-
geneous) semi-group (Ps¢)o<s<i<r associated to (Xi)iepo,r) be defined on
CZ(R™) functions by

Poif(Xs) = E[f(Xt) | X

with
Ps,topt,u:Ps,uv OSSStSUST

Proposition 3.7.1. For any f € CZ(R"), the process (Pr,rf(X¢))eepo, s
an Fy-martingale.

Proof. By the tower property of conditional expectations, cf. Section 9.3, we
have

E[Pt,Tf(Xt) | -7:5] = E[E[f(XT) | ft] | ]:s]
= E[f(X7) | 4]
= S,Tf(XS)a

0<s<t<T. 0

Next we use above the framework with application to the Clark formula.
When (¢):e[o,7 is random the probabilistic interpretation, of D is unknown
in general, nevertheless it is possible to explicitly compute the predictable
representation of f(Xr) using (3.7.1) and the Markov property.

Lemma 3.7.2. Let f € CZ(R"). We have

E[D:f(X1) | Ft] = (Le(Per f))(Xe), te[0,T). (3.7.2)

Proof. We apply the change of variable formula (3.7.1) to t — P, f(X:) =
E[f(Xr) | Fi], since P 1 f is C2. Using the fact that the finite variation term
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vanishes since (P 7 f(X¢))ie[o,r) is a martingale, (see e.g. Corollary 1, p. 64
of [119]), we obtain:

Porf(X,) = Porf(Xo) + / (Lo(Por f))(X)dM,, € [0,T],

with Py 1 f(Xo) = E[f(Xr)]. Letting ¢t = T', we obtain (3.7.2) by uniqueness
of the representation (4.2.2) applied to F = f(Xr). O

In practice we can use Proposition 3.2.6 to extend (IE[D.f(X7) | F])tefo,1
to a less regular function f: R™ — R.
As an example, if ¢, is written as ¢ = (¢, My), and

dSt = O'(t, St)th + /L(t, St)dt,
we can apply Proposition 2.12.2, with (X¢)icjo,7] = ((St, Mt))iejo, 1) and

Lif(Sy, My) = iyo(t, Sp)01 f(St, My) + 1,05 f (Sy, My)
Jt
ot M) (F(Si + @(t, My)o(t, Se), My + o(t, My)) — f(Se, My)),

where j; = 1y4,20}, t € Ry, since the eventual jump of (M;).epo,) at time ¢
is @(t, My). Here, 01, resp. Oa, denotes the partial derivative with respect to
the first, resp. second, variable. Hence

]E[th(ST7 MT) | ft] = ’itO’(t, St)(((91P,57T‘]‘;)(,S't7 Mt) + it(aQPt,Tf)(St, Mt)
+w(t?tMt) (P f)(Se + @(t, My)o(t, Sy), My + o(t, My))
Jt

7(,0(t,Mt) (Py 1 f)(Se, My).

When (¢¢)icr, and o(t,z) = oy, are deterministic functions of time and
u(t,x) = 0, ¢ € Ry, the semi-group P, can be explicitly computed as

follows.
In this case, from (2.10.4), the martingale (M;);cr, can be represented as

dM; = i;dBy; + ¢ (dNy — \ydt), te Ry, My =0,

with A, = j;/¢7, t € Ry, where (Ny)icr, is an independent Poisson process
with intensity ¢, ¢ € Ry. Let

T
Ft(T):/ 1(4.—0y0-ds, 0<t<T,
t
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denote the variance of ftT 150sdBg = ftT 1{p,—0y0sdB;, 0 <t < T, and let

T
Ft(T):/ Neds, 0<t<T,
t

denote the intensity parameter of the Poisson random variable Np — N;.

Proposition 3.7.3. We have for f € Cp(R)

Pt Tf(IL') = 1 i eiFt(T) /oo eftg/2/ >\t . ')\t
" V2 ks e *

k=0

k
f (:(:e_ FtéT)J,-\/Fr,(T)to—ftT PsAsosds H(l + 0ti¢ti)> dty - - - dtpdto.

i=1

Proof. We have Py rf(z) = E[f(S7)|St = z] = E[f(S{7)], and

Pyrf(z) =exp(—1(T)) Z

k=0

) (Ft;T!))kE [£(S22)| Ve = Ny = &]

k € N. It can be shown (see e.g. Proposition 6.1.8 below) that the time

changed process (N roi(s) Nt) is a standard Poisson process with
t seRy

jump times (Tk)k21 = (It(Tk+nN,))k>1. Hence from Proposition 2.3.7, condi-
tionally to { Ny — N¢ = k}, the jump times (771, ...,T%) have the law

k!
(T —t)k Lioct; <octy<T—tydts -+ - diy.

over [0,T — t]*. Consequently, conditionally to {Nz — N; = k}, the k first
jump times (71, ...,Tx) of (Ns)sep, 1) have the distribution

k!
(Ft(T))k 1{t<t1<---<tk<T})\t1 s A diy - dity.

We then use the identity in law between S7. and

T Nt
SCXt.,T exp (/ d)s)\s(l + ¢51/)5)0'st> H (1 + o7, d)Tk);
t

k=1+N,

where X; 7 has same distribution as

exp (W\/Ft(T) — I\(T) /2) ,
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and W a standard Gaussian random variable, independent of (Nt)tG[O,T]a
which holds because (Bt):e[o, 1) is a standard Brownian motion, independent
of (Nt)ielo,1)- O

3.8 Notes and References

Several examples of gradient operators satisfying the hypotheses of this chap-
ter will be provided in Chapters 4, 5, 6, and 7, on the Wiener and Poisson
space and also on Riemannian path space. The It6 formula has been used for
the proof of logarithmic Sobolev inequalities in [4], [6], [151] for the Poisson
process, and in [22] on Riemannian path space, and Proposition 3.5.1 can be
found in [111]. The probabilistic interpretations of D as a derivation opera-
tor and as a finite difference operator has been studied in [116] and will be
presented in more detail in the sequel. The extension of the Clark formula
presented in Proposition 3.2.6 is related to the approach of [88] of [142]. The
covariance identity (3.4.1) can be found in Proposition 2.1 of [59]. See also [7]
for a unified presentation of the Malliavin calculus based on the Fock space.
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