Chapter 2
Algorithms for Periodic Functions

In this chapter we show how to compute the Discrete Fourier Transform using a
Fast Fourier Transform (FFT) algorithm, including not-so special case situations
such as when the data to be transformed are real. In those situations, we speed up
the transforms by about a factor of two by exploiting symmetries in the data and the
coefficients. We end this chapter by showing how to approximate the derivatives of
periodic functions, which are the fundamental approximations that we need to solve
partial differential equations with periodic boundary conditions.

2.1 How to Compute the Discrete Fourier Transform

The sums in the Discrete Fourier Transform pair, (1.69), cost O (N 2) operations to
compute: N complex multiplications for each of the N values. For large N, they are
too expensive to compute by the direct sum. However, we can compute the sums in
a significantly more efficient O (N log,(N)) operations if we use the Fast Fourier
Transform. The complex FFT is the core algorithm for the efficient implementation
of Fourier spectral methods for large N.

It is beyond the scope of this book to give a thorough presentation of Fast Fourier
Transform algorithms. FFTs are ubiquitous and are discussed in detail in numerous
books (e.g. [5] and [6], among others), and the basic ideas are found in upper level
numerical analysis books. Implementations exist in numerous programming lan-
guages tuned for virtually any computer. Rather than use an FFT presented in any
book, we recommend libraries provided by one’s computer vendor, a well-developed
and tested FFT algorithm such as FFTW [12] (http://www.fftw.org/) or that can be
found, for example, at netlib (www.netlib.org), or routines sold as part of one of
the many commercial numerical libraries (e.g. NAG or IMSL). For completeness,
however, we include Temperton’s [23] self-sorting in-place complex FFT. Temper-
ton’s paper includes a mixed-radix FFT (N = 2"3495"), but for reasons of space and
simplicity, we present only the radix 2 (N = 2™) algorithm here.

In spectral method applications, the solutions of the differential equations are
typically real. When the sequences are real, we can exploit symmetries in the coeffi-
cients to save approximately a factor of two in the work to compute the transforms.
We present two algorithms that use these symmetries in this section. One simulta-
neously computes the coefficients of two real sequences with a single complex FFT.
The other splits a single real sequence into two sequences of half the original length
by putting the even indexed elements into the real part of a complex sequence and
the odd indexed elements into the imaginary part.
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2.1.1 Fourier Transforms of Complex Sequences

We can recast the Discrete Fourier Transform (DFT) pair (1.69) as

Ge=5 X0 gje kN k=0,1,....N -1,
DFT ' ) @.1)
8 =0y GemikIN, i=0,1,...,N—1.

The first sum, which represents the decomposition of the sequence of physical space
values into its Fourier components, is the forward transform. It takes an N-periodic
sequence {g; ?/:_01 and returns an N -periodic sequence {G ; }?:01 of Discrete Fourier

coefficients. (An N-periodic sequence is one for which g;+y = g;.) The constant
i = +/—1. The second sum, which represents the synthesis of the Fourier modes
back into the physical space, is the backward transform. Properties of the transforms
can be found in numerous books, including [6].

Except for the sign of the exponents, the forward and backward transforms com-
pute the same sum, namely

N—-1
DFTS: Fk=2f,-eﬂ”if"/N, k=0,1,...,N—1. (2.2)
j=0

We could compute the Discrete Fourier Transform Sum, DFTS of (2.2), directly by
Algorithm 6 (DFT). The sign of the input variable s determines whether the proce-
dure computes the forward or backward sum. To avoid having to remember which
sign corresponds to which transform, let’s define two constants FORWARD = 1 and
BACKWARD = —1 to use as input to the procedure.

The range of wavenumbers, k, used in (2.1) is not the range we need to com-
pute the Fourier interpolant (1.69). For that we need the coefficients in the order
Algorithm 6 (DFT), and (2.2) each return a sequence with elements ordered as
k=0,1,..., N — 1 instead.

