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Abstract We investigate nonparametric tests for identifying monotone trends in
time series as they need weaker assumptions than parametric tests and are more
flexible concerning the structure of the trend function. As seasonal effects can falsify
the test results, modifications have been suggested which can handle also seasonal
data. Diersen and Trenkler [5] propose a test procedure based on records and Hirsch
et. al [8] develop a test based on Kendall’s test for correlation. The same ideas can be
applied to other nonparametric procedures for trend detection. All these procedures
assume the observations to be independent. This assumption is often not fulfilled
in time series analysis. We use the mentioned test procedures to analyse the time
series of the temperature and the rainfall observed in Potsdam (Germany) from 1893
to 2008. As opposed to the rainfall time series, the temperature data show positive
autocorrelation. Thus it is also of interest, how the several test procedures behave in
case of autocorrelated data.

1 Introduction

One interest in time series analysis is to detect monotonic trends in the data. Several
parametric and nonparametric procedures for trend detection based on significance
tests have been suggested. Parametric methods rely on strong assumptions for the
distribution of the data, which are difficult to check in practice and possibly not
fulfilled. Furthermore a parametric form of the trend has to be specified, where only
some unknown parameters need to be estimated. Nonparametric test procedures are
more flexible as they afford only rather general assumptions about the distribution.
Also the trend often only needs to be monotonic without further specifications.
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First ideas for nonparametric test procedures based on signs (see e.g. [3] or [13]),
ranks (see e.g. [4] or [12]) and records [7] have been developed early. However, all
these approaches need the assumption of i.i.d. random variables under the null hy-
pothesis. For time series with seasonal behavior this assumption is not valid. One
way to handle this problem is to estimate and subtract the seasonality. Another ap-
proach is to use tests which are robust against seasonal effects. Hirsch et. al. [8]
develop a test procedure based on Kendall’s test of correlation [10]. Diersen and
Trenkler [5] propose several tests based on records. They show that splitting the
time series increases the power of the record tests, especially when seasonal effects
occur. The procedures of Hirsch et. al. and Diersen and Trenkler use the indepen-
dence of all observations to calculate a statistic separately for each period and sum
them to get a test statistic for a test against randomness. The same ideas can be used
for the above mentioned tests based on signs or ranks.

We apply the procedures to two climate time series from a gauging station in
Potsdam, Germany: mean temperature and total rainfall. Such climate time series of-
ten show seasonality with a period of one year. Section 2 introduces the test problem
of the hypothesis of randomness against a monotonic trend as well as test procedures
which can also be used for seasonal data, namely some tests based on records for
the splitted time series [5] and the seasonal Kendall–Test [8]. We also modify other
nonparametric test statistics to consider seasonality. The mentioned sign– and rank–
tests are transformed to new seasonal nonparametric tests. In Sect. 3 we compare the
power of the several test procedures against different types of monotone trends and
in the case of autocorrelation. In Sect. 4 the two climate time series are analysed.
In particular, the test procedures are used to check the hypothesis of randomness.
Section 5 summarizes the results.

2 Nonparametric Tests of the Hypothesis of Randomness

A common assumption of statistical analysis is the hypothesis of randomness. It
means that some observed values x1, . . . ,xn are a realisation of independent and
identically distributed (i.i.d.) continuous random variables (rv) X1, . . . ,Xn, all with
the same cumulative distribution function (cdf) F . There are several test procedures
which can be used to test the hypothesis of randomness H0 against the alternative H1
of a monotonic trend. However, in time series analysis the observed values x1, . . . ,xn
are a realisation of a stochastic process and can be autocorrelated, implying a lack
of independence of X1, . . . ,Xn. Additionally, many time series show seasonal effects
and so X1, . . . ,Xn are not identically distributed, even if there is no monotonic trend.
We modify the hypothesis of randomness for seasonal data to handle at least the
second problem:

Firstly, if there is a cycle of k periods, the random sample X = (X1, . . . ,Xn) is
splitted into k parts

