Chapter 2

Mathematical Preliminaries and
Notations

Abstract In the first part of this chapter we present the symbolic and the Cartesian
tensor notations and show how these are applied in this book. Tensor calculus is
presumed known to the reader; so, only specifics and peculiarities pertinent to the
work are discussed. In the second part the elements of exterior calculus are explained,
but only to the extent as they are used in the thermodynamic approach treated later
on, in particular in Chap. 5.

2.1 Tensors

It is assumed that the reader is familiar with the elements of tensor algebra,
analysis and calculus. There are many books which present this subject,
among them e. g. BOWEN & WANCG [15, 16] or CHADWICK [22] or KLINGBEIL
[73].

Subsequently, not only symbolic but also index notation will be used, be-
cause often proofs and auxiliary results are easier to derive that way. Nota-
tion is a crucial issue and has to be treated with care. In particular, this is
true for mixture theory. In the symbolic notation we choose Greek letters,
(o, B, 7,...), to identify the constituents of the mixture and place them
in the right lower corner of a quantity. In index notation, the Greek letters
for the constituents are moved to the right upper corner. Indices identifying
the Cartesian components of tensors are written in small Latin minuscules,
(i, j, k, I, ...), in the lower right corner of a quantity. As usual, the EINSTEIN
summation convention is used for the component indices but not for the
Greek constituent indices. Consequently, summations over the constituents
are always written out explicitly.

In ensuing calculations, we think of vectors and tensors over R? as quan-
tities that consist of components and an associated basis. Thus, we write

vV =1yV; €, A:Aij e; X ey, B:Bijk e, Re; Qe , (21)
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where an orthonormal basis e; (i = 1,2,3) is used that spans W which is a
three-dimensional vector space over R. e; ® e;, e; ® e; ® ey, etc. represent
dyadic products of these basis vectors. It follows that v is an element of W
and the second rank tensor A can be understood as a linear mapping of a
vector from W to W. This statement can be written as

Av =Ay (e; ® ej)vkek = Ajjvidjre = Ajjvie = yje; . (2.2)

Analogously, higher order tensors can be understood as multi-linear forms,
for details see e. g. BOWEN & WANG [15]. In (2.2) the usual KRONECKER
delta,

|1 fori=j,
5”’{ 0 fori#j, (2.3)

and the definition of the dyadic product
(a®@b)c:=a (b-c) , (2.4)

have been used, where a, b and c are any vectors in the vector space W. The
operation a - b of a and b is called the scalar product and reveals a scalar.
Henceforth, the dot product A - B of two tensors A and B of the same, but
arbitrary rank results in a scalar. For second, A, B, and third, C, D, rank
tensors we define this product as

A-B:= Aij Bij 5 C-D:= Cijk Dijk: . (25)

One can think of several other products, e. g. in R? the cross product of the
two vectors a and b
ax b:=e;, a;b; ey, (2.6)

where e;;, stands for the alternator,
1 if 4, j, k are an even permutation of 1,2,3 ,

e;jk = —1 if4, 4,k are an odd permutation of 1,2,3 , (2.7)

0 else .
Later in this chapter the trace operator
tr(A™B) = tr(AB"):=A-B (2.8)

will also be applied, where A and B are second rank tensors. It can be seen
from its definition that the trace operator transforms ABT into a scalar. The
transpose AT of the tensor A is defined as follows

a-(A"b) = b-(Aa), VabeWw. (2.9)
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As done in the literature, for calculations in index notation the bases of
vector- and tensor-valued quantities are occasionally omitted. Tacitly assum-
ing that we are always dealing with an orthonormal basis, we will follow the
same line. Therefore, in place of

- v;€e; we shall write v; ,
- A;je; ® e; we shall write A;; ,
- (Bikei; ® ey)(aje;) we shall write Bjja; ,

and we shall call v; and B;ja; vectors and A;; a second rank tensor even
though this is, strictly, not correct.
To make calculations easier we define

sym(A):=3(A+A"), [A, B] .= AB-BA,

(2.10)
skw(A):=1(A-AT) , (A, B) = AB+BA,

where the operators sym(-) and skw(-) extract the symmetric and the skew-
symmetric parts of A, respectively. The latter two definitions specify the LIE
and JACOBI-brackets, respectively!.

