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LES Governing Equations

This chapter is divided in five main parts. The first one is devoted to the
presentation of the chosen set of equations. The second part deals with the
filtering paradigm and its peculiarities in the framework of compressible flows.
In particular the question of discontinuities is addressed and the Favre filtering
is introduced. Since the formulation of the energy equation is not unique, the
third part first presents different popular formulations. Physical assumptions
which permit a simplification of the system of equations are discussed. Fur-
thermore, additional relationships relevant to LES modeling are introduced.
Finally, in the last part, fundamentals of LES modeling are established and the
distinction of the models according to functional and structural approaches is
introduced.

2.1 Preliminary Discussion

Large-eddy simulation relies on the idea that some scales of the full turbulent
solutions are discarded to obtain a desired reduction in the range of scales
required for numerical simulation. More precisely, small scales of the flow are
supposed to be more universal (according to the celebrated local isotropy hy-
pothesis by Kolmogorov) and less determined by boundary conditions than
the large ones in most engineering applications. Very large scales are some-
times also not directly represented during the computation, their effect must
also be modeled. This mesoscale modeling is popular in the field of meteo-
rology and oceanography. Let us first note here that small and large scales
are not well defined concepts, which are flow dependent and not accurately
determined by the actual theory of LES.

In practice, as all simulation techniques, LES consists of solving the set of
governing equations for fluid mechanics (usually the Navier—Stokes equations,
possibly supplemented by additional equations) on a discrete grid, i.e. using
a finite number of degrees of freedom. The essential idea is that the spatial
distribution of the grid nodes implicitly generates a scale separation, since
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6 2 LES Governing Equations

scales smaller than a typical scale associated to the grid spacing cannot be
captured. It is also worthy noting that numerical schemes used to discretize
continuous operators, because they induce a scale-dependent error, introduce
an additional scale separation between well resolved scales and poorly resolved
ones.

As a consequence, the LES problem make several subranges of scales ap-
pearing:

o represented resolved scales, which are scales large enough to be accurately
captured on the grid with a given numerical method.

e represented non-resolved scales, which are scales larger than the mesh size,
but which are corrupted by numerical errors. These scales are the smallest
represented scales.

e non-represented scales, i.e. scales which are too small to be represented on
the computational grid.

One of the open problem in the field of LES is to understand and model
the existence of these three scale subranges and to write governing equations
for them. To address the modeling problem, several mathematical models for
the derivation of LES governing equations have been proposed since Leonard
in 1973, who introduced the filtering concept for removing small scales to LES.

The filtering concept makes it possible to address some problems analyti-
cally, including the closure problem and the definition of boundary conditions.
One the other hand the filtering concept introduces some artefacts, i.e. concep-
tual problems which are not present in the original formulation. An example
is the commutation error between the convolution filter and a discretization
scheme.

The most popular filter concept found in the literature for LES of com-
pressible flows is the convolution filter approach, which will be extensively
used hereafter. Several other concepts have been proposed for incompress-
ible flow simulation, the vast majority of which having not been extended to
compressible LES.

2.2 Governing Equations

2.2.1 Fundamental Assumptions

The framework is restricted to compressible gas flows where the continuum
hypothesis is valid. This implies that the chosen set of equations will be derived
in control volumes that will be large enough to encompass a sufficient number
of molecules so that the concept of statistical average hold. The behavior of the
fluid can then be described by its macroscopic properties such as its pressure,
its density and its velocity. Even if one can expect that the Knudsen number
(ratio of the mean free path of the molecules over a characteristic dimension
of the flow) be of the order of 1 in shocks, Smits and Dussauge [266] notice
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that for shocks of reasonable intensity (where the shock thickness is of the
order of few mean free paths) the continuum equations for the gas give shock
structure in agreement with experiments.

For sake of simplicity, we consider only gaseous fluid: multi-phase flows
are not considered. Furthermore, we restrict our discussion to non-reactive
mono-species gases. With respect to issues related to combustion the reader
may consult Ref. [220]. Moreover, the scope of this monograph is restricted to
non-hypersonic flows (Mach < 6 in air) for which dissociation and ionization
effects occurring at the molecular level can be neglected. Temperature differ-
ences are supposed to be sufficiently weak so that radiative heat transfer can
be neglected. Furthermore, a local thermodynamic equilibrium is assumed to
hold everywhere in the flow. With the aforementioned assumptions a perfect
gas equation of state can be employed. We restrict ourselves to Newtonian
fluids for which the dynamic viscosity varies only with temperature. Since we
consider non-uniform density fields, gravity effects could appear. Neverthe-
less, the Froude number which describes the significance of gravity effects as
computed to inertial effects is assumed to be negligible regarding the high
velocity of the considered flows (Mach > 0.2).

Finally, the compressible Navier-Stokes equations which express the con-
servation of mass, momentum, and energy are selected as a mathematical
model for the fluids considered in this textbook. These differential equations
are supplemented by an algebraic equation, the perfect gas equation of state.

2.2.2 Conservative Formulation

The way the energy conservation is expressed in the Navier-Stokes equations is
not unique. Formulations exist for the temperature, pressure, enthalpy, inter-
nal energy, total energy, and entropy. Nevertheless, the only way to formulate
this equation in conservative form is to chose the total energy. The conserva-
tive formulation is necessary for capturing possible discontinuities of the flow
at the correct velocity in numerical simulations [155].

Using this form, the Navier-Stokes equations can be written as:

Op  Opu;
- = 2.1
ot " or, 1)
Opu; ~ Opuiu; Op 00
= 2.2
ot al‘j 81’1 8wj ’ ( )
OpE I(pE + p)u,; dojiu; 1o}
pE [ OE +plyy _ dowgus O (2.3)

ot Ba:]- (%cj (%cj

where t and z; are independent variables representing time and spatial coordi-
nates of a Cartesian coordinate system x, respectively. The three components
of the velocity vector u are denoted w; (¢ = 1,2,3). The summation conven-
tion over repeated indices applies. The total energy per mass unit F is given
by:
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p 1

pE = o + P (2.4)
and the density p, the pressure p and the static temperature 71" are linked by
the equation of state:

p = pRT. (2.5)

The gas constant is R = C, — C, where C}, and C, are the specific heats
at constant pressure and constant volume, respectively. The variation of these
specific heats with respect to temperature is very weak and should not be
taken into account according to the framework defined in the previous section.
For air, R is equal to 287.03 m?s? K.

According to the Stokes’s hypothesis which assumes that the bulk viscosity
can be neglected, the shear-stress tensor for a Newtonian fluid is given by:

2
—u(T)&jSkk, (2.6)

0ij = 2u(T)Si; — 3

where 5;;, the components of rate-of-strain tensor S(u) are written as:
1/ 0u; Ouy
Sii= = v J . 2.7
> (axj * aa:i) 27)

The variation of the dynamic viscosity p with temperature can be accounted
for by the Sutherland’s law

3
wT) _ (T> Tot+ 5 Litn S; =1104 K (2.8)

w(To) To) T+8S’

which is valid from 100 K to 1900 K [266]. It is often approximated by the

power law
0.76
wmT) _ (2) 2.9)
w(To)  \To ’
which is valid between 150 K and 500 K. The use of these laws introduces an
additional non-linearity in the momentum and energy equations.
The heat flux ¢; is given by

oT
J

where « is the thermal conductivity which can be expressed as k = uC,/Pr.
The Prandtl number is the ratio of the kinematic viscosity v = p/p and
thermal diffusivity x/(pC)) and, is assumed to be constant equal to 0.72 for
air.
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2.2.3 Alternative Formulations

Four alternative formulations have been employed in the literature for LES of
compressible flows.
The enthalpy form has been used by Erlebacher et al. [75]

Oph  Ophu;  Op dp 0 0
Oph S TR A PP L 2.11
ot ow; ot 0w, oa (“aj >+ 21

where the enthalpy h = C,,T, and the viscous dissipation @ is defined as:

8’ui

It can be noted that this form includes the temporal derivative of the pressure
on the right hand side.