Algorithm 6: DFT: Direct (and Slow) Evaluation of the Discrete Fourier Trans-
form
Procedure DFT
Input: {fj};.\:ol .8
for k=0to N — 1 do
Fi, <0
for j=0to N —1do
| Fi < Fr + fj *e—2snijk/N
end
end

return {Fj },1(\;_01
End Procedure DFT
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For the DFT to be useful in spectral approximations, we must reinterpret the order
of the sequences. Equation (1.63) shows that the discrete Fourier coefficient fk are
N-periodic, that is, fk fki ~- Thus, fN 2= f_ N2, and therefore the second half
of the sequence returned by the transform with s = —1 corresponds to the negative
values of the index. To use the results of the sum (2.2), i.e. of Algorithm 6 (DFT),
we make the following correspondence:

[ Fo ] | N]io
F N fi

Fny2-1 — N fnjo-1 2.3)
Fnpa Nf-np

Fnp N fonjot

L Py | Nfo

To reconstruct the set of values { f;} N l from the set of coefficients { fk}N/ 2 Nl /20

we simply order them using the correspondence (2.3) before calling the transform
with s = +1. We will show an example in Sect. 2.3 when we compute Fourier
interpolation derivatives by FFTs.

It is highly unlikely that one would want use Algorithm 6 for anything but the
simplest of exercises. That algorithm clearly requires O (N?) complex exponentia-
tions and multiplications. Indeed, the early success of spectral methods was due the
fact that one could use a Fast Fourier Transform (FFT) to compute these sums with
only O(N Log,(N)) operations.

To help understand how to use an FFT routine, we present Temperton’s self-
sorting, in-place complex FFT. Like many FFT algorithms, Temperton’s pre-
computes and stores the complex exponential factors, e ~2$74k/N smce those evalu-
ations are so expensive. To that end, we define the arrays {w } Whose elements
are e~ 257in/N for s — 41, Thus, we perform the forward transform when the w’s
are computed with s = 1, and the backward transform when they are computed with
s = —1. The pre-computation of the trigonometric factors is done by Algorithm 7
(InitializeFFT).

Algorithm 7: Initialize FFT: Initialization Routine for FFT

Procedure InitializeFFT
Input: N, s
w <« e—2srri/N
for j=0to N —1do

| wj < wl
end

N-1

return {w;};_,
End Procedure InitializeFFT




42

2 Algorithms for Periodic Functions

Algorithm 8: Radix2FFT: Temperton’s Radix 2 Self Sorting Complex FFT

Procedure Radix2FFT

I . N-1 N-1
nput: {fj}j:O J {wj}j=o

Integers: noPtsAtLevel, a, b, c,d, p, Ndiv2, m, [, k

Ndiv2 < N/2

m < Log,(N)

for [=1to (m+1)/2do
noPtsAtLevel < 2!=1

a<0
b < N div2/noPtsAtLevel
p<0
for k=0tob—1do
W < w,

for i =k to N — 1 step N /noPtsAtLevel do
2 < W (fati — fori)
Sati < fati + foti
Soti <2
end
p < p +noPtsAtLevel
end
end
for [ = (m +3)/2 to m do
noPtsAtLevel < 2!~
a<0
b < N div2/noPtsAtLevel
¢ < noPtsAtLevel
d < b + noPtsAtLevel
p<0
for k=0tob—1do
W <—w,

2 < Wk (fati — fo+i)
Ja+i < fati + foti
Jo+i < feti + fa+i
Ja+i < wx (feri — fa+i)
Jferi <z
end
end
p < p + noPtsAtLevel

end

end

return { fk}ygol

End Procedure Radix2FFT

for j =k to noPtsAtLevel — 1 step N /noPtsAtLevel do
for i = j to N — 1 step 2 x noPtsAtLevel do

We show the FFT algorithm itself in Algorithm 8 (Radix2FFT). The FFT takes a

sequence of complex numbers { f;} ?:01 and the pre-computed complex trigonomet-

ric factors {w j}j.vz_ol and returns the sum (2.2) by overwriting the original complex

sequence. Whether it computes the forward or backward transform depends on the



2 Algorithms for Periodic Functions 43

sequence of w’s that it is supplied. For details on the algorithm, see [23]. We show
examples that use the complex FFT in the sections that follow, where we study spe-
cial cases of the transforms.

2.1.2 Fourier Transforms of Real Sequences

The complex FFT is about twice as expensive as is necessary when the data to be
transformed are real. One of two methods is typically used to compute transforms of
real sequences efficiently from the complex transform. The first method solves for
the coefficients of two real sequences simultaneously. This is useful if two or more
real FFTs have to be computed at once, as happens in multidimensional problems.
The second is to use an even-odd decomposition where the transform is computed
on a complex sequence of half the length of the original. In that algorithm, half of
the values of the real sequence are placed in the real part of the complex sequence
and the other half in the imaginary part.

