Chapter 4
On Hecke Algebras

We will start this chapter by giving the definition and the classification of
complex reflection groups. We will also define the braid group and the pure
braid group associated to a complex reflection group. We will then intro-
duce the generic Hecke algebra of a complex reflection group, which is a
quotient of the group algebra of the associated braid group defined over a
Laurent polynomial in a finite number of indeterminates. Under certain as-
sumptions, which have been verified for all but a finite number of cases, we
prove (Theorem 4.2.5) that the generic Hecke algebras of complex reflection
groups are essential. Therefore, all results obtained in Chapter 3 apply to the
case of the generic Hecke algebras.

A cyclotomic Hecke algebra is obtained from the generic Hecke algebra via
a cyclotomic specialization (Definition 4.3.1). We prove (Theorem 4.3.3) that
any cyclotomic specialization is essentially an adapted morphism. Thus, we
can use Theorem 3.3.2 in order to obtain the Rouquier blocks of a cyclotomic
Hecke algebra (i.e., its blocks over the Rouguier ring, defined in Section 4.4),
which are a substitute for the families of characters that can be applied to
all complex reflection groups. We will see that the Rouquier blocks have
the property of semi-continuity, thus depending only on some “essential”
hyperplanes for the group, which are determined by the generic Hecke algebra.

The theory developed in this chapter will allow us to determine the
Rouquier blocks of the cyclotomic Hecke algebras of all (irreducible) com-
plex reflection groups in the next chapter.

4.1 Complex Reflection Groups and Associated
Braid Groups

Let poo be the group of all the roots of unity in C and K a number field
contained in Q(js). We denote by p(K) the group of all the roots of unity
of K. For every integer d > 1, we set {4 := exp(2wi/d) and denote by pq
the group of all the d-th roots of unity. Let V' be a K-vector space of finite
dimension r.
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72 4 On Hecke Algebras

4.1.1 Complex Reflection Groups

Definition 4.1.1. A pseudo-reflection is a non-trivial element s of GL(V)
which acts trivially on a hyperplane, called the reflecting hyperplane of s.

If W is a finite subgroup of GL(V') generated by pseudo-reflections, then
(V,W) is called a K-reflection group of rank r.

We have the following classification of complex reflection groups, also
known as the “Shephard-Todd classification”. For more details about the
classification, one may refer to [61].

Theorem 4.1.2. Let (V,W) be an irreducible complex reflection group (i.e.,
W acts irreducibly on V). Then one of the following assertions is true:

o There exist non-zero integers d,e,r such that (V,W) = G(de, e, r), where
G(de, e,r) is the group of all r xr monomial matrices with non-zero entries
in pge such that the product of all non-zero entries lies in piq.

o (V,W) isisomorphic to one of the 34 exceptional groups Gp(n =4,...,37).

Remark. Among the irreducible complex reflection groups, we encounter the
irreducible real reflection groups. In particular, we have:

o G(1,1,r) X A,y forr>2,

o G(2,1,r) 2B, (orC,) forr>2,

o G(2,2,r) 2 D, forr >4,

o Gle,e,2) 2 Ix(e), where Is(e) denotes the dihedral group of order 2e,
o Gz = H3, Gag = Fy, Gao = Hy, G5 = Eg, Gas = E7, Ga7 = Eg.

The following theorem has been proved (using a case by case analysis) by
Benard [5] and Bessis [7] and generalizes a well known result for Weyl groups.

Theorem-Definition 4.1.3 Let (V,W) be a reflection group. Let K be the
field generated by the traces on V' of all the elements of W. Then all irre-

ducible KW -representations are absolutely irreducible, i.e., K is a splitting
field for W. The field K is called the field of definition of the group W.

e If K CR, then W is a (finite) Coxeter group.
o If K =Q, then W is a Weyl group.

4.1.2 Braid Groups Associated to Complex
Reflection Groups

For all definitions and results about braid groups we follow [22]. Note that
for a given topological space X and a point zg € X, we denote by I1; (X, zg)
the fundamental group with base point xg.
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Let V be a K-vector space of finite dimension r. Let W be a finite subgroup
of GL(V) generated by pseudo-reflections and acting irreducibly on V. We
denote by A the set of its reflecting hyperplanes. We define the regular variety
Vit .= CoV —Uyea COH. For zg € V™8, we define P := IT; (V"8 x¢) the
pure braid group (at xg) associated with W. If p : V**® — V'8 /W denotes
the canonical surjection, we define B := IT; (V"¢ /W, p(xo)) the braid group
(at xo) associated with W.

The projection p induces a surjective map B — W, o — & as follows: Let
& :[0,1] — V'8 be a path in V' such that &(0) = xp, which lifts . Then
7 is defined by the equality 7(z¢) = &(1). Note that the map o — & is an
anti-morphism.

Denoting by W°P the group opposite to W, we have the following short
exact sequence

1-P—B—-W®P -1,

where the map B — W°P is defined by o — &.

Now, for every hyperplane H € A, we set ey the order of the group Wy,
where Wy is the subgroup of W formed by idy and all the reflections fixing
the hyperplane H. The group Wy is cyclic: if sy denotes an element of Wy
with determinant (g := (.,,, then Wy = (sy) and sy is called a distinguished
reflection in W.

