Chapter 2

Quasi-Monte Carlo for Fast Statistical
Simulation of Circuits

2.1 Motivation

Continued device scaling has dramatically increased the statistical
variability with which circuit designers must contend to ensure the reli-
ability of a circuit to these variations. As discussed in the introduction
to this thesis, traditional process corner analysis is no longer reliable be-
cause the variations are numerous and much more complex than can be
handled by such simple techniques. Going forward, it is increasingly im-
portant that we account accurately for the statistics of these variations
during circuit design. In a few special cases, we have analytical meth-
ods that can cast this inherently statistical problem into a determinis-
tic formulation, e.g., optimal transistor sizing and threshold assignment
in combinational logic under statistical yield and timing constraints, as
in [MDOO5]. Unfortunately, such analytical solutions remain rare. In the
general case, some combination of complex statistics, high dimension-
ality, profound nonlinearity or non-normality, stringent accuracy, and
expensive performance evaluation (e.g., SPICE simulation) thwart our
analytical aspirations. This is where Monte Carlo methods [Gla04] come
to our rescue as true statistical methods.

Monte Carlo simulation can emulate a real statistical process using
a given technique for simulating any event from this statistical process.
For example, the performance of chips coming out of a manufactur-
ing process is emulated by simulating multiple instances of the relevant
circuit, with each instance having a different set of values for its manu-
facturing related parameters. Over the years, Monte Carlo has become
a standard technique for statistical simulation of circuits and for yield
estimation during the design phase [SP81][HLT83]|[SKC99][Eli94]. How-
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ever, we gain the flexibility and accuracy that Monte Carlo offers at
the cost of speed: a single Monte Carlo run can cost a few thousand
SPICE simulations. Given its importance, it is surprising that Monte
Carlo has not received the research effort it deserves, from the EDA
community. There has been much research for methods to either replace
Monte Carlo simulation all together, using acceptance region modeling
[AMHI1][AGW94][SVK94], or replacing SPICE simulations, using re-
sponse surface modeling [YKHT87][FD93|[LLPS05]. The SiLVR model
presented in Chap. 1 falls under the category of response surface models.
However, these methods gain speed by sacrificing accuracy, and in many
cases accuracy is very important. An ideal solution would be to somehow
speed up Monte Carlo simulation, while still using SPICE simulations
and maintaining the generality of its application. There has been some
research on this [HLT83][SKC99], but there is much more that needs to
be done.

Here we observe that similar problems exist in various other fields
of science and engineering. In particular, we look at the field of com-
putational finance, where pricing financial instruments and derivatives
(e.g., Asian options, mortgage-backed securities) requires the simula-
tion of high dimensional stochastic processes, for which Monte Carlo
has remained the main practical method [Gla04]. These problems are
not only very nonlinear, they can also be quite large: pricing a portfolio
of options or securities over a several year horizon can create problems
with 1,000+ statistical variables, as in [NT96b]. Accuracy is often re-
quired to the level of one basis point (a relative accuracy of 10~#) under
impressively short time constraints (minutes, in the case of real-time
arbitrage). In this chapter we attempt at redepolying a particularly suc-
cessful Monte Carlo technique from this domain to our problem domain
of circuits. This technique is commonly referred to as quasi-Monte Carlo
(QMC) and is essentially Monte Carlo, but using a deterministic set of
points from some, so called, low-discrepancy sequence.

Note that the theoretical underpinnings of QMC are not completely
new, as evidenced by number theoretic results by Halton in 1960 [Hal60a].
However, recent developments in both theory and implementation com-
plexity, along with the empirical discovery that it is unexpectedly ef-
ficient at evaluating certain high-dimensional integrals, have propelled
QMC onto the center stage in the computational finance world, as evi-
denced by extensive articles in both popular and practitioner literature
(The Economist, August 12, 1995; The New York Times, September 25,
1995; Risk Magazine). QMC has also found application for high dimen-
sional integration problems in physics [MC95][Spa95]. A motivational
example from finance is provided by Ninomiya and Tezuka in [NT96b],
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where they evaluate the price of a five-year discount bond. For this 1,439-
dimensional problem, they observe a speedup of about 150 for an accu-
racy level of 1 basis point, on using QMC instead of Monte Carlo. Much
work has been done to study the application of QMC to finance prob-
lems [CMO97][ABGI8][OE04][PT95]. Our goal here will be to study its
application to circuit problems.

In the rest of the chapter, we will review the standard Monte Carlo
method and its convergence behavior, relevant results from number the-
ory and resulting QMC techniques, and our proposed framework for
applying QMC to statistical simulation of circuits. While developing
our framework we will also discuss some important idiosyncrasies of the
QMC technique, because of which a naive, direct application might not
work well. Based on this discussion we will then develop the essential
pieces of our flow. We shall see in the results section that this proposed
framework can lead to speedups of about 2 to 50 times over standard
Monte Carlo while maintaining the same level of accuracy. A concise
version of this chapter was presented in [SRO7b].

2.2 Standard Monte Carlo

Let us first concretely define the canonical problem that Monte Carlo
simulation addresses. We take two seemingly very different examples to
arrive at common terminology. We will then base further discussion on
this common terminology and the canonical problem.

2.2.1 The Problem: Bridging Computational
Finance and Circuit Design

Consider two problems from two completely different domains:
A. pricing an Asian option in computational finance, and
B. estimating circuit yield in VLSI design.

Let us see what is common between these two problems. This will allow
us to develop a canonical representation for the general problem that
Monte Carlo solves, which will further enable us to clearly understand
and apply related results.

2.2.1.1 Pricing an Asian Option

An option gives an investor the right to purchase one unit of a security
at a specified strike price K at a future time T'; for example, the right
to purchase shares of company XYZ at 5 dollars per share on a fixed
date in the future. Given K,T, we wish to determine the price that the
investor should pay for this option at present time 0. Merton expanded
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the work by Black and Scholes to develop the Black—Scholes options
pricing model [Mer73]. Merton and Scholes received the Nobel Prize in
Economics in 1973 for this and other related work. Among other results,
the model gives the payoff on an arithmetic Asian option, one of several
types of options [Gla04], as

[% /OTS(t)dt - K] R where [-] = max(0,-), (2.1)

where S(t) is the price of the underlying security (stock) at time t. S(t)
is given as

dS(t)

= S(t) = S(0)elr=057 ke fy (V] (2.3)

where r is the risk-free, continuously compounded interest rate, and x(t)
is a random process such that for every instant ¢, z(t) ~N(0,1). Thus,

fo Vdt is a Wiener process [Gla04]; that is, W (t) ~ N (0,1).

Here, x(t)\/ﬁ embodies the random volatility in the price of the security
and o is the magnitude of this volatility.

The Black—Scholes model gives the appropriate price of the option at
time 0 as the expected value of the discounted payoff:

ol [T
KO:E{e T T/o S(t)dt—K]+}, (2.4)

where e™"* accounts for the fact the option will be purchased at time 0,
but exercised at a future time 7T'. The typical way to evaluate this price
K is to first discretize time ¢ into s samples, with equal steps of size At
as

rT

T
to=0, At=—, t;=t;i_1+ At ie{l,...,s}. (2.5)
S

Then, the z; = z(t;) are s independent, identically distributed random
variables ~ N (0,1). We can now write the security price from (2.3) as

S(tz) ~ S(O)6[(T—0.50'2)iAt+O’AtZ;~:0:Cj]’ i = {1’ e S}. (26)

Then, evaluating S (t;) at each time sample, we can numerically approx-
imate the = fo t)dt in (2.4) as

1 (7 g _1g
T/o S(t)dtNSs—g;kg(ti) (2.7)
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and compute the option price from (2.4) as
Ko~ E{e T[S, — K], }. (2.8)

Note that S is a function of the s random variables {x;}5_; that follow
a joint multivariate density distribution 7(x) =N(0,Is). We can then
write the option price as

Ky~ 5 f(x)m(x)dx, where f(x)=e"T[Ss — K],. (2.9)

Hence, the problem is now of evaluating an integral over an s-dimensional
space.

