Chapter 1
Introduction

The aim of this first chapter is to introduce basic notions of counterparty credit
exposure, and to motivate with a few simple examples the problems and concepts
we will be considering in more detail later in this book.

1.1 Basic Concepts

Consider two parties, A and B say, who enter into an OTC transactions portfo-
lio." This portfolio could consist of products ranging from interest-rate and cross-
currency swaps in different currencies with various exotic features, to exotic options
on equity, foreign exchange and commodity underlyings. It could also include var-
ious types of credit derivatives contracts, such as credit default swaps (CDS) on
single names or collateral debt obligations (CDO) tranches in swap form on portfo-
lios of reference entities, or credit indices.?

In general a given company, say a financial institution A, will have portfolios
with many other counterparties, varying among sovereign entities, corporates, hedge
funds, insurance companies (including for examples monolines?). It may also hap-
pen that the credit quality of the counterparty is not independent of the performance
of the transaction entered into, such as what happens for example, when an electric-
ity generating oil-powered plant bets on the price of oil.

Counterparty credit exposure is the amount a company, say A, could potentially
lose in the event of one of its counterparties defaulting. It can be computed by sim-
ulating in different scenarios and at different times in the future, the price of the

' An OTC (Over The Counter) transaction is a transaction that is not traded through an exchange.

2A typical credit index is for example iTraxx; it is composed of the 125 most liquid CDS names
referencing European investment grade credits.

3Monoline insurance are companies that guarantee to bond investors the payment of coupon and
notional. They insure different type of securities, such as CDO, structured products and municipal
bonds. Monolines have been affected in the recent credit crunch, raising counterparty risk issues.
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4 1 Introduction

transactions with the given counterparty, and then by using some chosen statistic to
characterise the price distributions that have been generated. Typical statistics used
in the industry are (i) the mean, (ii) the 97.5% or 99% quantile, called Potential
Future Exposure (PFE), and (iii) the mean of the positive part of the distribution,
referred to as the Expected Positive Exposure (EPE). We will also have occasion to
speak about less commonly used statistical measures that can be more appropriate
for certain products.

As important as measuring counterparty exposure, via PFE or EPE, is the com-
putation of the cost of hedging it, and the capability of having a dynamic hedging
strategy, i.e. the computation of exposure sensitivities. In the financial industry the
price of hedging is generally called Credit Valuation Adjustment (CVA). We will see
that there are strong links between EPE and CVA computation.

1.2 Preliminary Examples

Some simple examples will help clarifying these points.

1.2.1 Vanilla Interest-Rate Swap

Consider counterparties A and B who enter into an interest-rate swap where A re-
ceives every six months the 6-month Libor rate on a notional of $100 million, while
paying to B a fixed amount equal to the par 10-year swap rate on the same notional
observed at inception.

This is a typical swap contract with value zero at inception. As time passes and
market conditions change, the value of the swap changes accordingly. Thus, if the
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Fig. 1.1 Exposure profile for a typical USD 10-years swap contract, paying fix and receiving
floating on a notional of 100 mUSD. The full distribution is shown in Fig. 1.2
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swap rate decreases (resp. increases), the transaction will be out of the money (resp.
in the money) as seen from A’s point of view. Therefore, if B were to default at a
point in the life of the trade when swap rates had increased, then A would need to
replace in the market—ar higher cost than the fixed amount being paid to B—the
floating cashflows promised and not delivered by B.

To compute the credit exposure for the swap, we would need to estimate the
values the swap could take in different market scenarios at points in the future.
Figure 1.1 shows the 97.5%, the 2.5% quantiles and the EPE of the swap price
distribution, over its entire life, as seen from party A’s point of view. A plot like this
is usually referred to as the exposure profile. Note that the 2.5% quantile seen from
A’s perspective, corresponds to the 97.5% quantile seen from B’s perspective.

Figure 1.2 shows in the top panel the full price distribution over time. The bottom
panel shows three slices of this distribution at three different points in time.

For this example, the 97.5% PFE quantile is a function that starts at zero, peaks
at around the 4-year point and then decreases to zero. First, by definition, the fixed
payment in the trade is the fair value for the swap, and this must therefore have
value (and hence exposure level) identically equal to zero at inception. Similarly,
towards the end of the transaction, when all payments but one due under the swap
have been paid, the exposure remaining is that from only a single coupon exchange.
This explains what happens at the right end of the profile. At intermediate times, the
shape of the profile is the result of opposing effects. On the one hand, as the interest
rates underlying the swap diffuse, there is more variability in the realised Libor rates,
potentially leading to higher exposure. On the other hand, as time evolves there are
fewer payments remaining under the swap, and this mitigates the effect of diffusing
rates.