If we follow the notation of SVENDSEN & HUTTER [115] the temporal (or
partial time) derivative of a general quantity ¢ (it can be a scalar-, vector-
or tensor-valued function) is denoted by d¢ and its spatial (or partial space)
derivative is given by Voo = 0p/0x = ¢; jr € ® ... e; Qey.

In the thermodynamic analysis we will be dealing with dependent consti-
tutive quantities f (f stands e. g. for the CAUCHY stress tensor or the heat

flux vector, ...) and independent (constitutive) variables
X= (X1, ..-,XK) -
Examples for xs (s =1, ..., K) are the temperature field, the velocity of a

constituent or its gradient etc. The dependence of f on X is written as

K
Of = T (0x1) ,
! (2.11a)
VE=>" T, (Vxr) |
I=1
1 In the sequel, the brackets [-, -] and (-, -) will exclusively be used for the LIt and

JACOBI operations, (2.10)2,4.
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V- -f:.= (f)i(...)jk,k € ®...0e€;

% .
LICAYIRY 2.11b
_ Z )ik Ox1 6®.. Q6. ( )
— Oxy oxy,

The partial derivative f,,, which occurs in equations (2.11) can be defined
according to FRECHET. For a detailed definition of this type of partial deriva-
tive the reader is referred e. g. to MARSDEN & HUGHES [83], EDELEN [35],
or CASEY [20], where explicit definitions and calculations of some important
derivatives can also be found.

2.2 Results from Exterior Calculus

The mathematically complete introduction to exterior calculus can be found
in the book ‘Applied Exterior Calculus’, by D.G.B. EDELEN [35]. Its for-
mal treatment goes beyond the mathematical knowledge that is commonly
absorbed by geophysicists and engineers; so, the intention here is to present
those results established in this special mathematical field which are useful
in the ensuing developments and facilitate the algebraic manipulations in
the calculations of the thermodynamic analysis in Chapters 5 to 7. In this
book only those aspects are of significance which concern so-called differential
or Pfaffian forms and inferences which can be drawn from them when these
forms are total or perfect. Alternative presentations of exterior calculus to [35]
are by CARTAN [18, 19] and HEIL [53]. Here we follow mainly the beautiful
‘down to earth’ presentation by BAUER [10] in Chapter 4 to his Ph.D. disser-
tation ‘Thermodynamische Betrachtung einer gesattigten Mischung’, which
we present here in our own English version, with additions and alterations
where felt necessary. A formal exposition of the Exterior Calculus, presenting

the ground work of what follows in the summary below is given in Appendix
A

2.2.1 What is integrability?

Let .
dF =Y X,(x;)da; (2.12)

i=1
be a differential form dF, which is expressed as a linear combination of
differentials dx; with coefficient functions X; (¢ = 1,...,n) which depend
on some or all of the z; (j = 1,...,n). Equation (2.12) is also called a
Pfaffian form. Under what conditions is the denotation dF' on the left-hand
side of (2.12) justified in the sense that the expression (2.12) represents a
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total differential? In other words, under what conditions does integration over
the right-hand side of (2.12) deliver a value that is independent of the path
of integration in ‘configuration space’ of the ‘independent’ variables z; (i =
1,...,n)?% If this is true, this value will only depend upon the initial and final
points of the integration. If this should not be the case and ), X;dx; does
not represent a total differential, there still remains the question: can we alter
this situation by multiplying the right-hand side of (2.12) with an adequate
function? Under those situations this function is called an integrating factor.?
In order to geometrically interpret the roles played by the variables X; and
the differential forms dz;, it is advantageous to write (2.12) in vectorial form

dF =X - dx (2.13)