Let Ly :=Im(s—idy). Then, for all z € V, we have x = pry(z)+pry,, ()
with pry(z) € H and prp, (z) € Ly. Thus, sg(z) = pry(z) + (upry,, ().

If t € R, we set (% := exp(2mit/ey) and we denote by si; the element of
GL(V) (a pseudo-reflection if ¢ # 0) defined by

s (@) = pry(z) + Cpry,, (@).

For z € V, we denote by op , the path in V' from z to sy (z) defined by
oy [0,1] =V, t— sh(2).

Let v be a path in V& with initial point z( and terminal point zz. Then
v~ ! is the path in V*& with initial point 2y and terminal point z such that

7 Ht) = y(1 —t) for all t € [0, 1].

Thus, we can define the path sy(y~!) : t — sy(y~1(t)), which goes
from sp(xpy) to sp(xo) and lies also in V'8 since for all © € V'g,
sp(x) € Ve (If sy(x) ¢ V'8, then sy () must belong to a hyperplane H'.
If sy is a distinguished pseudo-reflection with reflecting hyperplane H’, then
sp(sg(z)) = sp(x) and sy~ (sy/(sp(x))) = x. However, sy lsp sy is a
reflection and z belongs to its reflecting hyperplane, sy (H’). This contra-
dicts the fact that x belongs to V'8.). Now we define a path from zq to
su(xo) as follows:

Oy i=sa(Y (1) Oray -7
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If 2 is chosen “close to H and far from the other reflecting hyperplanes”,
the path o lies in V'™ and its homotopy class does not depend on the
choice of xy. The element it induces in the braid group B, sy, is a distin-
guished braid reflection around the image of H in V"8 /W.

Proposition 4.1.4.

(1) The braid group B is generated by the distinguished braid reflections
around the images of the hyperplanes H € A in V'8 /W .

(2) The image of sp~ in W is sg.

(3) Whenever ~' is a path in V'8 from xq to xp, if X denotes the loop in
Vree defined by \ :=~'"1v, then

Oy =SH(N) Oy AT

In particular, sg, and sg .~ are conjugate in P.

(4) The path H;zSH_l Optsi (y) @ loop in V'8 induces the element si}f,y
in the braid group B and belongs to the pure braid group P. It is a
distinguished braid reflection around H in P.

Definition 4.1.5. Let s be a distinguished pseudo-reflection in W with re-
flecting hyperplane H. An s-distinguished braid reflection or monodromy

generator is a distinguished braid reflection s around the image of H in
Vree /W such that s = s.

Definition 4.1.6. Let g € V"™® as before. We denote by 7 the element of
P defined by the loop t — zgexp(2mit).

Lemma 4.1.7. We have T € ZP.

Theorem-Definition 4.1.8 Given C € A/W, there exists a unique length

unction l¢ : B — efined as follows: if b = s7' -85 -----8m where (for
f le : B — Z defined as follows: if b= s}" - 53 mn where (f

all j) nj € Z and s; is a distinguished braid reflection around an element of
Cj, then

{7l¢;=C}
The length function [ : B — 7Z is defined, for allb € B, as

ceA/w

We say that B has an Artin-like presentation (cf. [57], 5.2), if it has a
presentation of the form

(s€S|{vi=wWilicr),
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where S is a finite set of distinguished braid reflections and I is a finite set of
relations which are multi-homogeneous, i.e., such that, for each i, v; and w;
are positive words in elements of S (and hence, for each C € A/W, we have
lc(Vi) = lc(WZ')).

The following result by Bessis ([8], Theorem 0.1) shows that any braid
group has an Artin-like presentation.

Theorem 4.1.9. Let W be a complex reflection group with associated braid
group B. Then there exists a subset S = {s1,...,sp} of B such that

(1) The elements sy, ...,s, are distinguished braid reflection and therefore,
their images s1,...,Sy in W are distinguished reflections.

(2) The set S generates B and therefore, S := {s1,...,s,} generates W.

(8) There exists a set R of relations of the form w1 = wa, where wi and wa
are positive words of equal length in the elements of S, such that (S |R)
s a presentation of B.

(4) Viewing now R as a set of relations in S, the group W is presented by

(S|R; (Vs € S)(s* =1)),

where es denotes the order of s in W.

4.2 Generic Hecke Algebras

Let K,V,W, A, P, B be defined as in the previous section. For every orbit C
of W on A, we set e¢ the common order of the subgroups Wy, where H is
any element of C and Wy the subgroup formed by idy and all the reflections
fixing the hyperplane H.

We choose a set of indeterminates u = (uc ;) cea/w)o<j<ec—1) and we
denote by Z[u,u™!] the Laurent polynomial ring in all the indeterminates u.
We define the generic Hecke algebra H of W to be the quotient of the group
algebra Z[u,u 1| B by the ideal generated by the elements of the form

(s —uco)(s —uc) (S —ucee—1)

where C runs over the set A/WW and s runs over the set of monodromy gener-
ators around the images in V**8 /W of the elements of the hyperplane orbit C.

