
Chapter 4

On Hecke Algebras

We will start this chapter by giving the definition and the classification of
complex reflection groups. We will also define the braid group and the pure
braid group associated to a complex reflection group. We will then intro-
duce the generic Hecke algebra of a complex reflection group, which is a
quotient of the group algebra of the associated braid group defined over a
Laurent polynomial in a finite number of indeterminates. Under certain as-
sumptions, which have been verified for all but a finite number of cases, we
prove (Theorem 4.2.5) that the generic Hecke algebras of complex reflection
groups are essential. Therefore, all results obtained in Chapter 3 apply to the
case of the generic Hecke algebras.

A cyclotomic Hecke algebra is obtained from the generic Hecke algebra via
a cyclotomic specialization (Definition 4.3.1). We prove (Theorem 4.3.3) that
any cyclotomic specialization is essentially an adapted morphism. Thus, we
can use Theorem 3.3.2 in order to obtain the Rouquier blocks of a cyclotomic
Hecke algebra (i.e., its blocks over the Rouquier ring, defined in Section 4.4),
which are a substitute for the families of characters that can be applied to
all complex reflection groups. We will see that the Rouquier blocks have
the property of semi-continuity, thus depending only on some “essential”
hyperplanes for the group, which are determined by the generic Hecke algebra.

The theory developed in this chapter will allow us to determine the
Rouquier blocks of the cyclotomic Hecke algebras of all (irreducible) com-
plex reflection groups in the next chapter.

4.1 Complex Reflection Groups and Associated
Braid Groups

Let μ∞ be the group of all the roots of unity in C and K a number field
contained in Q(μ∞). We denote by μ(K) the group of all the roots of unity
of K. For every integer d > 1, we set ζd := exp(2πi/d) and denote by μd

the group of all the d-th roots of unity. Let V be a K-vector space of finite
dimension r.
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72 4 On Hecke Algebras

4.1.1 Complex Reflection Groups

Definition 4.1.1. A pseudo-reflection is a non-trivial element s of GL(V )
which acts trivially on a hyperplane, called the reflecting hyperplane of s.

If W is a finite subgroup of GL(V ) generated by pseudo-reflections, then
(V,W ) is called a K-reflection group of rank r.

We have the following classification of complex reflection groups, also
known as the “Shephard-Todd classification”. For more details about the
classification, one may refer to [61].

Theorem 4.1.2. Let (V,W ) be an irreducible complex reflection group (i.e.,
W acts irreducibly on V ). Then one of the following assertions is true:

• There exist non-zero integers d, e, r such that (V,W ) ∼= G(de, e, r), where
G(de, e, r) is the group of all r×r monomial matrices with non-zero entries
in μde such that the product of all non-zero entries lies in μd.

• (V,W ) is isomorphic to one of the 34 exceptional groups Gn(n = 4, . . . , 37).

Remark. Among the irreducible complex reflection groups, we encounter the
irreducible real reflection groups. In particular, we have:

• G(1, 1, r) ∼= Ar−1 for r ≥ 2,
• G(2, 1, r) ∼= Br (or Cr) for r ≥ 2,
• G(2, 2, r) ∼= Dr for r ≥ 4,
• G(e, e, 2) ∼= I2(e), where I2(e) denotes the dihedral group of order 2e,
• G23 = H3, G28 = F4, G30 = H4, G35 = E6, G36 = E7, G37 = E8.

The following theorem has been proved (using a case by case analysis) by
Benard [5] and Bessis [7] and generalizes a well known result for Weyl groups.

Theorem-Definition 4.1.3 Let (V,W ) be a reflection group. Let K be the
field generated by the traces on V of all the elements of W . Then all irre-
ducible KW -representations are absolutely irreducible, i.e., K is a splitting
field for W . The field K is called the field of definition of the group W .

• If K ⊆ R, then W is a (finite) Coxeter group.
• If K = Q, then W is a Weyl group.

4.1.2 Braid Groups Associated to Complex
Reflection Groups

For all definitions and results about braid groups we follow [22]. Note that
for a given topological space X and a point x0 ∈ X, we denote by Π1(X,x0)
the fundamental group with base point x0.
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Let V be a K-vector space of finite dimension r. Let W be a finite subgroup
of GL(V ) generated by pseudo-reflections and acting irreducibly on V . We
denote by A the set of its reflecting hyperplanes. We define the regular variety
V reg := C⊗V −

⋃
H∈A C⊗H. For x0 ∈ V reg, we define P := Π1(V reg, x0) the

pure braid group (at x0) associated with W . If p : V reg → V reg/W denotes
the canonical surjection, we define B := Π1(V reg/W, p(x0)) the braid group
(at x0) associated with W .

The projection p induces a surjective map B � W,σ �→ σ̄ as follows: Let
σ̃ : [0, 1] → V reg be a path in V reg such that σ̃(0) = x0, which lifts σ. Then
σ̄ is defined by the equality σ̄(x0) = σ̃(1). Note that the map σ �→ σ̄ is an
anti-morphism.

Denoting by W op the group opposite to W , we have the following short
exact sequence

1 → P → B → W op → 1,

where the map B → W op is defined by σ �→ σ̄.
Now, for every hyperplane H ∈ A, we set eH the order of the group WH ,

where WH is the subgroup of W formed by idV and all the reflections fixing
the hyperplane H. The group WH is cyclic: if sH denotes an element of WH

with determinant ζH := ζeH
, then WH = 〈sH〉 and sH is called a distinguished

reflection in W .
Let LH := Im(s− idV ). Then, for all x ∈ V , we have x = prH(x)+prLH

(x)
with prH(x) ∈ H and prLH

(x) ∈ LH . Thus, sH(x) = prH(x) + ζHprLH
(x).

If t ∈ R, we set ζt
H := exp(2πit/eH) and we denote by st

H the element of
GL(V ) (a pseudo-reflection if t �= 0) defined by

st
H(x) := prH(x) + ζt

HprLH
(x).