2.1.2.1 Simultaneous Fourier Transformation of Two Real Sequences
We can use the complex FFT to compute the DFT of two real sequences simul-

taneously. Suppo.se that {x j}é.vz_ol and {y j};\;_()l are real sequences whose discrete
transform coefficients we need. Then

| V-l
X = - Z xjefbn'jk/N’
j=0
k=0,1,...,N — 1. 2.4)

1 N—1
Ve = L o~2Tik/N
k N JZO Yj

If we combine these into a single complex vector, z = x + iy, the discrete Fourier
coefficients of z are

1Nfl lel l.Nfl
—2mijk/N —2mijk/N —2mijk/N
zk:ﬁz(:)zje nijk/ zﬁ;xje mijk/ +N2(:)yje TKIN (2.5
]= = =

or
Ziy =X +1iYg. (2.6)
Since x; and y; are real,
7* — iNi:lx,e—znijk/N _ ’_Ni:] o 2mijk/N 2.7)
“«T N ~ J N ~ Yj .
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)
ZikZXk — i Y. (2.8)
When we solve for Xy and Y} from (2.6) and (2.8)

1
Xk:E(Zk'i‘Zik)’
k=0,1,...,N - 1. (2.9

—i
Yk=7(zk— )

The discrete coefficients are N-periodic, so Z_; = Zy_k and Zg = Zy . Therefore,

Xe=3 (Ze+ 23 0),
) k=0,1,...,N—1. (2.10)
V=5 (2= Zis)

We show how to compute the forward DFT of two real sequences in Algorithm 9
(FFFTOfTwoReal Vectors). It takes as input the trigonometric factors pre-computed
with s = FORWARD, the two real sequences, and the length of the sequences. It
returns the scaled discrete Fourier coefficients of the two sequences. Since the com-
plex FFT does not scale the forward transform by the 1/N factor, the procedure does
the scaling when it extracts the coefficients. It is possible to modify the weights w™
computed by Algorithm 7 (InitializeFFT) to include the factor of 1/N to save the
cost of the divisions if multiple transforms are needed. We have added the scaling

Algorithm 9: FFFTOfTwoRealVectors: Simultaneous Computation of the DFT
of Two Real Sequences. The Forward Transform

Procedure FFFTOfTwoReal Vectors
. N-1 N-1 +N-1
Input: {xj}j=0 s {yj}].=0 , {wj }j=0
Uses Algorithms:
Algorithm 8 (Radix2FFT)
for j=0to N —1do
| Zj<xj+iyj
end
_ . N—1 N-1
(205} < Radi2FFT (1, ()
Xo < Re(zp)/N
Yo < Im(z9)/N
for k=1to N —1do

1
Xy < E(Z" +Z%_,)/N
—i
Yk &= T(Zk = Z;],k)/N
end
return (X} ' (Ve)h !
End Procedure FFFTOfTwoReal Vectors
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Algorithm 10: BFFTForTwoRealVectors: Simultaneous Computation of the
DFT of Two Real Sequences. The Backward Transform

Procedure BFFTForTwoRealVectors
N-1 N-1
Input: {Xj}j=o AY; } =0 ’{wk bimo
Uses Algorithms:
Algorithm 8 (Radix2FFT)
for j=0to N —1do
| Z b <~ X Jj aF in
end
{Zi=) < Radix2FFT({Z. } ' {wp } )
for k=0to N —1do
Xk < Re(Zk)
Yk < Im(Zy)
end
return {xi}; ' (velp,
End Procedure BFFTForTwoReal Vectors

here, since a modification of the trigonometric factors routine might not be possible
if a library FFT is used.

To reverse the operation, we use (2.6) and the inverse FFT. The desired solutions
are simply the real and imaginary parts of the complex sequence returned by the
FFT. We present the procedure to compute the inverse transform in Algorithm 10
(BFFTForTwoReal Vectors).