Example 4.2.1. Let W = G4 = <s,t|ststst = tststs, s> =t> = 1> be the
dihedral group of order 12. The generic Hecke algebra of Gy is
defined over the Laurent polynomial ring in four indeterminates
Z[uy, ugl, uy,uyt, wo, wo_l, wy,w; '] and can be presented as follows:

niew) = (57| stsrsr—wsrsrs, (57T =0,
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Ezample 4.2.2. Let W 1= G4 =< s,t|sts = tst,s3 = t3 =1 >. Then s and
t are conjugate in W and their reflecting hyperplanes belong to the same
orbit of W on A. The generic Hecke algebra of G4 is defined over the Laurent
polynomial ring in three indeterminates Z[uo,ugl,ul, ufl,uz,ugl] and can
be presented as follows:

H(Gy) = <S7T ’ TST = TST, g - Ziigiﬁﬂg__ﬁﬂ =:% > .

We make some assumptions for the generic Hecke algebra H. Note that
they have been verified for all but a finite number of irreducible complex
reflection groups ([21], remarks before 1.17, § 2; [36]).

Assumptions 4.2.3 The algebra H is a free Z[u,u=]-module of rank |W|.
Moreover, there exists a linear form t : H — Z[u,u"!] with the following
properties:

(1) tis a symmetrizing form on H, i.e., t(hh') = t(W'h) for all h,h' € H and
the map
t:H — Hom(H, Z[u,u"])
h— (W —t(hh))

is an isomorphism.

(2) Via the specialization uc j — gg’c, the form t becomes the canonical sym-
metrizing form on the group algebra Zx[W].

(3) If we denote by a — o* the automorphism of Z[u,u~t] consisting of the
simultaneous inversion of the indeterminates, then for allb € B, we have

where T is the (central) element of P defined by the loop t — xpexp(2mit).

We know that the form ¢ is unique ([21], 2.1). From now on, we suppose
that the assumptions 4.2.3 are satisfied. Then we have the following result
by G. Malle ([51], 5.2).

Theorem 4.2.4. Let v = (vc,j)ced/w)(0<j<ec—1) be a set of ZCeA/W ec
indeterminates such that, for every C,j, we have v‘c*fj(,K)l = Ce_cj“C,j' Then the

K(v)-algebra K(v)H is split semisimple.

By Tits’ deformation theorem (Theorem 2.4.9), it follows that the spe-
cialization ve ; — 1 induces a bijection xy +— x from the set Irr(K(v)H) of
absolutely irreducible characters of K(v)H to the set Irr(W) of absolutely
irreducible characters of W, such that the following diagram is commutative
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Xv - H - ZK[V7V_1]
l !

Since the assumptions 4.2.3 are satisfied and the algebra K(v)H is split
semisimple, we can define the Schur element s, (v) for every irreducible char-
acter xy of K(v)H with respect to the symmetrizing form ¢. The following
result describes the form of the Schur elements associated to the irreducible
characters of K(v)H.

Theorem 4.2.5. The Schur element s, (v) associated to the irreducible char-
acter xvy of K(V)H is an element of Zx[v,v~] of the form

v) = &Ny H Wy ,i(My i)™

i€l

where

(a) & is an element of Zk,

() Ny=1l¢, vgfjij is a monomial in Zy[v,v~1] with chzgl be; =0 for all
Ce A/W,

(c¢) I is an index set,

(d) (Wy,i)icr, is a family of K -cyclotomic polynomials in one variable (i.e.,
minimal polynomials of the roots of unity over K ),

(e) (My,i)icr, is a family of monomials in Zk[v, v‘l] such that if
M, Hc,j veS; s then ged(ac ;) = 1 and Y55, Yac; = 0 for all
Ce A/

(f) (nx,i)ielx is a family of positive integers.

Proof. By Proposition 2.2.10, we have that s,(v) € Zg[v,v~!]. The rest
is a case by case analysis: Let us first consider the group G(d,1,r). The
Schur elements of H(G(d, 1, 7)) have been calculated independently by Geck,
Tancu and Malle [36] and by Mathas [54]. Following Theorem A.7.2, they are
obviously of the desired form. Moreover, in the Appendix we give the generic
Schur elements for the groups G(2d, 2, 2), G7, G11, G19, Ga26, G32 (calculated
by Malle in [49] and [50]) and F, (calculated by Lusztig in [47]) and show
that they are of the form described above. In the Appendix, we also give the
specializations of the parameters which make:

o H(G(de,1,7)) the twisted symmetric algebra of the cyclic group C. over
(de,e,r)) in the case where r > 2 or r = 2 and e is odd.
(de,2,2)) the twisted symmetric algebra of the cyclic group C. /5 over
G(de,e,2)) in the case where e is even.
G7) the twisted symmetric algebra of some finite cyclic group over
G4) (G5) and H(GG)
G11) the twisted symmetric algebra of some finite cyclic group over
G

H(G
(¢
(
(
E
( 8) ( ), H(Glo), H(Glg), H(Glg), H(G14) and H<G15)

H
H
H
H
H
H
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o H(G19) the twisted symmetric algebra of some finite cyclic group over
H(G16), H(G17), H(Gis), H(G20), H(G21) and H(Gaz).
o H(Go6) the twisted symmetric algebra of the cyclic group Csy over H(Gas).

In all these cases, Proposition 2.3.15 implies that the Schur elements of the
twisted symmetric algebra are scalar multiples of the Schur elements of the
subalgebra. Due to the nature of the specializations (each indeterminate is
sent to an indeterminate or a root of unity or a product of the two), the Schur
elements of the subalgebra are also of the desired form.