2.2.1.2 Estimating Circuit Yield

Consider some circuit with s statistical parameters, or simply inputs,
{z;};_, and sy performance metrics, or simply outputs, {y;};>,. The
relationship between the outputs and the inputs can be written as

Y= fsim(x) (210)

where evaluating fs;,,, might involve running one or more circuit simula-
tions (e.g., AC analysis) and subsequent computations to compute the
metrics (e.g., gain), as needed to compute the metrics in y. Of course,
fsim also take the design variables as arguments, but we assume a fixed
design for this discussion. Also, there are some specifications that the
performance metrics must meet for an acceptable design. Denoting these
specifications by {t;}:¥,, we require {y; <t;}5_,, or equivalently y < t.
Please note that here we use < without any loss of generality. If for
some given x, the design meets this criterion, we denote the event as a
pass event, otherwise it is a fail event. In the context of manufacturing
variations, we might be interested in estimating the yield of the circuit
given probability distributions for the statistical parameters. The yield
is the percentage of manufactured instances of the circuit that pass the
specifications. We now state this mathematically. Let us define A, the
acceptance region for a given design, as the set of input vectors that give
us a passing circuit:

A={x:fg,(x) <t, xR} (2.11)
Also, define the characteristic function of A as

IA(X):{(I): i;j (2.12)
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which is 1 for pass and 0 for fail. This is also known as the indicator
function in the VLSI CAD literature [HLT83]. Now, we can define the
circuit yield as the probability of a circuit instance lying in the accep-
tance region:

Yi=PxecA)=E(4(x)) (2.13)

which can be written as
Yi :/ Ia(x)m(x)dx. (2.14)

This is now a problem of s-dimensional integration, similar to the prob-
lem of pricing Asian options.

2.2.1.3 The Canonical Problem
Equations (2.9) and (2.14) are identical in their form

Q=] gx)r(x)dx (2.15)
RS
and suggest a canonical form for the general problem. Only one step
remains before we can reach this canonical form. let 7; be the marginal
probability density distribution for z; and II; be the corresponding mar-
ginal cumulative distribution. Then, for independent z;, we can write
(2.15) as

Q= . g(z1,...,xs)m (1) ma(22) . . . s (T5)dx

= [ g ) I ), (2.16)
[0,1]*
leading us to the canonical form we seek by renaming z; as x;:
Q= f(x)dx, C°=][0,1]° (2.17)
C.s

where C? is the unit cube in s dimensions. For the rest of our discussions
in this chapter we consider only C* as our integration domain and as-
sume that all required transformations have been incorporated into the
function f.

2.2.2 Monte Carlo for Numerical Integration: Some
Convergence Results
The general integration problem does not usually admit an analytical

solution. A common approach to solve it then is to use numerical inte-
gration or quadrature, also known as cubature for s > 2 [Str71][C0099].
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These quadrature rules typically involve evaluating the function f at
strategically placed points in C'* and doing a weighted sum to arrive at
the estimate for the integral (). The problem with these classical cuba-
ture methods is that they become intractable as the dimensionality s
increases. The following theorem [Nik50] states this problem concretely.

THEOREM 2.1 ([Nik50]). Let f € WE(C*), where W} (C*) is the Sobolev
class [AdaT5] of functions defined on the unit cube C®° whose weak deriva-
tives up to order k exist and are bounded under the L, norm (see Sect. 1.4
and [Ada75] for definitions). Let Q(f) be the exact integral for f, and
QI (f) be any n-point quadrature approzvimation to Q(f). If pk > s then

inf  sup |Q(f) — Q)| =0(nM*) (2.18)
QA {F:1| fll,p<1}

where the norm || f||xp is the norm for the Sobolev space W;,“(C’S).

The theorem essentially says that for a given class of smooth functions,
the error of any numerical quadrature method using n deterministic
points decreases asymptotically as ©(n~1/%) with the dimensionality.
This implies that to halve the error, the number of points must increase
by a factor of 2°. Also, to maintain the same error, the number of quadra-
ture points must increase exponentially with the dimensionality s. Thus,
for circuit yield estimation, the number of circuit simulations in (2.14)
must increase exponentially with the number of statistical parameters.
This can very easily become intractable, even for very few parameters.
Here, we have run into the well-known curse of dimensionality. We face
this “curse” in all the three chapters of this thesis and a part of each
proposed method is some technique to defeat it.

Monte Carlo is able to defeat this curse. This is the primary reason
for its popular adoption for computing high-dimensional integrals in a
wide variety of fields. Another class of quadrature techniques based on
sparse grids proposed by Smolyak [Smo63] also improves the conver-
gence to make moderate-dimensional integration feasible. However, for
large dimensions (100s) only Monte Carlo techniques are known to be
tractable. For more details on sparse grid-based quadrature, please refer
to [GGY8]. The quadrature points used by standard Monte Carlo are
randomly chosen. We will also refer to these as sample/sampling points
in the context of Monte Carlo. In general, any random method for com-
putation is a Monte Carlo method [Hei96], but we focus primarily on
independent Monte Carlo, where every point is generated independently
of the other points. Examples of dependent Monte Carlo methods are
Markov chain Monte Carlo methods like Gibbs sampling and simulated
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Algorithm 2.1 The standard Monte Carlo algorithm

Require: function f, joint probability distribution II(x), and sample
size n
1: for i=1ton do
2. randomly generate x; = (x1,...,2,) from II
3. evaluate y; = f(x;)
4
5

: end for
. return Monte Carlo estimate Q,, = %2?21 Vi

annealing: a good survey is provided in [Fis06]. The standard Monte
Carlo algorithm is shown as Algorithm 2.1.

One Monte Carlo run involves evaluating the function f at n ran-
domly chosen locations in the input space. Since x;, and hence y;, are
independent and identically distributed, the Monte Carlo estimate @,
converges almost surely to ) as the sample size n is increased by the
strong Law of Large Numbers [HC71]; i.e.,

P(lim Qu=Q) =1, (2.19)

From Algorithm 2.1, we can easily see that if we ran multiple n-point
Monte Carlo runs, we would obtain a different estimate (), each time. As
a result, the integration error of Monte Carlo is probabilistic in nature
and a deterministic bound, as in Theorem 2.1, does not make sense. An
average error, however, does make sense. Bakholov [Bak59] showed the
following result.

THEOREM 2.2 (Bakholov [Bak59]). Assume the conditions of Theo-
rem 2.1. The average Monte Carlo integration error is @(n_g_%).

A proof can be found in [Hei94]. Thus, we can significantly improve over
the exponential complexity of the worst error for deterministic meth-
ods. For small s, the convergence behavior is close that for the classical
quadrature methods, ns. However, for moderate to large values of s
(typically > 6), the dimension dependent part becomes negligible and

the convergence is close to n~2. The extra gain of n=s s possible if we
exploit the smoothness of the function using variance reduction tech-
niques: these are enhancements to the standard algorithm that reduce
the variance of the estimate @,, [Fis06]. If we do not exploit the smooth-
ness, or if f is not necessarily smooth, we can still derive a similar result
using standard statistics.
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THEOREM 2.3. Let f € L1(C?) be integrable over C*. Define

o= [ S<f<x>—f>2dxf, f= [ feoix=q. @2

Then the average (r.m.s.) error of Monte Carlo is

VE[(Q—Qn)? — % as n— oo. (2.21)

PRrROOF. This is obvious from the central limit theorem (Theorem 3.2 in
Sect. 3.2.2) [HCT71], which says that

lim @29 4 N(0,1). (2.22)

n—eo /g2 /n

Hence, the Monte Carlo error decreases asymptotically as n~z for gen-
eral integrable f. Note that the proportionality constant for this behavior
is the standard target for variance reduction techniques like importance
sampling, control-variates, and Rao—Blackwellization among others: for
a review, see [Fis06][Gla04]. The next few sections will develop a frame-
work that can improve on this convergence behavior, using quasi-Monte
Carlo. Hence, it is complementary to these standard variance reduction
techniques: it targets the behavior n~2 and not the proportionality con-
stant o (f).

2.2.3 Discrepancy: Uniformity and Integration
Error

Suppose we have two different methods of numerical integration, which
use the same number of points n, but the points are placed differently.
We do not know anything else about the way these points are used by
the two methods. Is there something we can say about the relative errors
of the two methods with only this information regarding them?

