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Summary. We are concerned with structural optimization problems where the state variables
are supposed to satisfy a PDE or a system of PDEs and the design variables are subject to
inequality constraints. Within a primal-dual setting, we suggest an all-at-once approach based
on interior-point methods. Coupling the inequality constraints by logarithmic barrier functions
involving a barrier parameter and the PDE by Lagrange multipliers, the KKT conditions for
the resulting saddle point problem represent a parameter dependent nonlinear system. The ef-
ficient numerical solution relies on multilevel path-following predictor-corrector techniques
with an adaptive choice of the continuation parameter where the discretization is taken care of
by finite elements with respect to nested hierarchies of simplicial triangulations of the com-
putational domain. In particular, the predictor is a nested iteration type tangent continuation,
whereas the corrector is a multilevel inexact Newton method featuring transforming null space
iterations. As an application in life sciences, we consider the optimal shape design of capillary
barriers in microfluidic biochips.

1 Introduction

The optimization of structures and systems has a long history that can be traced back
to the work of Bernoulli, Euler, Lagrange, and Saint-Venant. It became its own disci-
pline during the second half of the last century when the rapid progress in electronic
data processing required the development and implementation of highly efficient and
robust algorithmic optimization tools. Nowadays, shape optimization is an indispens-
able tool for many design issues in aero- and fluid dynamics, electromagnetics, and
structural mechanics. The spectrum of analytical and numerical methods is well doc-
umented by numerous monographs on the subject that have been published during
the past twenty-five years (cf., e.g., Allaire [1], Bendsøe [4], Delfour and Zolesio
[7], Haslinger and Mäkinen [17], Mohammadi and Pironneau [23], Sokolowski and
Zolesio [26]).

In this paper, we will focus on an all-at-once approach by means of primal-dual
interior-point methods. Using classical barrier functions, this results in a parameter
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dependent nonlinear system which is solved by a multilevel predictor-corrector con-
tinuation strategy with an adaptive choice of the continuation steplength along the
central path. The predictor relies on a nested iteration type continuation, whereas
the corrector features an inexact Newton method involving transforming null space
iterations as inner iterations. As a multiscale multiphysics application, we consider
the optimal design of capillary barriers in surface acoustic wave driven microfluidic
biochips used for hybridization and sequencing in genomics.

2 Optimal Design of Processes and Systems

A typical shape optimization problem associated with a time-independent PDE or
a system thereof as the underlying state equation amounts to the minimization of
a shape functional J over bounded domains Ω in Euclidean space R

d . The state
function u is assumed to satisfy a boundary value problem as described by means of
a partial differential operator L, and there may be further equality and/or inequality
constraints on the domain described by some function h.

inf
Ω

J(u,Ω), J(u,Ω) :=
∫

Ω
j(x,u(x)) dx, (1a)

subject to Lu = f in Ω , u = g on Γ , h(Ω)≥ 0. (1b)

The inherent difficulty that the minimization is over a certain class of domains instead
of a set of functions in an appropriate function space can be circumvented by the so-
called shape calculus as developed by Céa, Delfour, Zolésio and others (cf., e.g.,
Delfour and Zolesio [7]). Denoting by Jr(Ω) := J(u(Ω),Ω) the reduced functional,
the necessary optimality conditions can be stated by means of the shape gradient

∇Jr(Ω)[V ] = lim
t→0+

Jr(Ωt(V ))− Jr(Ω)
t

= 〈∇Jr(Ω),V 〉 ,

defined by means of smooth velocity fields V and a family of transformations of Ω
under V such that Ωt(V ) = Tt(Ω),Tt (x) = x(t),x′(t) = V (x(t)). The shape gradient
is a distributional derivative admitting the boundary integral representation

