
Chapter 1

The Case of Manifolds

Abstract In this chapter we review briefly some of the fundamental results
of the classical theory of indices of vector fields and characteristic classes
of smooth manifolds. These were first defined in terms of obstructions to
the construction of vector fields and frames. In the case of a vector field
the Poincaré–Hopf Theorem says that Euler–Poincaré characteristic is the
obstruction to constructing a nonzero vector field tangent to a compact
manifold. Extension of this result to frames yields to the definition of Chern
classes from the viewpoint of obstruction theory.

There is another important point of view for defining characteristic classes
on the differential geometry side, this is the Chern–Weil theory. Sections 3
and 4 provide an introduction to that theory and the corresponding definition
of Chern classes.

Finally, Sect. 5 sets up one of the key features of this monograph: the inter-
play between localization via obstruction theory, which yields to the classical
relative characteristic classes, and localization via Chern–Weil theory, which
yields to the theory of residues. This is one way of thinking of the Poincaré–
Hopf Theorem and its generalizations.

Throughout the book, M will denote either a complex manifold of
(complex) dimension m, or a C∞ manifold of (real) dimension m′.

1.1 Poincaré–Hopf Index Theorem

1.1.1 Poincaré–Hopf Index at Isolated Points

Let v =
∑m′

i=1 fi∂/∂xi be a vector field on an open set U ⊂ Rm
′

with coor-
dinates {(x1, . . . , xm′)}. The vector field is said to be continuous, smooth,
analytic, etc., according as its components {f1, . . . , fm′} are continuous,
smooth, analytic, etc., respectively (here “smooth” means C∞, however in
most cases C1 is sufficient). A singularity a of v is a point where all of its
components vanish, i.e., fi(a) = 0 for all i = 1, . . . ,m′. The singularity is
isolated if at every point x near a there is at least one component of v which
is not zero.
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The Poincaré–Hopf index of a vector field at an isolated singularity is its
most basic invariant, and it has many interesting properties. To define it, let
v be a continuous vector field on U with an isolated singularity at a, and let
Sε be a small sphere in U around a. Then the (local) Poincaré–Hopf index of
v at a, denoted by IndPH(v, a) (if there is no fear of confusion, we will denote
it simply by Ind(v, a)), is the degree of the Gauss map v

||v|| from Sε into the

unit sphere in Rm
′
.

If v and v′ are two such vector fields, then their local indices at a coincide
if and only if their Gauss maps are homotopic (special case of Hopf Theorem
[120]). That is equivalent to saying that their restrictions to the sphere Sε

are homotopic.
Let us consider now an m′-dimensional smooth manifold M , then a vec-

tor field on M is a section of its tangent bundle TM . Giving a local chart
(x1, . . . , xm′) on M , a vector field on M is locally expressed as above and the
definition of the local index at an isolated singularity extends in the obvious
way. The index does not depend on the local chart.

Definition 1.1.1. The total index of v, denoted

IndPH(v,M),

is the sum of all its local indices at the singular points.

A fundamental property of the total index is the following classical
theorem:

Theorem 1.1.1. (Poincaré–Hopf) Let M be a closed, oriented manifold
and v a continuous vector field on M with finitely many isolated singularities.
Then one has

IndPH(v,M) = χ(M),

independently of v, where χ(M) denotes the Euler–Poincaré characteristic
of M .

If M is now an oriented manifold with boundary, one has a similar theorem:

Theorem 1.1.2. Let M be a compact, oriented m′-manifold with boundary
∂M , and let v be a nonsingular vector field on a neighborhood U of ∂M .
Then:

(1) v can be extended to the interior of M with finitely many isolated singu-
larities.

(2) The total index of v in M is independent of the way we extend it to the
interior of M . In other words, the total index of v is fully determined by
its behavior near the boundary.

(3) If v is everywhere transverse to the boundary and pointing outwards from
M , then one has IndPH(v,M) = χ(M). If v is everywhere transverse to
∂M and pointing inwards M , then IndPH(v,M) = χ(M)− χ(∂M).
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Remark 1.1.1. It is worth saying that although IndPH(v,M) is determined by
its behavior near the boundary, it does depend on the topology of the interior
of M . In fact a formula of Morse and Pugh (c.f. [124, 133, 145]) provides
an explicit way to compute the index out of boundary data, generalizing a
classical formula of Poincaré for vector fields on the plane.

We remark also that one of the basic properties of the index is its stability
under perturbations. In other words, if v has an isolated singularity at a point
a in a manifold M of index Ind(v, a) and we make a small perturbation of v
to get a new vector field v̂ with isolated singularities, then Ind(v, a) will be
the sum of the local indices of v̂ at its singular points near a. In fact it is well-
known that every vector field can be morsified, i.e., approximated by vector
fields whose singularities are nondegenerate. Each such singularity has local
index ±1 and the number of such points, counted with signs, equals the index
of v at a. In short, the local index of v at a is the number of singularities,
counted with sign, into which a splits under a morsification of v. We will see
later that this basic property has its analogues in the case of vector fields on
singular varieties.

This stability of the index is also preserved for vector fields with noniso-
lated singularities. To make this precise we need to introduce a few concepts,
which will also be used later.

The following property of the local index is well-known and we leave the
proof as an exercise:

Proposition 1.1.1. Let v be a vector field around 0 ∈ R
m′

with an isolated
singularity at 0 of index Ind(v, 0), and let w be a vector field around 0 ∈ Rn

′

with an isolated singularity at 0 of index Ind(w, 0). Then the direct product
v⊕w is a vector field in Rm

′+n′
with an isolated singularity of index Ind(v, 0)·

Ind(w, 0).

A consequence of this result is the well-known fact that if M , N are closed,
oriented manifolds, then χ(M ×N) = χ(M) · χ(N). Another consequence of
1.1.1 that will be used later is that if we have a vector field v in R

m′
with an

isolated singularity at 0 of index Ind(v, 0), and if we extend it to Rm
′ × Rn

′

by taking the vector field w =
∑n′

i=1 yi∂/∂yi in Rn
′
, then the index does not

change, where (y1, . . . , yn′) are the coordinates on R
n′

. If we took the vector
field −

∑r
i=1 yi∂/∂yi +

∑n′

i=r+1 yi∂/∂yi in Rn
′
, then the index in Rm

′ × Rn
′

would be ±Ind(v, 0), depending on the parity of the number r of negative
signs.

1.1.2 Poincaré–Hopf Index at Nonisolated Points

In the following, singularities of the vector field v are not necessarily isolated
points. We still define a Poincaré–Hopf index in that case.
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Let M be a manifold with boundary ∂M . Let us consider a triangu-
lation (K) of M compatible with the boundary and (K ′) a barycentric
subdivision of (K). Using (K ′) one constructs the associated cellular dual
decomposition (D) of M : given a simplex σ in (K) of dimension s, its dual
d(σ) is the union of all simplices τ in (K ′) whose closure meets σ exactly at
its barycenter σ̂, that is τ ∩ σ = σ̂. If σ is in the interior of M , that is a cell,
if σ is in the boundary of M , that is a “half-cell.” It is an exercise to see that
the dimension of d(σ) is m′ − s. Taking the union of all these dual cells (or
half-cells) we get the dual decomposition (D) of (K); by construction its cells
and half-cells are all transverse to (K) (we refer to [25] for details including
orientation notions).

Let S be a compact connected (K)-subcomplex of the interior of M .

Definition 1.1.2. A cellular tube T around S in M is the union of cells (D)
which are dual of simplices in S.

This notion generalizes the concept of tubular neighborhood of a subman-
ifold S. If S is a submanifold without boundary, then T is a bundle on S,
whose fibers are discs. In general, that is not the case.

Remark 1.1.2. A cellular tube T around S has the following properties :
(1) T is a compact neighborhood of S, containing S in its interior and ∂T is
a retract of T \ S.
(2) T is a regular neighborhood of S, thus T retracts to S.
(3) We can assume the cellular tubes in M have smooth boundary [83].

Let us denote by U a neighborhood of S in M . If the triangulation is
sufficiently “fine,” then we can assume T ⊂ U .

According to Theorem 1.1.2, a nonsingular continuous vector field v on a
neighborhood of ∂T can be extended to the interior of T with finitely many
isolated singularities. The total index of v on T is defined as the sum of the
indices of the extension of v at these points.