One general way to address this question is to look at the properties
of the quadrature point set being used, in particular the uniformity of
the points. The following is based on Niederreiter’s development of this
topic in the comprehensive [Nie78]. Before discussing this more theoret-
ically, let us see an example to illustrate the context. Figure 2.1 shows
two sets of points that might be used for integration, say by a Monte
Carlo algorithm. In Fig. 2.1(a) we have a 200-point “random” sample
generated using a standard pseudorandom number generator (e.g., the
linear congruential generator [Fis06]). In Fig. 2.1(b) we have a 200-point
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(a) A 200-point pseudo-random point set (b) A 200-point Sobol’ point set

Figure 2.1. In two dimensions, Sobol’ points are more uniformly distributed than
typical pseudo-random points

“deterministic” sample from the so-called Sobol’ sequence. It is imme-
diately clear that the random sample is less uniform than the Sobol’
sample. In other words there is more discrepancy in the way the ran-
dom points are laid out from one region to the other, as compared to
the Sobol’ points. The uniformity, or rather the lack of it, is often mea-
sured in terms of a quantity understandably called discrepancy. Hence,
we say that the points in Fig. 2.1(a) have high discrepancy, while those
in Fig. 2.1(b) have low-discrepancy.

The uniformity of the point set is important because we are integrating
over the entire domain C* in (2.17), and the error will tend to 0 with
increasing n only if the points are drawn from a uniform distribution over
the entire unit cube. Hence, at least asymptotically the points should
tend towards perfect uniform distribution over C®. For a theoretical
treatment of this intuitive explanation and a comprehensive discussion
on uniformity please see [KN74]. The question is that if a point set
achieves better uniformity (lower discrepancy) with some fixed finite n,
is the corresponding integration estimate more accurate? We now review
some theoretical results that try to address this question and suggest
practical implications for Monte Carlo.

There can be several definitions for discrepancy [MC94][Hic98]. The
one immediately relevant to our discussion is the Lo, star discrepancy,
or simply the star discrepancy, which we now define. The reader may use
Fig. 2.2 as a reference illustration for the following. Let us say that we
have n points {x; : x; € C*}! ;| in our quadrature (Monte Carlo) point
set. For some hyperrectangle J C C?, let Vol(J) be the volume of J and
let I;(x) be the characteristic function (2.12) for J. Define the n; as the
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Figure 2.2. Tllustration for the definition of discrepancy: ns is the number of points
inside any hyperrectangle J within the unit cube C*

number of points lying inside J

n
ny=> I(x). (2.23)
i=1
Then, we define the discrepancy as

D, = sup
JCCs

%—www (2.24)

Hence, it is the maximum difference between the exact volume of any J
and the estimate (%2) of its volume using the points lying inside J. If
we only look at hyperrectangles with one corner at the origin, J =[0,a)

where a € C*, then we get the star discrepancy

"0,2)
n

*
D, = sup
aeCs

- Vol([O,a))‘. (2.25)

The following result by Koksma in one dimension and by Hlawka in
multiple dimensions provides a partial, but useful answer to our question
from the beginning of this section.

THEOREM 2.4 (Koksma-Hlawka [Hla61][Nie78]). If function f has
bounded variation in the sense of Hardy and Krause, then the Monte
Carlo error is bounded as follows.

e(f)=1Q —@Qu| <V (f)Dy, (2.26)

where V(f) is the variation of f in the sense of Hardy and Krause, and
D7 is the star discrepancy of the point set.
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V(f) is a measure of the total variation of the function over the unit
cube. For a smooth function in one dimension

1
Vm=AMﬂ (2.27)

which is just the integral of the absolute value of the gradient of f. Hence,
the more the function changes over the interval, higher is the value of
V(f). This can be generalized to multiple dimensions for non-smooth
functions, in the sense of Hardy and Krause. The definition of this vari-
ation is not relevant for our discussion, and an intuitive understanding is
sufficient. The definition is presented at the end of this section to avoid
distraction.

Inequality (2.26) provides us an upper bound on the integration error
for Monte Carlo using any given point set. It is particularly attractive
because it separates out the two influences on the error: the properties
of the function f, and the properties of the point set. Hence, it suggests
that the error might be reduced if we used points with lower discrepancy.
For a random sequence of points uniformly distributed over C?, it has
been shown that [Kie61]

D;:o([lowr) (228

n

with probability 1. Combining this with the deterministic bound in
(2.26) we see a good match with the n=%5 convergence of the probabilis-
tic error bound (2.21) for standard Monte Carlo. Taking the suggestion
of Theorem 2.4 we ask if there are point sequences with lower discrep-
ancy, and does it help to replace random sampling with these sequences?

Similar to the star discrepancy, the Lo star discrepancy is defined as

2
* n[O,a) 2
T = - Vol(]0,a)) | da| . (2.29)
It is known that [Nie78]

D} >Tr. (2.30)
Roth [Rot80] proved a lower bound for the Ly star discrepancy of any
set of n points in C'*, which then also applies to the star discrepancy

s—1

|
Df > T >, 1081 7

(2.31)
where ¢s depends only on s. For the first n points of an infinite sequence,

it is modified [KN74] to

e s o)’

n S

(2.32)
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We take this opportunity to clarify the difference between a set of n
points and a sequence. The former is of finite size, while latter extends
to infinite size. Hence, if the required sample size n is known before
hand, we can better tailor the n point locations, as compared to when
the required n is not known in advance and the point generation scheme
must be able to keep generating points incrementally. The bound (2.31)
applies to the former, while (2.32) applies to the latter. There is a widely
believed conjecture in the theory of uniform distributions that says that
a tighter bound exists with the exponent % replaced by s —1 in (2.31)
and § replaced by s in (2.32). This has been proved only for s <2 in the
first case and for s =1 in the second, but it is the best seen behavior yet
for arbitrary s. Hence, any such sequence, for which

D :()(M) (2.33)

" n

is called a low-discrepancy sequence (LDS) or a quasi-random sequence.
We will use the former term in this thesis. Halton, in [Hal60b], showed
the existence of infinite deterministic sequences in any dimension s which
satisfy (2.33), and provided a construction for one such sequence, com-
monly referred to as the Halton sequence. Hence, for large values of n,
we can achieve n~! convergence of the discrepancy, as compared to only
n~9%° for random sequences. The points shown in Fig. 2.1(b) are from
one such LDS, discovered by Sobol’ [Sob67]. We can clearly see the lower
discrepancy as compared to the pseudorandom points in Fig. 2.1(a).

Other definitions and generalization for discrepancy have been pro-
posed [Nie78][MC94][Hic98][Wo91]. In many cases corresponding results
similar to the Koksma-Hlawka inequality, often for some special class
of functions, have been also provided. For example, [Wo91] provides an
estimate for the average error over a class of functions following the
Brownian sheet measure — a generalization of Brownian motion to s
dimensions — using the Lo star discrepancy 7).

2.2.3.1 Variation in the Sense of Hardy and Krause

Here we define the variation of a function f over C? in the sense of Hardy
and Krause, as given in [Nie78]. For any interval (hyperrectangle) in C*,

J = [agl),agl)] X e X [ags),ags)] C C%, define

2 2
S(f5 )= Y (=netrtefal), L al?), (2.34)
e1=1 es=1

Here we add up the function value at all “even” corners of J (e; +---+
es even) and subtract out the function values at all the “odd” corners
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(e1 4+ -+ es odd). Now define any grid over C* with any number of
slices along each dimension. Each slice along any dimension can be of
any arbitrary, non-trivial width, but with no overlap between slices. The
set of all single cells in the grid is a partition P of C*®. Now define

VE(f) = sup > 16(f5 ) (2.35)

JeP

where the supremum is over all possible partitions of C*. This is the
variation in the sense of Vitali. Let u = {i1,...,it} be a subset of the
dimensions, such that 1 <k <s and 1 <43 <--- <i, <s. Define C =
{a€C®:a;,=1 for a; ¢ u} as the subset of C* with all coordinates not
in u set to 1. With f restricted to C3, define V*)(f;u) as the variation
in the sense of Vitali over C%, where k = card(u) = |u|. Then, we can
define V(f) in the sense of Hardy and Krause as

V(iH=Y_ Y V¥(fu). (2.36)

k=1 {u:|u|=k}

If V(f) is finite, then f has bounded variation in the sense of Hardy
and Krause. If f is sufficiently smooth (has finite partial derivatives of
sufficient order), then we can use partial derivatives instead of the finite
sums and differences in (2.35), as shown in [MC94].

2.3 Low-Discrepancy Sequences

Quasi-Monte Carlo is Monte Carlo performed with points from a
deterministic low-discrepancy sequence (Sect. 2.2.3). There two main
classes of LDS:

1) (t,s)-sequences, and
2) integration lattices.