For x ∈ V , we denote by σH,x the path in V from x to sH(x) defined by

σH,x : [0, 1] → V, t �→ st
H(x).

Let γ be a path in V reg with initial point x0 and terminal point xH . Then
γ−1 is the path in V reg with initial point xH and terminal point x0 such that

γ−1(t) = γ(1 − t) for all t ∈ [0, 1].

Thus, we can define the path sH(γ−1) : t �→ sH(γ−1(t)), which goes
from sH(xH) to sH(x0) and lies also in V reg, since for all x ∈ V reg,
sH(x) ∈ V reg (If sH(x) /∈ V reg, then sH(x) must belong to a hyperplane H ′.
If sH′ is a distinguished pseudo-reflection with reflecting hyperplane H ′, then
sH′(sH(x)) = sH(x) and sH

−1(sH′(sH(x))) = x. However, sH
−1sH′sH is a

reflection and x belongs to its reflecting hyperplane, s−1
H (H ′). This contra-

dicts the fact that x belongs to V reg.). Now we define a path from x0 to
sH(x0) as follows:

σH,γ := sH(γ−1(t)) · σH,xH
· γ.
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If xH is chosen “close to H and far from the other reflecting hyperplanes”,
the path σH,γ lies in V reg and its homotopy class does not depend on the
choice of xH . The element it induces in the braid group B, sH,γ , is a distin-
guished braid reflection around the image of H in V reg/W .

Proposition 4.1.4.

(1) The braid group B is generated by the distinguished braid reflections
around the images of the hyperplanes H ∈ A in V reg/W .

(2) The image of sH,γ in W is sH .
(3) Whenever γ′ is a path in V reg from x0 to xH , if λ denotes the loop in

V reg defined by λ := γ′−1γ, then

σH,γ′ = sH(λ) · σH,γ · λ−1.

In particular, sH,γ and sH,γ are conjugate in P .
(4) The path

∏j=0
j=eH−1 σH,sj

H(γ), a loop in V reg, induces the element seH

H,γ

in the braid group B and belongs to the pure braid group P . It is a
distinguished braid reflection around H in P .

Definition 4.1.5. Let s be a distinguished pseudo-reflection in W with re-
flecting hyperplane H. An s-distinguished braid reflection or monodromy
generator is a distinguished braid reflection s around the image of H in
V reg/W such that s̄ = s.

Definition 4.1.6. Let x0 ∈ V reg as before. We denote by τ the element of
P defined by the loop t �→ x0exp(2πit).

Lemma 4.1.7. We have τ ∈ ZP .

Theorem-Definition 4.1.8 Given C ∈ A/W , there exists a unique length
function lC : B → Z defined as follows: if b = sn1

1 · sn2
2 · · · · · snm

m where (for
all j) nj ∈ Z and sj is a distinguished braid reflection around an element of
Cj, then

lC(b) =
∑

{j | Cj=C}
nj .

The length function l : B → Z is defined, for all b ∈ B, as

l(b) =
∑

C∈A/W

lC(b).

We say that B has an Artin-like presentation (cf. [57], 5.2), if it has a
presentation of the form

〈 s ∈ S | {vi = wi}i∈I 〉 ,
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where S is a finite set of distinguished braid reflections and I is a finite set of
relations which are multi-homogeneous, i.e., such that, for each i, vi and wi

are positive words in elements of S (and hence, for each C ∈ A/W , we have
lC(vi) = lC(wi)).

The following result by Bessis ([8], Theorem 0.1) shows that any braid
group has an Artin-like presentation.

Theorem 4.1.9. Let W be a complex reflection group with associated braid
group B. Then there exists a subset S = {s1, . . . , sn} of B such that

(1) The elements s1, . . . , sn are distinguished braid reflection and therefore,
their images s1, . . . , sn in W are distinguished reflections.

(2) The set S generates B and therefore, S := {s1, . . . , sn} generates W .
(3) There exists a set R of relations of the form w1 = w2, where w1 and w2

are positive words of equal length in the elements of S, such that 〈S |R 〉
is a presentation of B.

(4) Viewing now R as a set of relations in S, the group W is presented by

〈S |R; (∀s ∈ S)(ses = 1) 〉 ,

where es denotes the order of s in W .

4.2 Generic Hecke Algebras

Let K,V,W,A, P,B be defined as in the previous section. For every orbit C
of W on A, we set eC the common order of the subgroups WH , where H is
any element of C and WH the subgroup formed by idV and all the reflections
fixing the hyperplane H.

We choose a set of indeterminates u = (uC,j)(C∈A/W )(0≤j≤eC−1) and we
denote by Z[u,u−1] the Laurent polynomial ring in all the indeterminates u.
We define the generic Hecke algebra H of W to be the quotient of the group
algebra Z[u,u−1]B by the ideal generated by the elements of the form

(s − uC,0)(s − uC,1) · · · (s − uC,eC−1),

where C runs over the set A/W and s runs over the set of monodromy gener-
ators around the images in V reg/W of the elements of the hyperplane orbit C.

Example 4.2.1. Let W := G2 =
〈
s, t | ststst = tststs, s2 = t2 = 1

〉
be the

dihedral group of order 12. The generic Hecke algebra of G2 is
defined over the Laurent polynomial ring in four indeterminates
Z[u0, u

−1
0 , u1, u

−1
1 , w0, w−1

0 , w1, w
−1
1 ] and can be presented as follows:

H(G2) =
〈

S, T

∣
∣
∣
∣ STSTST = TSTSTS,

(S − u0)(S − u1) = 0
(T − w0)(T − w1) = 0

〉

.
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Example 4.2.2. Let W := G4 =< s, t | sts = tst, s3 = t3 = 1 >. Then s and
t are conjugate in W and their reflecting hyperplanes belong to the same
orbit of W on A. The generic Hecke algebra of G4 is defined over the Laurent
polynomial ring in three indeterminates Z[u0, u

−1
0 , u1, u

−1
1 , u2, u

−1
2 ] and can

be presented as follows:

H(G4) =
〈

S, T

∣
∣
∣
∣ TST = TST,

(S − u0)(S − u1)(S − u2) = 0
(T − u0)(T − u1)(T − u2) = 0

〉

.