The temperature form has been used by Moin et al. [201]. As the following
pressure form, it corresponds to an equation for the internal energy ¢ = C, T

0 0 Ou, 0 or
a(pCvT) + a—xj(puijT) —p8 I 4+ 6% <l~@a—x]> . (2.13)

The pressure form can be found in the work by Zang et al. [323]

op Ip du o ( oT
—-1)® -1 — 2.14
g gt = =0+ (-5 (kgs ). ()
where v = C,/C,. Its value is fixed to 1.4 for air according to the aforemen-
tioned framework.
The entropy form has been employed by Mathew et al. [194].

Ops  Opsuj 1 0 oT
WJF or; ¢+8xj H(“)xj ’ (2.15)

with s = C, In(pp~7).

2.3 Filtering Operator

Large-eddy simulation is based on the idea of scale separation or filtering
with a mathematically well-established formalism. We restrict our presenta-
tion here to the fundamental definitions. The entire formalism can be found in
Ref. [244]. The specifics for compressible flows such as the notion of filtering
of discontinuous flows and the Favre variables are detailed.
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2.3.1 Definition

The framework of this section is restricted to the ideal case of homogeneous
turbulence. This implies that the filter should respect the physical properties
of isotropy and homogeneity. Subsequently, the filter properties are indepen-
dent of the position and of the orientation of the frame of reference in space.
As a result, its cut-off scale is constant and identical in all spatial directions.
To address the issue of discontinuous flows, non-centered filters which are not
isotropic may be defined. We put the emphasis on isotropic filters on which
LES is grounded. Reference [244] provides an extension to inhomogeneous
filters.

Scales are separated using a scale high-pass filter which is also a low-pass
filter in frequency. Filtering is represented mathematically in physical space
as a convolution product. The resolved part ¢(x,t) of a space-time variable
@(x,t) is defined formally by the relation

s =5 [ [T e(XFEe-r)eeraree )

where the convolution kernel G is characteristic of the filter used, and is
associated with the cut-off scale in space and time, A and 7., respectively.
This relation is denoted symbolically by

=G x*o. (2.17)

The dual definition in Fourier space is obtained by multiplying the spectrum
o(k,w) of ¢(x,t) by the transfer function G(k,w) of the kernel G(x,t):

o(k,w) = G(k,w)o(k, w), (2.18)

or in symbolic form -
¢ =Go, (2.19)

where k and w are wave number and frequency, respectively. The spatial cutoff
length A is associated to the cutoff wave number k. and time 7. with the cutoff
frequency we.

The non-resolved part of ¢(x,t), denoted ¢’'(x,t) is defined as:

' (x,t) = p(x,t) — p(x,1), (2.20)
or
¢ =(1-G)x*o. (2.21)
Fundamental Properties

For further manipulating of the Navier-Stokes equations after filter applica-
tion, we require the following three properties:
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e Consistency

aa«,ﬁ/%x/+wag¢3faw1. (2.22)

e Linearity
b+ =0+ (2.23)
which is satisfied by the convolution form of filtering.
e Commutation with differentiation'

¢ _ d¢

27 _ 7 =x.t 2.24

ds  9s ° (2:24)

Introducing the commutator [f,g] of two operators f and g applied to a
dummy variable ¢

[f:91(¢) = fog(d) —ge f(¢) = f(9(¢) — g (f(¢)) (2.25)

the relation (2.24) can be rewritten as

0
— | =0. 2.2
{G*, 83] 0 (2.26)
This commutator satisfies the Leibniz identity
[fog,hl =[f,hlog+ folg,hl] (2.27)

The filter G is not a priori a Reynolds operator, since the following prop-
erty of this kind of operator is not satisfied in general

o0 = 0. (2.28)

The filter (.) is not necessarily idempotent (i.e. G is not a projector), and the
large scale component of a fluctuating quantity does not vanish

d=GCG*xGxp=G%p# ¢, (2.29)
¢ =Gx(1-G)x¢#0. (2.30)

Let us note that some filter can be inverted, leading to the preservation of
the information present in the full exact solution. Conversely, if the filter
is a Reynolds operator, the inversion is no longer possible since its kernel
ker(G) = ¢’ is no longer reduced to the zero element. In this case, the filtering
induces an irremediable loss of information.

! The space commutation property is satisfied only if the domain is unbounded and
if the convolution kernel is homogeneous (A constant and independent of space). It
is however necessary to vary the cut-off length in order to adapt it to the structure
of the solution. For example, this adaptation is mandatory for wall-bounded flows
for which the filter length scale must diminish close to the wall in order to capture
the smallest dynamically active scales. Ghosal and Moin [96] have shown for the case
of homogeneous filters that the commutation error is not bounded. They propose
a method to guarantee a second-order commutation error. More recently, Vasilyev
et al. [299] have defined filters commuting at an arbitrarily high order.
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Additional Hypothesis

The framework presented above is very general. In practice, additional con-
straints are needed. We now assume that the space-time convolution kernel
G(x — &,t —t') is obtained by tensorial extension of one-dimensional kernels

G(%t—t) Gt(t—t’)G< A&) (t—1t") HG(” fl).

i=1,3
(2.31)
Since up to now there is no example of LES of compressible flow based on tem-
poral filtering, we restrict our discussion to spatial filtering. Mathematically,
this additional restriction is expressed by

Gt —t')y=0(t—t). (2.32)

Nevertheless, one has to keep in mind that the spatial filtering implies a
temporal filtering since the dynamics of the Navier-Stokes equations make it
possible to associate a characteristic time scale with a length scale. The latter
one, denoted t. following dimensional argument can be computed as

te = Ak E(k.), (2.33)

where k.F(k.) is the kinetic energy associated to the cutoff wave number
k. = mw/A. Suppressing the spatial scales corresponding to wave numbers
higher than k. implies the suppression of frequencies higher than the cutoff
frequency w, = 27 /t..

Three Classical Filters for Large Eddy Simulation

Three particular convolution filters are commonly used for performing the
spatial scale separation, the Box or top hat filter, the Gaussian filter, and the
spectral or sharp cutoff filter. Their kernel functions are given in Table 2.1
both in physical and spectral space for one spatial dimension. The parameter
¢ of the Gaussian filter is generally taken equal to 6. Both Gaussian and Box
filters have a compact support in physical space.

Table 2.1. Kernels of three classical filters

Filter Kernel in physical space G Kernel in spectral space G
Box filter Gz —¢) = 3 iflz—¢ <3 G(k) = sin(kA/2)

0 otherwise kA/2
Gaussian Gz —¢) = (=52)"? eXp(%;E)Q) Gk) = e~ (A°K)/4s

1 if k| < ke

Sharp cutoff G(z—¢) = sntkele= ) with ke = a G( )= {0 otherwise

ke(z—§)
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Differential Interpretation of the Filters

For filters defined on the compact support [Aa, AS] (with « # (), the follow-
ing definition of filtering can be adopted in the one-dimensional case:

B B l r—Aa ZL’*g
st =5 [ o (T elene (2.34)
B
:/ G(z)p(x — Az, t)dz (2.35)

In order to facilitate the following developments, the change of variable z =
(x — &)/A was employed to derive (2.35) from (2.34).