Definition 1.1.3. Let v be a continuous vector field on a neighborhood U
of S in M , nonsingular on U \ S, then the Poincaré–Hopf index of v at S,
denoted IndPH(v, S) (or simply by Ind(v, S), if there is no ambiguity), is
defined as IndPH(v, T ).

This number IndPH(v, S) depends only on the behavior of v near S and
not on the choice of the neighborhood U , or of the tube T . Moreover, for
this index it does not matter what actually happens on S, we only care what
happens around S, but away from S. In particular, if v is “radial” from S,
i.e., if it is transverse to the boundary of a cellular tube around S pointing
outward, then IndPH(v, S) = χ(S).

Now let M be a compact oriented C∞ manifold possibly with boundary
∂M and v a continuous vector field on M , nonsingular on the boundary. From
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the above considerations, we may assume that the set S(v) of singular points
of v has only a finite number of components {Sλ}.

If M has no boundary, the Poincaré–Hopf Theorem implies that

∑

λ

IndPH(v, Sλ) = χ(M). (1.1.3)

If M has a boundary, the sum
∑

λ IndPH(v, Sλ) depends only on the
behavior of v near ∂M . For example, if v is pointing outwards everywhere
on ∂M , then we have the same formula (1.1.3). If v is pointing inwards
everywhere on ∂M , the right hand side becomes χ(M)−χ(∂M). In particular,
if the (real) dimension of M is even (as it will usually be the case in this book)
and if v is everywhere transverse to ∂M , then we have again the same formula
(1.1.3).

Here we introduce the concept of the difference which will be used in
the rest of the book. For this we let v and v′ be continuous vector fields
on a neighborhood U of S in M , nonsingular on U \ S. Let T and T ′ be
cellular tubes around S in U such that interior of T contains the closure of T ′

and denote X = T \ T ′. Let us consider w a vector field on X with isolated
singularities which restricts to v on ∂T and to v′ on ∂T ′; such a vector field
w always exists by Theorem 1.1.2. We may denote by d(v, v′) = IndPH(w,X)
the difference between v and v′. Then one has:

IndPH(v, S) = IndPH(v′, S) + d(v, v′). (1.1.4)

One can easily prove the following result that will be used later.

Proposition 1.1.2. Let M1 and M2 be compact oriented m′-manifolds,
m′ > 1, with the same boundary N = ∂M1 = ∂M2, and let v be a non-
singular vector field defined on a neighborhood of N . Then one has:

IndPH(v,M1)− IndPH(v,M2) = χ(M1)− χ(M2).

1.2 Poincaré and Alexander Dualities

We briefly review the classical case, which will be generalized to the case of
singular varieties in Sect. 10.4 below. In either case, we follow the descriptions
given in [25].

Let M be an oriented manifold of real dimension m′. We take a triangu-
lation (K) of M and the cellular decomposition (D) dual to (K), as before.
The groups of chains relative to (K) and (D) are denoted by C

(K)
∗ (M) and

C
(D)
∗ (M), respectively. Also, the groups of cochains relative to (K) and (D)

are denoted by C∗
(K)(M) and C∗

(D)(M), respectively. The intersection of an
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i-simplex σ and its dual (m′ − i)-cell d(σ) is transverse and consists of one
point, the barycenter σ̂ of σ.

First, if M is compact, we define a homomorphism

P : Cm′−i
(D) (M) −→ C

(K)
i (M) by P (c) =

∑

σ

〈c, d(σ)〉σ (1.2.1)

for an (m′ − i)-cochain c, where the sum is taken over all i-simplices σ of
M (we follow the orientation conventions in [25]). This induces the Poincaré
isomorphism

PM : Hm′−i(M) ∼−→ Hi(M).

Next, let S be a (K)-subcomplex of M whose geometric realization is also
denoted by S. Let C∗

(D)(M,M \S) denote the subgroup of C∗
(D)(M) consisting

of cochains which are zero on the cells not intersecting with S.
Suppose S is compact (M may not be compact). Then we may define a

homomorphism
A : Cm′−i

(D) (M,M \ S) −→ C
(K)
i (S)

taking, in the sum in (1.2.1), only i-simplices of S. This induces the Alexander
isomorphism

AM,S : Hm′−i(M,M \ S) ∼−→ Hi(S).

From the construction, we have the following

Proposition 1.2.1. If M is compact, we have the commutative diagram

Hm′−i(M,M \ S)
j∗−−−−→ Hm′−i(M)

�
⏐
⏐
�AM,S �

⏐
⏐
�PM

Hi(S) i∗−−−−→ Hi(M).

1.3 Chern Classes via Obstruction Theory

1.3.1 Chern Classes of Almost Complex Manifolds

Let us recall the definition of the Chern classes via obstruction theory [28,
89, 123, 153]. This can be done in full generality, however for simplicity we
consider first the case of Chern classes of almost-complex manifolds, and later
in this section we indicate how this generalizes to complex vector bundles in
general.

Now we assume we are given an almost complex m′ = 2m-manifold M ,
so its tangent bundle TM is endowed with the structure of a complex vector
bundle of rank m.
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Definition 1.3.1. An r-field on a subset A of M is a set v(r) = {v1, . . . , vr}
of r continuous vector fields defined on A. A singular point of v(r) is a point
where the vectors (vi) fail to be linearly independent. A nonsingular r-field
is also called an r-frame.

Let Wr,m be the Stiefel manifold of complex r-frames in C
m. Notice that

we will use r-frames which are not necessarily orthonormal, but this does
not change the results, because every frame is homotopic to an orthonormal
one. We know (see [153]) that Wr,m is (2m − 2r)-connected and its first
nonzero homotopy group is π2m−2r+1(Wr,m) 
 Z. The bundle of r-frames on
M , denoted by Wr(TM), is the bundle associated with the tangent bundle
and whose fiber over x ∈M is the set of r-frames in TxM (diffeomorphic to
Wr,m). In the following, we fix the notation q = m− r + 1.

The Chern class cq(M) ∈ H2q(M) is the first possibly nonzero obstruction
to constructing a section of Wr(TM). Let us recall the standard obstruction
theory process to construct this class. Let σ be a k-cell of the given cellular
decomposition (D), contained in an open subset U ⊂M on which the bundle
Wr(TM) is trivialized. If the section v(r) of Wr(TM) is already defined over
the boundary of σ, it defines a map:

∂σ 
 S
k−1 v(r)

−→Wr(TM)|U 
 U ×Wr,m
pr2−→Wr,m,

thus an element of πk−1(Wr,m).
If k ≤ 2m− 2r +1, this homotopy group is zero, so the section v(r) can be

extended to σ without singularity. It means that we can always construct a
section v(r) of Wr(TM) over the (2q − 1)-skeleton of (D).

If k = 2(m − r + 1) = 2q, we meet an obstruction. The r-frame on the
boundary of each cell σ defines an element, denoted by Ind(v(r), σ), in the
homotopy group π2q−1(Wr,m) 
 Z.

Definition 1.3.2. The integer Ind(v(r), σ) is the (Poincaré–Hopf) index of
the r-frame v(r) on the cell σ.

Notice that for this index, to be well defined, we need that the cell σ
has the correct dimension. This will be essential for our considerations in
Chap. 10.

The generators of π2q−1(Wr,m) being consistent (see [153]), this defines a
cochain

γ ∈ C2q(M ;π2q−1(Wr,m)),

by setting γ(σ) = Ind(v(r), σ), for each 2q-cell σ, and then by extending it
linearly. This cochain is actually a cocycle and the cohomology class that it
represents is the q-th Chern class cq(M) of M in H2q(M).