where X € R"™ and x € R" are ordered arrays X = (X1,...,X,), x =
(z1,...,2zn) and the dot denotes the scalar product over R™. If one writes
(2.13) in the homogeneous form, dF = 0, it becomes clear that X defines a
normal field which is orthogonal to the hypersurfaces on which the value of
F' does not change. Solutions of the equation dF' = X - dx = 0 are surfaces
(or curves according to dimension) x = x(0,7,...) on which F' is constant.
Locally such a solution can always be constructed, however, this surface may
possibly not have the largest dimension (n — 1). If the local solutions possess
the maximal possible dimension, one says that equation (2.12) is completely
integrable (see also HEIL [53]). In this case it is possible, starting at a particu-
lar point, to construct a hypersurface — the mentioned manifold of dimension
(n — 1) — within which any arbitrary integration of the right-hand side of
(2.12) delivers the result zero. In this way one achieves the result to fill the
entire phase space with ‘onion shells’ on which the equation dF = 0 holds
and which never touch or intersect each other. If one imagines that the phase
space is ‘partitioned’ in this way, there still remains the problem to assign
to each ‘onion shell’ a value for the potential F' and to guarantee that an
integration of the differential between the various shells delivers always the
same difference between these values, irrespective of where this integration is
performed. For even if the construction of the surfaces of constant F-values
is successful, this does not yet guarantee that the ‘distance’ between the
surfaces does not depend on the position at the surface. However, once the
‘onion shells’ are constructed and appropriate potential values assigned to
them, these facts then define in a unique way a scalar valued function — the
above mentioned integrating factor by which the right-hand side of (2.12)
must be multiplied to create everywhere the correct ‘distance’ between the

2 Configuration space is the space of the independent variables z; (j =1,...,n).

3 In the classical thermodynamic literature, authors often use a different notation
for a differential form depending on whether it is total (dF') or not (dF). So, dF is
total, but dF is not. The modern mathematical literature does not distinguish the
two cases and omits the differential symbol on the left-hand side of (2.12) (see (5.13)
and (5.14)).
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potential surfaces, respectively to create the desired connection between the
differential and potential, provided it is not a priori given.

As we will see, a certain arbitrariness or possibility of choice remains un-
resolved because the ‘labeling’ of the ‘onion shells’ with potential values is
not unique. Except for this freedom, it is, however, possible in this way to
construct an integrating function for a vector field or a differential which lo-
cally allows in each point in phase space the construction of an equi-potential
surface. With the aid of this function the vector field can be derived from a
scalar potential or, alternatively, the differential form becomes total so that
integrals between two points along arbitrary paths have all the same value.
The above qualification of such a differential as being completely integrable
is to be understood in this way.

In the following the conditions will be studied which formally must be
satisfied in order that a differential form which by itself is not total can
be made total by multiplying it with a scalar function, respectively to see
whether a differential form is total already ab initio. Generally, the advantage
of such a reduction of a vector valued function to a single scalar valued
function is that mathematical operations are generally easier to perform with
scalars than with vectors or tensors.

In what follows the differential dF will define the entropy (and in a sec-
ond case the entropy flux) which must in all circumstances be a potential.
This requirement allows inferences to be deduced for the coefficients of the
differential form, X;, which must be compatible with the potential properties.

2.2.2 Requirements to be imposed on the
‘normal fields’

Recall that a vector field v(z,y, z) over R? is a gradient field of a scalar
potential field P, v = grad P, if the vecor field v(z,y, z) is irrotational,

Vxv=0. (2.14)

If this property is not fulfilled, one may try to enforce it by multiplication of
v with a scalar function f(x,y, z). This would make f an integrating factor.
Instead of requiring the vanishing of V X v, one will then request

Vx(fv)=fVxv+(Vf)xv=0. (2.15)

Scalar multiplication of this equation with v yields, since only f # 0 is
reasonable,
(Vxv)-v=0, (2.16)

which is a necessary condition that a non-trivial function can exist by which
(2.15) can be fulfilled. However, that (2.16) is also a sufficient condition for
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the existence of a non-trivial f is not easy to prove. Rather than to pur-
sue this restricted case for v € R? it is advantageous here to address the
generalization of this theorem of differential forms for arbitrary dimensions.
This proposition is known in the theory of differential forms or in exterior
calculus as the Frobenius condition and is well known. Its derivation is some-
what complicated and requires algebraic techniques of exterior calculus, see
CARTAN [18], [19], EDELEN [35]. Just as the FROBENIUS condition general-
izes equation (2.16), so condition (2.14), which is a statement restricted to a
vector field over R3 to make it derivable from a potential, can be generalized
to POINCARE's theorem, valid in a space of arbitrary dimension, see CARTAN
[18], [19], EDELEN [35]. We shall state these propositions without proof.