We make some assumptions for the generic Hecke algebra H. Note that
they have been verified for all but a finite number of irreducible complex
reflection groups ([21], remarks before 1.17, § 2; [36]).

Assumptions 4.2.3 The algebra H is a free Z[u,u−1]-module of rank |W |.
Moreover, there exists a linear form t : H → Z[u,u−1] with the following
properties:

(1) t is a symmetrizing form on H, i.e., t(hh′) = t(h′h) for all h, h′ ∈ H and
the map

t̂ : H → Hom(H, Z[u,u−1])
h �→ (h′ �→ t(hh′))

is an isomorphism.
(2) Via the specialization uC,j �→ ζj

eC , the form t becomes the canonical sym-
metrizing form on the group algebra ZK [W ].

(3) If we denote by α �→ α∗ the automorphism of Z[u,u−1] consisting of the
simultaneous inversion of the indeterminates, then for all b ∈ B, we have

t(b−1)∗ =
t(bτ )
t(τ )

,

where τ is the (central) element of P defined by the loop t �→ x0exp(2πit).

We know that the form t is unique ([21], 2.1). From now on, we suppose
that the assumptions 4.2.3 are satisfied. Then we have the following result
by G. Malle ([51], 5.2).

Theorem 4.2.4. Let v = (vC,j)(C∈A/W )(0≤j≤eC−1) be a set of
∑

C∈A/W eC

indeterminates such that, for every C, j, we have v
|μ(K)|
C,j = ζ−j

eC uC,j. Then the
K(v)-algebra K(v)H is split semisimple.

By Tits’ deformation theorem (Theorem 2.4.9), it follows that the spe-
cialization vC,j �→ 1 induces a bijection χv �→ χ from the set Irr(K(v)H) of
absolutely irreducible characters of K(v)H to the set Irr(W ) of absolutely
irreducible characters of W , such that the following diagram is commutative
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χv : H → ZK [v,v−1]
↓ ↓

χ : ZK [W ] → ZK .

Since the assumptions 4.2.3 are satisfied and the algebra K(v)H is split
semisimple, we can define the Schur element sχ(v) for every irreducible char-
acter χv of K(v)H with respect to the symmetrizing form t. The following
result describes the form of the Schur elements associated to the irreducible
characters of K(v)H.

Theorem 4.2.5. The Schur element sχ(v) associated to the irreducible char-
acter χv of K(v)H is an element of ZK [v,v−1] of the form

sχ(v) = ξχNχ

∏

i∈Iχ

Ψχ,i(Mχ,i)nχ,i ,

where

(a) ξχ is an element of ZK ,
(b) Nχ =

∏
C,j v

bC,j

C,j is a monomial in ZK [v,v−1] with
∑eC−1

j=0 bC,j = 0 for all
C ∈ A/W ,

(c) Iχ is an index set,
(d) (Ψχ,i)i∈Iχ

is a family of K-cyclotomic polynomials in one variable (i.e.,
minimal polynomials of the roots of unity over K),

(e) (Mχ,i)i∈Iχ
is a family of monomials in ZK [v,v−1] such that if

Mχ,i =
∏

C,j v
aC,j

C,j , then gcd(aC,j) = 1 and
∑eC−1

j=0 aC,j = 0 for all
C ∈ A/W ,

(f) (nχ,i)i∈Iχ
is a family of positive integers.

Proof. By Proposition 2.2.10, we have that sχ(v) ∈ ZK [v,v−1]. The rest
is a case by case analysis: Let us first consider the group G(d, 1, r). The
Schur elements of H(G(d, 1, r)) have been calculated independently by Geck,
Iancu and Malle [36] and by Mathas [54]. Following Theorem A.7.2, they are
obviously of the desired form. Moreover, in the Appendix we give the generic
Schur elements for the groups G(2d, 2, 2), G7, G11, G19, G26, G32 (calculated
by Malle in [49] and [50]) and F4 (calculated by Lusztig in [47]) and show
that they are of the form described above. In the Appendix, we also give the
specializations of the parameters which make:

• H(G(de, 1, r)) the twisted symmetric algebra of the cyclic group Ce over
H(G(de, e, r)) in the case where r > 2 or r = 2 and e is odd.

• H(G(de, 2, 2)) the twisted symmetric algebra of the cyclic group Ce/2 over
H(G(de, e, 2)) in the case where e is even.

• H(G7) the twisted symmetric algebra of some finite cyclic group over
H(G4), H(G5) and H(G6).

• H(G11) the twisted symmetric algebra of some finite cyclic group over
H(G8), H(G9), H(G10), H(G12), H(G13), H(G14) and H(G15).
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• H(G19) the twisted symmetric algebra of some finite cyclic group over
H(G16), H(G17), H(G18), H(G20), H(G21) and H(G22).

• H(G26) the twisted symmetric algebra of the cyclic group C2 over H(G25).

In all these cases, Proposition 2.3.15 implies that the Schur elements of the
twisted symmetric algebra are scalar multiples of the Schur elements of the
subalgebra. Due to the nature of the specializations (each indeterminate is
sent to an indeterminate or a root of unity or a product of the two), the Schur
elements of the subalgebra are also of the desired form.