The profile therefore tells us that with 97.5% probability, the loss of A due to
default of B will not exceed roughly $28 million. Of course, this estimate is based
on market information at inception of the swap, and would change if it were to be
repeated at a different time.

1.2.2 Cancellable Swap

We can make our example slightly more interesting. It is common for swaps to
trade with an additional callability feature, whereby one counterparty would have
the option, at certain times in the life of the swap, to cancel (“call”) the transaction
for a fixed fee (which may be zero).*

Suppose that party A, from whose perspective we look at exposure, also holds the
option to cancel the trade; one says that A is long callability. Assuming A behaves

4We define “cancellable swap” a swap which has an embedded option to terminate it at zero cost
(or at a given predetermined fee). Sometimes these swaps are also called “callable”. We use the
term callable swap in a more generic way, considering the possibility that the swap is “called” into
a new product. In this sense a cancellable swap is a simple example of a callable swap.
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Fig. 1.2 Future value distribution for a typical USD 10-years swap contract, paying fix and re-
ceiving floating. The PFE and EPE are shown in Fig. 1.1
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Fig. 1.3 Exposure of a typical cancellable 10-years swap, paying yearly the fair swap rate fixed
at inception and receiving semi-annually the 6-month Libor rate on a notional of 100 mUSD. On
the left (resp. right), the exposure represents long (resp. short) optionality to cancel the swap every
year. The value of the swap at time-zero corresponds to the value of the option, which is assumed
to be paid up-front by the counterparty

rationally, it would never decide to walk away from the swap in those scenarios
where the swap has a high value (because the swap rate has increased and future
receivables are worth more than at inception). This means that having the option to
cancel, at zero cost, should not affect materially A’s exposure. On the other hand,
suppose A is short callability, meaning that it is B who has the option to walk away
from the swap. Rational behaviour on B’s part implies that B would cancel the swap
when they are making a loss on the transaction, which is exactly when A would be
in the money. Thus we would expect that with A being short callability, A’s PFE
(and EPE) to B is reduced to zero at each date where B has the option to cancel the
transaction.

Figure 1.3 shows all this happening. In the left panel, we see that with A having
the option to cancel the trade, the PFE profile is similar to that of a vanilla swap, with
the exception of the time-zero level, which equates to the value of the cancellation
option. On the right we see that A’s exposure is reduced to zero at dates where B
can cancel; on remaining dates, the PFE is reduced to that arising from coupons due
until the next allowed cancellation date. Note that the time-zero point is not zero but
negative from A’s point of view, since it is B who holds the option in this case. Note
that in practice the value of the option is often embedded in the fixed coupon of the
swap, which has then value zero at inception.

From the computational point of view, there is a fundamental difference between
the vanilla swap example of the previous section and the cancellable swap we have
just described. A vanilla swap can in fact be priced analytically and in a model
independent way, and therefore, as we will see, exposure could be computed in a
classical Monte Carlo framework, where scenarios are generated and then products
are priced at each scenario and each time step. On the other hand, a cancellable swap
is priced using a lattice or Monte Carlo simulation, making therefore impractical the
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computation of credit exposure itself by Monte Carlo simulation.? This would entail
in fact a Monte Carlo of Monte Carlo approach (with nested simulations), where one
set of simulation is used for scenarios and one set, at each time step and scenario,
for pricing. We will analyse this aspect in more details in the next chapters.

1.2.3 Managing Credit Risk—Collateral, Credit Default Swap

When structuring a new transaction (or portfolio of transactions), one of the crite-
ria is the amount of acceptable credit exposure. This will depend on several factors
including risk appetite and quality of the counterparty. The most common way to
reduce counterparty exposure is to set up a collateral agreement, whereby the client
is required to deposit collateral into a separate account at regular time intervals.
A collateral agreement between counterparties can take one of several forms. For
instance, it can be in the form of cash or securities, can be called daily or at other
regular intervals, and there can be thresholds and minimum transfer amounts. In
addition, since the point of holding collateral is to be able to liquidate it in case of
the counterparty defaulting, market liquidity plays an important role in determining
the amount of collateral needed. When collateral agreements are in place, therefore,
credit exposure computation has to take into account features of that agreement to-
gether with the dynamics of the trade itself, in order to compute so-called close-out
risk. Close-out risk measures the amount by which the value of a transaction could
change during the period from when the counterparty is deemed to have defaulted,
until the collateral has been liquidated and used to fund, at current market condi-
tions, the replacement of the defaulted counterparty in the transaction. In general
this computation should also include change in value of the collateral, possibly tak-
ing into account the correlation between collateral and transaction value.