To go toward a differential interpretation of the filter, we perform a Taylor
series expansion of the ¢(£,t) term at (z,t):2

= (& — ) O g(w, t)
= t) . 2.
P&, 1) = o(a, %-;22 o (2.36)
With the aforementioned change of variable, equation (2.36) can be recast as
e}
Az 0'p(x,t)
o(x — Az, t) = ¢(x,t) + ZZ; ol (2.37)

Introducing this expansion into (2.35) and considering the symmetry and the
conservation properties of the constants of the kernel G, we get

’ T
&(%t):/ G(2)¢ xtdz—|—/ Al AG(z )a%(xl t)d

+§3 8¢@t) (2.38)

ozl
=1

where M is the {th-order moment of the convolution kernel

M = / ’ 16 (2.39)

Odd moments vanish for a centered kernel. The differential form (2.38) is well
posed if and only if VI |M;| < co meaning that the kernel G' decays rapidly in
space. The first five non zero moments for both box and Gaussian filters are
given in Table 2.2.

2 This implies that the turbulent field is smooth enough so that a Taylor series
expansion exists.
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Table 2.2. Values of the first five non-zero moments for the Box and Gaussian
filters

M, =0 =2 =4 I=6 =38
Box 1 1/12 1/80 1/448 1/2304
Gaussian 1 1/12 1/48 5/576 35/6912

2.3.2 Discrete Representation of Filters

From practical considerations, the filter must be expressed in a discrete form.
The filtered field at the ith grid point ¢; obtained by applying a discrete filter
with a (M 4+ N + 1) points stencil to the variable ¢, is formally defined on a
uniform grid with mesh size Ax as

N

n=—M

where the real coefficients a,, specify the filter. The preservation of a constant
variable is ensured under the condition

N
Z an =1 (2.41)
n=—M
The transfer function of this filter kernel can be expressed as
N
Gk)= > ane™4*,  with j* = 1. (2.42)
n=—M

Introducing the Taylor series for each n

e L 9l
Gisn = Y (Endz) 79 (2.43)

i oxt’
1=0

gives on substitution into (2.40)
- ntAz! §'¢
di= Y any 2T (2.44)

which can be recast as

e l
b = <1 +Y° a;Axl%> . (2.45)
=1

where we have introduced the abbreviation
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| XN
al = i Z ann'. (2.46)
n=—M

Additionally, (2.38) can be recast by virtue of the parameter ¢ = A/Ax
which represents the ratio of the mesh size Az to the cut-off length scale A,
as
= alqb(x t)

qb(sc t) M ————= o7 (2.47)

=1
The a, are obtained as solution of a linear system which results from com-
puting terms of like order in (2.47) and (2.45).
As an example, using the values of the moments M; provided in Table 2.2
up to I = 4, the fourth-order approximation of the Gaussian filter is
B 4 ye2 1662 — 4 4_90¢2 41
i = ° 52 (Piva + di2) + % (Giv1 + Pi—1) + W(M
(2.48)
Up to second order, the approximation of Box and Gaussian filters is iden-
tical, and for € = /6, one can derive the very popular three-point symmetric
filter

¢ = i(@bifl + 20 + Pit1). (2.49)

The Simpson integration rule can be applied with € = 2 to obtain

¢ = é(@éifl +4¢i + dig1). (2.50)

In order to ensure that derivation commutes with filtering, one can define
high-order commuting filters that have vanishing moments up to an arbitrary
order (for boundary conditions, non symmetric filters are considered) [299].
An additional constrain is added to ensure that the transfer function of the
filter is null at the cut-off wave number k. = w/Az. In discrete form, this
leads to

Glke)= > (-1)"an=0. (2.51)
n=—M
This kind of filters belongs to the category of linearly constrained filters [299).
Increasing the number of vanishing moments also allows to find a better ap-
proximation of a sharp cutoff filter.
Considering the particular case N = M, the complex transfer function
(2.42) can be decomposed in real and imaginary parts:

N
R{G(k)} = ao + D (an + ay) cos(knAz), (2.52)
n=1
N
S{(G(k)} = Z(an — a_p)sin(knAz), (2.53)
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The latter of which vanishes in the particular case on a symmetric filter (a,, =
a_p).

For optimal filters, these coefficients are computed as to minimize the
functional

n/Ax R . T/ Az R R
/O (R{G(k) —Gtarget(k)})QdkwL/o (S{G(k) = Glrarger (k)})*dk (2.54)

where Gigrget(k) is the target transfer function. Such filters have been pro-
posed by [240, 299].
Finally, implicit filters defined as

P
Z bnéz-{-n = an¢i+n- (255)

n=—P~P

These are an important part of the Approximate Deconvolution Method [277]
(see Chap. 5).

2.3.3 Filtering of Discontinuities

As remarked by Lele [165], for a shock wave occurring in a turbulent flow
the classical jump conditions hold for the instantaneous flow. Sagaut and
Germano [243] have noticed that the usual filtering procedures, based on a
central spatial filter that provides information from both sides, when applied
around the discontinuity, produce parasitic contributions that affect the fil-
tered quantities. This issue is developed in the following. Let us consider an
unsteady fluctuating variable ¢ defined in a region 2. We consider the case
where this variable oscillates around a mean value Uy in the subdomain (2
and around the mean value Uy in the subdomain (21, where £2y | 21 = £2. The
two subdomains do not overlapp and have an interface I". Using this domain
decomposition, we obtain

¢m0:{%mw=%m+mmw1£@h

(2.56)
1 (z,t) = Ur(t) + o1(z,t) x € X

where g,, p = 0,1 represent the “turbulent” contribution around the mean
value U,. We assume in the following for the sake of simplicity that the func-
tion G has a compact support denoted as S(x) at point z, i.e.

G<x;§>:0 if € ¢ S(x). (2.57)

Filter applied to ¢(x,t) gives

s = [ ¢ (%) o(€)de (2.58)
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We assume a central filter, i.e. its kernel is isotropic. By combination of
(2.56) and (2.58), we get the following expression for ¢(z, )

Bort) = /Q G55 @ e

1 (
2 S
xr — 5

r—§
= U G ) d¢ + G > 00(&,t)dg
O Qoﬂs(w A QoﬂS(z A O
x — x—&

+U1 QlﬁS(ac)G( A >d£+ QlﬁS(w)G( A >Q1(§7 )§

(2.60)

) (U, + 01(,1))de (2.59)

T —

=15 [ N@G( ) de+vo

1 lli—f) (I—ﬁ)
A G d G 1(&,t)d
' - ‘/'QOMS@) ( A (5 t) €+ A 21NS(x) A ¢ (é t) €

II

= —[[Un%/ms(x)a <‘”A5) dé +U;

117

= a x—f) Nd G(x—{) 0d
ta Gons(e) ( 5 ) @& )€+A onster 7 ) & t)de

II

(2.61)

(2.62)
where the jump operator is defined as
[[U]] = U1 — Up. (2.63)

It can be seen that terms I and III in relations (2.61) and (2.62) are not
related to “turbulent” fluctuations g,, p = 0,1, but only to the discontinuity
in the mean field. A first look at these terms shows that the filtered variable
é(z,t) is not discontinuous, the sharp interface having been smoothed to be-
come a graded solution over a region of thickness 2R, where R is the radius
of the kernel support S. The subgrid fluctuation ¢'(z,t) = ¢(z,t) — ¢(x,t) is
therefore equal to

00(,t) = () = [[U11% [ 50 G5 @ € 20,
¢ (2,t) = ) Z (2.64)
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It is observed that the jump in the mean field appears as a contribution in the
definition of the subgrid fluctuation, which is an artefact of the filtering proce-
dure. In the case of shocks, the contribution of the jump in the fluctuation will
dominate the turbulent part of the subgrid fluctuations in most practical ap-
plications, rendering subgrid models which rely explicitly on the assumption
that the subgrid fluctuations are of turbulent nature as inadequate. Sagaut
and Germano [243] have defined non-centered filters which should be used to
avoid this unphysical effect.