Finally, if W is one of the remaining exceptional irreducible complex re-
flection groups, then W has one hyperplane orbit C with eC = 2. The generic
Hecke algebra of W is defined over a Laurent polynomial ring in two indeter-
minates vC,0 and vC,1. Its Schur elements should be products of K-cyclotomic
polynomials in one variable v := vC,0v

−1
C,1. The generic Schur elements have

been calculated

• for E6 and E7 by Surowski [62],
• for E8 by Benson [6],
• for H3 by Lusztig [44],
• for H4 by Alvis and Lusztig [1],
• for G24, G27, G29, G31, G33 and G34 by Malle [50],

and they are indeed products of K-cyclotomic polynomials in “one” variable.
Note that in order to write the Schur elements in the desired form, we

have used the GAP Package CHEVIE (some mistakes in the articles cited
above have been spotted and corrected). �

Remark. It is a consequence of [59], Theorem 3.5, that the irreducible fac-
tors of the generic Schur elements over C[v,v−1] are divisors of Laurent
polynomials of the form M(v)n − 1, where

• M(v) is a monomial in C[v,v−1],
• n is a positive integer.

We have seen that the specialization vC,j �→ 1 induces a bijection χv �→ χ
from Irr(K(v)H) to Irr(W ). Due to the assumptions 4.2.3, it maps sχ(v) to
|W |/χ(1), which is the Schur element of χ with respect to the canonical sym-
metrizing form. Therefore, the first cyclotomic polynomial does not appear in
the factorization of sχ(v) (otherwise the specialization vC,j �→ 1 would map
sχ(v) to 0).

The following result is an immediate application of Definition 3.1.1.

Theorem 4.2.6. The algebra H, defined over the ring ZK [v,v−1], is an
essential algebra.

Thanks to Theorem 4.2.6, all the results of Chapter 3 can be applied to
the generic Hecke algebra of an irreducible complex reflection group.
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Definition 4.2.7. Let p be a prime ideal of ZK . We say that a (primitive)
monomial M in ZK [v , v−1] is p-essential for W , if M is p-essential for H.

Example 4.2.8. Let W := G2. The group G2 is a Weyl group. We have seen
that

H(G2) =
〈

S, T

∣
∣
∣
∣ STSTST = TSTSTS,

(S − u0)(S − u1) = 0
(T − w0)(T − w1) = 0

〉

.

Set x2
0 := u0, x2

1 := −u1, y2
0 := w0, y2

1 := −w1. By Theorem 4.2.4, the algebra
Q(x0, x1, y0, y1)H(G2) is split semisimple and hence, there exists a bijection
between its irreducible characters and the irreducible characters of G2. The
group G2 has 4 irreducible characters of degree 1 and 2 irreducible characters
of degree 2. Set

s1(x0,x1,y0,y1) :=Φ4(x0x
−1
1 )· Φ4(y0y

−1
1 )· Φ3(x0x

−1
1 y0y

−1
1 )· Φ6(x0x

−1
1 y0y

−1
1 ),

s2(x0, x1, y0, y1) := 2x−2
0 x2

1 · Φ3(x0x
−1
1 y0y

−1
1 ) · Φ6(x0x

−1
1 y−1

0 y1),

where Φ3(x) = x2 + x + 1, Φ4(x) = x2 + 1, Φ6(x) = x2 − x + 1.

The Schur elements of H(G2) are

s1(x0, x1, y0, y1), s1(x0, x1, y1, y0), s1(x1, x0, y0, y1), s1(x1, x0, y1, y0),

s2(x0, x1, y0, y1), s2(x0, x1, y1, y0).

Since Φ3(1) = 3, Φ4(1) = 2 and Φ6(1) = 1, we obtain that

• the (2)-essential monomials for G2 are x0x
−1
1 and y0y

−1
1 (and their in-

verses),
• the (3)-essential monomials for G2 are x0x

−1
1 y0y

−1
1 and x0x

−1
1 y−1

0 y1 (and
their inverses).

Example 4.2.9. Let W := G4. The field of definition of G4 is Q(ζ3). We have
seen that

H(G4) =
〈

S, T

∣
∣
∣
∣ TST = TST,

(S − u0)(S − u1)(S − u2) = 0
(T − u0)(T − u1)(T − u2) = 0

〉

.

Set v6
0 := u0, v6

1 := ζ2
3u1, v6

2 := ζ3u2. By Theorem 4.2.4, the algebra
Q(ζ3)(v0, v1, v2)H(G4) is split semisimple and hence, there exists a bijection
between its irreducible characters and the irreducible characters of G4. The
group G4 has 3 irreducible characters of degree 1, 3 irreducible characters of
degree 2 and 1 irreducible character of degree 3. Set
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s1(v0, v1, v2) := Φ′′
9(v0v

−1
1 ) · Φ′

18(v0v
−1
1 ) · Φ4(v0v

−1
1 ) · Φ′

12(v0v
−1
1 ) · Φ′′

12(v0v
−1
1 )

· Φ′
36(v0v

−1
1 ) · Φ′

9(v0v
−1
2 ) · Φ′′

18(v0v
−1
2 ) · Φ4(v0v

−1
2 ) · Φ′

12(v0v
−1
2 )

· Φ′′
12(v0v

−1
2 ) · Φ′′

36(v0v
−1
2 ) · Φ4(v2

0v−1
1 v−1

2 )
· Φ′

12(v
2
0v−1

1 v−1
2 ) · Φ′′

12(v
2
0v−1

1 v−1
2 ),

s2(v0, v1, v2) := −ζ2
3v6

2v−6
1 · Φ′

9(v1v
−1
0 ) · Φ′′

18(v1v
−1
0 ) · Φ′′

9(v2v
−1
0 ) · Φ′

18(v2v
−1
0 )

· Φ4(v1v
−1
2 ) · Φ′

12(v1v
−1
2 ) · Φ′′

12(v1v
−1
2 ) · Φ′

36(v1v
−1
2 )

·Φ4(v−2
0 v1v2) · Φ′

12(v
−2
0 v1v2) · Φ′′

12(v
−2
0 v1v2),

s3(v0, v1, v2) := Φ4(v2
0v−1

1 v−1
2 ) · Φ′

12(v
2
0v−1

1 v−1
2 ) · Φ′′

12(v
2
0v−1

1 v−1
2 )