2.1.2.2 Fourier Transformation of a Real Sequence by Even-Odd
Decomposition

We can also evaluate the DFT of a single sequence of real values efficiently with a
complex FFT. The FFT will operate on a new sequence of half the original length
that we create by putting half the original data into the real part and the other half

into the complex part. Let the even and odd elements of a sequence { f ]} 1 be
ej = faj, )
]ZO»lvan_l» (211)
0j = f2j+1,

where M = N /2. The forward Fourier transforms of these two sequences are

M—1
e/e—ijk/M7

<[ -

j=01....M—1. (2.12)

1 —2mijk/M
Ok:MZ()/’e mwijk/ ,
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But

1 N-1
—2mijk/N
Fk:ﬁX(:)fje mwijk/
]_

2M—1
= i Z fje—2m'jk/2M

N =

| M-l ' s
=5 Z fzje_2”’/k/M + ¥ Z f2j+le—2m(21+1)k/2M

j:0 j=0

1 & iy e 2N N N

R 2 fye oM > fjpre Pk
j=0 =

1 )

:Eah+64mwwog, k=0,1,...,N/2—1. (2.13)

Thus, the complex DFT of the even-odd decomposition of the real sequence pro-
duces the first half of the discrete coefficients of the original sequence. We find
the second half of the sequence of coefficients by recalling that if fj is real and
N-periodic, Fy_ = F}.

We could compute coefficients E; and Oy simultaneously using Algorithm 9
(FFFTOfTwoReal Vectors), but it is probably best to combine the two algorithms.
To combine them, we let z; = e; +io; and use (2.9) to define

1 .
Fi = ﬁ{(zk +Zy o) —ie TN (Z = 23 5 ) )
k=0,1,...,N/2—1. 2.14)

We find the second half of the Fy array from the symmetry relation, the first value
from

Fo= (Re(Zp) +1Im(Zp)) /N (2.15)
and the center from
Fn2 = (Re(Zp) —Im(Zp)) /N. (2.16)

Algorithm 11 (FFFTEO) shows one way to implement the Even-Odd decompo-
sition. It uses the fact that

oE2mij/M _ E2mi(2))/N (2.17)

so that the factors w™ required by the complex FFT of length M are simply the
even indexed components of the factors computed for the full length transform,
factors that are also required by (2.13). This saves us the re-computation of the
trigonometric factors.
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Algorithm 11: FFFTEO: The Forward DFT by Even-Odd Decomposition

Procedure leFFlTEO Nel

. - + »
Input: {fj }j=0 0 {wj }./=0
Uses Algorithms:

Algorithm 8 (Radix2FFT)

for j=0to N/2—1do
Zj < faj+ifaj+1

w]' < w;j
end
(Z 2" < RadiarFT ({227 {2

Fy < (Re(Zp) +1Im(Zp)) /N
Fyy < Re(Zp) — Im(Zop)) /N
fork=1to N/2—1do

1 .
Fe < > A(Zk+Zx py) — iwd (Zi - Zyn))

2N
end
for k=1to N/2—1do
| Fy_i < F
end

return { Fy} ,1:’:701
End Procedure FFFTEO

We can also evaluate the backward transform using the even-odd decomposition.

Since Fyyn/ = F;\ﬁ//z—kv (2.13) implies that

1 .
Fijp = 3y |2+ Zig_) +ie7 N (2= Z554) |
If we add and subtract this and (2.13) we get

Ex=(Fx+Fypy), k=0,1,...,N/2—1

and

O =" N(Fe— F i), k=0.1,...,N/2—1.

When we combine these into a single complex sequence
Zy=Ex+iOy, k=0,1,...,N/2—-1,
the backward FFT produces
zj=ej+ioj, k=0,1,...,N/2—1.

We extract the full sequence from the real and the imaginary parts,

f2j=Re(Zj)} .
. j=0.1,....N/2—1.
fipi=Imzp [ 7 /

(2.18)

(2.19)

(2.20)

2.21)

(2.22)

(2.23)
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Algorithm 12: BFFTEO: The Backward DFT by Even-Odd Decomposition

Procedure BFFTEO
Input: {Fk}k 0 > {wk
Uses Algorithms:
Algorithm 8 (Radix2FFT)
M < N/2
for k=0to M — 1 do
E <« (Fc+Fjy_,)
0 <—w; (Fe—Fj_t)
Zi < Er +iOg
Wi < wz_k
end
{z_i}y:‘ol < Radix2FFT({Z M5! {wi)¥h
for j < 0toM —1do
f2j+1 < Im(Z;)
end
return {f]}iv 01
End Procedure BFFTEO

}Nl

We present the procedure for using the even-odd decomposition to compute the
backward transform in Algorithm 12 (BFFTEO). As before, we use the periodicity
of the trigonometric factors to avoid their re-computation.