Finally, if W is one of the remaining exceptional irreducible complex re-
flection groups, then W has one hyperplane orbit C with e¢c = 2. The generic
Hecke algebra of W is defined over a Laurent polynomial ring in two indeter-
minates ve¢,o and ve 1. Its Schur elements should be products of K-cyclotomic
polynomials in one variable v := v¢ v % The generic Schur elements have
been calculated

e for Eg and Er by Surowski [62],

for Eg by Benson [6],

for Hs by Lusztig [44],

for Hy by Alvis and Lusztig [1],

for G24, G27, Ggg, G’317 G33 and G34 by Malle [50},

and they are indeed products of K-cyclotomic polynomials in “one” variable.

Note that in order to write the Schur elements in the desired form, we
have used the GAP Package CHEVIE (some mistakes in the articles cited
above have been spotted and corrected). |

Remark. It is a consequence of [59], Theorem 3.5, that the irreducible fac-
tors of the generic Schur elements over C[v,v~!] are divisors of Laurent
polynomials of the form M(v)™ — 1, where

e M(v) is a monomial in C[v,v™1],
e 1 1S a positive integer.

We have seen that the specialization ve ; — 1 induces a bijection xy — X
from Irr(K (v)H) to Irr(W). Due to the assumptions 4.2.3, it maps s, (v) to
|[W|/x(1), which is the Schur element of x with respect to the canonical sym-
metrizing form. Therefore, the first cyclotomic polynomial does not appear in
the factorization of s, (v) (otherwise the specialization v¢ ; +— 1 would map
5y (v) to 0).

The following result is an immediate application of Definition 3.1.1.

Theorem 4.2.6. The algebra ‘H, defined over the ring Zx[v,v~1], is an
essential algebra.

Thanks to Theorem 4.2.6, all the results of Chapter 3 can be applied to
the generic Hecke algebra of an irreducible complex reflection group.
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Definition 4.2.7. Let p be a prime ideal of Zx. We say that a (primitive)
monomial M in Zg[v, v~ is p-essential for W, if M is p-essential for H.

Ezample 4.2.8. Let W := G3. The group G5 is a Weyl group. We have seen
that

H(G2) = <S,T ’ STSTST = TSTSTS, g B ZOO))((ST - 1;1}3)100 > _

Set 3 1= ug, % := —uq, Y5 1= wo, y} := —w;. By Theorem 4.2.4, the algebra
Q(x0, x1,Y0,y1)H(G2) is split semisimple and hence, there exists a bijection
between its irreducible characters and the irreducible characters of GG3. The
group G5 has 4 irreducible characters of degree 1 and 2 irreducible characters
of degree 2. Set

s1(20,21,90,y1) :=Pa(zoxy ') Palyoys ') Pa(zoxy 'yoyr ) Pe(wozy 'yoy; ),
s2(2o, 21, Yo, Y1) := 22 "2} - P3(voxy 'yoyr ) - Pe(woxy vy Y1),
where @3(x) = 22 + 2 + 1, Py(x) = 22 + 1, Pg(z) = 2% —x + 1.
The Schur elements of H(G3) are
$1(0, 1, Y0, Y1), $1(%0, 1, Y1, Yo), $1(T1, To, Yo, Y1), $1(21, T, Y1, Yo ),

Sz(ﬂ?o, xl,yo,yl), 32(x0,x1,y1, yo)-

Since @3(1) = 3, P4(1) = 2 and P¢(1) = 1, we obtain that

e the (2)-essential monomials for Gy are zoz;' and yoy;* (and their in-
verses),

e the (3)-essential monomials for Go are xoxflyoyfl and moxflyalyl (and
their inverses).

Ezample 4.2.9. Let W := G4. The field of definition of G4 is Q((3). We have
seen that

B B (S —u)(S —u1)(S—uz)=0
e =(s.r|zsT=187 (G TWET T L)

Set v§ = wug, v = (3u1, v§ = (3uz. By Theorem 4.2.4, the algebra
Q(¢3)(vo,v1,v2)H(Gy) is split semisimple and hence, there exists a bijection
between its irreducible characters and the irreducible characters of G4. The
group G4 has 3 irreducible characters of degree 1, 3 irreducible characters of
degree 2 and 1 irreducible character of degree 3. Set



80 4 On Hecke Algebras

51(v0,v1,v2) := B (vovy ') - Phg(vovy ') - Pa(vovy ") - Ply(vovy ) - DYy (vovy ')
- Bl (vovy ) - Dh(vovy ') - P (vovy ) - Palvovy ) - Pho(vovy )
- Do (v0vy ") - P (vovy ) - Pa(vgvr tvg )
- Dho(vgoy oy ) - P (vgy ey ),

$2(v0, v1,v2) 1= —CFv§vy % - D (v1vg ) - Plg(vrvg ) - By (vavg ) - Phg(vavg )

- Dy(v1vy ) - Bhy(vivy ) - By (0105 ) - Bl (vivy )
Dy (vg 2v1v2) - Pha(vg Pv1v2) - Py (vg Pv1v2),

53(vo, v1,v2) = g154(”0”1 Uzl) gZi’12(”ov1 1“2_1)1 gzs/1/2(1’0”1 Uz 1)1
-1

Dy (U1U2 Uo ) - q)/m(UlUQ Uo ) - gzs,1/2(1’1712 Uo 1)

Dy (UQUO vy ) 4”12(”2”0 vy ) gp’l’Q(”QUO vy ),

where @4(z) = 22 + 1, &) (z) = 23 — (3, Py (x) = 23 — (2, Py (x) = 22 + (3,
Phy(z) = z? + C:%v @’1/8(55) =%+ Gs, ¢118(x) =2+ Cg; ¢g6(x) = 2%+ G35
Di(w) = 2° + 5.