· Φ4(v2
1v−1

2 v−1
0 ) · Φ′

12(v
2
1v−1

2 v−1
0 ) · Φ′′

12(v
2
1v−1

2 v−1
0 )

· Φ4(v2
2v−1

0 v−1
1 ) · Φ′

12(v
2
2v−1

0 v−1
1 ) · Φ′′

12(v
2
2v−1

0 v−1
1 ),

where Φ4(x) = x2 + 1, Φ′
9(x) = x3 − ζ3, Φ′′

9(x) = x3 − ζ2
3 , Φ′′

12(x) = x2 + ζ3,
Φ′

12(x) = x2 + ζ2
3 , Φ′′

18(x) = x3 + ζ3, Φ′
18(x) = x3 + ζ2

3 , Φ′′
36(x) = x6 + ζ3,

Φ′
36(x) = x6 + ζ2

3 .

The Schur elements of H(G4) are

s1(v0, v1, v2), s1(v1, v2, v0), s1(v2, v0, v1),

s2(v0, v1, v2), s2(v1, v2, v0), s2(v2, v0, v1), s3(v0, v1, v2).

We deduce that the (2)-essential monomials for G4 are

v0v
−1
1 , v0v

−1
2 , v1v

−1
2 , v2

0v−1
1 v−1

2 , v2
1v−1

2 v−1
0 , v2

2v−1
0 v−1

1 .

The first three are also the (1 − ζ3)-essential monomials for G4.

4.3 Cyclotomic Hecke Algebras

Let y be an indeterminate. We set x := y|μ(K)|.

Definition 4.3.1. A cyclotomic specialization of H is a ZK-algebra mor-
phism φ : ZK [v,v−1] → ZK [y, y−1] with the following properties:

• φ : vC,j �→ ynC,j where nC,j ∈ Z for all C and j.
• For all C ∈ A/W , if z is another indeterminate, the element of ZK [y, y−1, z]

defined by

ΓC(y, z) :=
eC−1∏

j=0

(z − ζj
eCynC,j )

is invariant by the action of Gal(K(y)/K(x)).
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If φ is a cyclotomic specialization of H, the corresponding cyclotomic Hecke
algebra is the ZK [y, y−1]-algebra, denoted by Hφ, which is obtained as the
specialization of the ZK [v,v−1]-algebra H via the morphism φ. It also has a
symmetrizing form tφ defined as the specialization of the canonical form t.

Remark. Sometimes we describe the morphism φ by the formula

uC,j �→ ζj
eCxnC,j .

If now we set q := ζx for some root of unity ζ ∈ μ(K), then the cyclotomic
specialization φ becomes a ζ-cyclotomic specialization and Hφ can be also
considered over ZK [q, q−1].

Example 4.3.2. The “spetsial” cyclotomic Hecke algebra Hs
q(W ) is the

1-cyclotomic algebra obtained by the specialization

uC,0 �→ q, uC,j �→ ζj
eC for 1 ≤ j ≤ eC − 1, for all C ∈ A/W.

For example,

Hs
q(G2)=〈S, T |STSTST = TSTSTS, (S − q)(S + 1)=(T− q)(T +1)= 0〉 .

and

Hs
q(G4)=

〈
S, T |STS = TST, (S− q)(S2+S+1)=(T− q)(T 2 + T + 1)=0

〉
.

Set A := ZK [v,v−1] and Ω := ZK [y, y−1]. Let φ : A → Ω be a cyclotomic
specialization such that φ(vC,j) = ynC,j for all C, j. Recall that, for α ∈ Z\{0},
we denote by Iα : Ω → Ω the monomorphism y �→ yα.

Theorem 4.3.3. Let φ : A → Ω be a cyclotomic specialization like above.
Then there exist an adapted ZK-algebra morphism ϕ : A → Ω and α ∈ Z\{0}
such that

φ = Iα ◦ ϕ.

Proof. We set d := gcd(nC,j) and consider the cyclotomic specialization
ϕ : vC,j �→ ynC,j/d. We have φ = Id ◦ ϕ. Since gcd(nC,j/d) = 1, there exist
aC,j ∈ Z such that ∑

C,j

aC,j(nC,j/d) = 1.

We have y = ϕ(
∏

C,j v
aC,j

C,j ) an hence, ϕ is surjective. Then, by
Proposition 1.4.12, ϕ is adapted. �

Let ϕ be defined as in Theorem 4.3.3 and Hϕ the corresponding cyclotomic
Hecke algebra. Proposition 3.2.1 implies that the algebra K(y)Hϕ is split
semisimple. Due to Corollary 2.4.11 and the theorem above, we deduce that
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Proposition 4.3.4. The algebra K(y)Hφ is split semisimple.

For y = 1, the algebra K(y)Hφ specializes to the group algebra KW
(the form tφ becoming the canonical form on the group algebra). Thus, by
Tits’ deformation theorem, the specialization vC,j �→ 1 defines the following
bijections

Irr(K(v)H) ↔ Irr(K(y)Hφ) ↔ Irr(W )
χv �→ χφ �→ χ.

The following result is an immediate consequence of Theorem 4.2.5.

Proposition 4.3.5. The Schur element sχφ
(y) associated to the irreducible

character χφ of K(y)Hφ is a Laurent polynomial in y of the form

sχφ
(y) = ψχ,φyaχ,φ

∏

Φ∈CK

Φ(y)nχ,φ,Φ

where ψχ,φ ∈ ZK , aχ,φ ∈ Z, nχ,φ,Φ ∈ N and CK is a set of K-cyclotomic
polynomials.