2.1.3 The Fourier Transform in Two Space Variables

Multidimensional transforms take advantage of the tensor product basis,

Gum (X, Y) = (X)) (v) = e?7"*e2TiMY In two space variables, the DFT of a

two dimensional sequence { f, k}?’k IOM lis

1 M—-1N-1
-2 N 72 ik M
Fam = NM Z Zf k€ mijn/ wikm/
k=0 j=0
M—-1N-1
fj,k — Z Z ane27tljn/N€2ﬂlkm/M. (224)
m=0 n=0

In this section, since it is apropos to most spectral approximations of PDEs, we
assume that f is real. Furthermore, we assume that N and M are even.
‘We can factor the forward transform into

M—-1 | N-1

1 iy .
= 7 Z Z fj,ke_ZnUn/N e—2mkm/M- (2.25)
k=0 | j=0
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So let us define an intermediate array

N—1
Pl _ _2mijn/N P ’ 2.26
nk NZéﬂxe Cok=0,1,...,M—1, (2:20

so that

M—1 .

e . j=0,1,...,N—1
F' I F —2mikm/M s 1y s , 227
" Mg%m” C om=0,1,...,M—1. @27

Thus, the tensor product basis reduces the two dimensional transform to a sequence
of one dimensional transforms.

As before, direct application of a complex FFT to compute the two dimensional
transform of the real sequence would amount to doing twice as much work and use
twice as much storage as is necessary. Fortunately, we can combine the ideas of the
previous two sections to develop a more efficient algorithm than that.

Since we assume the initial sequence is real, only half the number of FFTs is
required in the first coordinate direction. To that end, let us define the complex
sequence

j=0,1,...,N—1,

Zj1 = fjo +ifjau+1, 1—0.1 Mj2—1 (2.28)

whose Fourier transform in the first index is

N—-1

: 1 _ o
Il =y Y (fia+ifjonr)e 2 N,
j=0

n=01...,N—1, (2.29)
[=0,1,...,M/2—1. ’

Note that the intermediate array Z,; is half the size of the F array. Now, we know
the intermediate transform of the original data, namely,

1 - 7 %
ﬂﬂ:§@”+%ﬂ4% n=0,1,....,N—1,

_ —i - — [=0,1,...,.M/2—1,
Fuoi1 = 7(2;1,1 - Z,,VM_I),

(2.30)

but there is no need to compute it at this stage. Instead, we go back to (2.27) and
split it into even and odd components as in the previous subsection

| M/2—-1

F"'":M ; {Fn’21e72m’(21)m/M+672m'm/MFn’2l+1672ni(21)m/M}' 2.31)

Then the transforms to be computed on the second index are the half-length trans-
forms

M/2—1
1 ; n=0,1,....,N—1
F.=_— X —2milm/(M/2) s Ly , , ’ 3
nm M IZ(‘: n,l€ s m:O,l,...,M/Z—], ( )



50 2 Algorithms for Periodic Functions

Algorithm 13: Forward2DFFT: A Two-Dimensional Forward FFT of a Real
Array with an Even Number of Points in Each Direction

Procedure Forward2DFFT

) N—1,M—1 +.1\N=1 +2\M—1
Input: {fj'k}j,k=0 ) {wj }j=0 ) {wj }j=0
Uses Algorithms:

Algorithm 9 (FFFTOfTwoReal Vectors)
Algorithm 8 (Radix2FFT)

for k=0to M — 2 step 2 do
(G N LA i B

FFFTO_/‘TwoRealVectors({fj,k}_1;:01 , {fj,k+1}y=_01 , {w?‘l}{v_l)

end
for n=0to N —1do
| Fan )20y < Radi2FFT({Fifiy (w220
end
for m=0to M — 1 do

for n=0to N — 1 do
| Fom < Fam/M
end
end
N—1,M—1

return { F;, }n,m=0
End Procedure Forward2DFFT

where the values to be transformed are
i 672711' m/M

1, - _
X"vl =5 (Z"»l + Z:;,Nfl) - 2

3 (Zna—ZFn_y)- (2.33)