X = (X1,X2, . . . ,Xk) with X j = (X1, j,X2, j, . . . ,Xn j , j) and Xi, j = Xk(i−1)+ j (1)
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for j = 1, . . . ,k and i = 1, . . . ,n j. X j thus includes all n j observations of season j.
Under the null hypothesis H0 of no trend the continuous rv X1, . . . ,Xn are still con-
sidered to be independent but only for each j the rv’s X1, j, . . . ,Xn j , j are identically
distributed with common cdf Fj. Under the alternative H1 of a monotonic trend
there are values 0 = a1, j ≤ a2, j ≤ . . . ≤ an j , j with ai, j < ai+1, j for at least one
i ∈ {1, . . . ,n j − 1} and j ∈ {1, . . . ,k} such that Fi, j(x) = Fj(x− ai, j) in case of an
increasing and Fi, j(x) = Fj(x + ai, j) in case of a decreasing trend. Under H0 the
hypothesis of randomness within each period is fulfilled. In the following we de-
note the test problem of the hypothesis of randomness for seasonal data against a
monotone trend alternative with HR and introduce test procedures for HR.

2.1 Tests Based on Record Statistics

Foster and Stuart [7] introduce a nonparametric test procedure for HR based on
the number of upper and lower records in the sequence X1, . . . ,Xn and the reversed
sequence Xn, . . . ,X1. A test procedure for HR based on this approach which is robust
against seasonality is introduced by Diersen and Trenkler [5]. A first application of
their procedure is given in [6].

Using (1) we define upper and lower record statistics Uo
i, j, Lo

i, j, Ur
i, j and Lr

i, j of the
original and the reversed sequence for all periods j = 1, . . . ,k at i = 2, . . . ,n j as

Uo
i, j =

{
1 , if Xi, j > max{X1, j,X2, j, . . . ,Xi−1, j}
0 otherwise (2)

Lo
i, j =

{
1 , if Xi, j < min{X1, j,X2, j, . . . ,Xi−1, j}
0 otherwise (3)

Ur
n j−i+1, j =

{
1 , if Xn j−i+1, j > max{Xn j−i+2, j,Xn j−i+3, j, . . . ,Xn j , j}
0 otherwise

(4)

Lr
n j−i+1, j =

{
1 , if Xn j−i+1, j < min{Xn j−i+2, j,Xn j−i+3, j, . . . ,Xn j , j}
0 otherwise

(5)

with
Uo

1, j = Lo
1, j = Ur

n j , j = Lr
n j , j = 1 (6)

as the first value of a sequence is always an upper and a lower record.
Under H0 for a larger i the probability of a record will get smaller. Therefore

Diersen and Trenkler [5] recommend to use linear weights wi = i− 1 for a record
at the i−th position of the original or reversed sequence. The sum of the weighted
records of the original sequence

Uo =
k

∑
j=1

n j

∑
i=1

wiUo
i, j and Lo =

k

∑
j=1

n j

∑
i=1

wiLo
i, j , (7)
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and the sum of the records of the reversed series

Ur =
k

∑
j=1

n j

∑
i=1

wiUr
n j−i+1, j and Lr =

k

∑
j=1

n j

∑
i=1

wiLr
n j−i+1, j (8)

can be used as test statistics for HR. They are sums of independent rv and all have
the same distribution under H0. The expectations and variances are given by

E(Uo) =
k

∑
j=1

n j

∑
i=1

wi

i
and Var(Uo) =

k

∑
j=1

n j

∑
i=1

w2
i

i−1
i2

(9)

and especially

E(Uo) = k
n1

∑
i=1

i−1
i

and Var(Uo) = k
n1

∑
i=1

(i−1)3

i2
(10)

if linear weights wi = i− 1 are used and all periods j have the same number of
observations n1.

If an upward trend exists, Uo and Lr become large while Lo and Ur become small.
The opposite is true, if a downward trend exists. These informations can be used to
combine the sums in (8) and (9) and to use the statistics

T1 = Uo −Lo, T2 = Uo −Ur, T3 = Uo +Lr, T4 = Uo −Ur +Lr −Lo (11)

for HR. Under H0 the distributions of T1, T2 and T3 will not change, if T̃1 = Lr −Ur,
T̃2 = Lr −Lo and T̃3 = Ur +Lo, respectively, are taken instead of the sums given in
(11). From these statistics, only

T1 = Uo −Lo =
k

∑
j=1

n j

∑
i=1

wi
(
Uo

i, j −Lo
i, j

)
(12)

can be expressed as a sum of independent rv, because here records from the same
sequence are combined. We have under H0

E(T1) = 0 and Var(T1) = 2
k

∑
j=1

n j

∑
i=1

w2
i

i
. (13)