The class one gets in this way is independent of the various choices involved
in its definition. Note that cm(M) coincides with the Euler class of the un-
derlying real tangent bundle TRM , so these classes are natural generalization
of the Euler class.
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There is another useful definition of the index Ind(v(r), σ): let us write
the frame v(r) as (v(r−1), vr), where the last vector is individualized, and
suppose that v(r) is already defined on ∂σ. There is no obstruction to ex-
tending the (r − 1)-frame v(r−1) from ∂σ to σ because the dimension of the
obstruction for such an extension is 2(m − (r − 1) + 1) = dimσ + 2. The
(r − 1)-frame v(r−1), defined on σ, generates a complex subbundle Gr−1 of
rank (r − 1) of TM |σ and one can write

TM |σ 
 Gr−1 ⊕Qq ,

where Qq is an orthogonal complement of (complex) rank q = m− (r − 1).
The obstruction to extending the last vector vr inside a 2q-simplex σ as

a nonvanishing section of Qq is given by an element of π2q−1(Cq \ {0}) 
 Z

corresponding to the composition of the map vr : ∂σ 
 S2q−1 −→ Qq|U with
the projection on the fiber Cq \{0}. Let us denote by IndQq(vr, σ) the integer
so obtained. The obstruction to extending the r-frame v(r)|∂σ inside σ as an
r-frame tangent to M is the same as the obstruction to extending the last
vector vr inside σ as a non zero section of Qq. In fact there is a natural
isomorphism π2q−1(Wr,m) 
 π2q−1(Cq \ {0}) (for compatible orientations)
and by this isomorphism we have the equality of integers

Ind(v(r), σ) = IndQq(vr, σ).

A different choice of v(r−1) gives another choices of vr and of Qq, however all
such bundles Qq are homotopic and the index we obtain is the same.

Remark 1.3.1. The Chern classes of complex vector bundles in general are
defined in essentially the same way as above. If E is a complex vector bundle
of rank k > 0 over a locally finite simplicial complex B of dimension n ≥ k,
then one has Chern classes ci(E) ∈ H2i(B; Z), i = 1, . . . , k. The class ci(E)
is by definition the primary obstruction to constructing (k − i + 1) linearly
independent sections of E.

The class c0(E) is defined to be 1 and one has the total Chern class of E
defined by:

c∗(E) = 1 + c1(E) + · · ·+ ck(E)

This can be regarded as an element in the cohomology ring H∗(B) and it is
invertible in this ring.

1.3.2 Relative Chern Classes

Suppose now that (L) is a sub-complex of (D) whose geometric realization
|L| is also denoted by L. Assume that we are already given an r-frame v(r)

on the 2q-skeleton of L, denoted by L(2q). The same arguments as before say
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that we can always extend v(r) without singularity to L(2q) ∪D(2q−1). If we
wish to extend this frame to the 2q-skeleton of (D) we meet an obstruction
for each corresponding cell which is not in (L). This gives rise to a cochain
which vanishes on L and is a cocycle in H2q(M,L).

Definition 1.3.3. The relative Chern class

cq(M,L; v(r)) ∈ H2q(M,L),

is the class represented by the previous cocycle.

The image of cq(M,L; v(r)) by the natural map in H2q(M) is the usual Chern
class but as a relative class it does depend on the choice of the frame v(r)

on L. Let us discuss how the relative Chern class varies as we change the
r-frame.

If we have two frames v
(r)
1 and v

(r)
2 on L(2q) the difference between the

corresponding classes is given by the difference cocycle of the frames on L;
in the product L× I, suppose v

(r)
1 is defined at the level L× {0} and v

(r)
2 is

defined at the level L × {1}, then the difference cocycle d(v(r)
1 , v

(r)
2 ) is well

defined in
H2q(L× I, L× {0} ∪ L× {1}) 
 H2q−1(L),

as the obstruction to the extension of the given sections on the boundary of
L× I ([153] Sect. 33.3). As shown in [153], we have the following formula:

cq(M,L; v(r)
2 ) = cq(M,L; v(r)

1 ) + δd(v(r)
1 , v

(r)
2 ),

where δ : H2q−1(L) → H2q(M,L) is the connecting homomorphism. Also,
for three frames v

(r)
1 , v

(r)
2 , and v

(r)
3 as above, we have

d(v(r)
1 , v

(r)
3 ) = d(v(r)

1 , v
(r)
2 ) + d(v(r)

2 , v
(r)
3 ) (1.3.1)

For r = 1 the frames consist of a single vector field and the difference above
corresponds, via Poincaré duality, to the one previously defined for vector
fields (cf. 1.1.4).

In the sequel, we will show that the relative Chern class allows us to define
Chern class in homology.

Let S be a compact (K)-subcomplex of M , and U a neighborhood of S.
Let T be a cellular tube in U around S. Take an r-field v(r) defined on D(2q),
possibly with singularities. We suppose that the only singularities inside U
are located in S. This implies that v(r) has no singularities on (∂T )(2q) so
there is a well defined relative Chern class (see 1.3.3)

cq(T , ∂T ; v(r)) ∈ H2q(T , ∂T ).
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Definition 1.3.4. The Poincaré–Hopf class of v(r) at S, which is denoted by
PH(v(r), S), is the image of cq(T , ∂T ; v(r)) by the isomorphism H2q(T , ∂T ) 

H2q(T , T \ S) followed by the Alexander duality (see [25])

AM : H2q(T , T \ S) ∼−→ H2r−2(S). (1.3.2)

For r = 1 the frame consists of a single vector field v and the class
PH(v, S) ∈ H0(S) is identified with the Poincaré–Hopf index of v at S,
IndPH(v, S), previously defined (Definition 1.1.3).

Note that if dimS < 2r − 2, then PH(v(r), S) = 0.
The relation between the Poincaré–Hopf class of v(r) and the index we

defined above is the following:

PH(v(r), S) =
∑

Ind(v(r), d(σ))σ ,

where the sum runs over the 2(r − 1)-simplices σ of the triangulation of S
and d(σ) is the dual cell of σ (of dimension 2q).

Let us consider now the case of manifolds with boundary. Let M be a
compact almost complex 2m-manifold, with nonempty boundary ∂M . Let
(K) be a triangulation of M compatible with ∂M . The union of all “half-cells”
dual to simplices in ∂M , denoted by U is a regular neighborhood of ∂M . Its
boundary is denoted by ∂U , which is a union of (D)-cells and is homeomorphic
to ∂M . The pair (M \ (Int U), ∂U) is homeomorphic to (M,∂M) and one can
apply the previous construction.

Let v(r) be an r-field on the (2q)-skeleton of (D), with singularities located
on a compact subcomplex S in M \ (Int U). On the (2q)-skeleton of U , we
have a well defined r-frame v(r). Let {Sλ} be the connected components of
S. Then, by setting cr−1(M ; v(r)) = cq(M,∂M ; v(r)) � [M,∂M ], we have

∑

λ

(iλ)∗PH(v(r), Sλ) = cr−1(M ; v(r)) in H2r−2(M), (1.3.3)

where iλ : Sλ ↪→M is the inclusion.
In particular, the sum of the Poincaré–Hopf classes is determined by the

behavior of v(r) near ∂M and does not depend on the extension to the interior
of M . Note that we may assume that v(r) is nonsingular on D(2q−1).

If r = 1 and v(1) = {v}, the relative Chern class is also called the Euler
class of M relative to v and its evaluation on the orientation cycle of (M,∂M)
gives the index of v on M . Thus, if v is everywhere transverse to the boundary,
the formula (1.3.3) reduces to (1.1.3).

Remark 1.3.2. In the sequel we often speak of localizing Chern classes, which
can be done by two different methods: either obstruction theory or Chern–
Weil theory. The obstruction theoretical viewpoint comes from the above
concept of relative Chern classes: if S is a compact sub-complex of M , U a
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tubular neighborhood of S, and we are given an r-frame on the intersection
with U \ S with the appropriate skeleton (for some triangulation or cellular
decomposition of M), then the cycle that represents the corresponding Chern
class cq vanishes on ∂U . Hence we have a contribution for cq that is localized
in S, and another contribution in the complement of U . In the following
sections the geometric counterpart for making these localizations will be to
consider connections that are flat in the linear subspaces determined by the
frame. If r = 1 and S is a point, the “localization” one gets is simply the
contribution to χ(M) given by the local Poincaré–Hopf index of a vector field
at the isolated singularity.

1.4 Chern–Weil Theory of Characteristic Classes

In this section, we briefly review how to define characteristic classes of com-
plex vector bundles using connections. This approach allows us to obtain
precise results. If we combine this with the Čech-de Rham cohomology, this
method is particularly effective when we deal with the “localization problem.”