The Schur elements of H(G,4) are
SI(UO,'UL'U2)a51(”1»”27UO)asl(U27U07U1)a

32(”077}1702)a 32(Ulav2sz)a 52(712771077]1)a 53(”0; U17U2)-

We deduce that the (2)-essential monomials for G4 are

—1 —1 -1 ,2 -1 -1 2 -1 -1 2 -1 —1
VoVy ,V0Uy ,V1Vy ,VgU; Uy ,UiVUy Vg ,UVy Uy

The first three are also the (1 — (3)-essential monomials for G.

4.3 Cyclotomic Hecke Algebras

Let y be an indeterminate. We set z := y#()I,

Definition 4.3.1. A cyclotomic specialization of H is a Zk-algebra mor-
phism ¢ : Zg[v,v™t] — Zk[y,y~!] with the following properties:
o ¢:vc ;i y"% where ne; € Z for all C and j.

e ForallC € A/W,if z is another indeterminate, the element of Z [y, y~*, 2]
defined by

ec—1

Fc(yvz) = H (z - gcync‘j)

=0

is invariant by the action of Gal(K (y)/K (z)).
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If ¢ is a cyclotomic specialization of H, the corresponding cyclotomic Hecke
algebra is the Zx [y, y~']-algebra, denoted by ‘Hg, which is obtained as the
specialization of the Zg [v,v~!]-algebra H via the morphism ¢. It also has a
symmetrizing form ¢, defined as the specialization of the canonical form ¢.

Remark. Sometimes we describe the morphism ¢ by the formula
uC,j — cgc.’ljnc’j.

If now we set q := Cx for some root of unity ¢ € u(K), then the cyclotomic
specialization ¢ becomes a (-cyclotomic specialization and Hg can be also
considered over Zx[q,q "]

Ezample 4.3.2. The “spetsial” cyclotomic Hecke algebra Hg(W) is the
1-cyclotomic algebra obtained by the specialization

uc,o > q, uc;— ¢l for 1 <j <ec—1, forall C € A/W.
For example,
H:(G2)=(S,T| STSTST = TSTSTS, (S — q)(S+1)=(T— q)(T+1)=0).
and
H;(Ga)=(S,T|STS = TST,(S— q)(S*+5+1)=(T— q)(T*> + T +1)=0) .

Set A :=Zg[v,v~!] and 2 := Zx[y,y~']. Let ¢ : A — §2 be a cyclotomic
specialization such that ¢(ve ;) = y™¢7 for all C, j. Recall that, for o € Z\ {0},
we denote by I* : {2 — {2 the monomorphism y — y®.

Theorem 4.3.3. Let ¢ : A — {2 be a cyclotomic specialization like above.
Then there exist an adapted Z g -algebra morphism ¢ : A — 2 and o € Z\{0}
such that

¢ =1%0.
Proof. We set d := ged(nc ;) and consider the cyclotomic specialization

¢ vej > y"ei/d We have ¢ = I4 0 . Since ged(ne,;/d) = 1, there exist
ac,; € 7 such that

> ac,j(ne;/d) =1.

C.j
We have y = ‘P(Hc,j UZCJJ) an hence, ¢ is surjective. Then, by
Proposition 1.4.12, ¢ is adapted. |

Let ¢ be defined as in Theorem 4.3.3 and H,, the corresponding cyclotomic
Hecke algebra. Proposition 3.2.1 implies that the algebra K(y)H, is split
semisimple. Due to Corollary 2.4.11 and the theorem above, we deduce that
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Proposition 4.3.4. The algebra K (y)H, is split semisimple.

For y = 1, the algebra K(y)H, specializes to the group algebra KW
(the form t, becoming the canonical form on the group algebra). Thus, by
Tits” deformation theorem, the specialization v¢ ; + 1 defines the following
bijections

Irr(K(v)H) < Irr(K (y)Hy) < Irr(W)
Xv — Xo = X

The following result is an immediate consequence of Theorem 4.2.5.

Proposition 4.3.5. The Schur element s, (y) associated to the irreducible
character x4 of K(y)Hge is a Laurent polynomial in y of the form

Sxo () = Vo™ [ @)™e”
PeCk

where Py ¢ € Lk, Gy € L, Ny g0 € N and Ck is a set of K-cyclotomic
polynomials.

4.3.1 Essential Hyperplanes

Let p be a prime ideal of Zg. Let ¢ : ve ; — y™¢7 be a cyclotomic special-
ization of H and let ¢ be an adapted morphism as in Theorem 4.3.3. By
Corollary 3.4.2, the blocks of £2,oHy coincide with the blocks of £2,oH,, and
the latter can be calculated with the use of Theorem 3.3.2. Therefore, we
need to know which p-essential monomials are sent to 1 by ¢.