A further possibility for A to manage counterparty credit exposure to B is to
buy Credit Default Swap (CDS) protection on B from another counterparty C. The
transaction between A and C is typically fully collateralised. This will transfer the
risk of B to C. In case of default of B, the CDS would ensure that C will step in
and make good any payments that were originally promised by B, or simply pay the
value of the transaction. This should cover the value of the products (e.g. the interest-
rate swap we described before) as calculated at the time of B’s default. The value of
the protection is called Credit Valuation Adjustment (CVA) and in principle should
be charged to the client (in our case counterparty B) in order to reflect its credit risk.

For instance, suppose the credit spread of B is 100 bps,® the amount to protect
$100 million, the trade maturity 10 years. Under these market conditions the price

SNote that a cancellable swap is the combination of a vanilla swap and a Bermudan option. If the
option is European (i.e. the swap can be called only on one date), the cancellable swap can be
priced in closed form.

Sbps: basis points, a hundredth of a percent.
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of buying protection on B will be in the order of $10 million.” Such protection is
sufficient only at the time of calculation, and one would need to compute exposure
sensitivities to the underlying factors in order to dynamically hedge the required
amount of protection on B, as the future exposure to B will evolve with market
conditions.

As we mentioned, the usage of CDS transfers the credit exposure from B to C.
So, even if one assumes the exposure to B to be perfectly hedged via the CDS, there
will be counterparty exposure to C, which offers protection.® Consider again the
example above where A buys CDS protection on B on a notional amount of $100
million. Figure 1.4 shows a typical profile for such a transaction, assuming it is
un-collateralised. For such a default protection product, the exposure one observes

Fig. 1.4 Exposure of a CcDs
typical credit default swap on o R
a notional of 100 mUSD and © DA S S S 7 EFE99%
spread about 100 bps. PFE _ T pER2S%
(on different quantiles), EPE 8 Q| '
and ES are shown g '
£
S o | '
< N K
> ;
o 4 ‘4’/.... il \V:T" i
T --NVT_-”- _v_VT — T T T
0 2 4 6 8 10
Time [years]

results from the effects of (i) movements in the simulated credit spread of B and (ii)
defaults. Clearly, the payment triggered by B’s default, equal to about 1 — R = 60%
of notional, would imply that in a default scenario, A would have an exposure to C
of $60 million. R is the recovery rate, i.e. the amount which can be recovered upon
default of the counterparty. Now in Fig. 1.4, the PFE profile (which we recall is the
97.5% quantile of the distribution) does not show such high levels of exposure. This
must mean that in the simulated scenarios, fewer than 2.5% of the scenarios involve
B defaulting. Or in other words that the event of B defaulting is a rare event. To
take into account this event one could display higher quantiles of the distribution,
say the 99.9% quantile. Alternatively, one can calculate the Expected Shortfall (ES)
of the distribution, which is simply the expected value of the tail of the distribution
(see Chap. 12 for more details); this measure will uncover any large outliers in the
distribution (such as the rare event of default of B, and hence large payment by
C, in this case). Figure 1.4 displays this quantity, and clearly shows that defaults
are indeed occurring even if they are not frequent enough to affect the 97.5% PFE.

"This is roughly equal to the 10-years duration multiplied by the 10-years spread.

8This is one of the reasons why, after the 2007-08 credit events, it is under discussion to use
clearing houses when dealing with credit default swaps.
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This example shows that with credit products, where events of small probability can
lead to large payments, the PFE might not be the appropriate exposure measure to
consider. We will have more to say on this in due course.

1.3 Why Compute Counterparty Credit Exposure?

Counterparty risk is at the root of traditional banking. Historically, the first form of
financial instruments were bonds, and their value was mainly driven by the market’s
view of how creditworthy the issuers of these bonds were. However, today’s finan-
cial world is much more complex, and the process of estimating counterparty risk
much more challenging. While for loans and other traditional products the focus
is mainly on estimating the capability of the borrower to repay its obligation, for
derivative transactions, estimating accurately the future value of the transaction is
as important and challenging as having a view on the ability of the counterparty to
honour its obligations.