2.3.4 Filter Associated to the Numerical Method

The accuracy of a numerical scheme is traditionally associated to the order
of its truncation error. However, in the framework of LES where the kinetic
energy spectrum spreads over a wide range of scales, it seems more appropriate
to compute the spectral distribution of the truncation error which can be
associated to the filter transfer function in the wavenumber space. The notion
of effective (or modified) wave number can be introduced [301]. To this end,
the effect of the discretization on a periodic function e/** for which the exact
derivative is jae*® is studied.

Consider the approximation of the first derivative g—f at the ith node of a
uniform grid

af@) 1 &
O 7A_xl;]valfi+l. (2.65)

The Fourier transform of f can be defined as
fo)= 5= [ sweas (2.66)
Com ) ' ’

This transform is applied to both sides of (2.65)

M
.7 1 jal Az 3
jaf ~ (A_x Z ae’ )f (2.67)
I=—N
The quantity
.M
_ —J JjalAx
= - 2.
a= l;Nale (2.68)

is the modified wave number of the Fourier transform of the finite difference
scheme (2.65).

For example, for a second-order accurate centered scheme (a; = a_; =
1/2), one obtains

= _ ;] 1 jaAx 1 —jadz | _ Sin(an)
a= (26 5¢ =, (2.69)
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which is second order accurate for small values of . More generally, for a
centered scheme where N=M and a; = a_;, the modified wave number is real.
Conversely, if N # M or a; # a_;, & is complex, its imaginary part being
associated to the dissipative character of the scheme. This character is shared
by every schemes that are able to capture the discontinuities susceptible to
occur in compressible flows.

As noted in Ref. [246], the filter transfer function can be written as

é:

ele

(2.70)

The convolution kernel of few classical centered schemes are represented
in Fig. 2.1 using the general formulae given by Lele [166] for both explicit and
implicit (compact) centered schemes up to M = N = 3. The spectral scheme
is optimal since its kernel is equal to 1. For low order schemes, the errors are
large even for small wave numbers (large scales).

1 — = =
~. ~~
-~ N “‘-.\ ~
~ N, N
| ~ N
08} N\ N \\
i ~ '\‘ \
- \ \ \
S ;
06 N\ N 3
— i \. \
E) Yy ki B
o | My 8 \
04} spectral N A \
| = — — . Centered 0(2) S
————— Centered O(4) NN
_ Centered O(6) Ny )
o2l = = = « Compact O(6) Ny \-,‘
! O
M
TS AT R 1 ! Ly
0.5 1 15 2 2 °
o AX

Fig. 2.1. Equivalent convolution kernel for some first order derivative schemes in
Fourier space

Nevertheless, since the numerical schemes used are consistent, the numeri-
cal error cancels out as Az tends towards zero. It is then possible to minimize
the numerical error by employing a large A/Ax ratio. This technique, based on
the decoupling of two length scales, is called pre-filtering and aims at ensuring
the convergence of the solution regardless of the grid.3

3 This technique is rarely used in practice since it leads to a simulation cost increased
by a factor (A/Az).
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2.3.5 Commutation Error

Every product of two variables ¢ and 1 occurring in the Navier-Stokes equa-
tions give rise to a term ¢t whereas the computable variables are ¢ and ).
Replacing ¢1) by the product ¢ introduces an error which is the commuta-
tion error between the filtering operator and the multiplication operator B
defined by the bilinear form

B(a,b) = ab. (2.71)
Using the commutator operator of (2.25), this error can be expressed as
b = ¢ + [Gx, B](6,¢)). (2.72)

[Gx, B](¢,%) is a subgrid term since it takes account of information contained
at subfilter scales. For incompressible flows, the commutation error implies the
presence in the momentum equations of subgrid stress scale tensor defined as

[G*, B](UZ, Uj) = UjU; — ’L_Li’l_l,j. (273)

The main modeling effort of the LES community has been concentrated on
this term which is the only one arising for the incompressible equations for
single phase flows.

2.3.6 Favre Filtering

Most authors dealing with LES of compressible flows have used a change of
variable in which filtered variables are weighted by the density.* Mathemati-
cally, this change of variables is written as

pb = po. (2.74)

Any scalar or vector variable can be decomposed into a low frequency part (ﬁ
and a high frequency part ¢”

db=0¢+¢". (2.75)

The () operator is linear but does not commute with the derivative operators
in space and time

4 To our knowledge, the classical LES filtering in compressible flows has been em-
ployed by Yoshizawa [320] and Bodony and Lele [23]. In Ref. [320], the analysis
of compressible shear flows, realized with the aid of a multiscale Direct-Interaction
Approximation, has been limited to weakly compressible flows. In Ref. [23] a sim-
plified set of equations has been employed to compute cold and heated jets at Mach
numbers ranging from 0.5 to 1.5. The merit of using the classical LES filtering is
not discussed.
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96 . 0¢
9z, 7 oz, (2.76)
o 0

If the (.) operator is a Reynolds operator, the following relations can be
established

pd" =0, (2.78)
$—$=W:—p§):—p§. (2.79)

One can note the similarity of this change of variable with Favre [81] averaging.
It is called “Favre filtering”, keeping in mind that it is in fact a filtering
expressed in terms of Favre variables by a change of variable.

The motivation of using such an operator is twofold:

e The term pu; present in the filtered continuity equation can be decomposed
following equation (2.72)

pu; = pu; + |G, Bl(p, u;) = piiy. (2.80)

With the filtering defined as in Sect. 2.3.1, the necessary transformation
from pu; to pu; would lead to another subgrid term which can be avoided
by the change of variable (2.74) transforming pu; to pu;.

e The “Favre-filtered” equations are structurally similar to their correspond-
ing non filtered equations (with the exception of the subgrid terms). More-
over, in the framework of a RANS/LES coupling, the similarity with RANS
equations can be beneficial. Generally, introducing the operator

H(a,b,c) =bc/a (2.81)

it is possible to recast the terms formally written as p¢t in the following
way

pov = po = b + (G, H](p. po, pi)). (2.82)
For compressible flows, the subgrid scale (SGS) stress tensor results as
Tij = [G*, H] (p, pui,puj) = ﬁ(’ulrlﬂ/] — ﬂzﬂj) (283)

One should notice that this decomposition is not applied to the pressure and
density fields. The filtered equation of state can then be written as

p=pRT (2.84)

Quantities depending only on the temperature such as the enthalpy or the
internal energy can also be Favre-filtered.
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Theoretically, the use of this change of variable has important conse-
quences concerning interpretation of results. HaMinh and Vandromme [107]
remark that density weighted variables are well adapted to the comparison
with experimental measurements carried out with hot wire anenometry. Con-
versely, they are less suitable for a comparison with data obtained by Laser
Doppler Anenometry® for which the classical filtering operator is appropriate.
Smits and Dussauge [266] evaluate the difference between mean velocity pro-
files of @ and @ to about 1.5% in a Ma = 3 turbulent boundary layer. The
comparison of LES results with DNS data must also be done with care, and,
for proper comparisons DNS data should also be Favre-filtered.

2.3.7 Summary of the Different Type of Filters

As a summary, 3 different classes of filters have been identified in LES.

e The analytical filter represented by a convolution product is used for ex-
pressing the filtered Navier—Stokes equations.

e The filter associated to the computational grid. No frequency higher than
the Nyquist frequency associated to this grid can be represented in the
simulation.

e The filter induced by the numerical scheme. The error committed by ap-
proximating the partial derivative operators by discrete operators modifies
the computed solution. This kind of error can be computed using the mod-
ified wave number formalism [283].

Additionally, it is possible to associate a filter to the model used to approxi-
mate the subgrid scale tensor.

The computed solution is the result of these filtering processes constituting
the effective filter. When performing a computation the question arises as to
what the effective filter is, that governs the dynamics of the numerical solution.