In contrast to T1, in T2, T3 and T4 we use records from the original sequence as well
as from the reversed sequence. So the summands here are not independent. We get
the expectations

E(T2) = E(T4) = 0 and E(T3) = 2
k

∑
j=1

n j

∑
i=1

wi

i
. (14)

while the variances of T2, T3 and T4 become unwieldly expressions and are given in
[6] for the case n1 = . . . = nk.
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Diersen and Trenkler [6] recommend a splitting with large k and small n j, j =
1, . . . ,k. The first reason for this are the asymptotic properties of the statistics in
(11). With X1, . . . ,Xn assumed to be independent and n1 = . . . = nk, the statistics
T1, T2, T3 and T4 are the sum of k i.i.d. rv. So for k → ∞ all four test statistics
are asymptotically normal distributed. These asymptotics are not fulfilled, if the
statistics in (11) are only weighted but not splitted. Diersen and Trenkler [5] showed
for this case that the asymptotic distribution is not a normal one. The second reason
is that compared to the best parametric test in the normal linear regression model
and the (non seasonal) Kendall–Test the asymptotic relative efficiency vanishes for
fixed k and increasing n j. So it is also an interesting question if the efficiency of
other nonparametric tests can be increased, if the time series is splitted with a large
k and a small number n j of observations in each period j.

2.2 The Seasonal Kendall-test

Mann [12] introduced a test for HR based on Kendall’s test for independence of two
random variables in a bivariate distribution [10]. It was modified by Hirsch et al.
[8] to robustify the test statistic against seasonal effects. Taking the splitted series in
(1), they use the test statistic

S =
k

∑
j=1

S j with S j =
n j−1

∑
i=1

n j

∑
i′=i+1

sgn(Xi′, j −Xi, j) (15)

for HR. So in S j the number of pairs (Xi, j,Xi′, j) with Xi, j < Xi′, j is subtracted from
the number of pairs (Xi, j,Xi′, j) with Xi, j > Xi′, j, i < i′, for period j. If there is a
positive (negative) monotonic trend in period j, the statistic S j is expected to be
large (small) while it will probably realise a value near 0 if there is no monotonic
trend. If the same positive (negative) monotonic behavior can be observed for all
periods, the statistic S will also become large (small). S will also take a value close
to 0, if no monotonic trend exists.

The exact distribution of S under H0 is symmetric with

E(S) =
k

∑
j=1

E(S j) = 0 (16)

and if there are no identical values (ties) in the observations of any period j, the
variance is given by

Var(S) =
k

∑
j=1

Var(S j) =
k

∑
j=1

n j(n j −1)(2n j +5)
18

(17)

as S1, . . . ,Sk are independent. A pair of observations is called a tie of extend δ , if δ
observations of x1, . . . ,xn have the same value. If X1, . . . ,Xn are continuous rv, the
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probability of a tie is zero, but for rounded values, ties can be observed. Let nδ , j be
the number of ties within X j with extend δ . Then the variance of S becomes smaller:

Var(S) =
k

∑
j=1

(
n j(n j −1)(2n j +5)−

n j

∑
δ=1

nδ , jδ (δ −1)(2δ +5)
)

18
(18)

As every S j is asymptotically normally distributed for n j → ∞, the statistic S as
a finite sum of independent asymptotically normally distributed rv is asymptoti-
cally normal, too, if n j converges to infinity for each j. The exact distribution of S
under H0 (neglecting ties) can be determined by enumerating all permutations of
X1, j, . . . ,Xn j , j for each j and calculating the values of S j for every permutation of
each j. The individual values and their frequencies can be easily calculated with
Chap. 5 of [11]. According to the frequencies of the single values for each S j, the
distribution of S can be obtained by reconsidering every possible combination of the
values and multiplying the corresponding frequencies. However, for large n calcu-
lating the exact distribution of S is time consuming, so the normal approximation
should be used whenever possible. Hirsch et al. [8] state that already for k = 12 and
n j = 3 the normal approximation of S j works well. They also claim that their test
is robust against seasonality and departures from normality, but not robust against
dependence. Hirsch and Slack [9] develop a test for HR, which performs better
than S if the data are autocorrelated. This test uses estimates of the covariances be-
tween two seasons based on Spearman’s rank correlation coefficient. The estimated
covariances are used to correct the variance of S in the normal approximation.