Accuracy is important because credit exposure models are used for several pur-
poses in financial institutions, such as

(i) Setting limits on the amount of business allowed with a particular counterparty.

(i) Dynamic hedging of counterparty risk, by buying credit protection on the coun-
terparty. This in effect allows one to trade away counterparty credit risk.

(iii) Computation of risk weighted assets and capital requirements.

(iv) Obtaining insight about prices of complex transactions in potential future sce-
narios. For example, while counterparty risk is concerned with measuring how
high the value of a transaction can go (and therefore how much a counterparty
would owe), there are similarities between this and computing Value at Risk,
or stress testing, where one would be interested in how much the value of a
transaction could drop.

1.4 Modelling Counterparty Credit Exposure

In the previous sections we have introduced the concept of counterparty exposure
and have provided some simple examples. We focus now on a more formal approach
which will give a flavour of the mathematical tools we will need in the next chapters.

1.4.1 Definition

Given a portfolio of positions traded with a counterparty, the main quantity we need
to model to compute the counterparty credit exposure at time ¢, is the distribution
V; of the portfolio prices, computed at time 7 > 0 and seen from today. We will see
in the next chapter how V; can be described in its full generality. For the moment
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we consider the case of products without callability features and where cashflow
payments are performed at discrete time points (7;),i =1, ..., n, with T, being the
maturity of the trade. Define X, to be the (generally stochastic) payment made by
the portfolio at any time ¢ (X; = 0 if ¢ is not a member of (7;),i =1, ...,n). Then
at any time ¢ > 0, V; can be expressed as:

T, x
T.

Vi=N El—|%]), 1.1

4 TXQ (NT' ) (1.1)

where N; indicates the numeraire, E is the expectation in the numeraire measure and
Z; the usual filtration. More details of the concept of numeraire, pricing measure,
and filtration can be found in the literature (see for example Baxter & Rennie [10] for
an intuitive description, or Rogers & Williams [93, 94] and Shreve [98] for a more
formal approach) and will also be given later in this book (see Appendix B). For our
purposes here it is enough to think of the numeraire as being the cash account, used
to discount cashflows, and the filtration as the information available at time ¢.

At time ¢ = 0 the distribution degenerates into the current price of the portfo-
lio. We are interested in the distribution of V; under either the real or the pricing
(called also risk-neutral) measure. In general the price distribution V; will change
with time due to changes in market conditions, portfolio composition (for example
due to payment of cashflows), and time value. If the portfolio is collateralised, it
can be extended to take into account additional positions representing the collateral
value. The computation of the price distribution V; depends also on specific con-
tractual features with the counterparty, e.g. netting agreements between short and
long positions in the portfolio, or break clauses held by the counterparties.

The industry practice to compute exposure is to use a simple Monte Carlo frame-
work implemented in three steps: (i) scenario generation, (ii) pricing, and (iii) ag-
gregation.

The first step involves generating scenarios of the underlying risk factors at future
points in time. Simple products can then be priced on each scenario and each time
step, therefore generating empirical price distributions. From the price distribution
at each time it is then possible to extract convenient statistical quantities. Exposure
of portfolios can be computed by consistently pricing different products on the same
underlying scenarios and aggregating the results taking into account possible netting
and collateral agreement with the counterparty.

If taken literally, this approach works only for relatively simple products which
can be priced analytically, or which can be approximated in analytical form, and
which do not need complex calibrations depending on market scenarios. More ex-
otic products requiring relatively complex pricing, cannot be treated in this way. As
already mentioned, even a cancellable swap, which is a relatively simple product,
cannot be computed easily in this framework.

In the next chapters we will show how (1.1) can be generalised and which algo-
rithms can be implemented to compute exposure for more exotic products. We will
also challenge the simple Monte Carlo approach we have just described, and see
how more sophisticated modelling frameworks can provide answers to some of the
common problems faced when building a counterparty exposure system.
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1.4.2 Risk Measures

For practical reasons it can be useful to characterise the distribution V; with some
statistical quantities which can then be used for various risk controlling or risk man-
agement purposes. The Potential Future Exposure (PFE), computed at time ¢ is de-
fined as

PFE, ; = go =inf{x : P(V; <x) > «}, (1.2)

where « is the given confidence level, and P indicates the probability distribution
of V;. Note that this is a function of time ¢ and is the price of the obligation in the
future given a set of scenarios. This pricing is called sometimes Mark-to-Future.
The graph of PFE,, ; as a function of ¢ is known as the exposure profile of the trade.