(t,s)-sequences have enjoyed more popularity and research than integra-
tion lattices, one reason being that it is more difficult to extend lattices
to infinite sequences. In this thesis, we focus on (¢, s)-sequences for these
reasons. The interested reader is referred to [HHLLOO][FW94][HW81] for
details on integration lattices.

2.3.1 (t,m,s)-Nets and (t,s)-Sequences in Base b

In this section we present a definition of (¢,m, s)-nets and (, s)-sequences
in based b, following the development in [Nie87]. As a preview, we note
that a (t,m,s)-net in base b is a fized set of exactly b points, where b
is the base we will work in (e.g., 2 if binary), and m determines the size
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of this finite point set. Also, s is the number of dimensions and ¢ is a
measure of the quality of the sequence in terms of uniformity — smaller ¢
will imply better uniformity for fixed m, s and b. These interpretations
extend also to the case of (t,s)-sequences in base b, which are fixed
infinite sequences of points in s dimensions, which are composed of an
infinite number of (¢,m,s)-nets in a particular manner. Smaller ¢ still
implies better uniformity, for fixed s and b. Now, we proceed towards a
concrete definition.
A b-ary box is an interval of C* of the form

a; a;+1
J = H[de> (2.37)

for integers d; > 0 and 0 < a; < b%. Hence, if we create a grid over C*
with b% slices of equal width along dimension i, then each cell of the
grid is a b-ary box. If any d; = 0, then their is no slice along dimension 1.
Given integers b > 2 and 0 <t < m we can define a (t,m,s)-net in base
b as a point set consisting of b™ points, such that n; = b’ for every b-
ary box with volume Vol(J) = b""". We recall from (2.23) that n; is
the number of points lying inside J, as used in the definition of star
discrepancy (2.25), which we reproduce here for convenience.

* n[O,a)
D; = sup |—— — Vol([0,a))]|. (2.38)
acCs n

Figure 2.3 illustrates this idea with a (0, 3,2)-net in base 2: t =0, m = 3,
s =2 and b= 2. The number of points in the net is ™ =23 = 8. All
possible 2-ary box shapes, with volume b~ =203 =1 /8 are shown
cornered at the origin. Stacking any of these shapes side by side with no
overlap, to fill out the unit square will give us all the 2-ary boxes with
volume 1/8 for that shape. Repeating this for all four shapes will give us
all possible 2-ary boxes of volume 1/8. We can see that every such 2-ary
box contains exactly 1 (b’ = 2°) point. Hence, we call this a (0,3, 2)-net
in base 2, and we say that the net balances all 2-ary boxes with volume
1/8. Any box J is balanced by a net with n points, if it contains exactly
n x Vol(J) points; i.e., its volume can be exactly computed using the
fraction of points lying in it ( Vol(J) =n;/n). This property of (¢,m, s)-
nets helps reduce the star discrepancy (2.38) by making the term in the
supremum equal to zero for some choices of a (for the b-ary boxes with
Vol(J) =b"""", where t > 7 <m), and by reducing the chances of a large
term for any a. We note here that any (¢, m, s)-net is also a (7,m, s)-net
for every integer 7 > t. By t we will imply the smallest such value of 7.
We can see that smaller values of ¢ lead to better uniformity, since the
net can then balance, or uniformly fill, smaller boxes.
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Figure 2.3. A (0,3,2)-net in base 2 balancing all 2-ary boxes with volume 1/8

For base b, we write Z, ={0,1,...,b—1} for the set of digits in base b.
For any real number x € [0, 1], we can write the b-adic expansion (e.g.,
binary expansion for base 2) as

=Y zb7, wz;€Z, V). (2.39)
j=1

Truncating this at m digits (e.g., using 32 bits of computer precision),
we define

@b = b (2.40)
j=1

as the m-digit truncation of x. Here we make a sudden change in the
notation for the coordinates of a vector: let us write any vector x € C'*
as x = (M, ..., z(®)). This is done for notational convenience in the
following theory. Then, we can write an m-digit truncation for x in
base b as

X]pm = (2D ]pms -, 29 ]m)- (2.41)

Let b>2 and ¢t > 0 be integers. Then, we define a (t,s)-sequence in
base b as a sequence of points {x; : i ={1,2,...}} in C?, such that for all
integers k > 0 and m > ¢, the set of points {[x;]pm : kb™ <i < (k+1)b™}
is a (t,m,s)-net in base b. Again, we see that a sequence with smaller
t for fixed s and b is preferred, since it will contain (¢,m, s)-nets with
smaller t. The popular constructions of Sobol’ [Sob67] and Faure [Fau82]
are instances of (t,s)-sequences as shown by Niederreiter [Nie87], who
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then proposed (¢, s)-sequences with better properties: Niederreiter se-
quences [Nie88] and, subsequently Niederreiter—Xing sequences [Nie98|.

In the context of exploiting low discrepancy, as defined by (2.33), we
want to know the discrepancy of (t, s)-sequences. According to [Nie87],
the discrepancy of a (¢, s)-sequence is bounded by

s s—1
D: gc(t,s,b)@JrO(%), V> 2. (2.42)

This shows that any (¢,s)-sequence is an LDS as defined by (2.33).
c(t, s,b) is independent of n, and is given by

¢ —1\°¢
b§<2blogb> ; s=2orb=2, s=3,4
. 2.43
c(t,s,b) b_t b—1 [([b/2]\° otherwise -
s12[0/2] \ logb ) )

where |z] is the greater integer < . From this, we can see that smaller
values of b are preferable for given t and s, as they lower the bound on the
discrepancy. The Sobol’ sequences [Sob67] are in the smallest base, b =2,
with ¢ dependent on — and increasing with — s. It is also obvious from
(2.43) that, for given b and s, smaller values of ¢ are better, in agreement
with our previous conclusion based on the definitions of (¢, m, s)-nets and
(t,s)-sequences. Faure’s construction [Fau82| achieve the minimum vale
of t, t =0, for b dependent on s: b is p(s), the smallest prime > s.
Given this, it is natural to ask which of the two sequences is better.
This is a difficult question and a clear answer is not known. In cer-
tain asymptotic terms, the discrepancy bound for the Faure sequences
shows large improvement over the bound for the Sobol” sequences. The

discrepancy bound constant c(t, s,b) for Sobol” points takes the form
2t

=, 2.44

57 Sl(log2)* (244)

Sobol’ [Sob67] gives the following bound for ¢ as a function of s, for the

Sobol’ sequence:
slogs

t(s) > .
(s) 2 loglog s

(2.45)
This means that for the Sobol” sequences t increases superlinearly with
increasing dimensionality s, and, thus, the constant in the discrepancy
bound increases superexponentially with s. This is definitely not desir-

able. For the Faure sequence, the constant can be written as [Fau82]

_1 (1’(8)—_1> (2.46)

s!'\ 2logp(s)
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which has the very desirable property that lims; ... Cr = 0. However,
we want to stress caution while using these asymptotic properties of
the discrepancy bounds to compare the Sobol’ and Faure sequences, or
any other sequences. It is easily shown [MC94] that for practical values
of n, the Faure bound actually increases to very large values before
reducing back towards 0. We can see this by computing the maximum
of the dominant term in the Faure bound. It is shown in [MC94], using
basic calculus, that the maximum occurs for n = e®. This shows that the
dominant term in the Faure discrepancy bound increases with increasing
number of points n up to n = e*, whereas, it is to be expected that the
actual discrepancy (uniformity) should reduce (improve) with increasing
number of points. Hence, the convergence behavior of the bound sets
in only after an extremely large number of points even for moderately
large s.

Also, the bound in (2.42) is just that: a bound. There can be a large
difference between the bound and the actual discrepancy in terms of
magnitude and behavior. We cannot rely on the bound to compare the
actual discrepancies of Sobol’ and Faure points, as evidenced by the
initial, but long increasing behavior of the Faure bound. These argu-
ments extend for the general case of any set of (t,s)-sequences, and
illustrate the difficulty in making a theory-backed choice between them.
This difficulty is further worsened by the fact that the Koksma—Hlawka
inequality (2.26) also only provides an upper bound on the integration
error; and this bound may also be very loose, as shown for one class of
functions in [Wo91][MC94]. [MC94] provides further insightful discus-
sion and illustrations on this topic. Also see [Fox99], Chap. 12. We will
choose the Sobol’ points for our demonstrations, but based on empirical
and practical considerations. However, this choice should not be taken
as a definite rule for choosing Sobol’ points over Faure points, since it
is not backed by rigorous theoretical comparisons. We will revisit these
considerations in more detail in Sect. 2.3.2.3, after we see how we can
actually construct these (t, s)-sequences, along with some more examples
that show better properties than both the Sobol’ and Faure sequences.