2.3 Some Rank Statistics for HR

Aiyar et al. [1] compare the asymptotic relative efficiencies of many nonparamet-
ric tests for the hypothesis of randomness against trend alternatives. They consider
mostly linear and nonlinear rank statistics, which we will use in the following for
HR:

Taken the splitted series from (1) let R(X1, j), . . . ,R(Xn j , j) be the ranks of the
continuous rv X1, j, . . . ,Xn j , j, for j ∈ {1, . . . ,k}. Then two linear rank test statistics
based on Spearman’s rank correlation coefficient are given by

R1 =
k

∑
j=1

R̃1, j with R̃1, j =
n j

∑
i=1

(
i− n j +1

2

)(
R(Xi, j)−

n j +1
2

)
and (19)

R2 =
k

∑
j=1

R̃2, j with R̃2, j =
n j

∑
i=1

(
i− n j +1

2

)
sign

(
R(Xi, j)−

n j +1
2

)
.

Both statistics are symmetric and have an expected value of 0. Their variances are
given by
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Var(R1) =
k

∑
j=1

Var(R̃1, j) =
k

∑
j=1

n2
j(n j +1)2(n j −1)

144
and

Var(R2) =
k

∑
j=1

Var(R̃2, j) with Var(R̃2, j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k

∑
j=1

n2
j(n j +1)

12
, n j even

k

∑
j=1

n j(n j −1)(n j +1)
12

, n j odd .

(20)

Instead of considering all rv like in (19), the (1−2γ) truncated sample can be taken
for all periods, with γ ∈ (0,0.5). Like [1] we define

ci, j =

⎧⎨
⎩

−1 , 0 < i ≤ �γn j�
0 , �γn j� < i ≤ n j− �γn j�
+1 , n j− �γn j� < i ≤ n j

(21)

so that the two statistics

R3 =
k

∑
j=1

R̃3, j with

R̃3, j =
n j

∑
i=1

ci, j

(
R(Xi, j)−

n j +1
2

)
=

k

∑
j=1

⎛
⎝ n j

∑
i=n j−�γn j�+1

R(Xi, j)−
�γn j�

∑
i=1

R(Xi, j)

⎞
⎠ and

R4 =
k

∑
j=1

R̃4, j with

R̃4, j =
n j

∑
i=1

ci, j sign
(

R(Xi, j)−
n j +1

2

)

=
n j

∑
i=n j−�γn j�+1

sign
(

R(Xi, j)−
n j +1

2

)
−

�γn j�

∑
i=1

sign
(

R(Xi, j)−
n j +1

2

)
(22)

compare the sum of the most recent �γn j� ranks (signs) with the sum of the first
�γn j� ranks (signs). Again the expectation of R3 and R4 is 0. Under the null hypoth-
esis, the variances are given by

Var(R3) =
k
∑
j=1

n j(n j+1)�γn j�
6 and

Var(R4) =
k
∑
j=1

Var(R̃4, j) with Var(R̃4, j) =

{
2 n j

n j−1�γn j� , n j even
2�γn j� , n j odd .

(23)

Again the above variances are only valid if all observations have different values.
If ties occur, one possibility, which leads to a loss of power but keeps the variances
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from (20) and (23) under the null hypothesis is to give random ranks to tied obser-
vations. Alternatives like average ranks, which reduce the loss of power compared
to random ranks, are not considered here.

In addition to this, [1] also consider nonlinear rank statistics. In analogy to them
we define for each period j

Ii,i′, j =
{

1 , if Xi, j < Xi′, j
0 , otherwise , (24)

i, i′ ∈ {1, . . . ,n}, i �= i′. Under the null hypothesis of randomness, we have

E(Ii,i′, j) =
1
2

and Var(Ii,i′, j) =
1
4

. (25)

Based on the sign difference test [13] we define for HR

N1 =
k

∑
j=1

Ñ1, j with Ñ1, j =
n j

∑
i=2

Ii−1,i, j (26)

which counts the number of pairs for each period j, where the consecutive obser-
vation has a larger value and then sums these pairs over all periods. For each j we
have n j −1 differences. Under H0 and from (25) we get

E(N1) =
k

∑
j=1

1
2
(n j −1) and Var(N1) =

k

∑
j=1

1
12

(n j +1) . (27)

For each j the distribution of
n j

∑
i=2

Ii−1,i, j converges to a normal distribution [13].