Similarly the Expected Positive Exposure (EPE) will be computed as’
EPE, =E[V,"]. (1.3)

where the expectation can be taken under the real or pricing measure depending on
the usage of EPE.

An alternative measure to the quantile is the Expected Shortfall, called also Ex-
pected Tail Loss, defined as

ESe; =E[V; | V; > PFEq,]. (1.4)

Expected shortfall is used especially when it is convenient to have a measure
which takes into account events of significant magnitude, which, however, can oc-
cur with only very small probability. As we have shown above, typical examples are
credit derivatives, where the default of the reference entity protected by the deriva-
tive is a low probability event, which, however has significant impact.

1.4.3 Netting and Aggregation

In general, the credit exposure to a particular counterparty arises not from a single
transaction but several ones. For any particular market scenario, some of these trans-
actions will have positive, and others negative value. Consider, for example, a long
and a short position on an option on highly correlated stocks, a portfolio of payers
and receivers swaps'? in different currencies, or, as a more sophisticated example,

9We will see later in Chap. 12 and Chap. 14 that other definitions of EPE are more appropriate to
compute CVA.

10A payer (resp. receiver) swap, is a swap that pays (resp. receives) a fixed rate and receives (resp.
pays) a floating Libor rate.
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a long position on ABX!! and a short position on a tranche of pool of MBS. One
would expect that, at a given time as one position increases in value, the value of the
other position decreases. Since both transactions are facing the same counterparty, it
is natural to think about the possibility of netting these positive and negative values
together, in order to reduce the overall exposure.

The possibility of treating risk in this way will depend on the legal agreement
in place. Netting agreements can have different flavours. For example for a given
counterparty it could be possible to net together interest-rate swaps, but not swaps
with e.g. equity transactions.

From the quantitative and computational perspective netting and no-netting
agreements will determine how aggregation is performed within a pool of trans-
actions. The main challenge is the requirement of being scenario consistent across
trades. This means that the price distributions of all transactions have to be com-
puted together in order to choose the correct risk measure of the whole portfolio
together with the correct netting agreements. This can pose significant constraints
on the software architecture as well as on the computational capacity.

Once counterparty exposure is computed at portfolio level, one can be interested
in assigning a portion of the exposure to each single transaction. It is interesting to
note that this is not equivalent to computing exposure for each single transaction
separately. This process of redistributing exposure is often called exposure alloca-
tion or disaggregation and can be performed in different ways leading to different
results.

We will analyse quantitative aspects of both aggregation and allocation in Part IV
where we discuss hedging and managing counterparty risk.

1.4.4 Close-Out Risk

Close-out risk refers to the possibility of loss during the time period between when
a counterparty is deemed to be in default and when the transaction with that coun-
terparty has been wound down or replaced in the market. The length of this time
period, referred to as the close-out period, is typically assumed to be ten business
days. In practice it may be shorter for liquid transactions or longer for specialised
and bespoke transactions.

To mitigate close-out risk, a collateral agreement is often included in the transac-
tion. Under such an agreement, the counterparty would have a commitment to post
assets (be they in form of cash or other highly-rated assets) whenever the exposure
from the transaction is observed to increase. There are several components that may
be specified in a collateral agreement, such as (i) an initial upfront collateral amount
called the initial margin, (ii) the threshold exposure above which extra collateral

"'The ABX Index is a series of credit-default swaps based on 20 MBSs that relate to subprime
mortgages.
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would need to be posted, (iii) the minimum amount of collateral that may be posted
on each collateral exchange date, and (iv) the frequency of the margin calls.

The collateral agreement is a legal agreement also referred to as the CSA (Credit
Support Annex). Typically the terms of this agreement will depend on the jurisdic-
tion where it applies. In Part IV we will analyse some quantitative and modelling
aspects of close-out risk, without addressing all the intricacies of the legal aspects.

1.4.5 Right-Way/Wrong-Way Exposure

In all the examples we have analysed previously, we did not consider the quality
of the counterparty, assuming in effect that counterparty exposure is equivalent to
the future replacement value of the trade at time of counterparty default. In general,
however, the level of exposure caused by the trade and the quality of the counter-
party are not independent of each other. Information about one would force us to
re-evaluate information we have about the other. We refer to such dependence as
right-way or wrong-way exposure. The question is how to factor this effect into
a credit quantification computation. Typical examples where such considerations
are called for are when call or put options are written on the counterparty’s own
stock. These are limiting cases with practically no need of accurate modelling. The
problem becomes more interesting when the product is complex and the correlation
between counterparty quality and level of exposure cannot be clearly determined.