2.3.2 Constructing Low-Discrepancy Sequences:
The Digital Method

2.3.2.1 The Van der Corput Sequence: A Building Block

Van der Corput proposed one dimensional low-discrepancy sequences in
1935 [Van35], using b-adic expansions similar to (2.39) in some base b,
where b is an integer > 2. Say we are generating the n-th point, where



Quasi-Monte Carlo 77

n n binary Zn = 2(n) binary Zn (fraction)
0 0 0. 0 0

1 1 0. 1 1/2

2 10 0. 01 1/4

3 11 0. 11 3/4

4 100 0. 001 1/8

5 101 0. 101 5/8

6 110 0. o011 3/8

7 111 0. 111 7/8

8 1000 0. 0001 1/16

Table 2.1. First nine points of a Van der Corput sequence in base 2

n=1,2,.... Consider the b-adic expansion of n — 1,
© .
n—lzZak(n)b] =...aga1ap, (2.47)
k=0

where ag(n) is the k-th digit in the base b representation of n — 1, as
represented by the last term, where we have dropped (n) to reduce no-
tation. For finite n, only a finite number of ai(n) will be nonzero. The
n-th Van der Corput point z,, € [0,1) is then given by

Ty =Yp(n) = Z akb—;(n) =0.apa1a2. ... (2.48)
k=1

1y is the radical inverse function and it basically mirrors the digits about
the base b radix point. A example for base 2 is shown in Table 2.1.
We can see how each subsequent point is strategically placed to fill out
some largest remaining gap, ensuring good uniformity over the interval
[0,1).

Halton [Hal60b] provided the first method for constructing an LDS
in arbitrary dimensions, by extending Hammersley’s method [Ham60]
of generating finite point sets with low-discrepancy. The method uses
one-dimensional Van der Corput sequences [Van35] with a distinct base
for each coordinate, such that the bases are relatively prime integers
greater than 1. Taking the first s prime numbers is typical since smaller
bases result in uniformity with fewer samples for the Van der Corput
sequence. However, the Halton sequence suffers from very poor unifor-
mity in high dimensions because of an undesirable feature of the Van
der Corput sequence for large base b. We illustrate this with the ex-
ample of base 10. For n ={1,2,3,4,5}, the radical inverse function 19
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gives the first 5 points as {0.1,0.2,0.3,0.4,0.5} which are all clustered
in one half of the interval [0,1). This “monotonic” filling is more pro-
nounced for larger values of b, leading to only small parts of C*° being
filled for even moderate dimensionality s. Hence, the Halton sequence
is unsuited for our application where we expect to see s of the order of
101102, and we do not dwell further on it here. For more discussion
on it and its improvements, which remain inadequate, see [Gla04]. The
Sobol’ and Faure sequences were huge improvements over Halton’s con-
struction and enabled practical use of QMC for large dimensions. Both
these methods construct each coordinate by using some generalization
of the Van der Corput sequence in some base that results in a permu-
tation of the Van der Corput sequence. In fact, as we will see, both
the Sobol’ and Faure constructions fall under a single general class of
(t,s)-sequence constructions by Niederreiter [Nie92|, called the digital
method. The digital method uses generalizations of the Van der Cor-
put sequence for generating the different coordinates of a sequence in s
dimensions.

2.3.2.2 The Digital Method, Digital Nets and Digital
Sequences

To avoid excessive technical notation, we now define digital nets and
sequences only over a residue class field Z; with b prime. The elements
of Zy are {0,1,...,b—1}. Hence, we can define any real number in base
b using this field. For a more general definition over arbitrary finite com-
mutative rings, see [Nie92]. The reduced definition is more than sufficient
for our endeavors.

Digital sequence: Let s > 1 be the dimensionality, and b > 2 be a prime
base. Let {C(i)}f:1 be s 0o X co matrices over Zy; i.e., each element of
the matrices is a digit in base b. For integer n > 1 let

n—1= i ap(n)b* (2.49)
k=0

be the base b representation of n — 1. Then define a sequence {x,,} with
the n-th point

x, = (21, ..., z)), (2.50)
(i)

i . Yy (n)
x%) :Z kbk , (2.51)
k=1




Quasi-Monte Carlo 79
where {y,(j) (n)} are given by

u" () ao(n)
W(ny | =cO. algn) (mod b). (2.52)

Such a sequence is called a digital sequence over Z;. Here it is assumed
that for each n only finitely many digits (ag(n)) equal b— 1. The matrices
CW are called generator matrices. Comparing with the Van der Corput
sequence in (2.48) we see that each coordinate of this digital sequence
is a permuted form of the Van der Corput sequence in base b. This
permutation is provided by the generator matrices. For a C) = I, we
get the original base-b Van der Corput sequence.

Digital nets: We note that the generator matrices are of size oo to
theoretically allow an infinite digit representation. However, in practice
n will always be finite, in fact, only a few thousands or millions usually,
needing only a finite number of significant digits in its b-adic expansion.
If we use only m digits, then only the upper left m x m submatrix of
every C will be relevant, and we can generate a maximum of b™ points.
With such digit truncation, we are no longer truly generating a sequence
with finite matrices; we are generating finite point sets or nets. A point
set with b points, so generated, is called a digital net. In a practical
setting, say while applying this digital method for yield estimation of
circuits, we will set m sufficiently high such that we never generate b
points. Also, we will typically need to have the ability to generate points
incrementally, without initial knowledge of the exact value of n we will
need. In such a case, even if we are use finite generator matrices, we are
effectively choosing points from the underlying infinite sequence. Hence,
it is sufficient and also more relevant, to discuss only sequences from
here on.

Digital (t,s)-sequences: A digital sequence is of use to us here only
when it is a (¢, s)-sequence. Niederreiter [Nie92] provides us the criteria
for this requirement. Let

{6]1 ’ ]2 . } (2'53)
be the j-th row of matrix C(’). For integer m >0 let
RO
Z ( ) {0]1’ JQ? ° ]:TL} (254)

be the j-th row of the upper left m x m matrix of C®. Define a system
of vectors .
C={c!:1<j<m, 1<i<s), (2.55)



80 FAST STATISTICAL ANALYSIS

taking only the first m rows of the C(Y) matrices. Then for integers 0 <
di,...,ds<m, and > ;_,d; = d, define o(C) as the largest d such that
any subsystem {cg-z) :1<5<d;,1<i<s}CC is linearly independent
over Zp,. Now define the system of vectors

C(m)={c(m):1<j<m, 1<i<s). (2.56)

For integers m >t >0, if o(C(m)) > m — ¢, then the corresponding dig-
ital sequence is a (t,s)-sequence in base b. Note that we are usually
interested in the smallest such t.

Some notable examples of digital (¢, s)-sequences are constructions by

1) Sobol’ [Sob67]: Sobol” constructed (¢, s)-sequences in base 2 for any
dimension s, with ¢ depending on s and of order of magnitude
O(slogs). This leads to a superexponential increasing behavior for
the constant c¢(t,s,b) in the leading term of the discrepancy bound
(2.42) for Sobol” sequences. This was discussed in more detail in
Sect. 2.3.1. The generator matrices are constructed using the coef-
ficients of primitive polynomials over the field Zs. A software im-
plementation was shown in [BF88] and refined in [JKO03]. We will
describe the construction in detail in Sect. 2.3.3.

2) Faure [Fau82]: Faure constructed (0, s)-sequences in any prime base
b > s for any dimension s. These sequences improved the asymptotic
behavior of ¢(¢,s,b) in the discrepancy bound (2.42) to
limg 00 ¢(t, 5,0) = 0. Implication of this “improvement” and related
caveats were discussed in Sect. 2.3.1. Faure used powers of the upper-
triangular Pascal matrix modulo b, Py to create the generator ma-
trices:

CO=Pi~! fori>2, ~ CW=I (identity matrix). (2.57)

The (j,k)-th element of the i-th generator matrix for ¢ > 2 is then
given by

. k=1 o(k—j) ;
(@) _ ijll y J < k P>
) = {07 e iz2 (2.58)

See [Gla04] for further details. [Fox86] presents a software implemen-
tation.