Therefore the distribution of N1 converges to a normal distribution, too.
Another test for HR based on Cox and Stuart [3] is given by

N2 =
k

∑
j=1

Ñ2, j with Ñ2, j =
�n j/2�

∑
i=1

(n j −2i+1)Ii,n j−i+1, j . (28)

Cox and Stuart [3] show that N2 leads to the best weighted sign test with respect
to the efficiency of a sign test of HR. The linear rank test statistics R1 and R2 and
the procedure S of Kendall compare all pairs of observations, while in (28) each
observation is taken only for one comparison. Using (25) we get under H0

E(N2) =
k
∑
j=1

E(Ñ2, j) with E(Ñ2, j) =

⎧⎨
⎩

n2
j

8 , n j even
n2

j−1
8 , n j odd

and Var(N2) =
k
∑
j=1

1
24 n j(n2

j −1) . (29)
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Cox and Stuart [3] also introduce a best unweighted sign test, which can be formu-
lated for HR as follows

N3 =
k

∑
j=1

Ñ3, j with Ñ3, j =
ν j

∑
i=1

Ii,n j−ν j+i, j . (30)

The value ν j ≤ 1
2 n j is taken to compare observations further apart. We get

E(N3) =
k

∑
j=1

ν j

2
and Var(N3) =

k

∑
j=1

ν j

4
(31)

under H0. Cox and Stuart [3] recommend ν j = 1
3 n j.

Again a splitting with small n1 = . . . = nk and large k leeds asymptotically to a
normal distribution for all introduced test statistics, as k i.i.d. rv are added.

3 Comparison of the Nonparametric Tests for HR

Now we compare the different tests presented in Sect. 2 for different sample sizes
and splitting factors and for various alternatives. We consider the time series model

Xi, j = ai, j +Ei, j j = 1, . . . ,k, i = 1, . . . ,n j, (32)

where E1,1, . . . ,Enk,k are Gaussian white noise with expected value 0 and constant
variance σ2

E = 1. Xi, j is the i−th observation for season j. For simplicity we fix
the number of seasons to k = 4 and assume that each season has the same sample
size n1. Furthermore, the slopes are given by a1, j ≤ . . . ≤ an1, j. We are interested
in particular in three different kinds of monotone trends, with the same trend struc-
ture in each season. This means that for each j we have the same slopes. With
ai, j = iθ we achieve a linear trend, where the parameter θ controls the slope of
the straight line. We also consider a concave case with ai, j = θ

√
n1i, and a convex

case with ai, j = θ i2/n1, so that all trends increase to θn1. We consider sample sizes
n ∈ {12,24,32,48,64,96,120} and splittings into k̃ ∈ {1,4,8,12,16,24,32} groups
whenever ñ1 = n/k̃ is an integer. We do not consider splittings with ñ1 = 2 as here
R3 and R4 for γ = 1

3 as well as N3 with ν1 = . . . = νk̃ = 1
3 are not defined. The

other test statistics are equivalent in this case, as they all consider an unweighted
ranking of two observations in each splitting. With k̃ = 1 the unsplitted case is also
taken into account. In case of seasonal effects the power of all tests will probably
be reduced if k̃ = 1 is chosen. We compare the power of the tests of Sect. 2 for
all reasonable combinations of k̃ and n from above and take 1000 random samples
from (32) for each combination. We use the asymptotic versions of the tests at a sig-
nificance level of α = 0.05. The percentage cases of rejections of H0 estimate the
power of the several test procedures. Here we only consider the case of an upward
trend, i.e. θ > 0. We consider the linear, the convex and the concave case from above
and calculate the power of all tests for θ ∈ {0.01,0.02, . . . ,0.49,0.50}. To achieve
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monotone power functions, we use the R–function isotone from the R–package
EbayesThresh for monotone least squares regression to smooth the simulated
power curves ([14, 15]).