2.4 Formulation of the Filtered Governing Equations

In this section the different ways of filtering the momentum and energy equa-
tions are reviewed. Non conservative and conservative forms are presented.
Due to the use of the aforementioned “Favre filtering”, the continuity equa-
tion becomes ~
ot (9l‘j
In the particular case of an energy equation based on the total energy, the
filtered momentum equation depends on the choice of the filtered pressure
which may be different from the quantity obtained by applying a filter to the
pressure.

=0. (2.85)

5 The same is also true for Particule Image Velocimetry.
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2.4.1 Enthalpy Formulation
The enthalpy formulation is

oph  dphi; 0p . Op | 04 4

ot " ox; ot ow; ' oz
B 8pCp(Tuj—Tuj)_(u op 8p>_(q—j_q3)+

. _y
. J . J .
0 Ox; Ox;

ations 23

2@ — 4))
ﬁxj
(2.86)

where the filtered enthalpy h is equal to CPT and the filtered computable

viscous dissipation & is defined as

- 0y
b = O'ijaxj.

where )
gij = u(T) (2517' - g%’gkk)
which depends on the computable rate-of-strain tensor
~ 1 /0a; 0uy
Sij == : 2.
J 2 <8.T] + axz)

The computable heat flux is

orT

4 = —H(T)%~
J

The non linearity introduced by Sutherland’s law to viscosity and
gives rise to the additional term g; — ¢; in the energy equation.

(2.87)

(2.88)

(2.89)

(2.90)

conductivity

Using the following decomposition of the filtered pressure-gradient velocity

correlation

Op _ Opu;  Ouy

uj%j o al‘j B 837]‘
_ 3pRTu] _ %
o axj pal‘j
_ 0pRT; | OpR(Tu; —Ta;)  du;
- 833‘]' 8.%‘j p@xj
_ du; | 9p | 9pR(Tu; —Tuy)  du;
- pal'j + Y 6$j + &zzj paxj

in (2.86) leads to the following form for the enthalpy equation

(2.91)
(2.92)
(2.93)

(2.94)
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oph  dphi; 0p . Op 04 4

ot ' ox; ot “Jaxj 0x;

oC, oG — q;
_ (999 g e 2T 0) (2.95)
330] 8xj
The SGS temperature flux is defined as
Q= plw;T — @, T). (2.96)
The SGS pressure-dilatation can be written as
Ou,; 0t
Iy = 7 527 2.97
dil Paxj paxj ( )
The SGS viscous dissipation is expressed as
€ =0—&. (2.98)
2.4.2 Temperature Formulation
Applying the filtering operation to (2.13) gives
opC, T 9pu;C,T  0i, g,
&
ot oz, Poz, “ T ow
opu;C, T dpu;C, T u; ;- 5 OG —d;)
= — — —p— — (P - D)+ ———=
8xj 8£Ej +p8xj paxj ( ) + 81:j ’
(2.99)
which can be recast as
9pC,T N dpi;C, T s iy L 04 94,
ot Oz 6:5] Oz
9C,Q; 0(gj — 4;)
S My — €y + —2 — 30| 2.100
|:amj+dl€+ oz, ( )

The temperature formulation has been used with additional simplifications by
Moin et al. [201]. It can also be found in its internal energy form in Ref. [192]
by replacing C,T by € in the first two terms.

2.4.3 Pressure Formulation

Applying the filtering operator to (2.14) gives
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op . Op 7811]‘ Y 8%
=i 0 (y—1)d — 1)L
ot T lige, Ty, ~ (T UEH =g
Op _ ap 8u3 o0t .
=—|ujn—— +w——w——( -1)(@-9)
! 0z 8 ox ox
o(g; — QJ)
—1)—— 2.101
- )TE (2:101)
Using the following decomposition:
Op Ou, Op Opu,; Op
— —Uj— 2.102
“Yon; " oz, ~ “oa, (axj " 9 (2.102)
Opu,; dp
= —(vy—Du;=— 2.1
"oz, (v =Dy oz, (2.103)

which can be employed both globally filtered or only with computable vari-

ables, the filtered pressure equation can be written as

op op 0t Y 94,
~(- -1l

ot ar, T Pos,
9Q; op _ Op = &
R—— -1 i— == | —(y—1)(®—-
(g — dj)
)=
+(r—1) oz
It is possible to introduce a stronger separation between computable terms

and terms to be modeled using (2.94). In this case (2.101) becomes
94;

(2.104)

8p 8p _04; .
— — -1 —1
_ Qa v . 0G —g)
= 6xj (’y 1) |:Hdzl €y + axj . (2.105)

2.4.4 Entropy Formulation
An equation for the Favre-filtered entropy can be written as

ops  opsu;  1[s 0 oT
3 (5

E (9£L'j T (9:L‘J
_ _oplsm =) (B @Y T 9 (0T
- 8xj * T T + Tal’j H(T) é)xj
) . oT
- = T)— 2.1
Tal'j (K( )a$j>’ ( 06)

). Nevertheless, § can not be easily linked to the com-

with § = %pCv In(pp=
putable entropy § = C, In(pp~ 7). This reason may explain the fact that the
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equation for the filtered entropy has not yet been used in the literature in a
form similar to (2.106). However, Mathew et al. [194] have used the entropy
formulation in the ADM framework (see Chap. 5) which does not require any
explicit modeling of the subgrid terms in the right hand side of (2.106).

2.4.5 Filtered Total Energy Equations

Applying the filtering operator to the total energy definition (2.4) leads to the
following equation
= D 1___
E=—— + —puu; 2.107
PE = + gpuit (2.107)
which is not directly computable. This issue has been addressed in the liter-
ature using different techniques:

e Ragab and Sreedhar [226], Piomelli [216], Kosovic et al. [147], and Dubois
et al. in a simplified form [61] write an equation of evolution for

_ 1 B
E=——+ -put; + — (2.108)

which implies that the pressure and the temperature are computed as

= 1 ii
p=0-1 {PE — Pt — %} (2.109)
and ( 0 )
~ o ’y —_ ~ R Z
T= 7 {E 5 Uil Qp} , (2.110)

respectively. The equation of state is not affected.

e Vreman in its “system II” [306] introduces a change of variable on the
pressure

=1
2

by which the trace of the SGS tensor in the energy equation disappears

P=p+

Tii (2.111)

1
pl = + 5 pui;. (2.112)
(y—-1) 2
The temperature is also modified as
= = Tii
=T ; 2.113
*30.5 (2.113)

P = pRT. (2.114)
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e Comte and Lesieur [47, 174] have proposed a different change of variable
on the pressure which results in the so-called macro-pressure

P=p+ éTu (2.115)
This change of variable is motivated by an analogy with incompressible
flows where the isotropic part of the SGS tensor is added to the pressure.
The temperature is modified according to (2.113) so that the SGS stress
tensor does not appear in the definition of the filtered energy equation if
computed with T. The equation of state takes the form

. 3y-5
P =pRT - =1

Tii- (2.116)

For a monoatomic gas such as argon or helium (for which v = 5/3) equa-
tion (2.116) recovers the classical form.

e Vreman in its “system I” establishes an equation for the computable en-
ergy B

FE = —"— + —pi;t;. (2.117)

This system does not require any modification of the thermodynamic vari-
ables.