〈∇Jr(Ω),V 〉=
∫

Γ
〈V,ν〉

{

j(x,g)+
∂ p
∂ν

∂ (g−u)
∂ν

}

ds,

where p stands for the adjoint state satisfying the adjoint state equation L∗p =
∂ j/∂u(·,u). Sufficient optimality conditions invoke the shape Hessian which can
also be given a boundary integral representation admitting an interpretation as a
pseudo differential operator of order 1 (cf., e.g., Eppler and Harbrecht [10]). The
analytical investigation of shape Hessians and the development and implementation
of numerical tools based thereon is subject to intensive ongoing research. The nu-
merical methods developed so far require some smoothness of the domain and suffer
from a lack of stability otherwise.
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Since interior-point methods essentially rely on second order information, in the
sequel we will use a more classical approach based on a parametrization of the do-
main by a finite number of design variables. The boundaryΓ is represented by a com-
posite Bézier curve using a certain number of Bézier control points α ∈ R

m,m ∈ N,
which serve as design variables. The equality and/or inequality constraints are ex-
pressed by means of the design variables. For the finite element approximation of
(1a)–(1b) we choose α̂ as a reference design and refer to Ω̂ := Ω(α̂) as the as-
sociated reference domain. Then, the actual domain Ω(α) can be obtained from the
reference domain Ω̂ by means of a mappingΩ(α) =Φ(Ω̂ ;α). The advantage of us-
ing the reference domain Ω̂ is that finite element approximations can be performed
with respect to that fixed domain without being forced to remesh for every new set
of the design variables. The finite element discretization of (1a)–(1b) with respect
to a simplicial triangulation Th(Ω) of the computational domain Ω leads to a finite
dimensional optimization problem

inf
uh,α

Jh(uh,α), (2a)

subject to Lhuh = bh, h(α)≥ 0, (2b)

where uh ∈ R
n is the finite element approximation of the state u, Jh(uh,α) the dis-

cretized objective functional and Lhuh = bh the algebraic system arising from the
finite element discretization of the PDE.

The inequality constrained nonlinear programming problem (2a)–(2b) will be
numerically solved by adaptive multilevel path-following primal-dual interior-point
methods as described in the following subsections. For ease of notation, in the sequel
we will drop the subindex h.

3 Adaptive Multilevel Primal-Dual Interior Point Methods

We couple the inequality constraints in (1b) by logarithmic barrier functions with
a barrier parameter μ = 1

τ > 0, τ → ∞, and the equality constraint by a Lagrange
multiplier λ ∈R

n. This leads to the saddle point problem

inf
u,α

sup
λ

L(τ)(u,λ ,α) , (3)

where L(τ) stands for the Lagrangian

L(τ)(u,λ ,α) = B(τ)(u,α)+ 〈λ ,Lu−b〉. (4)

Here, B(τ)(u,α) is the so-called barrier function as given by

B(τ)(u,α) := J(u,α)− 1
τ

ln(h(α)) . (5)

and 〈·, ·〉 stands for the Euclidean inner product on R
n (for details cf., e.g., Wright

[34]). The central path τ �−→ x(τ) := (u(τ),λ (τ),α(τ))T is given as the solution of
the nonlinear system



18 Harbir Antil et al.

F(x(τ),τ) =

⎛

⎜

⎝

L
(τ)
u (u,λ ,α)

L
(τ)
λ (u,λ ,α)

L
(τ)
α (u,λ ,α)

⎞

⎟

⎠
= 0 , (6)

where the subindices refer to the derivatives of the Lagrangian with respect to the pri-
mal, the dual, and the design variables. The choice of the barrier parameter strongly
influences the performance of the interior-point method. There are static strategies
with the Fiacco-McCormick approach as the most prominent one (cf. Fiacco and
McCormick [11]), where the barrier parameter is fixed until an approximate so-
lution has been obtained, and there is a variety of dynamic update strategies (cf.
Armand et al. [3], El-Bakry et al. [9], Gay et al. [14], Nocedal et al. [24], Tits et al.
[27], Ulbrich et al. [28], Vanderbei and Shanno [29]). Convergence properties of the
Fiacco-McCormick approach have been studied in Byrd et al. [5] and Wächter and
Biegler [30], whereas a convergence analysis of dynamic update strategies has been
addressed in Armand et al. [3], El-Bakry et al. [9], Nocedal et al. [24], Ulbrich
et al. [28].

We consider the solution of (6) by an adaptive continuation method based on the
affine invariant convergence theory of Newton-type methods (see, e.g., Deuflhard
[8], Weiser and Deuflhard [31]).

The adaptive continuation method is a predictor-corrector method with an adap-
tively determined continuation step size in the predictor and Newton’s method as a
corrector. It relies on the affine invariant convergence theory of Newton and Newton-
type methods and ensures that the iterates stay within a neighborhood (contraction
tube) of the central path so that convergence to a local minimum of the original min-
imization problem can be achieved (cf. Fig. 1).

x(τ0)

Barrier Path

x∗

Δτ
(0)
k δx(τk)

x̃(τk)

Fig. 1. Predictor step of the adaptive continuation method.