Firstly we compare the weighted record statistics. For n ≥ 64 all power functions
take values close to 1, independently of the splitting factor k̃, if a linear trend with
θ > 0.1 exists. In the concave case only Uo and T2 with k̃ = 1 perform worse for
n = 64. An explanation for this is the strength of the slope. A positive concave trend
increases less towards the end of the time series. Hence there will be fewer records
at the end of the time series and Uo will perform worse than Lr. As our version
of T2 also uses Uo we receive similar results for this test statistic. In the convex
case similar results can be obtained for Lr as a convex upward trend of the original
sequence means a concave downward trend of the negative reversed series. The
power functions of the record tests for k̃ = 1 and k̃ = 4 can be seen in Fig. 1 for
the linear, the concave and the convex case. Looking also at other sample sizes n in
the linear case (see Fig. 2), we find that T3 performs best among the record tests in
most of the cases. Generally, the power of the record tests gets larger in the above
situations, if a larger k̃ is chosen. Only T3 performs better for a medium value of k̃,
e.g. k̃ = 4 for n = 32 or k̃ = 12 for n = 96. The previous findings are confirmed in
the case of a convex or concave trend.

In Fig. 3 the power functions of the rank tests are shown, when different k̃ for a
fixed n = 64 are used. We show the concave case here, because the differences are
qualitatively the same, but slightly bigger than for the linear or the convex trend.
The seasonal Kendall–Test S and Spearman–Test R1 perform best, when a small
k̃ is used. Conclusions about an optimal splitting for the other rank tests are hard
to state. If k̃ is large compared to n, the power of the tests is reduced for most of
the situations. However, generally we observe for all these tests (except N1) good
results, if k̃ = 4 is chosen. N1 performs worse than the other tests in most situations
even though it is the only test statistic with an increasing power in case of a larger
splitting factor k̃. From the rank tests S and R1 achieve the largest power in most
situations. Comparing the best rank tests S and R1 with k̃ = 4 and the best record
tests T3 and T4 with a large splitting factor k̃ = 4, S and R1 have a larger power in
every situation.

Next we consider a situation with autocorrelated data. Here the hypothesis of
randomness is not fulfilled, but no monotone trend exists. It is interesting which
test procedures are sensitive to autocorrelation in the sense that they reject H0 even
though there is no monotone trend. We consider an autoregressive process of first
order (AR(1))

Et = ρEt−1 + εt , t = 1, . . . ,n , (33)

with autocorrelation coefficient ρ , i.e. we assume the sequence E1, . . . ,En to be au-
tocorrelated with correlation ρ and hence the autocorrelation within E1, j, . . . ,En1, j
with Ei, j = Ek(i−1)+ j is smaller than ρ . The innovations ε1, j, . . . ,εn1, j are i.i.d. nor-
mally distributed random variables with expectation 0 and variance σ2

ε , where

σ2
ε = (1−ρ2)σ2

E = (1−ρ2) (34)
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Fig. 1 Power functions of the record tests for n = 64, small θ and k̃ = 1 (left) and k̃ = 4 (right)
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Fig. 2 Power functions of the record tests for n = 12 (top) and n = 96 (bottom) for different k̃

as we want to keep σ2
E equal to 1 again. We vary ρ in {0.025,0.05, . . . ,0.875,0.9}.

The resulting detection rates of the record tests can be seen in Fig. 4 for n = 96
and different values of k̃. T3 is more sensitive to positive autocorrelation than T1,
T2 and T4 if a small k̃ is used, but this difference vanishes for a large k̃. The better
performance of T1, T2 and T4 for small k̃ can be explained by the fact that they sub-
tract statistics which become large in case of monotonically decreasing sequences
from statistics which become large in case of monotonically increasing sequences.
Positive autocorrelations cause both patterns to occur so that the effects cancel out.

For the rank tests we get the following findings: N2 becomes robust against
autocorrelations ρ ≤ 0.6 for larger sample sizes n ≥ 48, if we choose k̃ so that we
have three observations in each split. We observe for the pairs n = 48, k̃ = 16 and
n = 96, k̃ = 32 for most of the values of ρ a power of less than α = 0.05. If we
choose a splitting factor leading to n1 > 3 this robustness is lost (see Fig. 5). N1
behaves the most insensitive against autocorrelation for a large k̃, but N1 was also
the test with the smallest power if a trend exists. For the other tests we have for
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Fig. 3 Power functions of the rank tests for different k̃ with n = 64 and a concave trend
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Fig. 4 Detection rates of the record tests for n = 96 and different k̃ with autocorrelation

a fixed n a higher detection rate, when a smaller splitting factor k̃ is used. If we
compare the record tests with the rank tests, we find that T3 reacts less sensitive to
autocorrelation than the rank tests in most situations.