a) POINCARE’s theorem:

The formal mathematical statement is as follows:*

To a differential form w of given order p there exists a differential form {2
of order p — 1, from which w ensues via an exterior derivative according
to df2 = w, provided w is closed, (that is, if dw =0).

If this statement is translated into the common language of this book, it
means that a differential form dF = )", X;dx; is total or exact and there-
fore derivable from a potential, if and only if after a further differentiation
the coefficients are crosswise equal, viz.,

X,  0X;
5‘xj o axl '

(2.17)

When the vector space is R3, (2.17) states that the vector field over R?
must be irrotational in order to be derivable from a potential. If the condi-
tions of POINCARE’s theorem are not fulfilled, then one is confronted with
the question whether introduction of an integrating factor may lead to a
success. In this regard the theory of exterior calculus or differential forms
makes the following statement.

b) The condition of FROBENIUS:

Let the differential form w not be closed, that is, let dw # 0. Under such
a condition the differential form is completely integrable, if w A dw = 0 ,
where ‘N’ is the exterior or ‘veck’ product defined as

Wi AWy = Wi ® Wy — Wy @ W, wi,wy € R? (2.18)

4 For the formal presentation of the terminology used in this theorem, see Appendix

A.
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In the simpler notation used in this book the FROBENIUS condition means
the following: consider that for the differential form dF = ), X;dz; the
condition (2.17) is not satisfied. Then, this differential can be transformed
with an integrating factor into a total differential, if the condition

0X;
J

ijk

holds, in which the sum stretches over all possible combinations of the
indices ¢, 7, k; moreover, e, is the alternating symbol defined in (2.7). The
indices {i, j, k} can be arbitrarily selected from the set of available indices
in any initial order. This is so since all permutations of an initially selected
order are contained in the sum (2.19). In R3 the FROBENIUS condition is
equivalent to the satisfaction of the requirement (2.16) that the curl of a
vector field must be perpendicular to the field itself. In R? the curl of a
vector field, interpreted as a field in R? is trivially perpendicular to the
field (if the vector field lies in the x — y-plane, the curl points into the
z-direction), and in R!, there is only a single route along which a function
can be integrated between two points, making every differential a total
one. In spaces R",n > 3, the condition of FROBENIUS can be interpreted
as follows:

If the mixed derivatives of a differential form with respect to z; and z;
with different sequences differ from one another (and this only holds for
this single pair of variables) i. e., if

X, | 0X;
(9$j 89@

(2.20)

then in points where (2.20) is valid all other coefficient functions Xj, of
the differential dF' with k ¢ (7, ) must vanish. The FROBENIUS condition
(2.19) then reduces to

Zeijk <(ZJUX;) X =0, forfixed i#j. (2.21)
k

In the geometric language of X as vector in R™ (n > 3) this means,
if two mixed derivatives are not equal (as in (2.21)), that the normal
vector X, formed by the components X; (i = 1,...,n) must lie in the
plane spanned by the coordinates belonging to these derivatives (otherwise
(2.21) does not hold). Ounly in this case a hypersurface can locally and
consistently be defined, which is perpendicular to the normal vectors and
thereby guarantees the existence of an adequate integrating factor. Hence,
the problem must essentially be ‘locally two-dimensional’. The larger the
dimension of the configuration space is, the more restrictive will be the
constraints which correspond to the conditions of FROBENIUS.
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Let us briefly summarize what the POINCARE theorem and condition of
FROBENIUS imply for different dimensions n.

en =1 In the one-dimensional case each differential is total. There is
no choice between different integration paths to reach point b from point
a; every integral along a ‘closed path’ vanishes trivially.