3) Niederreiter [Nie88|: Niederreiter generalized these previous construc-
tions and, for the first time, showed a construction for (¢, s)-sequences
for all dimensions s and all bases b. For fixed b, the order of mag-
nitude of ¢ = O(slogs), similar to Sobol’ points. However, on us-
ing different b for different s, better values of ¢ can be obtained.
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The generator matrices are constructed using coefficients of distinct
monic irreducible polynomials of minimum degree. A software imple-
mentation is presented in [BFN92]. A generalization of the Halton
sequence using a polynomial version of the radical inverse function
(Sect. 2.3.2.1) was shown by Tezuka [Tez93], which is similar to the
Niederreiter sequences. [NT96b] shows how the Sobol’ and Faure
sequences are special cases of these sequences, and obtains natural
generalizations for both Sobol’ and Faure sequences.

4) Niederreiter and Xing (NX) [XN95]: These researchers proposed the
idea of using algebraic curves over finite fields (or, equivalently global
function fields) to construct generator matrices, resulting in (¢,s)-
sequences with significantly improved theoretical quality over all
previous constructions. At least four different constructions on this
idea were proposed by them and are summarized in [Nie98]. For any
given s, the constructions in [XN95] and [NX96] achieve the lowest
values of . The best achievable order of magnitude of ¢ for these
NX sequences is O(s) for fixed b, which is significantly better than
the otherwise common O(slogs). [Pir02] shows an implementation
of the construction in [XN95] for dimensions 4 to 16. The construc-
tion of NX sequences require algebraic curves with certain specific
properties to achieve the optimal ¢ [Nie98]. Known examples of such
algebraic curves are limited, and this limits the number of dimensions
that can be constructed. Further, due to the very abstract nature of
the formulation of these constructions, it is difficult for the general
practitioner to implement them.

2.3.2.3 Comparing (t, s)-Sequences and Choosing One

Table 2.2, reproduced from [Nie98], shows a comparison of the t val-
ues for (¢, s)-sequences constructed in base b using methods 1 [Sob67],
3 [Nie88] and 4 [NX96]. The much lower ¢ values for the NX sequences
suggest much lower discrepancy (2.43) and, consequently and potentially,
much lower integration error (2.26). However, as discussed above, there
are significant implementation difficulties with the NX sequences. Also,
the Niederreiter sequences (method 3) do not offer significant improve-
ment over the Sobol’ or Faure sequences, for the general case. Given these
reasons and the immense popularity of the Sobol’ and Faure sequences
among practitioners, we make a choice between the latter two options,
for our experiments. Theoretical considerations do not provide a clear
choice, as discussed in Sect. 2.3.1. Hence, we rely on empirical obser-
vations provided in [ABG98][Gla04] which show better performance on
using Sobol’ sequences. Furthermore, the fact that the Sobol’ sequences
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s 1) Sobol’ [Sob67] 3) Nied [Nie88] 4) NX [NX96]
1 0 0 0
2 0 0 0
3 1 1 1
4 3 3 1
5 5 5 2
6 8 8 3
7 11 11 4
8 15 14 5
9 19 18 6

10 23 22 8

11 27 26 9

12 31 30 10

13 35 34 11

14 40 38 13

15 45 43 15

16 50 48 15

17 55 53 18

18 60 58 19

19 65 63 19

20 71 68 21

Table 2.2. Comparison of values of ¢ for (¢, s)-sequences in base 2, for 1 < s < 20.
The NX sequences have the lowest t values, and the best uniformity properties in
terms of discrepancy (2.42). Reproduced from [Nie98]

are in base 2 allows us to exploit fast bit-level Boolean operations in
the software implementation. For these reasons, we will use Sobol’” se-
quences as our representative LDS to demonstrate the performance of
QMC, and we will discuss only their construction in detail. Note that
the performance of Sobol’ sequences can only be improved upon by using
the significantly better NX points.

2.3.3 The Sobol’ Sequence

Sobol’ [Sob67] gave the first construction of a (t,s)-sequence (he used
the name L P;-sequence). Here we review the construction in the context
of the digital method. We first show how the generator matrices are con-
structed, after which we discuss some practical issues for optimizing the
uniformity of the sequences and for fast software implementation. Since
each coordinate in the sequence is generated using a distinct generator
matrix, let us focus on only on dimension first, and it can then be easily
extended to arbitrary dimensions. Dropping the superscript for dimen-
sion, we want to compute the generator matrix C for a one dimensional
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Sobol’ sequence. We recollect that the sequence is in base 2, hence every
element of C is a bit: a 0 or a 1. In practice we will work with a finite
number of bits for the generated values; say this is m. Then, C is an
m X m matrix. Each column of this matrix can be considered as an m-
bit binary expansion of some number v; € [0,1), with an implied radix
point: the uppermost element in the column is the most significant bit.

m

CLi
vj = Z £ = O.CliCQi o Cmy- (2.59)
k=1

These numbers v; are called direction numbers. Using these direction
numbers, we can write the digital method of (2.52) as

Ty =ap(n)v1 @ ar(n)va® - ® am—1(N)y, n=1,2,..., (2.60)
where @ denotes bitwise binary addition (modulo 2),
0B0=0, 0@l=1, 1&0=1, 1®1=0, (2.61)

which is the same as a bitwise XOR, operation, and the a; bits are from
the binary representation of n — 1.

Now the problem is to compute the m direction numbers. Sobol’s
method starts by selecting a primitive polynomial over Zs ={0,1},

2l +dx?t o dy e+ 1, d;€{0,1}, Vi. (2.62)

This is a polynomial of degree ¢ and coefficients d; in {0,1}, satisfying
two properties with respect to binary arithmetic (modulo 2):

m it is irreducible; i.e., it cannot be factored, and

m  the smallest power p for which the polynomial divides zP + 1 is p =
29 4+ 1.

Tables listing primitive polynomials are widely available, for example
in [PW72], and generation algorithms have also been suggested, as in
[RB95]. We also need to choose odd integers my,...,mg, such that 0 <
mj < 27. The polynomial (2.62) defines a recurrence relation,

mj =2dym;j_1 ®2%dam;_o ® - B 29 dg_1mj_q1 ®27mj_q D my_g,
i>q (2.63)

where again @ denotes bitwise binary addition (modulo 2), or bitwise

XOR. Now we can define the direction numbers as
s

-

=24 (2.64)

Uj
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Note that dividing by 2/ is equivalent to shifting the radix point to the
left j places in the binary representation of m;. Then, we can use (2.62)
to define a recurrence relation for vj,

Vi ,
o i>a

(2.65)

Vj =d1vj—1 B 201D D dg_1Vj—q11 DVj—q P

Note that we are choosing the first ¢ direction numbers by choosing the
first ¢ m; values. The remaining m — ¢ direction numbers (columns of
the generator matrix) can be computed using this recurrence relation.

We illustrate this procedure with an example. Consider the primitive
polynomial

4z +1, (2.66)
where ¢ = 3. Then the recurrence (2.64) becomes
Vi—3
Vj =vj—2Dvj—3D ]2—3 (267)

Suppose we initialize with m; = 1,mg = 1, mg = 3. The corresponding
direction numbers are calculated by dividing m; by 27, or shifting the
binary radix point to the left by j places in the binary representation
of m;. Hence, in binary form

v =m1/2=0.1, wa=my/22=0.01,  v3=mz/2%>=0.011.
(2.68)
Also suppose that we are using m =5 bits. Using the recurrence (2.67),
we can compute the remaining m — ¢ =5 — 3 = 2 direction numbers:

U1
vy =02V D >3
=0.0100 ¢ 0.1000 & 0.0001
=0.1101,
V2
23
=0.01100 & 0.01000 ¢ 0.00001
= 0.00101. (2.69)

Vs = U3 D U2 D

Using the bits of these direction numbers, we can write our generator
matrix as

(2.70)

Q

Il
OO OO
OO O = O
OO == O
O = O = =
_ o = OO
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Note that the generator matrix is an upper diagonal matrix. This is
true in general for any Sobol’ generator matrix. This is because the j-th
column (direction number) is generated by taking a number m; with
maximum j bits (m; < 27). Also, every diagonal element is 1 because
every m; is odd. We can use this generator matrix in (2.52) to generate
the Sobol” points. Instead, equivalently, we use (2.60) exploiting efficient
bitwise binary operations.

x1 = 0(0.10000) & 0(0.01000) & 0(0.01100) & 0(0.11010) @ 0(0.00101)

=0.0=0

29 = 1(0.10000) & 0(0.01000) & 0(0.01100) & 0(0.11010) & 0(0.00101)
=0.1=1/2

3 = 0(0.10000) & 1(0.01000) & 0(0.01100) & 0(0.11010) & 0(0.00101)
=0.01=1/4

24 = 1(0.10000) @ 1(0.01000) & 0(0.01100) & 0(0.11010) & 0(0.00101)
=0.11=3/4

5 = 0(0.10000) & 0(0.01000) & 1(0.01100) & 0(0.11010) & 0(0.00101)
=0.011=3/8

26 = 1(0.10000) & 0(0.01000) & 1(0.01100) & 0(0.11010) & 0(0.00101)
=0.111=7/8

27 = 0(0.10000) @ 1(0.01000) & 1(0.01100) & 0(0.11010) & 0(0.00101)
=0.001=1/8

i= (2.71)

We can see that the resulting points are permutations of the Van der
Corput sequence in base 2 (Sect. 2.3.2.1). For the case of multiple di-
mensions (s > 1), each dimension gets its own distinct primitive polyno-
mial and a corresponding set of initial m; values. This leads to different
permutations of the Van der Corput sequence in different dimensions,
resulting in uniform distribution in the sampling region C*.