4.3.1 Essential Hyperplanes

Let p be a prime ideal of ZK . Let φ : vC,j �→ ynC,j be a cyclotomic special-
ization of H and let ϕ be an adapted morphism as in Theorem 4.3.3. By
Corollary 3.4.2, the blocks of ΩpΩHφ coincide with the blocks of ΩpΩHϕ and
the latter can be calculated with the use of Theorem 3.3.2. Therefore, we
need to know which p-essential monomials are sent to 1 by ϕ.

Let M :=
∏

C,j v
aC,j

C,j be a p-essential monomial for W . Then

ϕ(M) = 1 ⇔ φ(M) = 1 ⇔
∑

C,j

aC,jnC,j = 0.

Set m :=
∑

C∈A/W eC . The hyperplane defined in Cm by the relation

∑

C,j

aC,jtC,j = 0,

where (tC,j)C,j is a set of m indeterminates, is called p-essential hyperplane
for W . A hyperplane in Cm is called essential for W , if it is p-essential for
some prime ideal p of ZK .

Example 4.3.6. Let W := G2. Following Example 4.2.8, let

φ : x0 �→ yn0 , x1 �→ yn1 , y0 �→ ym0 , y1 �→ ym1
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be a cyclotomic specialization. Then

• the (2)-essential hyperplanes for G2 are N0 − N1 = 0 and M0 − M1 = 0,
• the (3)-essential hyperplanes for G2 are N0 − N1 + M0 − M1 = 0 and

N0 − N1 − M0 + M1 = 0.

Example 4.3.7. Let W := G4. Following Example 4.2.9, let φ : vi �→ yni for
i = 0, 1, 2 be a cyclotomic specialization. Then the hyperplanes

• N0 − N1 = 0, N0 − N2 = 0 and N1 − N2 = 0 are (2)-essential and
(1 − ζ3)-essential for G4,

• 2N0 − N1 − N2 = 0, 2N1 − N2 − N0 = 0 and 2N2 − N0 − N1 = 0 are just
(2)-essential for G4.

In order to calculate the blocks of ΩpΩHφ, we check to which p-essential
hyperplanes the nC,j belong and we apply Theorem 3.3.2:

• If the nC,j belong to no p-essential hyperplane, then the blocks of ΩpΩHφ

coincide with the blocks of ApAH. We call these blocks p-blocks associated
with no essential hyperplane.

• If the nC,j belong to exactly one p-essential hyperplane HM , corresponding
to the p-essential monomial M , then the blocks of ΩpΩHφ coincide with
the blocks of AqM

H, where qM := pA + (M − 1)A. We call these blocks
p-blocks associated with the essential hyperplane HM .

• If the nC,j belong to more than one p-essential hyperplane, then, following
Theorem 3.3.2, the blocks of ΩpΩHφ are unions of the p-blocks associated
with the p-essential hyperplanes to which the nC,j belong and they are
minimal with respect to that property.

This last property of the p-blocks is called “property of semi-continuity”
(the name is due to C. Bonnafé). The property of semi-continuity also appears
in works on Kazhdan-Lusztig cells (cf. [9,10,40]) and on Cherednik algebras
(cf. [38]). In the next section, we will see that the Rouquier blocks of the
cyclotomic Hecke algebras also have this property.

4.3.2 Group Algebra

Let p be a prime ideal of ZK lying over a prime number p and let
φ : vC,j �→ ynC,j be a cyclotomic specialization of H. If nC,j = n ∈ Z for
all C and j, then the nC,j belong to all p-essential hyperplanes for W and
we have ΩpΩHφ

∼= ΩpΩW . Note that, since the ring ΩpΩ is a discrete val-
uation ring (by Theorem 1.2.24), the blocks of ΩpΩW are the p-blocks of
W as determined by Brauer theory. Due to Theorem 3.3.2, we obtain the
following result which relates the p-blocks of any cyclotomic Hecke algebra
to the p-blocks of W .

Proposition 4.3.8. Let φ : vC,j �→ ynC,j be a cyclotomic specialization of H.
If two irreducible characters χ, ψ ∈ Irr(W ) are in the same block of ΩpΩHφ,
then they are in the same p-block of W .
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Proof. The blocks of ΩpΩHφ are unions of the blocks of AqM
H for all

p-essential monomials M such that φ(M) = 1, whereas the p-blocks of W
are unions of the blocks of AqM

H for all p-essential monomials M . �

However, we know from Brauer theory that if the order of the group W is
prime to p, then every character of W is a p-block by itself (see, for example,
[60], 15.5, Proposition 43). The following result is an immediate consequence
of Proposition 4.3.8.

Corollary 4.3.9. If p is a prime ideal of ZK lying over a prime number p
which does not divide the order of the group W , then the blocks of ΩpΩHφ

are singletons.

4.4 Rouquier Blocks of the Cyclotomic Hecke Algebras

Definition 4.4.1. We call Rouquier ring of K and denote by RK(y) the
ZK-subalgebra of K(y)

RK(y) := ZK [y, y−1, (yn − 1)−1
n≥1].

Let φ : vC,j �→ ynC,j be a cyclotomic specialization and Hφ the correspond-
ing cyclotomic Hecke algebra. The Rouquier blocks of Hφ are the blocks of
the algebra RK(y)Hφ.

It has been shown by Rouquier (cf. [58]), that if W is a Weyl group and Hφ

is obtained via the “spetsial” cyclotomic specialization (see Example 4.3.2),
then the Rouquier blocks of Hφ coincide with the families of characters de-
fined by Lusztig. Thus, the Rouquier blocks generalize the notion of “families
of characters” to all complex reflection groups.

Remark. We have seen that if we set q := ζy|μ(K)| for some root of unity
ζ ∈ μ(K), then the cyclotomic Hecke algebra Hφ can be also considered over
the ring ZK [q, q−1]. We define the Rouquier blocks of Hφ to be the blocks of
RK(y)Hφ. However, in other texts ( e.g., in [18]), the Rouquier blocks are
defined to be the blocks of RK(q)Hφ. Since RK(y) is the integral closure of
RK(q) in the splitting field K(y) for Hφ, Proposition 2.1.9 establishes the
connection between the blocks of RK(y)Hφ and the blocks of RK(q)Hφ.