Predictor Step

The predictor step relies on tangent continuation along the trajectory of the Davi-
denko equation

Fx(x(τ),τ)x′(τ) =−Fτ(x(τ),τ) (7)
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and amounts to the implementation of an explicit Euler step: Given some approxi-

mation x̃(τk) at τk > 0, compute x̃( j0)(τk+1), where τk+1 = τk +Δτ( j)
k , according to

Fx(x̃(τk),τk)δx(τk) =−Fτ(x̃(τk),τk) , (8a)

x̃( j0)(τk+1) = x̃(τk)+Δτ( j)
k δx(τk) , (8b)

starting with j = 0 ( j ≥ 1 only if required by the correction step (see below)). We

use Δτ(0)
0 = Δτ0 for some given initial step size Δτ0, whereas for k≥ 1 the predicted

step size Δτ(0)
k is chosen by

Δτ(0)
k :=

( ‖Δx( j0)(τk)‖
‖x̃(τk)− x̃( j0)(τk)‖

√
2−1

2Θ(τk)

)1/2

Δτk−1 , (9)

where Δτk−1 is the computed continuation step size, Δx( j0)(τk) is the first Newton
correction (see below), and Θ(τk) < 1 is the contraction factor associated with a
successful previous continuation step.

Corrector Step

As a corrector, we use Newton’s method applied to

F(x(τk+1),τk+1) = 0

with x̃( j0)(τk+1) from (8b) as a start vector. In particular, for �≥ 0 (Newton iteration
index) and j� ≥ 0 ( j being the steplength correction index) we compute Δx( j�)(τk+1)
according to

Fx(x̃( j�)(τk+1),τk+1) Δx( j�)(τk+1) =−F(x̃( j�)(τk+1),τk+1), (10)

update x̃( j�+1)(τk+1) := x̃( j�)(τk+1) +Δx( j�)(τk+1) and compute Δx
( j�)(τk+1) as the

associated simplified Newton correction

Fx(x̃( j�)(τk+1),τk+1)Δx
( j�)(τk+1) =−F(x̃( j�)(τk+1)+Δx( j�)(τk+1),τk+1).

We monitor convergence of Newton’s method by means of

Θ ( j�)(τk+1) := ‖Δx
( j�)(τk+1)‖/‖Δx( j�)(τk+1)‖ .

In case of successful convergence, we set x̃(τk+1) := x̃( j�)(τk+1) with � being the

current Newton iteration index, accept the current step size Δτk :=Δτ( j)
k with current

steplength correction index j and proceed with the next continuation step. However,
if the monotonicity test

Θ ( j�)(τk+1) < 1 (11)
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x(τ0)

x∗

Δτnew
k δx(τk)

x̃(τk)

x̃(τk+1)

Fig. 2. Correction step of the adaptive continuation method.

fails for some j� ≥ 0, the predicted steplength Δτ( j)
k has been chosen too large so

that the predicted solution x̃( j0)(τk+1) is not situated within the Kantorovich neigh-
borhood of x(τk+1), i.e., it is outside the contraction tube around the central path (cf.
Fig. 2). The corrector step provides a correction of the steplength for the tangent di-
rection δx(τk) such that the new iterate stays within the contraction tube. To do so,
the continuation step from (8b) has to be repeated with the reduced step size

Δτ( j+1)
k :=

(
√

2−1

g(Θ ( j�))

)1/2

Δτ( j)
k ,

g(Θ) :=
√
Θ + 1−1

(12)

until we either achieve convergence or for some prespecified lower bound Δτmin

observe
Δτ( j+1)

k < Δτmin .

In the latter case, we stop the algorithm and report convergence failure.
The Newton steps are realized by an inexact Newton method featuring right-

transforming iterations (cf., e.g., Hoppe et al. [18], Hoppe and Petrova [20]). For a
discussion of the impact of the inexactness on the pathfollowing we refer to Weiser
and Deuflhard [31], sec. 3.2. The derivatives occurring in the KKT conditions and
the Hessians are computed by automatic differentiation (cf., e.g., Griewank [15]).