We compute the second half of the array from the symmetry Fy—np—m = F -
Overall we see that approximately one half the work of the direct use of the com-
plex FFT is done. Under the assumption that the initial data are real and that N and
M are even, we use Algorithms 9 (FFFTOfTwoReal Vectors) and 10 (BFFTForTwo-
RealVectors) to compute the two dimensional transforms efficiently. We show the
procedures in Algorithm 13 (Forward2DFFT) for the forward transform and Algo-
rithm 14 (Backward2DFFT) for the backward transform.

2.2 The Real Fourier Transform

Though we do not directly need it in typical Fourier spectral computations, we de-
rive the real transform for the purposes of the next chapter where we study Cheby-
shev transforms. We can compute the real transform from the complex transform,
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Algorithm 14: Backward2DFFT: Two-Dimensional Backward FFT of a Real
Array with an Even Number of Points in Each Direction

Procedure Backward2DFFT

N—1M—1 | — 1 N—1 [ —2 M1
Input: {Fn’m}n,m=0 ,{wj 1}j=0 { j 2},‘:0

Uses Algorithms:
Algorithm 8 (Radix2FFT)
Algorithm 10 (BFFTForTwoReal Vectors)

for n=0to N — 1 do

‘ {Fur )iy < Radin2FFT({Fum ), w15
end

for k=0to M — 2 step 2 do
{{hahis A fan )5} <
N—1 N-1 — 1 N-1
BFFTForTwoRealVectors({F,Lk}n=0 s {Fn,k+1}n=0 s {wj }j=0)
end

return { £, "

End Procedure Backward2DFFT

too. If N is even, the real transform takes the form

N/2—1 . . ;
2njk 2njk —1)/
xj:%o—i- ]; {akcos(ﬂTj>+bksin( 7;\; )}—i—( )zaN/z. (2.34)

In terms of the complex transform,

N-1 N/2-1 N/2
xj= Z X2 kN — Z X2 UkIN ZXN_kezmj(ka)/N_ (2.35)
k=0 k=0 k=1

3 — k
Since X = Xy_;»

N/2—1
xj=Xo+2 Y. Re{xke2”"f"/N} + (=1 Xy . (2.36)
k=0
Using the fact that
) 27k 2 jk
Re [xkezﬂlfk/N} — Re(X}) cos <”—J> — Im(X,) sin (”—J> , (2.37)
N N
N/2—1 } .
2k 2k
xj = Xo+2 % {Re(Xk)cos (%) — Im(X}) sin (%)}

+(=1)! Xn 2. (2.38)
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Algorithm 15: ForwardReal FFT: The Forward Real Transform

Procedure ForwardRealFFT
N—1 +N-1
j=0 { j }j:O
Uses Algorithms:
Algorithm 11 (FFFTEO)

_ N-1 N-1
Xy eFFFTEO({W}j:o J {w;—}j=0)
for k=0to N/2 do
ay < 2Re(Xy)
by < —2Im(Xy)

Input: {x 7 }

end

by <0

by <0

return {ak},ivz/é,{bk}iv:/(z)

End Procedure ForwardRealFFT

Algorithm 16: BackwardReal FFT: The Backward Real Transform

Procedure BackwardRealFFT

Input: {ak},ivz/(z) ] {bk},ivz/é

Uses Algorithms:
Algorithm 12 (BFFTEO)
Algorithm 7 (InitializeFFT)

{w}) jv 3! < InitializeFFT(N /2, FORWARD)
Xo < ap/2
XNy <anj2/2
for k=1to N/2—1do
| X < (ax +iby) /2

end
for k=1to N/2—1do
| XN_k < X]’:
end
{xj}jvzo1 < BFFTEO(X )Y ! (w1 2h
N—1
return {x_,'}j:O

End Procedure BackwardReal FFT

When we match terms with (2.34) we get the relation between the coefficients of
the real and complex transforms

ar = 2Re(Xy),
k=0,1,...,N/2—1. (2.39)
b = —=2Im(Xy),

Thus, we can compute the forward and backward real transforms from the complex
transform, and we show the procedures in Algorithms 15 (ForwardRealFFT) and 16
(BackwardRealFFT). Note that half of the Xj’s returned by the forward FFT are
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not used in Algorithm 15. We can get additional savings if we explicitly incorporate
Algorithm 11 (FFFTEO) minus the final loop that produces that second half of the
coefficients (Problem 2.2).