e n =2 In two dimensions, there are infinitely many non-trivial possi-
bilities to vary the path of integration between two given points. Not every
field satisfies by itself the condition that the result of this integration will
be independent of the choice of the path of integration. Where this is a
priori not the case, an integrating factor can always be found which es-
tablishes this property and makes the differential form of the vector field
a total one.

en >3 Not every vector field is so structured that it could be derived
from a potential. Neither can it be guaranteed that for such an ‘unpleas-
ant’ field an integrating factor could always be found that makes the corre-
sponding differential a total one. Thus, there are ‘pathological’ differentials
which are neither total nor would be transformable with an integrating
factor into total differentials. The question under which circumstances a
differential form can be made total, is equivalent to the question whether
the FROBENIUS condition is satisfied. In R? satisfaction of the FROBENIUS
condition is tantamount to stating that the vector field is perpendicular
to its vorticity field. In higher dimensions a good interpretation in terms
of geometry is not available. In these cases one is left with the algebraic
requirement (2.19) that must formally be verified or required for vector
fields to be potential fields.

In this book the differential forms which are encountered are those of the
entropy and its flux and arise first in (5.13) and (5.14) as scalar and vector
valued one-forms. The variables z; (i = 1,...,n) here are the independent
constitutive variables there. Moreover, dF' here is written as P and F, de-
pending on whether the entropy P or the entropy flux JF is in focus. The
explicit forms of the coefficient functions X; (¢ = 1,...,n) follow from the
exploitation of the entropy principle (Second Law of Thermodynamics). Since
the number of independent constitutive variables for the mixture theory of
this book is much greater than three, the question of P and F to be total
or not is crucial. The requirement that the entropy is meaningfully defined
as a potential then corresponds to the requirement that the FROBENIUS con-
dition is satisfied. This then implies restrictions to the constitutive variables
which constitute necessary constraints for the satisfaction of the Second Law
of Thermodynamics.
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2.2.3 On the non-uniqueness of the integrating factors

As already explained, the single requirement that a differential form be total
does not lead to the determination of a unique integrating factor. As an
example, simply imagine that a successfully determined integrating function
is globally multiplied with an arbitrary non-vanishing constant factor, then
it is clear that a new integrating function is obtained; however, this factor f
stretches (f > 1) or compresses (0 < f < 1) or mirrors (f = —1) the scale
of the assumed potential values relative to the first function with the chosen
factor. A mirroring operation will generally be excluded because with it a
significant different interpretation of the related quantity would go along with
such a change; alternatively, stretches or compressions are relatively harmless
and only correspond to a change in the employed unit for the potential.
More precisely, a given integrating factor g (here written as an integrating
denominator) of an arbitrary non-total differential df,

_
g Y

dF (2.22)

can always be multiplied with an arbitrary non-trivial differentiable function
G of F, G(F), without destroying the integrability properties. Indeed, by
multiplication with G a new differential form dH is obtained which is given
by

_GWF) , GF)Of
dH = p df = J Z:axidxz. (2.23)

POINCARE’s theorem can now be employed to verify whether the conditions
for a total differential are also fulfilled for H: With condition (2.17) one
obtains

2H  dG OF 1 0f o (10f
f = =_—_— — | - 2.24
or k=i dx;j0x;  dF dz; g Ox; Gé)wj (g 5‘5@) ’ (2.24)
. 0’H dG OF 1 0f o (10f
for k= Dbz, ~ dF 0z, 0w, | C o, (gam> (2:25)

for {i,j} € (1,...,n). In (2.24) and (2.25) the last terms on the right-hand
sides are equal, since g is an integrating factor by assumption; the first terms
on the right-hand side of (2.24) and (2.25) are also identical, since F' =
[ dF/g. Indeed, the two expressions

4G OF (10f _dG OF oF
dF Oz ~dF Oz Ox;

g dz;
(2.26)

dG OF (1 6f>_dG6F OF

dF 9w; \gdx;) = dF 0w, 0,
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are equal. Therefore, it is ascertained that

ar = (Y (2.27)

g
is a total differential of a function H, which, however, is not identical to F.
Rather, if A, ., F denotes the value of the integral fj dF between the states
a and b in phase space of the considered system, then

b rda
Ag_pyH = Ay, (GF) — / F (dF) dF . (2.28)