Consider for example an energy producer which swaps energy futures for a
stream of coupons. In general, increases in energy prices could be beneficial to
the company, therefore reducing its probability of default. One way of taking into
account the Right Way risk is to measure correlation between energy prices and
company credit spread.

Another interesting example!? of wrong way risk are negative basis swaps per-
formed with monoline insurance companies. Typically in this case the insurance
company receives a premium and pays default protection on missing payments from
a pool of mortgages. These swaps are called negative basis as, in normal market con-
ditions, the price for the protection is lower than the value implied by the spread paid
by the mortgages.

1.4.6 Credit Valuation Adjustment: CVA

Once counterparty exposure has been computed it is necessary to find ways of mit-
igating it. The simplest way is to compare the portfolio PFE with pre-defined limits
and constrain the amount of transacted notional or, as we have seen previously, enter

12 especially in light of the 2007/2008 credit events. . ..



1.4 Modelling Counterparty Credit Exposure 15

into a collateral agreement. A possible alternative consists in buying credit protec-
tion on the counterparty. Its price corresponds to the value of the protection leg of
a CDS that pays the exposure amount in case of default of the counterparty. This
value is called in the industry credit valuation adjustment, CVA.

Intuitively we can see this as follows. Within a pricing framework the value of
credit exposure can be seen as the expected value of the positive part of the price
distribution weighted by the default probability. Assuming that prices are indepen-
dent from defaults, we can separate expectations, obtaining that CVA is the value of
a CDS with the notional being the EPE profile of the underlying transaction. Sup-
pose for simplicity that the EPE profile is a piece-wise constant function over a time
interval (T; — T;_p).

CVA =) EPE;(T; — T;-1) Do,7;si, (1.5)

1

where s; is the spread corresponding to the time interval 7; — T;_ and Dy 7; the
discount bond maturing at time 7;. We can see that the CVA corresponds to a port-
folio of forward starting CDSs (or equivalently long and short CDS positions) with
piecewise constant notional. The availability of CDSs of different maturities will
dictate how the EPE profile is discretized.

The CVA depends on the level of exposure as well on the credit spread of the
counterparty. As counterparty exposure and spread change with time, the amount
of credit protection needs to be adjusted accordingly. The process of balancing of
exposure with CDSs and other instruments sensitive to market parameters corre-
sponds to dynamically hedging counterparty credit exposure. More details on how
to compute and hedge CVA are given in Chap. 14.

1.4.7 A Simple Credit Quantification Example

We will discuss in detail in Chap. 9 the computation of credit exposure for equity
products. We consider here a very simple example where the form of the exposure
profile and the maximum values of the PFE can already be deduced from an approx-
imation.

Suppose company A has bought from counterparty B a call option of strike K on
a stock S. Our goal is to compute the credit exposure and close-out risk company
A is facing. As mentioned in the previous section we need to calculate the price
distribution V;. In the case of the call option, in a simplified context where rates are
deterministic, (1.1) becomes

(St = K)*

Vi=N;E
e[

9\1] — e—r(T—t)E[(ST - K" | fl], (1.6)

where S is the stock price, K the strike, and r the interest rate assumed to be con-
stant. The notional (number of options) has been assumed equal to one. As men-
tioned previously, .%; is the usual filtration, N; the numeraire, and the expectation
is taken in the measure N.
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To solve this equation we need for the stock price S a model, with which simulate
the stock value till maturity 7. A simple model, which is often used in credit, is the
geometric Brownian motion with constant volatility o, interest rate » and dividend
yield d.

d?S = —d)dt+odW;, 1.7)
where W; is a standard Brownian motion. As it is well known this stochastic differ-
ential equation can be solved analytically.

Thus, to compute exposure we need to simulate the stock with (1.7), and then,
using the Black and Scholes formula [15] we can price the option at each time step
and in each scenario.

As the exposure of an equity option is generally monotonic in the underlying
and is growing with time, and a vanilla stock option depends only on the current
stock value (the product is not path dependent), the max PFE will be in general at
maturity 7.3 We can compute it at let’s say 97.5% confidence level as (see also Ap-
pendix A)

2
PFET — SO <e(r—d—%)T+l.96SUﬁ) _ K’ (18)

assuming it is a positive quantity. The expected exposure can be computed in this
simple case as

EPE, = Vpe'’, (1.9)

where V) is the option premium. We can see this as following. Given that the value
of a call option is always positive, we can write (in our simplified set-up),

EPE, = E[V,"] = E[V,] = E[E[e " T~)(S7 — K)"|.%,1] = Voe'". (1.10)

As for approximating the close-out exposure for a short close-out period, one can
use a first-order Taylor approximation.