Let M be a C∞ manifold of dimension m′. For an open set U in M , we
denote by Ap(U) the complex vector space of complex valued C∞ p-forms
on U . Also, for a C∞ complex vector bundle E of rank k on M , we let
Ap(U,E) be the vector space of “E-valued p-forms” on U , i.e., C∞ sections
of the bundle

∧p(T c
R
M)∗ ⊗ E on U , where (T c

R
M)∗ denotes the dual of the

complexification of the real tangent bundle TRM of M . Thus A0(U) is the
ring of C∞ functions and A0(U,E) is the A0(U)-module of C∞ sections of
E on U .

Definition 1.4.1. A connection for E is a C-linear map

∇ : A0(M,E) −→ A1(M,E)

satisfying the “Leibniz rule”:

∇(fs) = df ⊗ s + f∇(s) for f ∈ A0(M) and s ∈ A0(M,E).

Example 1.4.1. The exterior derivative

d : A0(M) −→ A1(M)

is a connection for the trivial line bundle M × C.

From the definition we have the following:

Lemma 1.4.1. A connection ∇ is a local operator, i.e., if a section s is
identically 0 on an open set U , so is ∇(s).



12 1 The Case of Manifolds

Thus the restriction of ∇ to an open set U makes sense and it is a con-
nection for E|U .

Definition 1.4.2. Let ∇ be a connection for E on U . For a nonvanishing
section s of E on U , we say that ∇ is s-trivial, if ∇(s) = 0. More generally,
for an r-frame s = (s1, . . . , sr), ∇ is s-trivial, if ∇(si) = 0, i = 1, . . . , r.

Thus in Example 1.4.1, ∇ is trivial with respect to an arbitrary (nonzero)
constant section. From the definition we also have the following lemma.

Lemma 1.4.2. Let ∇1, . . . ,∇� be connections for E and f1, . . . , f� C∞ func-
tions on M with

∑�
i=1 fi ≡ 1. Then

∑�
i=1 fi∇i is a connection for E.

One of the consequences of the above lemmas is that every vector bundle
admits a connection. This can be shown by taking an open covering U of M
so that E is trivial on each open set in U , choosing a connection on each open
set trivial with respect to some frame of E, and then patching them together
by a partition of unity subordinate to U .

If ∇ is a connection for E, it induces a C-linear map

∇ : A1(M,E) −→ A2(M,E)

satisfying

∇(ω ⊗ s) = dω ⊗ s− ω ∧∇(s) for ω ∈ A1(M) and s ∈ A0(M,E).

The composition

K = ∇ ◦∇ : A0(M,E) −→ A2(M,E)

is called the curvature of ∇. It is not difficult to see that

K(fs) = fK(s) for f ∈ A0(M) and s ∈ A0(M,E).

The fact that a connection is a local operator allows us to obtain local rep-
resentations of it and its curvature by matrices whose entries are differential
forms. Thus suppose that ∇ is a connection for a vector bundle E of rank k
and that E is trivial on U . If e = (e1, . . . , ek) is a frame of E on U , we may
write, for i = 1, . . . , k,

∇(ei) =
k∑

j=1

θji ⊗ ej, θji ∈ A1(U).

We call θ = (θij), the matrix whose (i, j) entry is θij , the connection matrix
of ∇ with respect to e. For an arbitrary section s on U , we may write s =∑k

i=1 fiei where the fi are C∞ functions on U and we compute
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∇(s) =
k∑

i=1

(dfi +
k∑

j=1

θijfj)⊗ ei.

Note that the connection ∇ is e-trivial if and only if θ = 0. Thus in this case
we have ∇(s) =

∑k
i=1 dfi ⊗ ei. Also, from the definition we get

K(ei) =
k∑

j=1

κji ⊗ ej , κij = dθij +
k∑

�=1

θi� ∧ θ�j .

We call κ = (κij) the curvature matrix of ∇ with respect to e. If e′ =
(e′1 . . . , e′k) is another frame of E on U ′, we have e′i =

∑k
j=1 ajiej for some

C∞ functions aji on U ∩ U ′. The matrix A = (aij) is nonsingular at each
point of U ∩ U ′. If we denote by θ′ and κ′ the connection and curvature
matrices of ∇ with respect to e′,

θ′ = A−1 · dA + A−1θA and κ′ = A−1κA in U ∩ U ′. (1.4.1)

Let m = [m′/2] and, for each i = 1, . . . ,m, let σi denote the ith elemen-
tary symmetric function in m variables X1, . . . , Xm, i.e., σi(X1, . . . , Xm) is
a polynomial of degree i defined by

m∏

i=1

(1 + Xi) = 1 + σ1(X1, . . . , Xm) + · · ·+ σm(X1, . . . , Xm).

Since differential forms of even degrees commute with one another with re-
spect to the exterior product, we may treat κ as an ordinary matrix whose
entries are numbers. We define a 2i-form σi(κ) on U by

det(I + κ) = 1 + σ1(κ) + · · ·+ σm(κ),

where I denotes the identity matrix of rank k. Note that σi(κ) = 0 for
i = k + 1, . . . ,m, and in particular, σ1(κ) is the trace tr(κ) and σk(κ) is the
determinant det(κ). Although σi(κ) depends on the connection ∇, by (1.4.1),
it does not depend on the choice of the frame of E and it defines a global
2i-form on M , which we denote by σi(∇). It is shown that the form is closed
([75, Ch.3, 3 Lemma], [123, Appendix C, Fundamental Lemma]). We set

ci(∇) =
(√
−1
2π

)i

σi(∇)

and call it the i-th Chern form.
If we have two connections∇ and∇′ for E, there is a (2i−1)-form ci(∇,∇′)

satisfying
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ci(∇,∇′) = −ci(∇′,∇) and d ci(∇,∇′) = ci(∇′)− ci(∇). (1.4.2)

In fact the form ci(∇,∇′) is constructed as follows. We consider the vector
bundle E × R→M × R and define the connection ∇̃ for it by

∇̃ = (1− t)∇+ t∇′,

where t denotes a coordinate on R. Denoting by [0, 1] the unit interval and
by π : M × [0, 1]→M the projection, we have the integration along the fiber

π∗ : A2i(M × [0, 1]) −→ A2i−1(M).

Then we set
ci(∇,∇′) = π∗(ci(∇̃)). (1.4.3)

A similar construction works for an arbitrary collection of finite number of
connections and the resulting differential form is called the Bott difference
form ([19, p. 65]).

From the above, we see that the class [ci(∇)] of the closed 2i-form ci(∇)
in the de Rham cohomology H2i(M, C) depends only on E and not on the
choice of the connection ∇. We denote this class by ci(E) and call it the i-th
Chern class ci(E) of E via the Chern–Weil theory. We call

c(E) = 1 + c1(E) + · · ·+ ck(E)

the total Chern class of E, which is considered as an element in the cohomol-
ogy ring H∗(M, C). Note that the class c(E) is invertible in H∗(M, C).

Remark 1.4.1. 1. It is known (see, e.g., [123]) that the class ci(E) defined as
above is the image of the class ci(E) in H2i(M, Z) defined via the obstruction
theory by the canonical homomorphism

H2i(M, Z) −→ H2i(M, C).

This fact can also be proved directly using an expression of the mapping
degree in terms of connections (see, e.g., [161]).

2. Let H be a hyperplane in the projective space CP
m. For the hyperplane

bundle LH , the line bundle determined by H , we have

c(LH) = 1 + hm,

where hm denotes the canonical generator of H2(CP
m, C) (the Poincaré dual

of the homology class [CP
m−1]). See Sect. 1.6.4 for the proof of a more precise

statement.
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More generally, if we have a symmetric polynomial ϕ, we may write ϕ =
P (σ1, σ2, . . . ) for some polynomial P . We define, for a connection ∇ for E,
the characteristic form ϕ(∇) for ϕ by ϕ(∇) = P (c1(∇), c2(∇), . . . ), which
is a closed form and defines the characteristic class ϕ(E) of E for ϕ in the
de Rham cohomology. We may also define the difference form ϕ(∇,∇′) by a
construction similar to the one for the Chern polynomials.

1.5 Čech-de Rham Cohomology

In the subsequent sections, we discuss “localizations of characteristic classes”
and for this purpose, the Chern–Weil theory adapted to the Čech-de Rham
cohomology is particularly relevant. The Čech-de Rham cohomology is de-
fined for an arbitrary covering of a manifold M , however for simplicity here
we only consider coverings of M consisting of two open sets. For details, we
refer to [20] and [156].