We perform the predictor-corrector scheme in a multilevel framework with re-
spect to a hierarchy of discretizations. We describe the multilevel approach in case
of a two-level scheme with the levels �−1 and � (cf. Fig. 3). Since in multigrid con-
tinuation methods it is advantageous to use smaller continuation steps on the coarser
grids (cf., e.g., Hackbusch [16], Hoppe and Mittelmann [19]), the prediction is done
by nested iteration in such a way that some adaptive continuation steps are performed
on the coarser level �− 1 before a predicted value is computed on the finer level �.
The corrector is a Newton multigrid method incorporating a two-level PDE solver
featuring appropriate smoothers. The iterates are checked for acceptance by the level
� monotonicity test. In some more detail, we illustrate the two-level scheme in case
of two continuation steps on level �− 1. We assume that approximations x�−1(τk)
and x�(τk) are available for some continuation parameter τk. Firstly, we perform 2
continuation steps with an adaptive choice of the continuation steplengths. Secondly,
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we use the the level �−1 approximations x�−1(τk) and x�−1(τk+2) as well as the level
1 approximation x�(τk) to obtain a level 1 prediction at τk+2. This approximation is
then corrected by the two-level Newton multigrid scheme and checked for accep-
tance by the level � monotonicity test. In the general case of more than 2 levels, the
multilevel predictor-corrector continuation method consists of a recursive applica-
tion of the two-level scheme.

level 0

level 1

τ

levels

τk τk+1 τk+2

P 1
0

x(0)(τk) x(0)(τk+1) x(0)(τk+2)

x(1)(τk) (given) x̂(1)(τk+2) (predicted)

Fig. 3. Two-level predictor-corrector scheme

4 Numerical Results

Microfluidic biochips are used in pharmaceutical, medical and forensic applications
as well as in academic research and development for high throughput screening,
genotyping and sequencing by hybridization in genomics, protein profiling in pro-
teomics, and cytometry in cell analysis (cf., e.g., Pollard and Castrodale [25]).
Recent nanotechnological devices are surface acoustic wave driven biochips with
integrated fluidics on top of the chip consisting of a lithographically produced net-
work of channels and reservoirs (see Fig. 4 (left)). The core of the technology are
nanopumps featuring surface acoustic waves generated by electric pulses of high fre-
quency. These waves propagate like a miniaturized earthquake, enter the fluid filled
channels and thus cause a flow which transports the DNA or protein containing liq-
uid along the network to a reservoir where the chemical analysis is performed (see,
e.g., Wixforth et al. [32, 33]. Between the channels and the reservoirs are capillary
barriers (cf. Fig. 4 (right)) which have to be designed in such a way that a precise
filling of the reservoirs is guaranteed.

Mathematical models for SAW biochips are based on the linearized equations of
piezoelectricity in Q1 := (0,T1)×Ω1
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Fig. 4. Microfluidic biochip (left) and capillary barrier (right)

ρ1
∂ 2ui

∂ t2 − ∂
∂x j

ci jkl
∂uk

∂xl
− ∂
∂x j

eki j
∂Φ
∂xk

= 0, (13a)

∂
∂x j

e jkl
∂uk

∂xl
− ∂
∂x j

ε jk
∂Φ
∂xk

= 0 (13b)

with appropriate initial conditions at t = 0 and boundary conditions on Γ1 := ∂Ω1.
Here, ρ1 and u = (u1,u2,u3)T denote the density of the piezoelectric material and
the mechanical displacement vector. Moreover, ε = (εi j) stands for the permittivity
tensor and Φ for the electric potential. The tensors c = (ci jkl) and e = (eikl) refer to
the forth order elasticity tensor and third-order piezoelectric tensor, respectively.

The modeling of the micro-fluidic flow is based on the compressible Navier-
Stokes equations in Q2 := (0,T2)×Ω2

ρ2

(

∂v
∂ t

+(v ·∇)v
)

=−∇p +ηΔv +
(

ζ +
η
3

)

∇(∇ ·v) , (14a)