The Sobol’ construction takes two external inputs for each dimension:
the primitive polynomial and the set of m; values. T'wo natural questions
that follow are:

m  How do these inputs affect the properties of the resulting sequence?

= What are good choices for these inputs?
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Sobol’ provides us with some answers to these questions. First we look
at the choice of polynomials.

2.3.3.1 Choosing Primitive Polynomials for Good Sobol’
Sequences

Sobol’ [Sob67] showed that under certain conditions the ¢ parameter for
a Sobol’ sequence is

S

t=> (G—-D)=q+aq@+ - +q—d (2.72)

=1

where ¢; is the degree of the primitive polynomial used for dimension 4.
In the general case, a Sobol’ sequence might achieve a lower t value:
this is an upper bound on the lowest ¢ value, that is exact under the
conditions given in [Sob67]. Since a lower value of ¢ leads to better uni-
formity and a lower bound on the discrepancy (Sect. 2.3.1), this result
recommends using polynomials of lowest possible degree. Hence, we sort
the polynomials with nondecreasing degree and use them in the same
order for increasing dimensions.

2.3.3.2 Choosing Initial Direction Numbers for Good Sobol’
Sequences

Sobol’ [Sob76] defines two uniformity properties for any sequences:
= Property A: An s-dimensional sequence {x,} satisfies property A

if for every j =0,1,... exactly one of the points {xj :j2° <k <
(7 +1)2°} falls in each of the 2° cubes of the form

H[% al;H)v a; €{0,1}. (2.73)

=1

In other words, every set of points {xj:j2° <k < (j+1)2°} is a
(0,s, s)-net in base 2. Note that some similar properties are satisfied
by any (t, s)-sequence (Sect. 2.3.1), but this property strengthens the
uniformity requirement.

= Property A’: An s-dimensional sequence {x,} satisfies property A’
if for every j =0,1,... exactly one of the points {xj :j2% <k <
(j + 1)22%} falls in each of the 22 cubes of the form

S
H[% al: ) a; € {0,1,2,3). (2.74)
=1
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In other words, every set of points {xy :j2%° <k < (j +1)2%*} is a
(0,2s,s)-net in base b. Once again, although there are similarities
with the (¢,m,s)-net properties of a (¢, s)-sequence, this property
strengthens the uniformity requirement.

Sobol” [Sob76] also provides conditions on the direction numbers to en-

sure these additional uniformity properties for the resulting Sobol” se-
quences. Denote the j-th direction number for the i-th dimension by vj(-z).

Thus, the generator matrix X is composed from {U%i),véi), ...}, where

we have used the column vector interpretation of each vj(-i). Denote the

first bit of U](-i) by vj(? this is also the first element of the j-th column

of C or, equivalently, the j-th element of the first row of C(). Then,
property A holds for the generated sequence if and only if

1) (1 1

o og Lol

)

1

(2) ()
V1] Vg .- Vg,

(
(
> # 0 mod 2. (2.75)
© (5 (s

V)1 Vg1 - Vg

Note that this condition is on the first s direction numbers. In practice
we will use m direction numbers and for large s, m may be less than s.
However, theoretically, all s direction numbers do exist from their recur-
rence relation (2.64). Following the notation from above, let us denote

the second bit of UJ(-Z) by vt %: this is also the second element of the j-th

?
j?
column of C® or, equivalently, the j-th element of the second row of

C@ . Sobol’ also shows that property A’ holds if and only if
1) (@ 1
o v - vhy
1) (1 1
V1) v - Vs
© | #0 mod 2. (2.76)
Dol

)

V4V 08
1,2 V22 -+ Vg2

We note that property A applies to subsequences of length 2°, whereas
property A’ applies to subsequences of length 22¢. Hence, even for mod-
erately large s (order of 10), property A is of more interest to us in
practical settings. Bratley and Fox [BF88] provide values of m; that sat-
isfy property A, for up to 40 dimensions. Joe and Kuo [JK03] propose a
method to compute good m; values and further extend the list to 1,111
dimensions.
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2.3.3.3 Gray Code Construction

Antanov and Saleev [AS79] show that the implementation of Sobol’s con-
struction is simplified if the binary representation {ag(n),...,am—1(n)}
of n—11in (2.60) is replaced by the Gray code representation {go(n),...,
gm—1(n)} of n — 1. They show that this does not affect the asymptotic
discrepancy behavior of the sequence. The binary Gray code can be ob-
tained from the binary representation using

Gm—1---9190 = Qm—1 -.-0100 B 0Gm—1...0a1, (277)

where a; is the i-th significant bit in the binary representation and g; is
the corresponding i-th bit in the Gray code representation. The reason
for the simplification is that the Gray code of subsequent integers n — 1
and n differ only in one bit. Let us rewrite the Sobol’ point z,, (2.60) in
one dimension as

Tn = go(n)v1 ® g1(n)v2 @ -+ ® gm—1(n)vm, (2.78)

using the Gray code of n — 1. Suppose the Gray codes of n—1 ({g;(n)})
and n ({gi(n+ 1)}) differ in the [-th bit. Then, we can write

Tpr1=gon+ v ®gi(n+1)va® -+ & gm—1(n + 1)vy,
=go(n)v1 @ g1(n)v2 & -~ & (g1(n) ® vy & gm—1(n)vm
= Xn P vy (2.79)

Hence, the points can be computed recursively, using only one bitwise
XOR operation instead of m in (2.60). In the next section, we take a
diversion to review Latin hypercube sampling, which is a popular Monte
Carlo sampling technique that also tries to ensure good uniformity, and
has been suggested for use on circuit problems [SKC99].

2.3.4 Latin Hypercube Sampling

Latin hypercube sampling (LHS), introduced in [MBC79], is a variance
reduction technique applied to Monte Carlo. Recalling the asymptotic
Monte Carlo variance (2.21)
2
oo =T, (2.80)

n

LHS reduces this variance by reducing the contribution of o2(f). LHS
is effective for functions that can be largely separated into a sum of
one dimensional functions, each one depending on only one of the input
variables. We will discuss this in more concrete terms after introduc-
ing the concepts of ANOVA decomposition and effective dimension in
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Figure 2.4. Latin hypercube sample of 10 points in 2 dimensions

Sect. 2.4.1. For now we review the construction of an LHS sample and
satisfy ourselves with an intuitive, but convincing argument of its vari-
ance reduction effectiveness. We also discuss the connection between an
LHS sample and (¢, m, s)-nets.