2.3 How to Evaluate the Fourier Interpolation Derivative
by FFT

For large N, it is efficient to use the FFT to compute the derivative of Fourier inter-
polants written in the form (1.73). Exactly what is that value of N is very imple-
mentation dependent. It depends on the FFT code, the architecture of the machine
and the matrix multiplication code. Crossover points, where the FFT becomes more
efficient than the matrix multiplication method that we discuss in the next section,
have been reported to vary from eight to 128. Before deciding on which method to
incorporate into production codes, it is probably best to program both and test for
the particular computer architecture to be used.

To use the FFT to compute the derivative of the interpolant at the nodes, we
must put the derivative in the form of the DFT. Let’s rewrite the derivative of the
interpolant by separating the N /2 mode

N2 s N2—1 . N E
k . k . i(5 .
Un ) ()= K Je iy — ) i it CDINE ks (5 49
k=—nsp2 K k=—nyp2 K €N/2

Since fN 2= f, ~/2 and et WN/Dxj = o—iN/D)X} e can rewrite the derivative as

N/2—-1 ., = . N\ F
Unf) ()= Y Blkgivy LN iy

c c_
k=—nj2 K N72

N/2—1

= 3 ikfie, (2.41)

k=—N/2+1

Therefore, we can use the DFT to evaluate the derivative of the Fourier interpolant
at the nodes by setting f_y 2=0.

We show how to compute the interpolation derivative using the FFT in Al-
gorithm 17 (FourierDerivativeByFFT). The procedure first computes the discrete
Fourier coefficients by Algorithm 11 (FFFTEO), with the assumption that the expo-
nential factors have been pre-computed and stored. It then uses the correspondence
we made in (2.3) to compute the discrete Fourier coefficients of the derivative. Fi-
nally, it computes the derivative values at the nodes by the backward FFT, Algo-
rithm 12 (BFFTEO). Note that the procedure sets the —N /2 coefficient to zero to
represent (2.41).

Algorithm 17 easily generalizes to higher order derivatives. To modify Algo-
rithm 17 to compute the approximation of the mth derivative, we merely need to
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Algorithm 17: FourierDerivativeByFFT: Fast Evaluation of the Fourier Poly-
nomial Derivative

Procedure FourierDerivativeByFFT
. N-1 +N-1 _\N-1
Input: {fj}jzo ’ {wj }j=0 W }j=0
Uses Algorithms:
Algorithm 11 (FFFTEO)
Algorithm 12 (BFFTEO)

N-1 N-1 +N-1
{Fj}j:O ‘_FFFTEO({FJ}]':O ) {wj }j:O)
for k=0to N/2 —1do

| Fy < ik * Fy
end
F_np <0
for k=N/2+1to N —1do
| Fr<i(k—N)=*Fy
end
N-1 N-1 _\N-1
{ij}j=0 ‘_BFFTEO({FJ'}/:O ) {wj }j:O)
N-1
return {(Df)j}j:0

End Procedure FourierDerivativeByFFT

add m to the input list and replace ik by (ik)™ in the first loop and i(k — N) by
(i(k — N))™ in the second. However, we do not set f_ ~ny2 = 0 for even deriva-
tives. We leave the difference between even and odd derivatives to Problem 2.4. The
difference also implies that computing the first derivative twice is not the same as
computing the second derivative (Problem 2.5).

2.4 How to Compute Derivatives by Matrix Multiplication

For small enough N, we can compute the derivative of the Fourier interpolant at
the interpolation points efficiently by matrix vector multiplication. Differentiation
of the interpolant at the nodes is

N—-1
(UNf)w=D_ Dujfj- (2.42)
j=0

The matrix D, whose elements are D,;, is called the Fourier derivative matrix.
Formally, the elements are the values of h’j (x,) presented in (1.75). In practice, we
pre-compute and store this matrix.