A System for E, D, T
The system can be written as

OpE N OPE +p)i; 06l N g,
8t aaﬁj 8l‘j O:Uj

0 —— __ = I S .
=~ 5. [ E = pu; B) + (@D — 4;p) — (03505 — 6354;3) — (GG — d;))-
(2.118)

J

It is possible to regroup the first two SGS terms of the right hand side of
(2.118) in the following form

(pu; E — piiy E) + (4D — ;p) = CpQ; + Jj, (2.119)

where

1 N L 1, o
Jj = §(ﬁujuiui — PUjUU;) = §(pujuiui — Pl U; — Tij) (2.120)

is the SGS turbulent diffusion.
Introducing the SGS viscous diffusion

Dj = 7ijuj — Gijug, (2.121)
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(2.118) can be rewritten as
8[)E 8(ﬁE +]3)1~1,] aﬁljﬂl 8(%
+ - + =
ot 8{17j &Bj 8{17j
0

= g, Qi T =D = (@ = 4l (2.122)

A System for E, D, T

With the aforementioned change of variable on pressure and temperature,
Vreman, in its system II, writes the energy equation as

OpE  O(pE +p)a; 951 O d
— — = ——(C,Q,; i —Ds—Dys+ D
or T o e, o, ow, Cv@itJi=Ds=Dat Ds),
(2.123)
with .
o 0T
j; = —r(T)=—. 2.124
i = —(T) 5 (2.124)
The term 5 )
Y= -
Dy = — | —7;i@0; 2.12
3 81:j ( 2 T Uj> ( 5)
results from the difference between p and p.
The difference between
0 o -
D4 = aTj(O'ijui — crijui) (2126)
and 9
Dy = —(q; — q¢; 2.127
5 oz, (‘ZJ QJ) ( )

and their counterparts in (2.122) arise from the (inexact) replacement of T
by T in the computable heat flux (¢;)) and strain of rate tensor &;; which
introduces additional terms involving 7;;.

A System for E, P, T
With this set of variables Comte and Lesieur [47] derive the following energy
equation
OpE  O(pE +P)iu; 0siu; 04 d
- o % (Q;—Ds+D 2.128
ot VT o o, T ow;  on,( & T DatDs) (2128)

with

0, = (0E + pyu; — (pF + P)i;, (2.129)

which can be recast in a form similar to (2.119)

1
Q; = Cplj + Jj — 5UTii- (2.130)
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A System for E, p, T

Vreman establishes the equation for the computable total energy adding the
filtered internal energy equation to the filtered kinetic energy equation

OE O(E+p)a; 051 0g;
— = — —~ = —B1—By—B3+B,+B5+Bg—B7. (2.131
BN + oz, oz, +8xj 1—B2—B3+By+Bs+Bs—Br. ( )
The SGS terms B; can be written as
1 0 0C,Q;
B, — DU — D) — veJ 2.132
LS T g, P P = T (2.132)
8’uk _8ﬁk
By =p——p— = Iy, 2.133
2 p@a:k p@xk dil ( )
0 -
B3 = %j(Tijk), (2134)
0 .
B4 = Tkj —axj Uk, (2135)
0 0 .
B5 = Okj ail‘j’ll,k- — Okj %jUk- = €y, (2136)
a . . oD;
BG = a—xj(O'ijui - O'ijui) = a—x;, (2137)
B =2 (@-q) (2.138)
7= (933]' q5 — 4qj5)- .

The terms B3 and By are regrouped in the original work of Vreman [307]. The
terms B, and Bj can not be written in a conservative form. This might have
some consequences for the treatment of flows with discontinuities.

2.4.6 Momentum Equations

In the vast majority of the published results, the selected system of equation
is based on the filtered pressure p. The filtered momentum equation is
opt; 8[3’&1@] op (’)éij anj 0
— == — — (03 — 045). 2.139
ot 8xj 83:1 8xj 8:cj + (91']( * ZJ) ( )

In the particular case of the change of variables introduced by Vreman [306] in

(v=1)
2

its system II, replacing p by P in (2.139), an additional term
on the right hand side of (2.139).

Using the change of variable proposed by Comte and Lesieur [47], P sub-
stitutes p, and 7;;/3 is subtracted from the right hand side of (2.139). It is
equivalent to a replacement of 7;; by its deviatoric part Tfj defined as

Ti; OCCUTS

Tidj = Tij — 51'ka1€/3. (2.140)

For the sake of completeness, one has to mention that in the case of the
Vreman’s system I &;; should be replaced by &;; in (2.139).
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2.4.7 Simplifying Assumptions
SGS Force Terms

The different forms of the energy equation involve a large number of subgrid
terms. Unfortunately, there are only two studies in which the forces of all
subgrid terms have been computed using a priori tests.® The first one by
Vreman et al. [306] and Vreman [307] is based on a 2D temporal shear layer.
The convective Mach number effect has been investigated in the range 0.2—
1.2. The 2D character of these simulations may limit the relevance of the
conclusions drawn from this study. The other one is due to Martin et al. [192]
who have carried out DNS of freely decaying homogeneous isotropic turbulence
at a turbulent Mach number equal to 0.52.

In their study, Vreman et al. have compared the amplitude of the terms
associated to resolved and SGS fields for their formulations I and II. Their
conclusions are summarized in Table 2.3. The classification (large, medium,
small, negligible) is based on the Ly norm of the different terms of the filtered
equations. One order of magnitude separates the norm of each class of terms.
One can then expect that this classification may not hold locally.

Table 2.3. Classification of terms in the filtered energy equations

Influence of System I System II

the term

Large convective NS convective NS

Medium diffusive NS, A1, B1, By = I14;, B3 diffusive NS, C1, D1, Do
Small B4, Bs = €y D3, D4, D5

Negligible %(@ — &44), Bs, Br a% (G35 — 5i5)

Martin et al. [192] have compared the main SGS terms appearing in the
internal energy (2.100) and enthalpy (2.95) equations on the one hand and
in the total energy equation (2.122) on the other hand. In the former cases
they concluded that ITy; is negligible, €, is one order of magnitude smaller
than the divergence of the SGS heat flux (C,Q;). In the total energy equation
(2.122), the SGS turbulent diffusion is comparable with the divergence of the
SGS heat flux (CpQ;), and the SGS viscous diffusion (D;) is one order of
magnitude smaller than the other terms.

From these two studies one can conclude that the non-linear terms occur-
ring in the viscous terms and in the heat fluxes are small or negligible, depend-
ing on the chosen system. In practice, they are neglected by every authors.
Specifically, this is equivalent to assume that o;; = 0y; and o;u; = 04;%U;.
These two studies disagree on the importance of the By = Ily; term. How-
ever, the respective conclusions are obtained for two different configurations

6 Each term is computed on a DNS field and filtered on a LES grid. The forces of
all terms are then compared.
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and for two different systems of equations. In practice, this disagreement ap-
pears to have no significance. Martin et al. neglect this term and we will see
in Chap. 4 that Vreman et al. model it together with B; so that eventually
there is no model specific to this term published in the literature.

Small Scales Incompressibility

In order to present the different approaches developed in the literature, it
is necessary to introduce the triple decomposition (adapted for compressible
flows). A product of filtered terms can be decomposed

poY = p(¢ + &) (W + ") (2.141)

which can be recast as
P = P + pu" + D" + ). (2.142)
A subgrid term can be expressed using the triple decomposition
p(¢p — d) =L+ C+R, (2.143)

where one can distinguish:

e The Leonard term which relates only filtered quantities

L = 50 — $0). (2.144)

e A cross term which represents the interactions between resolved scales and
subgrid scales

C = B +D¢") (2.145)

e A Reynolds term which accounts for interactions between subgrid scales

R = p(¢/""). (2.146)

The last two terms require modeling.

Restricting now the analysis to the subgrid scale tensor 7;; (¢ = u; and
1 = u;) and decomposing R;; into an isotropic part Rﬁj and a deviatoric part
Ry, Erlebacher et al. [75] show that

. 1
Rﬁj = —g’nygSﬁéij, (2.147)

where the subgrid Mach number Mg is defined as Mg = q/qggs/vRT with

qggs = R;;/p. Using DNS of isotropic turbulence these authors have found that
the thermodynamic pressure is by far more important than Rﬁj for subgrid
Mach numbers less than 0.4. The subgrid Mach number being lower than the
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turbulent Mach number, they also find that it is possible to neglect Rﬁj up to
turbulent Mach numbers M, as large as 0.6. This condition is valid for most
of supersonic flows.