Depending upon the properties of G, different total differentials can be formed
from the original differential df. This arbitrariness holds for each integrating
factor of any differential form and is not particularly surprising either. Such
an operation, as it leads here from F' to another potential, H, is also somewhat
irrelevant. True, the values of the original potential are stretched and moved,
but the equi-potential surfaces remain unchanged thereby. This can easily be
seen by looking at equation (2.13) or its homogeneous variant

dF =X -dx =0 (2.29)

which defines the hypersurfaces of constant values of the potential. If the
normal vector X is stretched by a certain factor, then this process does not
change any property of the surface whatsoever that is defined by (2.29).
Since the vector can not vanish if both F' and H are well defined and the
integrating factor must also be continuous, the function G' must be only of
one sign; avoiding mirror transformation this requires G to be positive valued.
Applied to the entropy, this requirement guarantees that all entropies which
can be defined this way maintain the ‘ordering’ of their values. Indeed, if
equation (2.28) is written for an infinitesimal process, it takes the form

AgpH = Aqy(GF) — FAq_yG = GAy_, F (2.30)

A positive entropy difference remains in such a transformation positive, if
G is selected according to the above description. If this holds true for every
infinitesimal partial transformation, so it will hold also for the entire finite
process. This then also guarantees that a configuration which in one formu-
lation possesses minimum entropy and thus corresponds to a thermodynamic
equilibrium state also possesses minimum entropy in every other such formu-
lation. There remains the question whether with the functions G(F) of the
potential F' all possible transformations have been found. That this is so can
be seen, if one recalls that neighbouring equi-potential surfaces must have
‘the same distance’ everywhere. This, alternatively, implies that the normal
vectors X on such a surface must everywhere on this surface be stretched with
the same value. Consequently, the transformation factor G must at most be
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Fig. 2.1 Infinitesimal rectangle centered at (zy, z¢) with coeflicient functions X
and X, along the four sides of the infinitesimal rectangle.

a function of F for this is the only quantity which does not change on the
equi-potential surfaces.

A further property in the context of functional dependences of integrating
functions and coefficients in differential forms ensues if a given total differen-
tial only involves some but not all of the variables of the configuration space,
i. e, if

dF =Y Xidz;  with  Xp=0 Vk€ (b, k..., km), m<n.
i=1
(2.31)
In this case one can prove the following

Proposition regarding the dependence of the coefficients X; on the
x;: If a total differential of the form (2.31) has coefficients which vanish
identically, then those coefficients which do not vanish equally only
depend functionally on those variables x; which belong to them (that
is, they do not depend on zy, k € (k1,ka,...,kn), m <nin (2.31)).

The proof follows by contradiction of the opposite assumption. So, let X,
with ¢ # k depend on xy, and assume X} to vanish identically. Consider,
moreover, the closed infinitesimal rectangular integration path shown in Fig.
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2.1, centered at xy, xy. It is now clear that the integrals X,dxy along the
horizontal edges vanish because X = 0; analogously, the integrals along the
left and right sides of the rectangle of X,dz, differ in absolute value from
one another since by assumption 0X,/dxy # 0. Therefore, the integral along
the closed path composed of all four contributions, ¢ dF', does not vanish.
This result is in conflict with the assumption that dF is a total differential;
consequently, X, cannot depend on xj as was assumed above. This statement
holds locally or globally, depending upon whether the respective coeflicients
of the differential form vanish locally or globally.

This result is particularly important because, later, it will imply non-
trivial consequences for the differential of the entropy via the so-called
GIBBS relation, which connects it with the internal energy and additional
variables with an integrating denominator which in classical thermostatics
of CARATHEODORY [17] is proved to agree with the KELVIN temperature.
Ananalogous result should also hold here. As we shall see, it will follow in
this mixture theory from a judicious application of the POINCARE theorem,
the FROBENIUS condition and ad hoc assumptions which are plausible on the
basis of physical or mathematical arguments.
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