Let M be a C∞ manifold of dimension m′ and U = {U0, U1} an open
covering of M . We set U01 = U0 ∩ U1. Define the vector space Ap(U) as

Ap(U) = Ap(U0)⊕Ap(U1)⊕Ap−1(U01).

Thus an element ξ in Ap(U) is given by a triple ξ = (ξ0, ξ1, ξ01) with ξ0 a
p-form on U0, ξ1 a p-form on U1 and ξ01 a (p− 1)-form on U01.

We define the operator D : Ap(U)→ Ap+1(U) by

Dξ = (dξ0, dξ1, ξ1 − ξ0 − dξ01).

Then it is not difficult to see that D ◦ D = 0. This allows us to define a
cohomological complex, the Čech-de Rham complex :

· · · −→ Ap−1(U) D
(p−1)

−→ Ap(U) D
(p)

−→ Ap+1(U) −→ · · ·

Set Zp(U) = KerDp, Bp(U) = ImDp−1 and

Hp
D(U) = Zp(U)/Bp(U),

which is called the p-th Čech-de Rham cohomology of U . We denote the
image of ξ by the canonical surjection Zp(U)→ Hp

D(U) by [ξ].

Theorem 1.5.1. The map Ap(M)→ Ap(U) given by ω �→ (ω, ω, 0) induces
an isomorphism

α : Hp
dR(M) ∼−→ Hp

D(U).

Proof. It is not difficult to show that α is well-defined. To prove that α is
surjective, let ξ = (ξ0, ξ1, ξ01) be such that Dξ = 0. Let {ρ0, ρ1} be a partition



16 1 The Case of Manifolds

of unity subordinated to the covering U . Define ω = ρ0ξ0 + ρ1ξ1 − dρ0 ∧ ξ01.
Then it is easy to see that dω = 0 and [(ω, ω, 0)] = [ξ]. The injectivity of α
is not difficult to show.

We define the “cup product”

Ap(U)×Aq(U) −→ Ap+q(U)

by assigning to ξ in Ap(U) and η in Aq(U) the element ξ � η in Ap+q(U)
given by

(ξ � η)i = ξi ∧ ηi, i = 0, 1, (ξ � η)01 = (−1)pξ0 ∧ η01 + ξ01 ∧ η1. (1.5.2)

Then we have D(ξ � η) = Dξ � η + (−1)pξ � Dη. Thus it induces the
cup product

Hp
D(U) ×Hq

D(U) −→ Hp+q
D (U)

compatible, via the isomorphism of 1.5.1, with the cup product in the
de Rham cohomology.

1.5.1 Integration on the Čech-de Rham Cohomology

Now we recall the integration on the Čech-de Rham cohomology (cf. [109]).
Suppose that the m′-dimensional manifold M is oriented and compact and
let U = {U0, U1} be a covering of M . Let R0, R1 ⊂ M be two compact
manifolds of dimension m′ with C∞ boundary with the following properties:
(1) Rj ⊂ Uj for j = 0, 1,
(2) IntR0 ∩ IntR1 = ∅ and
(3) R0 ∪R1 = M .

Let R01 = R0 ∩ R1 and give R01 the orientation as the boundary of R0;
R01 = ∂R0, equivalently give R01 the orientation opposite to that of the
boundary of R1; R01 = −∂R1. We define the integration

∫

M

: Am
′
(U) −→ C by

∫

M

ξ =
∫

R0

ξ0 +
∫

R1

ξ1 +
∫

R01

ξ01.

Then by the Stokes theorem, we see that if Dξ = 0 then
∫
M

ξ is
independent of {R0, R1} and that if ξ = Dη for some η ∈ Ap−1(U) then∫
M

ξ = 0. Thus we may define the integration

∫

M

: Hm′
D (U) −→ C,
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which is compatible with the integration on the de Rham cohomology via the
isomorphism of 1.5.1.

1.5.2 Relative Čech-de Rham Cohomology –
Alexander Duality

Next we define the relative Čech-de Rham cohomology and describe the
Alexander duality. Let M be an m′-dimensional oriented manifold (not nec-
essarily compact) and S a compact subset of M . Let U0 = M \ S and let U1

be an open neighborhood of S. We consider the covering U = {U0, U1} of M .
We set

Ap(U , U0) = { ξ = (ξ0, ξ1, ξ01) ∈ Ap(U) | ξ0 = 0 }.

Then we see that if ξ is in Ap(U , U0), Dξ is in Ap+1(U , U0). This gives rise
to another complex, called the relative Čech-de Rham complex, and we may
define the p-th relative Čech-de Rham cohomology of the pair (U , U0) as

Hp
D(U , U0) = KerDp/ImDp−1.

By the five lemma, we see that there is a natural isomorphism

Hp
D(U , U0) 
 Hp(M,M \ S; C).

Let R1 be a compact manifold of dimension m′ with C∞ boundary such
that S ⊂ IntR1 ⊂ R1 ⊂ U1. Let R0 = M \ IntR1. Note that R0 ⊂ U0. The
integral operator

∫
M (which is not defined in general for Am

′
(U) unless M is

compact) is well defined on Am
′
(U , U0):

∫

M

: Am
′
(U , U0) −→ C,

∫

M

ξ =
∫

R1

ξ1 +
∫

R01

ξ01,

and induces an operator
∫
M : Hm′

D (U , U0)→ C.
In the cup product Ap(U) × Am

′−p(U) → Am
′
(U) given as (1.5.2), we

see that if ξ0 = 0, the right hand side depends only on ξ1, ξ01, and η1. Thus
we have a pairing Ap(U , U0)×Am

′−p(U1)→ Am
′
(U , U0), which, followed by

the integration, gives a bilinear pairing

Ap(U , U0)×Am
′−p(U1) −→ C.

If we further assume that U1 is a regular neighborhood of S, this induces the
Alexander duality (cf 1.3.2 and [25])
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A : Hp(M,M \ S; C) 
 Hp
D(U , U0)

∼→ Hm′−p(U1, C)∗ 
 Hm′−p(S, C).
(1.5.3)

Proposition 1.5.1. [25] If M is compact, we have the commutative diagram

Hp(M,M \ S; C)
j∗−−−−→ Hp(M, C)

�
⏐
⏐
�A �

⏐
⏐
�P

Hm′−p(S, C) i∗−−−−→ Hm′−p(M, C),

where i and j denote, respectively, the inclusions S ↪→ M and (M, ∅) ↪→
(M,M \ S).

We finish this section by giving a fundamental example of computation of
relative Čech-de Rham cohomology.

Example 1.5.1. Let M = Rm
′

and S = {0} with m′ ≥ 2. In this case, U0 =
Rm

′ \ {0}, which retracts to Sm
′−1. Let U1 = Rm

′
. In this situation, we

compute Hp
D(U , U0). For p = 0, each element ξ in A0(U , U0) can be written

as ξ = (0, f, 0) for some C∞ function f on U1. If Dξ = 0, we have f ≡ 0 and
therefore H0

D(U , U0) = {0}. Next, an element ξ in A1(U , U0) can be written
as ξ = (0, ξ1, f) with ξ1 a 1-form on U1 and f a C∞ function on U0∩U1. If ξ is
a cocycle then dξ1 = 0 on U1 and df = ξ1 on U0∩U1. By the Poincaré lemma
the first condition implies that ξ1 = dg for some C∞ function g on U1 and
the second condition implies that f ≡ g + c for some c ∈ C. Therefore f has
a C∞ extension, still denoted by f , over {0} and ξ = (0, df, f) = D(0, f, 0).
Hence H1

D(U , U0) = {0}. For p ≥ 2 the map

Hp−1
dR (U0) −→ Hp

D(U , U0) given by [ω] �→ [(0, 0,−ω)]

can be shown to be an isomorphism (we leave the details to the reader) and
we have

Hp
D(U , U0) 
 Hp−1

dR (U0) 
 Hp−1(Sm
′−1) =

{
C, for p = m′,

0, for p = 2, . . . ,m′ − 1.

An explicit generator of Hm′−1(Sm
′−1) is given as follows ([75, p. 370]).