Let M := HC,j UZCJJ be a p-essential monomial for W. Then

(M) =16 ¢(M) =16 ac,nc; =0.
C7j

Set m := ZCEA/W ec. The hyperplane defined in C™ by the relation
> acjte; =0,
C.j

where (t¢ j)c,; is a set of m indeterminates, is called p-essential hyperplane
for W. A hyperplane in C™ is called essential for W if it is p-essential for
some prime ideal p of Zg.

Ezample 4.3.6. Let W := G5. Following Example 4.2.8, let

a0y =y Yo o Y0y oy
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be a cyclotomic specialization. Then

e the (2)-essential hyperplanes for Gy are Ng — Ny = 0 and My — My = 0,
e the (3)-essential hyperplanes for Gy are Ny — Ny + My — M; = 0 and
Ny — Ny — My + M, = 0.

Example 4.3.7. Let W := Gy4. Following Example 4.2.9, let ¢ : v; — y™ for
1 =20,1,2 be a cyclotomic specialization. Then the hyperplanes

e No— Ny =0, Ng— No = 0 and Ny — Ny = 0 are (2)-essential and
(1 — (3)-essential for Gy,

e 2Ny — N1 — Ny =0, 2N; — Ny — Ny =0 and 2Ny — Ny — N1 = 0 are just
(2)-essential for Gy.

In order to calculate the blocks of £2,oH4, we check to which p-essential
hyperplanes the n¢ ; belong and we apply Theorem 3.3.2:

e If the n¢ ; belong to no p-essential hyperplane, then the blocks of £2,0H4
coincide with the blocks of A, 4H. We call these blocks p-blocks associated
with no essential hyperplane.

e If the n¢ ; belong to exactly one p-essential hyperplane H s, corresponding
to the p-essential monomial M, then the blocks of 2,0H4 coincide with
the blocks of Ag,,H, where qar := pA + (M — 1)A. We call these blocks
p-blocks associated with the essential hyperplane Hyy.

e If the nc ; belong to more than one p-essential hyperplane, then, following
Theorem 3.3.2, the blocks of {2,0H4 are unions of the p-blocks associated
with the p-essential hyperplanes to which the nc ; belong and they are
minimal with respect to that property.

This last property of the p-blocks is called “property of semi-continuity”
(the name is due to C. Bonnafé). The property of semi-continuity also appears
in works on Kazhdan-Lusztig cells (cf. [9,10,40]) and on Cherednik algebras
(cf. [38]). In the next section, we will see that the Rouquier blocks of the
cyclotomic Hecke algebras also have this property.

4.3.2 Group Algebra

Let p be a prime ideal of Zyk lying over a prime number p and let
¢ :ve,; — Yy be a cyclotomic specialization of H. If n¢; = n € Z for
all C and j, then the n¢ ; belong to all p-essential hyperplanes for W and
we have 2,0Hg = 2,oW. Note that, since the ring 2,0 is a discrete val-
uation ring (by Theorem 1.2.24), the blocks of £2,oW are the p-blocks of
W as determined by Brauer theory. Due to Theorem 3.3.2, we obtain the
following result which relates the p-blocks of any cyclotomic Hecke algebra
to the p-blocks of W.

Proposition 4.3.8. Let ¢ : vc j — y"¢7 be a cyclotomic specialization of H.
If two irreducible characters x, 1 € Irr(W) are in the same block of £2,0H,
then they are in the same p-block of W.
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Proof. The blocks of 2,0H, are unions of the blocks of Ag,, H for all
p-essential monomials M such that ¢(M) = 1, whereas the p-blocks of W
are unions of the blocks of Ag,, H for all p-essential monomials M. [ |

However, we know from Brauer theory that if the order of the group W is
prime to p, then every character of W is a p-block by itself (see, for example,
[60], 15.5, Proposition 43). The following result is an immediate consequence
of Proposition 4.3.8.

Corollary 4.3.9. If p is a prime ideal of Zg lying over a prime number p
which does not divide the order of the group W, then the blocks of £2,0He
are singletons.

4.4 Rouquier Blocks of the Cyclotomic Hecke Algebras

Definition 4.4.1. We call Rouquier ring of K and denote by R (y) the
Z i-subalgebra of K (y)

Ric(y) = Zkly,y™ ", (y" = 1),1,].

Let ¢ : v j — y"¢ be a cyclotomic specialization and Hg the correspond-
ing cyclotomic Hecke algebra. The Rouguier blocks of Hy are the blocks of
the algebra R (y)He.

It has been shown by Rouquier (cf. [58]), that if W is a Weyl group and H
is obtained via the “spetsial” cyclotomic specialization (see Example 4.3.2),
then the Rouquier blocks of Hy coincide with the families of characters de-
fined by Lusztig. Thus, the Rouquier blocks generalize the notion of “families
of characters” to all complex reflection groups.

Remark. We have seen that if we set q = Cyl"l for some root of unity
¢ € u(K), then the cyclotomic Hecke algebra Hy can be also considered over
the ring Zxlq,q']. We define the Rouquier blocks of H to be the blocks of
Rk (y)Hey. However, in other texts (e.g., in [18]), the Rouquier blocks are
defined to be the blocks of Rk (q)Hy. Since R (y) is the integral closure of
Ri(q) in the splitting field K(y) for Hg, Proposition 2.1.9 establishes the
connection between the blocks of R (y)Hy and the blocks of R (q)He.