4 Analysis of the Climate Time Series from Potsdam

Now the methods from Sect. 2 are applied to some real time series data. The two
series analysed here consist of the monthly observations of the mean air temperature
and the total rainfall in Potsdam between January 1893 and April 2008. There are no
missing values. The secular station in Potsdam is the only meteorological station in
Germany for which daily data have been collected during a period of over 100 years
without missings. The measures are homogeneous, what is due to the facts that the
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Fig. 5 Detection rates of the rank tests with n1 = 4 (top) and n1 = 3 (bottom) observations in each
splitting with autocorrelation

station has never changed its position, the measuring field stayed identical and the
sort of methods, prescriptions and instruments, which are used for the measuring,
have been kept.
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Fig. 6 Original (top) and detrended and deseasonalized (bottom) total rainfall time series

Before the methods from Sect. 2 can be applied, we have to check if the assump-
tions are fulfilled. Independence of the observations can be checked with the auto-
correlation function (ACF) and the partial autocorrelation function (PACF). Before
this we detrend the time series by subtracting a linear trend. We also deseasonalize
the time series by estimating and subtracting a seasonal effect for each month. The
original and the detrended deseasonalized time series can be found in Fig. 6 for the
total rainfall and in Fig. 7 for the mean temperature. The autocorrelation functions
of the detrended and deseasonalized time series show positive autocorrelations at
small time lags in case of the temperature and no correlation in case of the rainfall
(see Fig. 8). In the former case, a first order autoregressive model with a moderately
large AR(1) coefficient gives a possible description of the correlations. We use the
test statistics from Sect. 2 to test the hypothesis of randomness against the alterna-
tive of an upward trend in both time series.
We consider all test statistics except Lo and Ur as these tests are only useful to detect
a downward trend. As we have in both time series monthly observations for more
than 115 years, we choose the splitting factor k̃ as multiples of 12, more precisely
k̃ ∈ {12,24,60,120,240,360}. This guarantees that even R3, R4 (with γ = 1

3 ) and
N3 (with ν j = 1

3 n j) can be computed for each split. For every test procedure we use
the asymptotic critical values, which seems to be reasonable for the above k̃. The
resulting p–values can be seen in Table 1 for the total rainfall time series and in
Table 2 for the mean temperature.
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Fig. 7 Original (top) and detrended and deseasonalized (bottom) mean temperature time series

Fig. 8 Autocorrelation (left) and partial autocorrelation function (right) of the detrended and de-
seasonalized rainfall (top) and temperature time series (bottom)
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Table 1 p–values for the total rainfall time series (in percent)

k̃ 12 24 60 120 240 360

Uo 6.4 40.9 11.7 18.3 11.1 6.1
Lr 9.3 21.3 32.4 26.8 38.7 7.9
T1 4.2 34.9 14.2 7.9 14.8 9.8
T2 4.3 31.8 3.3 11.9 12.8 7.4
T3 2.3 23.7 12.9 15.7 17.8 4.6
T4 1.9 22.5 6.0 7.8 17.6 7.5
S 17.2 12.8 28.1 25.6 24.1 9.1
R1 19.4 15.7 33.2 39.2 37.5 13.0
R2 26.7 19.2 36.3 42.2 33.1 26.5
R3 44.0 38.6 57.0 58.9 45.5 11.1
R4 48.7 44.8 63.4 61.8 41.2 20.5
N1 8.2 35.6 32.4 18.6 5.1 5.8
N2 4.6 5.1 58.4 61.7 49.1 20.0
N3 61.1 61.1 46.1 46.1 46.1 14.6

Table 2 p–values for the mean temperature time series (in percent)

k̃ 12 24 60 120 240 360

Uo 0.00 0.00 0.00 0.00 0.00 0.00
Lr 0.00 0.03 0.01 0.00 0.00 0.00
T1 0.00 0.00 0.00 0.00 0.00 0.00
T2 0.00 0.00 0.00 0.00 0.00 0.00
T3 0.00 0.00 0.00 0.00 0.00 0.00
T4 0.00 0.00 0.00 0.00 0.00 0.00
S 0.00 0.00 0.00 0.00 0.00 0.00
R1 0.00 0.00 0.00 0.00 0.00 0.00
R2 0.00 0.00 0.00 0.00 0.00 0.00
R3 0.00 0.00 0.00 0.00 0.00 0.00
R4 0.00 0.00 0.00 0.00 0.00 0.00
N1 97.42 13.40 5.04 21.07 0.05 0.06
N2 0.00 0.00 0.00 0.00 0.00 0.00
N3 0.00 0.00 0.00 0.00 0.00 0.00

For the total rainfall time series the record tests T1, T2, T3 and T4 with k̃ = 12
detect a monotone trend at a significance level of α = 0.05. From the rank tests
only N2 finds a monotone trend at this α . Using a larger splitting factor we only find
a monotone trend with T2 for k̃ = 60. Of course we need to keep in mind that we
perform multiple testing and thus expect about four significant test statistics among
the more than 80 tests performed here even if there is no trend at all.