For x = (x1, . . . , xm′) in Rm
′
, we set Φ(x) = dx1 ∧ · · · ∧ dxm′ and

Φi(x) = (−1)i−1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxm′ .

Also, let Cm′ be the constant given by
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Cm′ =

{
(�−1)!
2π� , for m′ = 2�
(2�)!

22�+1π��!
, for m′ = 2� + 1.

Then the form

ψm′ = Cm′

∑m′

i=1 Φi(x)
‖x‖m′

is a closed (m′ − 1)-form on R
m′ \ 0 whose integral on the unit sphere S

m′−1

(in fact a sphere of arbitrary radius) is 1. Now we identify Cm with R2m,
then ψ2m = (βm + βm)/2, where

βm = C′
m

∑m
i=1 Φi(z) ∧ Φ(z)
‖z‖2m , C′

m = (−1)
m(m−1)

2
(m− 1)!

(2π
√
−1)m

. (1.5.4)

Then βm is a closed (m,m − 1)-form on C
m \ 0, real on S

2m−1 and∫
S2m−1 βm = 1. We call βm the Bochner–Martinelli kernel on Cm. Note that

β1 =
1

2π
√
−1

dz

z
,

is the Cauchy kernel on C.

1.6 Localization of Chern Classes

In a previous section we described the topological viewpoint for localizing
Chern classes on a given compact subset S of a manifold M , taking an ap-
propriate frame in the appropriate skeleton of a neighborhood of S. This
gives an explicit representative of the Chern class which represents it as a
relative cohomology class, with a specific contribution localized at S. We also
know (see for instance [14,19,123]) that Chern classes of manifolds and vector
bundles in general can be defined via Chern–Weil theory, using the curva-
ture tensor of a connection. To describe the localization of Chern classes, we
modify the Chern–Weil theory so that it is adapted to the Čech-de Rham
cohomology.

1.6.1 Characteristic Classes in the Čech-de Rham
Cohomology

Let M be a C∞ manifold and U = {U0, U1} an open covering of M . For a
vector bundle E over M , we take a connection ∇j on Uj , j = 0, 1, and let
ci(∇∗) be the element of A2i(U) given by
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ci(∇∗) = (ci(∇0), ci(∇1), ci(∇0,∇1)). (1.6.1)

Then we see that Dci(∇∗) = 0 and this defines a class [ci(∇∗)] in H2i
D (U). It

is not difficult to show the following

Theorem 1.6.2. The class [ci(∇∗)] ∈ H2i
D (U) corresponds to the Chern class

ci(E) ∈ H2i
dR(M) under the isomorphism of Theorem 1.5.1.

By a similar construction, we may define the characteristic class ϕ(E) for
a polynomial ϕ in the Chern polynomials in the Čech-de Rham cohomology.
It can be done also for virtual bundles (see Chap. 5).

Using Bott difference forms, we may define characteristic classes in the
Čech-de Rham cohomology for an arbitrary open covering of M .

This way of representing characteristic classes is particularly useful in deal-
ing with the “localization problem,” which we explain in the next subsection.
This theory involves vanishing theorems, one of which is given as follows.

Let E be a complex vector bundle of rank k on a C∞ manifold M . Let
s = (s1, . . . , sr) be an r-frame of E on an open set U . Recall that (Definition
1.4.2) a connection ∇ for E on U is s-trivial, if ∇(si) = 0 for i = 1, . . . , r.

Proposition 1.6.1. If ∇ is s-trivial, then

cj(∇) ≡ 0 for j ≥ k − r + 1.

Proof. For simplicity, we prove the proposition when r = 1. Let U ⊂ M be
an open set such that E|U 
 U ×Ck. Since s1 �= 0 everywhere on M , we may
take a frame e = (e1, . . . , ek) on U so that e1 = s1. Then all the entries of
the first row of the curvature matrix κ of ∇ with respect to e are zero. Since
ck(∇) = detκ, up to a constant, we have ck(∇) = 0.

1.6.2 Localization of Characteristic Classes
of Complex Vector Bundles

In this subsection, we explain how we obtain indices and residues in the
subsequent sections.

Let M be an oriented C∞ manifold of dimension m′ and E a C∞ complex
vector bundle of rank k over M . Also, let S be a closed set in M and U1

a neighborhood of S in M . Setting U0 = M \ S, we consider the covering
U = {U0, U1} of M . For a homogeneous symmetric polynomial ϕ of degree d,
the characteristic class ϕ(E) is represented by the cocycle ϕ(∇∗) in A2d(U)
given by

ϕ(∇∗) = (ϕ(∇0), ϕ(∇1), ϕ(∇0,∇1)),

where ∇0 and ∇1 denote connections for E on U0 and U1 respectively.
Sometimes, it happens that we have a “vanishing theorem” on U0 for some
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polynomials ϕ. Namely, there is some “geometric object” γ on U0, to which
is associated a class C of connections for E on U0 such that, for a connection
∇0 belonging to C and for a certain polynomial ϕ, we have

ϕ(∇0) ≡ 0.

We call a connection belonging to C special and a polynomial ϕ as above
adapted to γ. As we see below, this kind of vanishing defines a localization
of the relevant characteristic class. Moreover, if we have also the vanishing
of the Bott difference forms for families of special connections, we may show
that the localization does not depend on the connections involved. This is
the case in all the cases we consider below and we assume this hereafter.

Thus, if∇0 is special and if ϕ is adapted to γ, then the above cocycle ϕ(∇∗)
is in A2d(U , U0) and it defines a class in H2d(M,M \ S; C), which is denoted
by ϕS(E, γ). It is sent to the class ϕ(E) by the canonical homomorphism
j∗ : H2d(M,M \ S; C) → H2d(M, C). It is not difficult to see that the class
ϕS(E, γ) does not depend on the choice of the special connection ∇0 or the
connection ∇1.

We call ϕS(E, γ) the localization of ϕ(E) at S by γ. Suppose S is a compact
set admitting a regular neighborhood. Then we have the Alexander duality
(1.5.3)

A : H2d(M,M \ S; C) ∼−→ Hm′−2d(S, C).

Thus the class ϕS(E, γ) defines a class in Hm′−2d(S, C), which we call the
residue of γ for the class ϕ(E) at S and denote by Resϕ(γ,E;S).

We suppose that U1 is a regular neighborhood and let R1 be an
m′-dimensional manifold with C∞ boundary in U1 containing S in its interior
and we set R01 = −∂R1. Then the residue Resϕ(γ,E;S) is represented by
an (m′ − 2d)-cycle C in S such that

∫

C

η =
∫

R1

ϕ(∇1) ∧ η +
∫

R01

ϕ(∇0,∇1) ∧ η (1.6.3)

for every closed (m′−2d)-form η on U1. In particular, if 2d = m′, the residue
is a complex number given by

Resϕ(γ,E;S) =
∫

R1

ϕ(∇1) +
∫

R01

ϕ(∇0,∇1). (1.6.4)

Suppose moreover that S has a finite number of connected components
(Sλ)λ. Then we have a decomposition

Hm′−2d(S, C) =
⊕

λ

Hm′−2d(Sλ, C)
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and accordingly, we have the residue Resϕ(γ,E;Sλ) in Hm′−2d(Sλ, C) for
each λ. Replacing U1 by a regular neighborhood Uλ of Sλ, disjoint from the
other components, and R1 by an m′-dimensional manifold Rλ with boundary
in Uλ containing Sλ in its interior, we have an expression (1.6.3)λ or (1.6.4)λ
for the residue Resϕ(γ,E;Sλ) similar to (1.6.3) or (1.6.4).

From the above considerations and Proposition 1.5.1, we have the following
“residue theorem.”

Theorem 1.6.5. In the above situation,

(1) For each connected component Sλ of S, we have the residue Resϕ(γ,E;Sλ)
in the homology Hm′−2d(Sλ, C), which is determined by the local behavior of
γ near Sλ and is expressed as (1.6.3)λ or (1.6.4)λ.

(2) If M is compact,

∑

λ

(iλ)∗Resϕ(γ,E;Sλ) = ϕ(E) � [M ] in Hm′−2d(M, C),

where iλ : Sλ ↪→M denotes the inclusion.

Remark 1.6.1. If 2d = m′, we do not have to assume that S admits a regular
neighborhood. Simply take an arbitrary open neighborhood as U1 and define
Resϕ(γ,E;S) by (1.6.4) with R1 as above, then Theorem 1.6.5 is still valid.