The Rouquier ring RK(y) has many interesting properties. The next result
describes some of them.

Proposition 4.4.2.

(1) The group of units RK(y)× of the Rouquier ring RK(y) consists of the
elements of the form
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uyn
∏

Φ∈Cycl(K)

Φ(y)nΦ ,

where u ∈ Z×
K , n, nΦ ∈ Z, Cycl(K) is the set of K-cyclotomic polynomials

and nΦ = 0 for all but a finite number of Φ.
(2) The prime ideals of RK(y) are

• the zero ideal {0},
• the ideals of the form pRK(y), where p is a prime ideal of ZK ,
• the ideals of the form P (y)RK(y), where P (y) is an irreducible element

of ZK [y] of degree at least 1, prime to y and to Φ(y) for all
Φ ∈ Cycl(K).

(3) The Rouquier ring RK(y) is a Dedekind ring.

Proof. (1) This part is immediate from the definition of K-cyclotomic poly-
nomials.

(2) Since RK(y) is an integral domain, the zero ideal is prime. Now, the
ring ZK is a Dedekind ring and thus a Krull ring, by Proposition 1.2.26.
Proposition 1.2.25 implies that the ring ZK [y] is also a Krull ring whose
prime ideals of height 1 are of the form pZK [y] (p prime in ZK) and P (y)ZK [y]
(P (y) irreducible in ZK [y] of degree at least 1). Moreover, ZK has an infinite
number of non-zero prime ideals whose intersection is the zero ideal. Since
all non-zero prime ideals of ZK are maximal, we obtain that every prime
ideal of ZK is the intersection of maximal ideals. Thus ZK is, by definition,
a Jacobson ring (cf. [31], §4.5). The general form of the Nullstellensatz ([31],
Theorem 4.19) implies that for every maximal ideal m of ZK [y], the ideal
m ∩ ZK is a maximal ideal of ZK . We deduce that the maximal ideals of
ZK [y] are of the form pZK [y]+P (y)ZK [y] (p prime in ZK and P (y) of degree
at least 1 irreducible modulo p). Since ZK [y] has Krull dimension 2, we have
now described all its prime ideals.

The Rouquier ring RK(y) is a localization of ZK [y]. Therefore, in order to
prove that the non-zero prime ideals of RK(y) are the ones described above,
it is enough to show that mRK(y) = RK(y) for all maximal ideals m of ZK [y].
For this, it suffices to show that pRK(y) is a maximal ideal of RK(y) for all
prime ideals p of ZK .

Let p be a prime ideal of ZK . Then

RK(y)/pRK(y) ∼= Fp[y, y−1, (yn − 1)−1
n≥1],

where Fp denotes the finite field ZK/p. Since Fp is finite, every non-zero
polynomial in Fp[y] is a product of elements which divide y or yn−1 for some
n ∈ N. Thus every non-zero element of Fp[y] is invertible in RK(y)/pRK(y).
Consequently, we obtain that

RK(y)/pRK(y) ∼= Fp(y),

whence p generates a maximal ideal in RK(y).



86 4 On Hecke Algebras

(3) The ring RK(y) is the localization of a Noetherian integrally closed
ring and thus Noetherian and integrally closed itself. Moreover, following the
description of its prime ideals in part 2, it has Krull dimension 1. �

Remark. If P (y) is an irreducible element of ZK [y] of degree at least 1, prime
to y and to Φ(y) for all Φ ∈ Cycl(K), then the field RK(y)/P (y)RK(y) is
isomorphic to the field of fractions of the ring ZK [y]/P (y)ZK [y].

Now let us recall the form of the Schur elements of the cyclotomic Hecke
algebra Hφ given in Proposition 4.3.5. If χφ is an irreducible character of
K(y)Hφ, then its Schur element sχφ

(y) is of the form

sχφ
(y) = ψχ,φyaχ,φ

∏

Φ∈CK

Φ(y)nχ,φ,Φ ,

where ψχ,φ ∈ ZK , aχ,φ ∈ Z, nχ,φ,Φ ∈ N and CK is a set of K-cyclotomic
polynomials.

Definition 4.4.3. A prime ideal p of ZK lying over a prime number p is
φ-bad for W , if there exists χφ ∈ Irr(K(y)Hφ) with ψχ,φ ∈ p. If p is φ-bad
for W , we say that p is a φ-bad prime number for W .

Remark. If W is a Weyl group and φ is the “spetsial” cyclotomic special-
ization, then the φ-bad prime ideals are the ideals generated by the bad prime
numbers (in the “usual” sense) for W (see [35], 5.2).

Note that if p is a φ-bad prime number for W , then p must divide the
order of the group (since sχφ

(1) = |W |/χ(1)).

Let us denote by O the Rouquier ring. By Proposition 2.1.10, the Rouquier
blocks of Hφ are unions of the blocks of OPHφ, where P runs over the
set of prime ideals of O. However, in all of the following cases, due to
the form of the Schur elements, the blocks of OPHφ are singletons (i.e.,
eχφ

= χ∨
φ/sχφ

∈ OPHφ for all χφ ∈ Irr(K(y)Hφ)):

• P is the zero ideal {0}.
• P is of the form P (y)O, where P (y) is an irreducible element of ZK [y] of

degree at least 1, prime to y and to Φ(y) for all Φ ∈ Cycl(K).
• P is of the form pO, where p is a prime ideal of ZK which is not φ-bad

for W .