This subgrid-scales incompressibility hypothesis has been widely used. It
has been extended from Réj to Tf] by many authors [47, 307, 226]. The main
argument is that most of the compressibility effects are assumed to affect es-
sentially the large scales. They are accounted for by resolved quantities. In
this respect, it is much less restrictive to neglect the compressibility effect
on sugbrid scales quantities than on quantities representing the whole turbu-
lence spectrum (as in RANS) since subgrid scales fluctuations contain only a
small part (typically a tenth of percent) of the fluctuating energy. One can
anticipate that the limit usually taken equal to M; = 0.2 [167] by which the
compressibility effect must by taken into account in RANS simulations is not
relevant in the framework of LES.

If the isotropic part of the SGS tensor is neglected, P and P degenerates
towards p, and T degenerates towards T. Additionally, D3 cancels out and Q;
can be identified as C,Q; + J;. Consequently, the systems based on (E 0, T ),
(E, P, T), (E’, P, f) become identical. The system based on (F, p, T) preserves
its character, and Vreman et al. use the Table 2.3 to argue that the latter sys-
tem can be preferred since the contributions coming from the non-linearity
in the viscous stresses and the heat fluxes are more important in the formu-
lation IT (D4 and Ds) than in the formulation I (Bg and By). Nevertheless,
as already mentioned, these terms being both weak in intensity and difficult
to model, they are commonly neglected in practical simulations. For the rest
of this textbook, we will assume that this approximation holds. Furthermore,
one has to notice that non conservative terms are present in system II. For
By and Bs this is not an issue since we will see in Sect. 4.4 that this terms
will be modeled with a conservative approximation. But once a model for 7;;
is chosen, B4 can be computed explicitly and its non-conservative character
remains. This consideration has motivated some authors to neglect also Bj.
This in agreement with Vreman recommendation of modeling at least terms
of “medium” importance (of the same order that the Navier-Stokes diffusive
fluxes). According to Table 2.3, this remark concerns By, By and Bs. This
latter term is in conservative form and its modeling is not an issue since it
results directly from the choice of 7;;.

Comte and Lesieur justify their approach noticing that it is less restrictive
to assume that the term %m is negligible in the state equation (2.116)
than to assume that 7;; is negligible. This statement has been motivated by
the fact they used a global model for Q; without making the decomposition
(2.130), which depends explicitly on 7;; [47].
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2.5 Additional Relations for LES of Compressible Flows

This section is devoted to some additional relations which can result in further
constraints on subgrid models.

2.5.1 Preservation of Original Symmetries

Governing equations of compressible flow dynamics have one-parameter sym-
metries which constitute a Lie group. Since LES is assumed to converge contin-
uously towards DNS as the scale separation length vanishes, it is reasonable
to require that LES governing equations should have the same symmetries
as the unfiltered Navier-Stokes equations.” This will lead to a twofold con-
straint, since both the scale separation operator and subgrid models should
be designed to preserve symmetries. Such a constraint has been devised in
the incompressible case in a few articles (see Ref. [244] for a comprehensive
review), the main conclusion being that symmetry-preserving scale separation
operators are rare and that most existing subgrid models for incompressible
flows violate at least one of the fundamental symmetries of the incompressible
Navier—Stokes equations.

Such an analysis so far has not been performed for compressible LES. The
scope of the present section is not to provide an extensive analysis, but to
state the symmetries of compressible Navier-Stokes equations,® each symme-
try being an additional constraint for the design of compressible LES models
and theoretical filters. Let us also note that, numerical methods should also
preserve symmetries of the continuous equations. This point, however will not
be further discussed here, but let us mention the fact that many numerical
schemes violate very fundamental symmetries such as Galilean invariance.

We restrict ourself to the case of a perfect gas. The symmetries are summa-
rized in Table 2.4. The different cases correspond to possible choices of physi-
cal variables with respect to the symmetry. In the most general case, viscosity
(and therefore diffusivity) is considered as an autonomous variable. As sim-
plification, it can be considered as a function of temperature (e.g. through the
Sutherland law), or a constant parameter. The ultimate simplification consists
in considering inviscid fluids, i.e. the symmetries of the Euler equations.

" Note that the use of statistical averaging operator may result in a change of the
fundamental symmetries of a system, an illustrative example being the loss of time
reversal symmetry in statistical thermodynamics: while individual molecule behavior
may be time-reversed, the mean behavior of an ensemble of molecules obeys the
second law of thermodynamics.

8 The full set of one-parameter symmetries of compressible Navier-Stokes equations
is unpublished to the knowledge of the authors. The full Lie group of symmetries
displayed in this section was determined by D. Razafindralandy and A. Hamdouni
[227], whose contribution is gratefully acknowledged.
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Table 2.4. One-parameter Lie group of symmetries of compressible Navier—Stokes equations. In the Basic Case, time, space, velocity,
pressure, density and molecular viscosity are assumed to vary independently. Diffusivity is tied to viscosity assuming that the Prandtl
number is constant. This case can be simplified assuming that the viscosity is a temperature-dependent variable. The problem is further
simplified assuming that ¢ = x = 0. The parameter of the transformation is denoted a in the scalar case and a is the vector case. R is

a 3D time-independent rotation matrix

Symmetry name Definition Basic case u=u(T) Constant p=rk=0
Time shift (t,x,u,p, p, ) — (t+ a,x,u,p, p, 1) yes yes yes yes
Space shift (t,x,u,p,p,u) — (t,x+a,u,p,p, 1) yes yes yes yes
Galilean transform (t,x,u,p,p,u) — (t,x + at,u+a,p, p, u) yes yes yes yes
3D rotation (t,x,u,p, p,u) — (¢, Rx,Ru, ? Py 1) yes yes yes yes
Scaling 1 (t,x,u,p, p, ) — (2%, ex, e~ ", e~ 2, p, 1) yes no yes yes
Scaling 2 (t,x,u,p, p,u) — (t,e*x,eu,p, e \mnb, ) yes no yes yes
(Scaling 1) o (Scaling 2) (t,x,u,p, p, u) — (e%,e’x,u, ? “p, 1) yes yes yes yes
Scaling 3 (t,x,u,p,p,u) — (t,x,u,ep,e*p, e 1) yes no no no
Scaling 4 (t,x,u,p,p,u =0) — (t,x,u,e*p,e*p, u = 0) no no no yes
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2.5.2 Discontinuity Jump Relations for LES
Shock Modeling and Jump Relations

The present discussion will be restricted to the inviscid case for the sake of sim-
plicity. The rationale for that is that viscous effects are negligible compared to
other physical mechanisms during the interaction (as can be proved a posteri-
ori by comparing theoretical results with DNS and experimental results), and
that relaxation times associated to vibrational, rotational and translational
energy modes of the molecules are very small with respect to macroscopic
turbulent time scales. Therefore, the shock is modeled as a surface disconti-
nuity with zero thickness. An important consequence is that the shock has no
intrinsic time or length scale, and its corrugation is entirely governed by inci-
dent fluctuations. Its effects are entirely represented by the Rankine-Hugoniot
jump conditions for the mass, momentum and energy:

[lpun]] =0, (2.148)
[lpuz + pl] =0, (2.149)
[fu]] =0, (2.150)
p 2| | _
He+p+u ” = [[H]] = 0, (2.151)

where H is the stagnation enthalpy and w is the velocity in the reference frame
of the shock wave, i.e. 4 = v — us where v and ug are the fluid velocity and
the shock speed in the laboratory frame, respectively. Subscripts n and ¢ are
related to the normal and tangential components of vector fields with respect
to the shock wave, respectively

U, =u-n, ur =n X (u X n), U= U, N + Uy, (2.152)

where n is the shock normal unit vector.