The first issue in the use of matrix multiplication to compute the Fourier deriva-
tive approximation is how to construct the derivative matrix itself. The construction
of spectral derivative matrices has been the subject of much discussion since it was
noticed that derivatives computed with the Chebyshev differentiation matrix (which
we discuss in Sect. 3.5) were very sensitive to rounding errors. To reduce the ef-
fects of rounding errors, several modifications to the matrices have been proposed,
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Algorithm 18: FourierDerivativeMatrix: Computation of the Fourier Deriva-
tive Matrix Using the Negative Sum Trick

Procedure FourierDerivativeMatrix
Input: N
for i=0to N —1do
Di,i ~0
for j=0to N —1do

if j # i then

1 A

D;j < a (=1)*7 cot[
Dii < Dii — D;,;

(i—j)n]
N

end
end

end

return {Di, j }fj._:lo

End Procedure FourierDerivativeMatrix

including preconditioning, use of the symmetry properties, and the use of what has
come to be called the “Negative Sum Trick” to compute the diagonal entries. Com-
parisons of the numerous approaches have favored the use of the Negative Sum
Trick to evaluate the derivative matrix.

The Negative Sum Trick comes from the observation that the derivative of a
constant must be zero. This means that Z;vz_ol D,j=0forn=0,1,...,N—1.To
enforce that condition we compute the diagonal elements to satisfy it explicitly, i.e.
we evaluate the diagonal entries of the matrix to satisfy

N-1
Dpp = — Z Dyj. (2.43)
j=0
Jj#n
The diagonal elements computed with (2.43) will not be exactly equal to zero, but
overall the effects of rounding errors are minimized.

Algorithm 18 (FourierDerivativeMatrix) shows how to pre-compute the Fourier
derivative matrix using the Negative Sum Trick. For the best roundoff error proper-
ties, however, the diagonal entries should be computed separately, after the rest of
the matrix has been computed, since the order in which the sum (2.43) is computed
is important. The off-diagonal terms should be sorted and summed from smallest in
magnitude to largest. For the sake of simplicity, we present Algorithm 18 without
the ordered sum.

The next issue is to decide how to implement the matrix multiplication. Since
this is also an issue for the polynomial approximations discussed in the next chap-
ter, and is not specifically related to spectral methods per se, we leave the detailed
discussion of matrix multiplication for later. If efficiency is not of the utmost impor-
tance, of course, we would use the standard implementation shown in Algorithm 19
(MxVDerivative), with s =0 and e = N — 1. That algorithm takes the derivative
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Algorithm 19: MxVDerivative: A Matrix-Vector Multiplication Procedure

Procedure MxVDerivative
Input: {Di,j }f,j:s’ {fl }j’:s
for i =s toedo
t=0
for j =5 toedo
| t<t+ D,’q j* fj
end
(Un )} <1
end
e
return {(Iy f);};_,
End Procedure MxVDerivative

matrix, pre-computed by Algorithm 18 (FourierDerivativeMatrix) and the sequence
of values at the nodes, and returns derivative of the interpolant, evaluated at the
nodes.

Exercises

2.1 Compare the speed of the simple, direct DFT, Algorithm 6 to the FFT, Algo-
rithm 8 for various values of N. Above what value of N is the FFT faster? Are there
any advantages that the direct DFT has over the FFT? Make the same comparisons
to a library FFT.

2.2 Half of the X}’s returned by the forward FFT are not used in Algorithm 15
(ForwardRealFFT). Modify the procedure to get additional savings by explicitly in-
corporating Algorithm 11 (FFFTEQ ) minus the final loop that produces that second
half of the coefficients.

2.3 Compute and plot as a function of x the Fourier interpolation derivative of the
functions

f(x) =sin(x/2),
f@) =it

on the interval [0, 277 ] for several values of N. Observe the behavior or the derivative
approximations and explain their differences. Also, plot the maximum error at the
nodes as a function of N and compare.

2.4 Show that

L2 o™ e m odd,
UnNH™ (x)) = N/2-1 ;i
k=—N /2 (ik)™ freti, m even.
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Use the result to modify Algorithm 17 (FourierDerivativeByFFT) to compute mth
order derivatives.

2.5 Use the result of Problem 2.4 to show that taking the first derivative twice is
not the same as taking the second derivative. By how much do they differ? How
significant is that difference for smooth functions?

2.6 For what values of N is it faster to compute the Fourier interpolation derivative
of a function by FFT than by matrix multiplication?
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