Therefore, the blocks of OHφ are, simply, unions of the blocks of OpOHφ,
where p runs over the set of φ-bad prime ideals p of ZK . More precisely, we
have the following:

Proposition 4.4.4. Let χ, ψ ∈ Irr(W ). The characters χφ and ψφ are in
the same Rouquier block of Hφ if and only if there exist a finite sequence
χ0, χ1, . . . , χn ∈ Irr(W ) and a finite sequence p1, . . . , pn of φ-bad prime ideals
for W such that
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• (χ0)φ = χφ and (χn)φ = ψφ,
• for all j (1 ≤ j ≤ n), (χj−1)φ and (χj)φ are in the same block of OpjOHφ.

By Proposition 1.1.5(4), we obtain that OpO ∼=ΩpΩ , where Ω := ZK [y, y−1].
In the previous section we saw how we can use Theorem 3.3.2 to calculate the
blocks of ΩpΩHφ and thus obtain the Rouquier blocks of Hφ. We deduce that
the Rouquier blocks of the cyclotomic Hecke algebras also have the property
of semi-continuity :

• If the nC,j belong to no essential hyperplane for W , then the Rouquier
blocks of Hφ are the Rouquier blocks associated with no essential hyper-
plane.

• If the nC,j belong to exactly one essential hyperplane H for W , then the
Rouquier blocks of Hφ are the Rouquier blocks associated with the essential
hyperplane H.

• If the nC,j belong to more than one essential hyperplane, then the Rouquier
blocks of Hφ are unions of the Rouquier blocks associated with the essential
hyperplanes to which the nC,j belong and they are minimal with respect
to that property.

4.4.1 Rouquier Blocks and Central Morphisms

The following description of the Rouquier blocks results from
Proposition 2.1.15 and the description of φ-bad prime ideals for W .

Proposition 4.4.5. Let χ, ψ ∈ Irr(W ). The characters χφ and ψφ are in
the same Rouquier block of Hφ if and only if there exist a finite sequence
χ0, χ1, . . . , χn ∈ Irr(W ) and a finite sequence p1, . . . , pn of φ-bad prime ideals
for W such that

• (χ0)φ = χφ and (χn)φ = ψφ,
• for all j (1 ≤ j ≤ n), ω(χj−1)φ

≡ ω(χj)φ
mod pjOpjO.

4.4.2 Rouquier Blocks and Functions a and A

Following the notation of [21], 6B, for every element P (y) ∈ C(y), we call

• valuation of P (y) at y and denote by valy(P ) the order of P (y) at 0 (we
have valy(P ) < 0 if 0 is a pole of P (y) and valy(P ) > 0 if 0 is a zero of
P (y)),

• degree of P (y) at y and denote by degy(P ) the opposite of the valuation
of P (1/y).



88 4 On Hecke Algebras

Moreover, if x := y|μ(K)|, then

valx(P (y)) :=
valy(P )
|μ(K)| and degx(P (y)) :=

degy(P )
|μ(K)| .

For χ ∈ Irr(W ), we define

aχφ
:= valx(sχφ

(y)) and Aχφ
:= degx(sχφ

(y)).

The following result is proven in [18], Proposition 2.9.

Proposition 4.4.6.

(1) For all χ ∈ Irr(W ), we have

ωχφ
(τ ) = tφ(τ )xaχφ

+Aχφ ,

where τ is the central element of the pure braid group of Definition 4.1.6.
(2) Let χ, ψ ∈ Irr(W ). If χφ and ψφ belong to the same Rouquier block, then

aχφ
+ Aχφ

= aψφ
+ Aψφ

.

Proof. (1) If P (y) ∈ C[y, y−1], we denote by P (y)∗ the polynomial whose
coefficients are the complex conjugates of those of P (y). By [21], 2.8, we
know that the Schur element sχφ

(y) is semi-palindromic and satisfies

sχφ
(y−1)∗ =

tφ(τ )
ωχφ

(τ )
sχφ

(y).

We deduce ([21], 6.5, 6.6) that

tφ(τ )
ωχφ

(τ )
= ξx−(aχφ

+Aχφ
),

for some ξ ∈ C. For y = x = 1, the first equation gives tφ(τ ) = ωχφ
(τ ) and

the second one ξ = 1. Thus we obtain

ωχφ
(τ ) = tφ(τ )xaχφ

+Aχφ .

(2) Suppose that χφ and ψφ belong to the same Rouquier block. Due to
Proposition 4.4.5, it is enough to show that if there exists a φ-bad prime
ideal p of ZK such that ωχφ

≡ ωψφ
mod pOpO, then aχφ

+Aχφ
= aψφ

+Aψφ
.

If ωχφ
≡ ωψφ

mod pOpO, then, in particular, ωχφ
(τ ) ≡ ωψφ

(τ ) mod pOpO.
Part 1 implies that

tφ(τ )xaχφ
+Aχφ ≡ tφ(τ )xaψφ

+Aψφ mod pOpO.
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We know by [21], 2.1 that tφ(τ ) is of the form ξxM , where ξ is a root of unity
and M ∈ Z. Thus tφ(τ ) /∈ pOpO and the above congruence gives

xaχφ
+Aχφ ≡ xaψφ

+Aψφ mod pOpO,

whence
aχφ

+ Aχφ
= aψφ

+ Aψφ
.

�

Remark. For all Coxeter groups, Lusztig has proved (cf., for example, [46],
3.3 and 3.4) that if χφ and ψφ belong to the same Rouquier block of the
Iwahori-Hecke algebra, then aχφ

= aψφ
and Aχφ

= Aψφ
. This assertion has

also been proved

• for almost all cyclotomic Hecke algebras of the groups G(d, 1, r) and
G(e, e, r) in [18],

• for the “spetsial” cyclotomic Hecke algebra of the “spetsial” exceptional
complex reflection groups in [53].

Using the results of the next chapter, we have been able to obtain the same
result for all cyclotomic Hecke algebras

• of the groups G(d, 1, r) in [25],
• of the groups G(de, e, r) in [26], and
• of all exceptional irreducible complex reflection groups in [23],

thus completing its proof for all complex reflection groups.
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