The Rouquier ring Rk (y) has many interesting properties. The next result
describes some of them.

Proposition 4.4.2.

(1) The group of units Rk (y)* of the Rouquier ring R (y) consists of the
elements of the form



4.4 Rouquier Blocks of the Cyclotomic Hecke Algebras 85

w [ e,

PeCycl(K)

wherew € Ly, n,ng € Z, Cycl(K) is the set of K -cyclotomic polynomials
and ng = 0 for all but a finite number of ®.
(2) The prime ideals of R (y) are

e the zero ideal {0},
o the ideals of the form pRk (y), where p is a prime ideal of Zx,
e theideals of the form P(y)Rx (y), where P(y) is an irreducible element

of Zily] of degree at least 1, prime to y and to P(y) for all
& € Cycl(K).

(8) The Rouquier ring Rk (y) is a Dedekind ring.

Proof. (1) This part is immediate from the definition of K-cyclotomic poly-
nomials.

(2) Since Ri(y) is an integral domain, the zero ideal is prime. Now, the
ring Zg is a Dedekind ring and thus a Krull ring, by Proposition 1.2.26.
Proposition 1.2.25 implies that the ring Zg[y] is also a Krull ring whose
prime ideals of height 1 are of the form pZ[y] (p prime in Zx ) and P(y)Zk[y]
(P(y) irreducible in Zk [y] of degree at least 1). Moreover, Zk has an infinite
number of non-zero prime ideals whose intersection is the zero ideal. Since
all non-zero prime ideals of Zx are maximal, we obtain that every prime
ideal of Z is the intersection of maximal ideals. Thus Zg is, by definition,
a Jacobson ring (cf. [31], §4.5). The general form of the Nullstellensatz ([31],
Theorem 4.19) implies that for every maximal ideal m of Zg/[y|, the ideal
m N Zg is a maximal ideal of Zx. We deduce that the maximal ideals of
Zy] are of the form pZ i [y]+ P(y)Zk[y] (p prime in Zy and P(y) of degree
at least 1 irreducible modulo p). Since Zk[y] has Krull dimension 2, we have
now described all its prime ideals.

The Rouquier ring Rk (y) is a localization of Zk[y]. Therefore, in order to
prove that the non-zero prime ideals of R (y) are the ones described above,
it is enough to show that mR x (y) = Rk (y) for all maximal ideals m of Zx[y].
For this, it suffices to show that pRx (y) is a maximal ideal of Rk (y) for all
prime ideals p of Zg.

Let p be a prime ideal of Zy. Then

R () /pRi(y) = Fyly.y™ ' (y" —1),24],

where F,, denotes the finite field Zg /p. Since F, is finite, every non-zero
polynomial in Fy,[y] is a product of elements which divide y or y™ —1 for some
n € N. Thus every non-zero element of Fy[y] is invertible in R (y)/pRx (y).
Consequently, we obtain that

Ri(y)/pRK(y) = Fy(y),

whence p generates a maximal ideal in Rk (y).
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(3) The ring Rx(y) is the localization of a Noetherian integrally closed
ring and thus Noetherian and integrally closed itself. Moreover, following the
description of its prime ideals in part 2, it has Krull dimension 1. |

Remark. If P(y) is an irreducible element of Zx[y] of degree at least 1, prime
to y and to D(y) for all & € Cycl(K), then the field Rk (y)/P(y)Rk(y) is
isomorphic to the field of fractions of the ring Zi[y]/P(y)Zky].

Now let us recall the form of the Schur elements of the cyclotomic Hecke
algebra Hy given in Proposition 4.3.5. If x4 is an irreducible character of
K(y)Hg, then its Schur element s, (y) is of the form

Svo () = Uysy™ [ @(y)er,
PeCk

where Yy ¢ € Zg, ay,¢ € Z, ny,9.6 € N and Ck is a set of K-cyclotomic
polynomials.

Definition 4.4.3. A prime ideal p of Zk lying over a prime number p is
¢-bad for W, if there exists x4 € Irr(K (y)Hg) with ¢y 4 € p. If p is ¢-bad
for W, we say that p is a ¢-bad prime number for W.

Remark. If W is a Weyl group and ¢ is the “spetsial” cyclotomic special-
ization, then the ¢-bad prime ideals are the ideals generated by the bad prime
numbers (in the “usual” sense) for W (see [35], 5.2).

Note that if p is a ¢-bad prime number for W, then p must divide the
order of the group (since sy, (1) = [W|/x(1)).

Let us denote by O the Rouquier ring. By Proposition 2.1.10, the Rouquier
blocks of Hg are unions of the blocks of OpHg, where P runs over the
set of prime ideals of O. However, in all of the following cases, due to
the form of the Schur elements, the blocks of OpH, are singletons (i.e.,
Exs = X5/ 5xs € OpHy for all x4 € Trr(K (y)Hy)):

e P is the zero ideal {0}.

e P is of the form P(y)O, where P(y) is an irreducible element of Z g [y] of
degree at least 1, prime to y and to @(y) for all & € Cycl(K).

e P is of the form pO, where p is a prime ideal of Zx which is not ¢-bad
for W.