All tests except N1 detect a monotone trend in the temperature time series for all
splittings k̃. The statistic N1 only detects a monotone trend, if k̃ is large. But as all
tests need the assumption of independence, the results of Table 2 can not be inter-
preted as p–values of unbiased tests. This is why we deseasonalize the temperature
time series and fit an AR(1)–Model to the deseasonalized series by maximum likeli-
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hood. If the data generating mechanism is an AR(1) process with uncorrelated inno-
vations, then the residuals of the fitted AR(1) model are asymptotically uncorrelated.
The residuals are even asymptotically independent, if the innovations are i.i.d. The
residuals are asymptotically normal, if the innovations are normally distributed (see
Section 5.3 of [2]). Looking at the plot of the scaled residual time series in Fig. 9 and
its ACF in Fig. 10, we do not find significant autocorrelations between the residuals.
However, the residuals do not seem to be identically normally distributed, as we can
find some outliers in the residual plot. Table 3 shows the p–values of the record and
rank tests for the residuals. We find mostly larger p–values than in Table 2, but again
all tests except N1 detect a positive monotone trend at α = 0.05, what confirms the
previous findings.

Fig. 9 Residuals of the temperature time series obtained from fitting an AR(1) model to the desea-
sonalized temperature time series

Fig. 10 ACF (left) and PACF (right) of the AR(1) residuals of the deseasonalized temperature
series
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Table 3 p–values for the residual temperature time series (in percent)

k̃ 12 24 60 120 240 360

Uo 0.30 0.19 0.07 0.07 0.00 0.15
Lr 2.77 0.41 0.13 0.93 0.24 0.09
T1 0.01 0.01 0.00 0.00 0.00 0.01
T2 0.44 0.07 0.05 0.08 0.00 0.12
T3 0.05 0.01 0.00 0.01 0.00 0.03
T4 0.02 0.00 0.00 0.01 0.00 0.01
S 0.00 0.00 0.00 0.00 0.00 0.01
R1 0.00 0.00 0.00 0.00 0.00 0.00
R2 0.00 0.00 0.00 0.00 0.00 0.02
R3 0.00 0.00 0.00 0.00 0.00 0.00
R4 0.00 0.00 0.00 0.00 0.00 0.01
N1 93.10 23.01 11.80 53.56 0.10 1.91
N2 0.00 0.00 0.00 0.00 0.01 0.01
N3 0.01 0.03 0.00 0.00 0.00 0.00

5 Conclusions

We have considered nonparametric tests for trend detection in time series. We have
not found large differences between the power of the different tests. All tests based
on records or ranks react sensitive to autocorrelations. Our results confirm findings
by Diersen and Trenkler that T3 can be recommended among the record tests because
of its good power and its simplicity. Robustness of T3 against autocorrelation can be
achieved for the price of a somewhat reduced power by choosing a large splitting
factor k̃. However, even higher power can be achieved by applying a nonparametric
rank test like the seasonal Kendall–Test S or the Spearman–Test R1 with a small k̃,
even though for the price of a higher sensitivity against positive autocorrelation. The
power of all rank tests except N1 gets smaller, if a larger splitting factor is used. For
N1 a larger splitting factor enlarges the power, but N1 is not recommended to use,
as even with a large splitting factor it is less powerful than the other tests. From the
rank tests the test N2 seems robust against autocorrelations below 0.6, if only a few
observations are taken in each block. Another possibility to reduce the sensitivity to
autocorrelation is to fit a low order AR model and consider the AR residuals. We
have found a significant trend in the time series of the monthly mean temperature
in Potsdam both when using the original data and the AR(1) residuals. Since in the
plot of the scaled residuals for this series we find some outliers, another interesting
question for further research is the robustness of the several tests against atypical
observations.
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