CloseOut, =~ Vo + A(S; — So), (1.11)

where A is the first order derivative of the call option price with respect to the stock
and S; is the value of the stock during the close-out period. This is the close-out
risk for the initial period, i.e. for the time between time-zero and ¢. We will see later
in this book that the computation of close-out risk presents subtleties which go far
beyond this simple computation.

13The exact shape of the PFE curve will depend on the interest rate, dividend curve, and option
characteristics.



1.4 Modelling Counterparty Credit Exposure 17

1.4.8 Computing Credit Exposure by Simulation

Within a Monte Carlo framework, to compute exposure we could simulate the stock
price from today to maturity using (1.7), and then price the option on each path
and each time step using Black and Scholes, again with constant rate, dividend, and
volatility. As we will see in the next chapters, it is more convenient to simulate mar-
tingale processes, for which only the volatility structure is relevant, while the drift
(and thus the dividends) does not need to be specified (for a definition of martin-
gale see Appendix B and for more details see for example the books by Baxter &
Rennie [10], Rogers & Williams [93, 94] and Shreve [98]). In practice a convenient
quantity we can simulate are forward prices. By considering our example in these
terms, we can write (1.6) as

(Fr.r — K)*

Vi=NE
s Fer

«%] (1.12)

where F; 7 is the t-value of the T-forward. The link with the notation in the previous
section is,

Frp =S8 dT=0, (1.13)

As before, assume for simplicity that the numeraire N is independent from the
stock price, and impose also the simple specification

dF; r =FyrodW;, (1.14)

with the volatility being a constant ¢ > 0 and with W being a standard N-Brownian
Motion. This is the quantity we simulate in 7. The paths generated by integrating
this SDE are our scenarios which we show in Fig. 1.5 in a stylised representation.

Note that (1.14) can be integrated analytically at each time step, thus avoiding
discretisation errors,

2
Fir = Fo.rexp (—%t—f—aW,). (1.15)

We can then price at each scenario and each time step the stock option using again
Black and Scholes, expressed in terms of the forward price F; 7.

PFE can be computed analytically at maturity, where the option price is given by
the stock price minus the strike.

1 +
PFE; = [FO,T exp {aﬁqﬂ — EO’ZT} — K] , (1.16)

where g, = @~ () is the «a-quantile of the standard normal distribution. This is
the equivalent of (1.8) generalised for any quantile. We have also floored at zero
the exposure, as in some cases one is interested only at the amount the counterparty
should pay. Negative exposure represents the amount we owe to the counterparty.
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Fig. 1.5 Computing exposure by Monte Carlo simulation. The paths on the left panel represent
stock prices. At each scenario and each time step, the price of the option is computed using the
analytical Black and Scholes formula. Resulting prices are represented on the right panel. From the
price distributions generated in this way at each time step, various statistical quantities (e.g. PFE
and EPE) can be extracted. The bigger circles indicate a mean

1.4.9 Implementation Challenges

The Monte Carlo framework we have shown in the previous section, seems to give
a good implementation recipe. For a given portfolio of transactions we could (i)
identify the underlying risk factors and simulate forward (or spot) prices, taking
into account correlations if required, (ii) use functions already implemented to price
each product, and then (iii) derive statistical quantities. As we have mentioned al-
ready, this could be the approach followed by a financial institution to assess the
counterparty credit risk of its OTC derivatives portfolios.

In the implementation phase, however, there can be issues which need to be ad-
dressed.

(1) The generation of correlated scenarios is not trivial, as there can be thousands
of different risk factors driving the dynamics of products in the portfolio. Con-
sider for example an equity portfolio, where each underlying stock needs, at
least in principle, a specific simulation.

(i) The scenarios have to be consistent across systems to build a counterparty view.
This is a requirement which is much more stringent than what is generally
specified in the design of a Front Office system used for pricing or a Risk
system used to monitor the Profit and Loss (P&L) of a bank. Basically what
we need here is the same underlying models, or the same family of models,
for all types of products. In fact, even if the correlation between asset classes
can be in some cases ignored (e.g. equity could be considered not correlated
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with interest rate), still all these models need to be expressed using the same
numeraire (the discount factors in equity have to be consistent with the discount
factors used in FX or rates). This consistency can be difficult to achieve, as
often large financial companies have different systems to book and value, for
example, interest-rate, equity, or FX products.