1.6.3 Localization of the Top Chern Class

Let E be a C∞ complex vector bundle of rank k over an oriented C∞ manifold
M of dimension m′. Let s be a nonvanishing section of E on some open set U .
Recall that a connection ∇ for E on U is s-trivial, if ∇(s) = 0. If ∇ is an
s-trivial connection, we have the vanishing (Proposition 1.6.1)

ck(∇) = 0. (1.6.6)

Let S be a closed set in M and suppose we have a C∞ nonvanishing
section s of E on M \ S. Then, from the above fact, applying the arguments
in Sect. 1.6.2 taking ck as ϕ and s-trivial connections as special connections,
we see that there is a natural lifting ck(E, s) in H2k(M,M \ S; C) of the top
Chern class ck(E) in H2k(M, C). We call ck(E, s) the localization of ck(E)
with respect to the section s at S.

Also, if S is a compact set admitting a regular neighborhood, the class
ck(E, s) defines a class in Hm′−2k(S, C), which we call the residue of s for E
at S with respect to ck and denote by Resck(s, E;S). This residue corresponds
to what is called the “localized top Chern class” of E with respect to s in
[59, Sect. 14.1].
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The residue Resck(s, E;S) is represented by an (m′ − 2k)-cycle C in Sλ
satisfying (1.6.3). In particular, if 2k = m′, the residue is a complex number
given by (1.6.4) with ϕ = ck. If S has a finite number of connected compo-
nents (Sλ)λ, we have the residue Resck(s, E;Sλ) in Hm′−2k(Sλ, C) for each
λ. Moreover, Theorem 1.6.5 becomes

Theorem 1.6.7. In the above situation,

(1) For each connected component Sλ of S, we have the residue Resck(s, E;Sλ)
in the homology Hm′−2k(Sλ, C).

(2) If M is compact,

∑

λ

(iλ)∗Resck(s, E;Sλ) = ck(E) � [M ] in Hm′−2k(M, C).

Remark 1.6.2. 1. In fact it can be shown that the above residues are in the
integral homology and the equality in Theorem 1.6.7 holds in the integral
homology (see [161]).
2. A localization theory of Chern classes, other than the top one, by a finite
number of sections can be developed similarly (see [159–161]).

1.6.4 Hyperplane Bundle

As a basic example of the theory developed in the previous subsections, we
prove that the Poincaré dual of the first Chern of the hyperplane bundle LH
on a projective space is (the homology class of) the hyperplane H . In fact, we
prove a more precise statement that the Alexander dual of the localization
of the first Chern of LH by the canonical section is the fundamental class of
H in the homology of H . Note that the essential point in the proof is the
Cauchy integral formula; 1

2π
√
−1

∫
γ
dz
z = 1.

Let CP
m be the m-dimensional complex projective space with homoge-

neous coordinates [ζ0, . . . , ζm]. We denote by Wi the open set in CP
m defined

by ζi �= 0, i = 0, . . . ,m. Let H denote the hyperplane defined by ζ0 = 0 and
LH the line bundle determined by H . Recall that LH is defined by the system
of transition functions hij , hij = ζj/ζi. The canonical section s is represented
by the collection (si), where si is a holomorphic function on Wi given by
si = ζ0/ζi. Since the zero set of s is H , we have the localization c1(LH , s) of
c1(LH) in H2(CP

m, CP
m \H).

Theorem 1.6.8. The image of c1(LH , s) by the Alexander isomorphism

H2(CP
m, CP

m \H) ∼−→ H2m−2(H)

is the fundamental class [H ], i.e., Resc1(s, LH ;H) = [H ].
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Proof. Let U = {U0, U1} be the covering of CP
m consisting of U0 = CP

m \H
and a tubular neighborhood U1 of H with a C∞ retraction ρ : U1 → H . Let
∇0 be an s-trivial connection for LH on U0 so that c1(∇0) = 0 and ∇1 an
arbitrary connection for LH on U1. Then the class c1(LH , s) is represented by
the cocycle (0, c1(∇1), c1(∇0,∇1)) in A2(U , U0). Let R1 be a closed tubular
neighborhood of H in U1 and R01 = −∂R1. Our aim is to show that (cf.
(1.6.3)) ∫

H

η =
∫

R1

c1(∇1) ∧ η +
∫

R01

c1(∇0,∇1) ∧ η (1.6.9)

for every closed (2m− 2)-form η on U1.
Since the retraction map ρ induces an isomorphism ρ∗ : H2m−2

dR (H) ∼→
H2m−2
dR (U1), we see that there exist a closed (2m − 2)-form θ on H and a

(2m − 3)-form τ on U1 with η = ρ∗θ + d τ . By the Stokes theorem and
the property of the difference form c1(∇0,∇1), we see that it suffices to
prove (1.6.9) for η = ρ∗θ. For the left hand side, we have

∫
H ρ∗θ =

∫
H θ. To

compute the right hand side, we note that LH |U1 
 ρ∗(LH |H). Let ∇ be a
connection for LH |H and take as ∇1 the connection corresponding to ρ∗∇.
Then we have c1(∇1) ∧ ρ∗θ = ρ∗(c1(∇) ∧ θ) = 0, since c1(∇) ∧ θ is a 2m-
form on H . In the second term of the right hand side, R01 is an S1 bundle
over H with the orientation opposite to the natural one. Let ρ01 denote the
restriction of ρ to R01. Then by the projection formula, we have

∫

R01

c1(∇0,∇1) ∧ ρ∗θ = −
∫

H

(ρ01)∗c1(∇0,∇1) · θ,

where (ρ01)∗ denotes the integration along the fiber of ρ01 so that the form
(ρ01)∗c1(∇0,∇1) is in fact a function on H . It suffices to prove that this
function is identically equal to −1. Let p be an arbitrary point in H and
suppose it is in Wi, i �= 0. In the sequel, we identify LH |Wi with Wi ×C. On
Wi, the section s is represented by the function si = ζ0/ζi, which can also
be thought of as a fiber coordinate of the retraction ρ. Let ∇′ denote the
connection for LH |H on Wi ∩H trivial with respect to the frame � given by
�(q) = (q, 1) for q in Wi ∩H . We may modify ∇′ away from a neighborhood
of p to obtain a connection ∇ for LH |H on H . The pullback ∇1 = ρ∗∇
is a connection for LH which is trivial with respect to the frame �1 given
by �1(q) = (q, 1) for q in a neighborhood W of p in Wi. Now we try to find
c1(∇0,∇1) on W ∩U01 = W \H (cf. (1.4.3)). For this, let ∇̃ be the connection
for LH×R given by ∇̃ = (1− t)∇0+ t∇1. Let θi be the connection form of ∇i
with respect to the frame �1, i = 0, 1. Then θ1 = 0 and, since θ0 is s-trivial
and �1 = 1

z s, z = ζ0/ζi, by (1.4.1), we have θ0 = d
(

1
z

)
/ 1
z = − dzz . Thus the

connection form θ̃ of ∇̃ is given by

θ̃ = −(1− t)
dz

z
.
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Hence the curvature form κ̃ of ∇̃ is given by κ̃ = d θ̃ = dt∧ dz
z and we get

c1(∇0,∇1) =
√
−1

2π
π∗κ̃ = − 1

2π
√
−1

dz

z
,

where π∗ denotes the integration along the fiber of the projection map π :
W \H × [0, 1]→ W \H . Therefore, by the Cauchy integral formula, we have

(ρ01)∗c1(∇0,∇1) = −1

in a neighborhood of p.

See [157] and [161] for more general results and thorough discussions in
this direction.

1.6.5 Grothendieck Residues

As we have seen in the previous subsection and will see also in the sequel, the
residues of characteristic classes are deeply related to Grothendieck residues.
In this subsection, we briefly review this subject. For details, we refer to, e.g.,
[75].

Let U be a neighborhood of the origin 0 in Cm and f1, . . . , fm holomorphic
functions on U such that their common set of zeros consists only of 0. For a
holomorphic m-form ω on U , we set

Res0

[
ω

f1, . . . , fm

]

=
1

(2π
√
−1)m

∫

Γ

ω

f1 · · · fm
, (1.6.10)

where Γ is an m-cycle in U defined by

Γ = { z ∈ U | |f1(z)| = · · · = |fm(z)| = ε }

for a small positive number ε. We orient Γ so that the form dθ1 ∧ · · · ∧ dθm
is positive, θi = argfi.