∂ρ2

∂ t
+∇ · (ρ2v) = 0 , (14b)

v(x + u(x,t),t) =
∂u
∂ t

(x,t) on (0,T2)×Γ2 (14c)

with suitable initial conditions at t = 0. Here, ρ2,v = (v1,v2,v3)T and p are the den-
sity of the fluid, the velocity, and the pressure. η and ζ refer to the shear and the
bulk viscosity. The boundary conditions include the time derivative ∂u/∂ t of the
displacement of the walls Γ2 = ∂Ω2 of the microchannels caused by the surface
acoustic waves. The induced fluid flow involves extremely different time scales. The
damping of the jets created by the SAWs happens on a time scale of nanoseconds,
whereas the resulting acoustic streaming reaches an equilibrium on a time scale of
milliseconds. We perform a separation of the time-scales by homogenization using
an expansion v = v0 + εv′ + ε2v′′ + O(ε3) of the velocity v in a scale parameter
ε > 0 representing the maximal displacement of the walls and analogous expan-
sions of the pressure p and the density ρ2. We set v1 := εv′,v2 := ε2v′′ and de-
fine pi,ρ2,i,1 ≤ i ≤ 2, analogously. Time-averaging the second order (in ε) system
according to 〈w〉 := T−1 ∫ t0+T

t0
wdt,T := 2π/ω , we arrive at the following Stokes

equations in Ω2
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−ηΔv2−
(

ζ +
η
3

)

∇(∇ ·v2)+∇p2 =
〈

−ρ2,1
∂v1

∂ t
−ρ2,0(∇v1)v1

〉

, (15a)

ρ2,0∇ ·v2 = 〈−∇ · (ρ2,1v1)〉 , (15b)

v2 =−〈(∇v1)u〉 on Γ2 . (15c)

which describe the stationary flow pattern, called acoustic streaming, resulting after
the relaxation of the high frequency surface acoustic waves (for further details we
refer to Gantner et al. [13], Köster [22]).

Table 1. History of the adaptive multilevel predictor-corrector strategy (Capillary barriers, 4
Levels)

level k τ Δτ ΔJ
1 0 2.0E+02

2.83E+00
1 6.3E+02 4.3E+02 1.87E-05
2 1.1E+03 4.9E+02 3.40E-06
3 1.6E+03 5.1E+02 1.09E-06
4 2.3E+03 6.8E+02 5.70E-07
5 3.5E+03 1.1E+03 3.63E-07
6 5.3E+03 1.9E+03 1.99E-07
7 8.8E+03 3.5E+03 1.02E-07
8 1.6E+04 7.3E+03 4.50E-08

2 2 1.1E+03 9.2E+02
4 2.3E+03 1.2E+03
6 5.3E+03 3.0E+03
8 1.6E+04 1.1E+04

3 4 2.3E+03 2.1E+03
8 1.6E+04 1.4E+04

4 8 1.6E+04 1.6E+04

Fig. 5. Optimally designed capillary barrier:Velocity profile in the flow mode (left) and in the
stopping mode (right)
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We have considered the optimal design of a capillary barrier for a domain con-
sisting of part of a microchannel close to a reservoir with two passive outlet valves
to allow for an outflow in case of the stopping mode of the barrier (cf. Fig. 5). The
objective functional J has been chosen of tracking type according to

J(v2, p2,α) :=
1
2

∫

Ω(α)
|v2−vd

2|2 dx +
1
2

∫

Ω(α)
|p2− pd

2|2 dx

subject to the Stokes system (15a)-(15c) with Signorini type boundary conditions
at the junction between the microchannel and the reservoir. We have used m = 16
Bézier control points of a Bézier curve representation of the barrier as design vari-
ables subject to bilateral constraints. Table 1 contains the history of the multi-
level interior-point method described in the previous section in case of four levels
1 ≤ � ≤ 4 with 2362 degrees of freedom (DOFs) on the coarsest grid (level 1) and
141634 DOFs on the finest grid (level 4). The number k indicates the continuation
steps, τk and Δτk := τk − τk−1 refer to the inverse of the barrier parameter μk and
the increment in τk, and ΔJk is the difference between the corresponding values of
the objective functional. We have performed two continuation steps on a coarser
grid before proceeding by nested iteration to the next finer grid, and we have used
|ΔJk|< TOL with TOL := 1.0E−07 as a termination criterion for the continuation
process. Fig. 5 displays the optimal design of the barrier and the associated velocity
profiles in the flow mode (fluid flow into the reservoir) and in the stopping mode
(backflow). For further results and a comparison with other continuation methods
and update strategies of the barrier parameter we refer to Antil, Hoppe and Linsen-
mann [2].
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