(ii1) Pricing functions developed in various libraries are not necessarily designed
to be integrated in a counterparty exposure framework. This has implications
from both a software and architecture, as well as from a methodological point
of view. Consider for example path dependent products. Counterparty exposure
depends on the whole scenario history, which could be in different formats
across different pricing systems.

(iv) Not all products can be computed in analytical form. Most exotics are priced
on grids using PDEs or using Monte Carlo approaches. In these cases the ex-
posure computation would require a Monte Carlo simulation for scenarios and
a Monte Carlo simulation, or a PDE computation, for each scenario and time
step to price the instrument. This becomes quickly unfeasible from a compu-
tational point of view. In addition, depending on the model used for pricing,
calibration could also become problematic, as it has to be performed at each
scenario.

In practice credit systems based on the classical Monte Carlo scheme ap-
proximate products using a simplified representation. While these approxima-
tions could have their justification in a risk environment, they are difficult to
use when counterparty risk has to be priced and hedged.

1.4.10 An Alternative Approach: The AMC Algorithm

The points highlighted in the previous section clearly show that the classical Monte
Carlo scheme has intrinsic limitations and that we need an alternative approach. As
we will see at length in the rest of the book, there are possibilities to circumvent in
a systematic way some of the problems related to valuation and architecture.

The basic idea is to approach the counterparty exposure problem as a pricing
problem, and thus to use pricing algorithms, which generate not just the value of a
trade at inception, but rather a price distribution at predetermined time steps. One
possibility is to use the so called American Monte Carlo algorithm, which we will
refer to as, simply, the AMC algorithm. The main feature of this algorithm is that,
instead of building a price moving forward in time, it starts from maturity, where
the value of the transaction is known, and goes backwards, till the inception.

In general AMC is used for pricing products with callability, i.e. products whose
values depend on a strategy which can be determined by only knowing future states
of the world. From a counterparty exposure perspective, the benefit of this approach
is that, not only a price at time-zero is provided, but also the price distribution at
each time step. In addition, the algorithm is generic, in the sense that using simply a
payoff description, we can obtain the information needed to compute counterparty
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Fig. 1.6 A simplified graphical representation of the AMC algorithm. In the left hand panel we
show the scenarios generated according to some underlying model. At maturity the payoft of the
trade is known. To estimate the value at intermediate scenarios we need to proceed with a backward
induction step

exposure. This suggests the possibility of having a generic trade representation and
thus the possibility of having a modular software architecture that incorporates trade
descriptions without explicit knowledge of each type of product. The challenge is
that we need to develop an underlying model capable of pricing a hybrid product,
consisting potentially of a large portfolio of transactions. This hybrid model will
need to take into account all stochastic drivers of the portfolio in a consistent, arbi-
trage free way.

It is natural to ask what is the performance of the AMC algorithm for vanilla
products. We will see that by a careful implementation the prices computed via
AMC are very close to those computed using for example closed form formulae.

1.5 Which Architecture?

Building a system that computes credit valuation adjustments and counterparty ex-
posure for the book of a large financial firm is a very challenging task, not only
from the modelling and algorithmic perspective, but also from the technical and IT
point of view. One of the problems is that often in large institutions such as Invest-
ment Banks, products are not booked on one system. They are in general recorded
on several systems, which do not necessarily communicate between each other. To
overcome this situation we suggest developing not only a common modelling plat-
form, but also a programming language, which allows the representation of different
types of products. As we will see later in this book, we have called our language
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Fig. 1.7 High level architecture description

PAL, Portfolio Aggregation Language, to highlight the fact that we need to aggre-
gate trades at counterparty (or at netting pool) level.

Once we have this common booking language, we can translate bookings made
in other systems into PAL, bridging the difference between these systems. In the
figure below we show how the system architecture could be implemented.

1.6 What Next?

We have introduced all basic concepts needed to understand counterparty credit
exposure. We have now to analyse in detail the steps necessary to build a system de-
signed to compute and hedge counterparty risk for large portfolios of exotic transac-
tions. This is what we do in the rest of this book. We start from a generic modelling
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and simulation framework based on American Monte Carlo techniques, and then we
present a software architecture, which, with its modular design, allows the compu-
tation of credit exposure in a portfolio-aggregated and scenario-consistent way.
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