An exact general jump condition for the vorticity can be derived from the
relations given above [110]. First noting that the vorticity vector 2 =V x u
can be decomposed as §2 = 2,n + §2; with

O = (V % w)n (2.153)
and o
2, =n x (% +ut~Vn—V|un) (2.154)

where V|| denotes the tangential (with respect to the shock surface) part of
the gradient operator, one obtains the following vorticity jump conditions in
unsteady flows in which the shock experiences deformations

[£2.]] =0, (2.155)
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1 1

() = (Dyoun) [ [3]] - D+ wDym) . 2156)

with
dut 8ut 8ut

D= (), rou Wi = (Gt ) FeSim @150

and
dn
Dyn = E+ut~VHn:—VHus—i-urVHn. (2.158)

It can be seen that the normal component of the vorticity is continuous across
the shock, while the jump of the tangential component depends on the density
jump, the tangential velocity and the shock wave deformation. In steady flows,
the jump condition for the tangential vorticity simplifies as

120 =nx (Vyou) | |5 | < ol wpw). 250

Plun

Filtered Jump Relations and Associated Constrains on Subgrid
Terms

The question of deriving pseudo-jump relation for coarse resolution simula-
tions, such as LES, is not a trivial task since several fundamental issues arise.

First, one has to decide if the LES solution can exhibit discontinuities.
If it is assumed that LES governing equations originate from the application
of a smoothing (i.e. regularizing) kernel to the exact equations, discontinu-
ities are transformed into regions with large gradients but finite thickness.
Therefore, jump conditions no longer hold, and must be replaced by classical
global conservation laws. Such global relations are obtained by performing a
volume integration of the LES governing equations over a control cell that
encompasses the initial discontinuity.

The second issue comes from the relation between the grid size and the
scale separation length. In almost all published works, authors have consid-
ered these lengthscales to be equal or very close. As a consequence, the large
gradient region cannot be accurately computed on the grid, due to numerical
errors. Therefore, jump relations are explicitly or implicitly used in practice
to design shock-capturing techniques which yield entropic solutions. Here, the
coupling between numerical discretization and the continuous LES formalism
is obvious. It is worth noting that in the case of reacting flows with flames,
the thickened flame approach has been proposed (see e.g. [220]) to allow for
an accurate description of the dynamics inside the flame front, but the ap-
proach is not fully consistent in the sense that the thickened flame and the
filtered turbulent field are not be obtained using a unique filtering operator.
Extension of this approach to general discontinuities remains to be done.

A third issue is that pseudo-jump relations introduce additional constraints
on subgrid models, which are not taken into account in most subgrid model
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derivations. To illustrate this point, let us consider the simple case in which
LES pseudo-jump relations are obtained in a straightforward manner by ap-
plying the scale separation operator to the exact jump relations (2.148)—
(2.151). One obtains (different forms can be obtained selecting other sets of
filtered variables)

[[pwnl] = [[pw - n]] + [[pun —pu-n]] =0, (2.160)
bgrid

+p” + Hpu% - @” =0, (2.161)

subgrid
([w7]) = ([ - €)) + [ — - 8] = 0, (2.162)
| — 1

subgrid

(pu - n)*

ozl = ||

subgrid

It is observed that subgrid terms contribute to the jump relations which
hold for the resolved scales. Therefore, the subgrid jump terms should ideally
be taken into account to recover a fully satisfactory behavior of the computed
solution in the vicinity of shock waves. It is worthy noting that subgrid jump
terms differ from those found in the governing filtered equations.

2.5.3 Second Law of Thermodynamics

Compressible flow simulations raise the question of the compatibility of the
computed solution with fundamental laws of thermodynamics. We now discuss
the case of the second law of thermodynamics. It is worth noting that it is
a non linear relation. Therefore, the filtered field does not a priori obey it,
in the same way that it does not fulfill the original Navier—Stokes equations
since nonlinearities give rise to subgrid residuals. As a consequence, the LES
solution obeys new extended thermodynamic constraints, which are obtained
by applying the scale-separation operator to the classical thermodynamic laws.
The Clausius-Duhem entropy inequality, using (2.15), can be recast as

1 0 oT

— | P+ — (k=—]| >0. 2.164

T [ " Oz (Haxg)] - (2.164)

Multiplying this relation by T and applying a positive scale-separation oper-

ator, one obtains

. 0 oT

D+ — (KJ—) >0 (2.165)
6l‘j axj



38 2 LES Governing Equations

which appears as an exact extension of the second law of thermodynamics for
LES. It can be further refined by including the resolved and subgrid contri-
butions 96
G+ep+ 24 By >0 (2.166)
(933]'
This last equation shows that the subgrid viscous dissipation €, (defined
in (2.98)) and the subgrid viscous heat flux B; (see (2.138)) cannot be com-
puted independently, since they are bounded by the second law of thermody-
namics. Subgrid models which satisfy (2.166) can be referred to as thermody-
namically consistent subgrid models, by analogy with previous works carried
out within the RANS framework [9, 237, 238].

2.6 Model Construction

In the previous sections, we have shown that the reduction of the solution
complexity (number of degree of freedom) in space and time by the filtering
process results in coupling terms between resolved scales and subfilter scales
that must be closed by an appropriate form of modeling. The modeling process
consists in approximating the coupling terms on the basis of the information
contained solely in the resolved scales. Among all the SGS terms, 7;; possesses
a particular status since it is the only term which appears in the equations for
an incompressible isothermal fluid. One can anticipate that it will also play
an important role for compressible flows.

2.6.1 Basic Hypothesis

Subgrid modeling usually is based on the following hypothesis: If subgrid scales
exist, then the flow is locally (in space and time) turbulent. Consequently,
the subgrid models will be built on the known properties of turbulent flows
that will be summarized in chapter 3. Before discussing the various ways of
modeling the subgrid terms, we have to set some constraints [244]. The subgrid
modeling must be done in compliance with two types of constraints:

e Physical constraints. The model must be consistent from the viewpoint of

the phenomenon being modeled, i.e.:

— Conserve the basic properties of the underlying equations, such as
Galilean invariance and asymptotic behavior;

— Vanish wherever the exact solution exhibits no small scales correspond-
ing to the subgrid scales;

— Induce an effect of the same kind (dispersive or dissipative, for example)
as the modeled terms;

— Not destroy the dynamics of the resolved scales, and thus especially
not inhibit the flow driving mechanisms.
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Numerical constraints. A subgrid model can only be thought of as part of

a numerical simulation method, and must consequently:

— Be of acceptable algorithmic cost, and especially be local in time and
space;

— Not destabilize the numerical simulation;

— Be insensitive to discretization, i.e. the physical effects induced theo-
retically by the model must not be inhibited by the discretization.

2.6.2 Modeling Strategies

The problem of subgrid modeling consists in taking the interaction with the
fluctuating field ¢’ into account in the evolution equation of the filtered field

¢. Two modeling strategies exist [244]:

Structural modeling of the subgrid term, which consists in making the best
approximation of the modeled terms by constructing from an evaluation
of ¢ or a formal series expansion.

Functional modeling, which consists in modeling the action of the subgrid
terms on the quantity ¢ and not the modeled term itself, i.e. introducing
a dissipative or dispersive term, for example, that has a similar effect but
not necessarily the same structure.

The structural approach requires no knowledge of the nature of the scale
interaction, but does require sufficient knowledge of the structure of the small
scales, and one of the two following conditions has to be met:

The dynamics of the equation being computed leads to a universal form
of the small scales (and therefore to their structural independence from
the resolved motion, as all that remains to be determined is their energy
level).

The dynamics of the equation induces a sufficiently strong and simple scale
correlation for the structure of the subgrid scales to be deduced from the
information contained in the resolved field. This require both a knowledge
of the nature of the scale interaction and an universal character of the
small scales.

The distinction between these two types of modeling is fundamental and struc-
tures the presentation of subgrid models in Chaps. 4 and 5.
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