Therefore, the blocks of OH4 are, simply, unions of the blocks of O,0Hg,
where p runs over the set of ¢-bad prime ideals p of Zx. More precisely, we
have the following;:

Proposition 4.4.4. Let x,¢ € Irr(W). The characters x4 and 1y are in
the same Rouquier block of Hy if and only if there exist a finite sequence
X0, X1, - -5 Xn € Irr(W) and a finite sequence py,...,pyn of ¢-bad prime ideals
for W such that
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o (X0)o = Xo and (xn)y = s,

o forallj (1<j<mn), (xj-1)¢ and (x;)¢ arein the same block of Op,0H.
By Proposition 1.1.5(4), we obtain that Opo = 2,0, where 2:=Z [y, y ']

In the previous section we saw how we can use Theorem 3.3.2 to calculate the

blocks of £2,0H and thus obtain the Rouquier blocks of H,. We deduce that

the Rouquier blocks of the cyclotomic Hecke algebras also have the property

of semi-continuity:

e If the nc; belong to no essential hyperplane for W, then the Rouquier
blocks of Hy are the Rouguier blocks associated with no essential hyper-
plane.

o If the n¢ ; belong to exactly one essential hyperplane H for W, then the
Rouquier blocks of Hy are the Rouquier blocks associated with the essential
hyperplane H.

o If the nc ; belong to more than one essential hyperplane, then the Rouquier
blocks of H4 are unions of the Rouquier blocks associated with the essential
hyperplanes to which the ne ; belong and they are minimal with respect
to that property.

4.4.1 Rouquier Blocks and Central Morphisms

The following description of the Rouquier blocks results from
Proposition 2.1.15 and the description of ¢-bad prime ideals for W.

Proposition 4.4.5. Let x,v € Irv(W). The characters x4 and 1y are in
the same Rouquier block of Hg if and only if there exist a finite sequence
X0s X1 -+ -5 Xn € Irt(W) and a finite sequence p1, ..., p, of ¢-bad prime ideals
for W such that

o (X0)¢ =Xo and (Xn)p = V¢,

o forallj (1<j<n), Wy, 1), =Wy, mod p;Op 0.

4.4.2 Rouquier Blocks and Functions a and A

Following the notation of [21], 6B, for every element P(y) € C(y), we call

o wvaluation of P(y) at y and denote by val,(P) the order of P(y) at 0 (we
have val,(P) < 0if 0 is a pole of P(y) and val,(P) > 0 if 0 is a zero of
P(y)),

e degree of P(y) at y and denote by deg, (P) the opposite of the valuation
of P(1/y).
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Moreover, if z := y/*)! then

and deg, (P(y)) = BuL)

val, (P(y)) := = TR

For x € Irr(W), we define

ay, = valy(sy,(y)) and A, :=deg,(sy,(y))
The following result is proven in [18], Proposition 2.9.
Proposition 4.4.6.

(1) For all x € Irr(W), we have

Wy, (1) = tg(T)ae e,
where T is the central element of the pure braid group of Definition 4.1.6.
(2) Let x,¢ € Irr(W). If x4 and 1y belong to the same Rouquier block, then

Uy, + AX¢> = Qyy + AW‘

Proof. (1) If P(y) € Cly,y~!], we denote by P(y)* the polynomial whose
coefficients are the complex conjugates of those of P(y). By [21], 2.8, we
know that the Schur element s, (y) is semi-palindromic and satisfies

Sy, (Y1) = t¢(T))8X¢(y)-

Wy, (T

We deduce ([21], 6.5, 6.6) that

1o(T) _ ¢ p(axg+4x,)
Wy, (T)

for some § € C. For y = 2 = 1, the first equation gives t4(7) = wy, (7) and
the second one £ = 1. Thus we obtain
— Ay T Ax
Wy, (T) = ty(T)a e X0,

(2) Suppose that x4 and 14 belong to the same Rouquier block. Due to
Proposition 4.4.5, it is enough to show that if there exists a ¢-bad prime
ideal p of Zk such that w,, = wy, mod pOyo, then a,, + Ay, = ay, + Ay, .
If wy, = wy, mod pO,o, then, in particular, wy, (T) = wy, (7) mod pOy0.
Part 1 implies that

to(T)z™o T = t4(7)z™s T4 mod pO,o.
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We know by [21], 2.1 that t4(7) is of the form 2™, where ¢ is a root of unity
and M € Z. Thus t4(7) ¢ pO,o and the above congruence gives

A
g% T = g% T v mod pOyo0,

whence
Ay, + AX¢ = Qy, + A%S'

Remark. For all Cozeter groups, Lusztig has proved (cf., for example, [46],
3.3 and 3.4) that if x4 and 4 belong to the same Rouquier block of the
Twahori-Hecke algebra, then ay, = ayp, and Ay, = Ay, . This assertion has
also been proved

o for almost all cyclotomic Hecke algebras of the groups G(d,1,r) and
G(e,e,r) in [18],

o for the “spetsial” cyclotomic Hecke algebra of the “spetsial” exceptional
complex reflection groups in [53].

Using the results of the next chapter, we have been able to obtain the same
result for all cyclotomic Hecke algebras

e of the groups G(d,1,r) in [25],
e of the groups G(de,e,r) in [26], and
o of all exceptional irreducible complex reflection groups in [23],

thus completing its proof for all complex reflection groups.
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