Example 1.6.1. If m = 1, the above residue 1.6.10 is the usual Cauchy residue
at 0 of the meromorphic 1-form ω/f1.

Example 1.6.2. In the next subsection, we give various expressions for the
residue of the top Chern class at an isolated singularity of a section s.
If (f1, . . . , fm) denote local components of s around the singularity, the
Grothendieck residue with ω = df1 ∧ · · · ∧ dfm appears as an “analytic ex-
pression” of the residue. Thus we have
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Res0

[
df1 ∧ · · · ∧ dfm

f1, . . . , fm

]

= dimCOm/(f1, . . . , fm) = IndPH(v, 0), (1.6.11)

where v denotes the holomorphic vector field
∑m

i=1 fi · ∂/∂zi. This positive
integer is also interpreted as the intersection number (D1 · · ·Dm)0 at 0 of the
divisors Di defined by fi (cf. [75, Ch.5, 2], [157]).

Example 1.6.3. In particular, if fi = ∂f/∂zi for some f in Om, then the
residue is the Milnor number μ(V, 0) of the hypersurface V defined by f at 0;

Res0

[
d
(
∂f
∂z1

)
∧ · · · ∧ d

(
∂f
∂zm

)

∂f
∂z1

, . . . , ∂f
∂zm

]

= μ(V, 0).

We also call this number the multiplicity of f at 0 and denote it by m(f, 0)
(cf. Sect. 1.6.7-b below).

1.6.6 Residues at an Isolated Zero

Let E be a holomorphic vector bundle of rank m over a complex manifold M
of dimension m. Suppose we have a section s with an isolated zero at p in M .
In this situation, we have Rescm(s, E; p) in H0({p}, C) = C. In the following,
we give explicit expressions of this residue.

Let U be an open neighborhood of p where the bundle E is trivial with
holomorphic frame (e1, . . . , em). We write s =

∑m
i=1 fi ei with fi holomorphic

functions on U .

(I) Analytic expression

Theorem 1.6.12. In the above situation, we have

Rescm(s, E; p) = Resp

[
df1 ∧ · · · ∧ dfm

f1, . . . , fm

]

.

Proof. We indicate the proof for the case m = 1 (for m > 1, we use the
Čech-de Rham cohomology theory for m open sets, see [157], [160]). Thus
s = fe1 for some holomorphic function f on U . Let R be a closed disk about
p in U . In the expression (1.6.4) of the residue, we may take as∇1 an e1-trivial
connection on U , thus c1(∇1) ≡ 0 and

Resp(s, E; p) = −
∫

∂R

c1(∇0,∇1)

with ∇0 an s-trivial connection on U ′ = U \ {p}. The Bott difference form
c1(∇0,∇1) can be computed as in the proof of Theorem 1.6.8. If we let θi be
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the connection matrix of ∇i, i = 0, 1, with respect to the frame e1, we have
θ1 = 0 and θ0 = − dff . Thus this time we have

c1(∇0,∇1) = − 1
2π
√
−1

df

f
,

which proves the theorem (for the case m = 1).

Remark 1.6.3. For general m, if we take suitable connections we see that the
difference form is given by

cm(∇0,∇1) = −f∗βm,

where f = (f1, . . . , fm) and βm denotes the Bochner–Martinelli kernel on
Cm (cf. (1.5.4)). This gives a direct proof of Theorem 1.6.14 below. Thus we
reprove the fact that the Grothendieck residue in the above theorem is equal
to the mapping degree of f (cf. [75, Ch.5, 1. Lemma]).

(II) Algebraic expression

Theorem 1.6.13. In the above situation, we have

Rescm(s, E; p) = dimOm/(f1, . . . , fm).

This can be proved, for example, by perturbing the sections and using the
theory of Cohen–Macaulay rings (e.g., [160]).

(III) Topological Expression

Let S2m−1
ε denote a small 2m− 1 sphere in U with center p. Then we have

the mapping

ϕ =
f

‖f‖ : S
2m−1
ε −→ S

2m−1,

where S2m−1 denotes the unit sphere in Cm.

Theorem 1.6.14. In the above situation, we have

Rescm(s, E; p) = deg ϕ.

This can also be proved by perturbing the sections, see [75], [160].

Remark 1.6.4. There are similar expressions as above for the residues of
vector bundles on singular varieties with respect to an appropriate number
of sections (see [160]).
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1.6.7 Examples

(a) Poincaré–Hopf Index Theorem

Let M be a complex manifold of dimension m. We take as E the holomorphic
tangent bundle TM . Then a section of TM is a (complex) vector field v. One
can check (see, e.g., [161]) that the Poincaré–Hopf index IndPH(v, Sλ) of v at
a connected component Sλ of its zero set S, that we defined in 1.1.3 can be
expressed as

IndPH(v, Sλ) = Rescm(v, TM ;Sλ).

Then, if M is compact, by Theorem 1.6.7, we have

∑

λ

IndPH(v, Sλ) =
∫

M

cm(M),

where cm(M) = cm(TM) and it is known that the right hand side coin-
cides with the Euler–Poincaré characteristic χ(M) of M (“Gauss–Bonnet
formula”). Thus, by Theorem 1.6.7, we recover the Poincaré–Hopf theorem
in case v is holomorphic and the zeros are isolated.

(b) Multiplicity Formula

Let M be a complex manifold of dimension m. We take as E the holomorphic
cotangent bundle T ∗M . For a holomorphic function f on M , its differential
df is a section of T ∗M . The zero set S of df coincides with the critical set
C(f) of f . We define the multiplicity m(f, Sλ) of f at a connected component
Sλ of C(f) by

m(f, Sλ) = Rescm(df, T ∗M ;Sλ).

Note that, if Sλ consists of a point p, it coincides with the multiplicity m(f, p)
of f at p described in Example 1.6.3.

Now we consider the global situation. Let f : M → C be a holomorphic
map of M onto a complex curve (Riemann surface) C. The differential

df : TM −→ f∗TC

of f determines a section of T ∗M ⊗ f∗TC, which is also denoted by df . The
set of zeros of df is the critical set C(f) of f . Suppose C(f) is a compact
set with a finite number of connected components (Sλ)λ. Then we have the
residue Rescm(df, T ∗M⊗f∗TC;Sλ) for each λ. If M is compact, by Theorem
1.6.7, we have

∑

λ

Rescm(df, T ∗M ⊗ f∗TC;Sλ) =
∫

M

cm(T ∗M ⊗ f∗TC).
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We look at the both sides of the above more closely. In the sequel, we set
D(f) = f(C(f)), the set of critical values. Then, if M is compact, f defines
a C∞ fiber bundle structure on M \ C(f)→ C \D(f).

We refer to [87] for a precise proof of the following

Lemma 1.6.1. If M is compact, and if D(f) consists of isolated points,

∫

M

cm(T ∗M ⊗ f∗TC) = (−1)m(χ(M)− χ(F)χ(C)),

where F denotes a general fiber of f .

Suppose that f(Sλ) is a point. Taking a coordinate on C around f(Sλ),
we think of f as a holomorphic function near Sλ. Then we may write

Rescm(df, T ∗M ⊗ f∗TC;Sλ) = Rescm(df, T ∗M ;Sλ) = m(f, Sλ),

the multiplicity of f at Sλ. Thus we have

Theorem 1.6.15. Let f : M → C be a holomorphic map of a compact
complex manifold M of dimension m onto a complex curve C. If the critical
values D(f) of f consists of only isolated points, then

∑

λ

m(f, Sλ) = (−1)m(χ(M)− χ(F)χ(C)),

where the sum is taken over the connected components Sλ of C(f).

In particular, we have ([86], see also [59, Example 14.1.5]):

Corollary 1.6.1. In the above situation, if the critical set C(f) of f consists
of only isolated points,

∑

p∈C(f)

m(f, p) = (−1)m(χ(M)− χ(F)χ(C)).

See [87] for the definition of multiplicities of functions on possibly singular
varieties and formula similar to the above for these multiplicities.
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