2.3.4.1 Construction

Suppose we want to generate n points uniformly distributed in the s
dimensional unit cube C®. For this, a necessary condition is that the
marginal distribution along each dimension should be uniform. Latin hy-
percube sampling tries to ensure good uniformity along each dimension
as follows. Divide each dimension into n equal slices, or strata, forming
a grid of n® equal cells. For each stratum j = {1,...,n} in dimension i,
independently draw a uniformly distributed random value yj(.l) within
the stratum. Generate n such values independently for each dimension:

soj—14U?
J('Z):]TJ’ i=1,....8, j=1,....n, (2.81)
where U J@ are uniformly distributed, independent random variables over
[0,1). This gives us n random values for each coordinate ¢, resulting in
n points in C*®. However, the coordinate values for point j lie within
the same stratum j along each dimension, resulting in points that are
arranged in the diagonal cells. An example is shown in Fig. 2.4(a): the
dotted lines show the strata along each dimension. This is definitely not
uniformly distributed in the sense we desire. To achieve this uniform
distribution, we randomly rearrange the strata along each dimension as
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follows. For dimension i fix a permutation 7; : {1,...,n} — {1,...,n}:
this essentially “scrambles” the slices, and hence the coordinate values,
along dimension ¢. s permutations 7y,...,7s, one for each dimension,
are randomly drawn from the set of n! such permutations. Denote by
m;(7) the permuted value of j: the j-th stratum along dimension i is
scrambled to location 7;(j). This scrambling of the strata along each
dimension also causes a scrambling of the sampled coordinate values as

’ (i)
xg.):yfr)(j): - I i=1,...,s j=1,...,n, (2.82)

with an independent scrambling scheme for each dimension. Now, we
can compose the points in the LHS as

Xj:{xg-l),xg?),...,xgs)}, j=1,...,n. (2.83)
Figure 2.4(b) shows the resulting set of points after scrambling the points
from Fig. 2.4(a). Note that the coordinate values of the points are not
changed by this scrambling, only the relative ordering is. Hence, the
points have very good uniformity along each dimension.

2.3.4.2 Variance (and Integration Error) Reduction

LHS is a special case of stratified sampling [Fis06][Gla04] — a popular,
general method for variance reduction — because it stratifies each dimen-
sion. This stratification tries to ensure that the sample points are well
spread out over the unit cube and there is not much variation in the
way the integrand f is sampled if we generate different LHS samples
with the same number of points. As a result there is also less variation
in the integral estimate @, from one LHS run to another. Compare this
with standard Monte Carlo, where due to lack of any such stratifica-
tion, there is some chance that in two different runs the points will be
clustered together in two different parts of the unit cube. This can re-
sult in large variation in the way f is sampled, and in the estimate Q.
Hence, we often see a decrease in the variance of @),,, and hence, the in-
tegration error, on using Latin hypercube sampling instead of standard
Monte Carlo. McKay et al. [MBC79] derive the following result for the
asymptotic variance of LHS.

n
otns = o + —— Covlur, ), (2.84)
where 1, s are the mean values of f over any two cells in the grid

resulting from the stratification, and Cov is the covariance, computed
by taking the expectation over all possible pairs of cells. The paper
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Figure 2.5. (0,1,2)-net in base 10: pre-scrambled non-perturbation version of the
LHS sample in Fig. 2.4(b)

also shows conditions when the second component of the variance can
be negative, resulting in a variance reduction: when f is monotonic in
each of its inputs. We review a different mathematical treatment of the
variance reduction process of LHS, along with more general conditions
on f that lead to efficient variance reduction, in Sect. 2.4.2.

2.3.4.3 LHS Sample Is a Scrambled (¢, m, s)-Net

It is obvious from the construction that the sample size n is required in
advance to generate an LHS sample, and arbitrary additions to the sam-
ple are not possible. One LHS run, then, generates a fixed set of points,
also called a net as in our discussion of (t,m, s)-nets in Sect. 2.3.1. One

popular construction of LHS samples replaces U]@ by 1/2 in (2.82),
placing every point at the exact center of the cell containing it. This im-
proves the uniformity of the sample along each dimension, but increases
the bias in the integral estimate: as the number of points is increased, @),
does not tend exactly to Q. However, this error is often relatively small
compared to the variance for practical sample sizes. The pre-scrambled
version of such an LHS sample, with coordinate values given by
yy):ﬂ, i=1,....8, j=1,...,n, (2.85)
n
is a (0,1, s)-net in base n. This is because it is a set of n points that bal-
ances every n-ary box (refer (2.37)) of volume n%~! =1/n, as required
by the definition of a (0,1, s)-net in base n. The resulting LHS sample
is a scrambled (0,1,s)-net in base n, which has the same uniformity
properties as the pre-scrambled version. The complete construction, us-
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Figure 2.6. Dimensions 38 and 39 of a 40-dimensional Sobol’ sequence showing un-
desirable patterns

ing Uj@ as in (2.82) results in a scrambled (0,1, s)-net in base n with
small random perturbations to the coordinates. The non-perturbed pre-
scrambled (0,1,2)-net in base 10 is shown in Fig. 2.5 for our two di-
mensional LHS example. We will further discuss scrambled nets and
sequences in Sect. 2.5.3 in the context of extracting variance estimates
for quasi-Monte Carlo. We will also revisit LHS in Sect. 2.4.2 where we
compare it to Sobol’ points.

2.4 Quasi-Monte Carlo in High Dimensions

A necessary, but not sufficient, condition for uniformity in all dimen-
sions is uniformity in low dimension projections. Suppose we generate
an s = 40 dimensional Sobol’ point set. Now pick any two coordinates
and plot the values of those coordinates. If we do not see a uniform dis-
tribution in the results space [0,1)2, then the point set is not uniform in
40 dimensions. Figure 2.6(a) plots coordinates 38 and 39, corresponding
to primitive polynomials z® + x4 + 23 + 22 +1 and 2% + 26 + 2% + 2% 41,
respectively, for the first 2,048 Sobol’ points. It is obvious that the pro-
jection is not uniform, and hence, the 40-dimensional Sobol’ point set is
not uniform. As we increase the number of points, the gaps get filled out
and we achieve good uniformity in the projection, and ultimately in all
dimensions.

We can see why this happens if we refer to the definition of a (¢, s)-
sequence in base b given in Sect. 2.3.1. Given m > t, we need at least
bi*+! points for the (t,m, s)-net property to manifest. The minimum uni-
formity criterion for all dimensions in this context is to balance (equally
fill) all b-ary boxes (2.37) resulting from the minimum number of non-
trivial slices along each dimensions (d; > 0,Vi). The minimum number
of slices is b, resulting in b° boxes, each of volume b~*. To balance these
boxes with points from a (¢, s)-sequence, a minimum of b*** points are
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Figure 2.7. Dimensions 1 and 30 of a 70-dimensional Faure sequence showing unde-
sirable patterns

required, such that every box has b’ points. The asymptotic discrepancy
rate (2.42) therefore starts only from n = b'™* points. From Table 2.2
of ¢t values, we can see that the required n can become astronomical for
large s. For our Sobol’ example, we use 8-th order polynomials for both
dimensions 38 and 39. From the ¢ value bound of (2.72), this 2 dimen-
sional projection has a t value of 8 +8 — 2 = 14 or less. Hence, we should
expect to see good uniformity with 24 points. If we add the next 100
points, we see that the gaps start to get filled in Fig. 2.6(b), and we actu-
ally reach good uniformity with 2'2 points (Fig. 2.6(c)), indicating that
the t value for this two dimensional projection might be less than 14. We
see similar patterns with other low discrepancy sequences too; Fig. 2.7
shows an example for a sample from a Faure sequence [Fau82].

Lack of uniformity in high dimensions is also evidenced by the asymp-
totic discrepancy behavior

D;:0<M>. (2.86)

n

For large s, the numerator dominates for practical values of n. An ex-
tremely large number of samples is required for the denominator to
dominate and for the rate to improve to n~!. Despite this impracti-
cally large values of n, QMC has been found to work well for several
high-dimensional problems in finance [NT96b][PT95][Gla04] with realis-
tic sample sizes. The reason for this is that low dimensional projections
of QMC points can have small discrepancy, and this can exploit domi-
nant low dimensional structure of the integrand. For example, the two
dimensional projection of Fig. 2.6 has a ¢ value of < 14, while the original
40 dimensional sequence has a much larger ¢ value (< 193). We next re-
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view some theoretical concepts that provide us guidelines for exploiting
this feature.

2.4.1 Effective Dimension of the Integrand

Assume function f € Lo(C?®) is square integrable over C*®. Let u C
{1,...,s} denote any subset of the input dimensions of f. We use |u| for
its cardinality and —u for its complementary set {1,...,s} — u. Then,
for any point x ={z1,...,zs} € C°%, xq = {z; : 7 € u} is the vector of the
coordinates of x belonging to u. C" is the unit cube in the dimensions
belonging to u. We can write f as the sum of 2% “simpler” functions
using its analysis of variance (ANOVA) decomposition as

FE)= > falx), (2.87)
uc{1l,....s}

where each function f, depends only on xy, excluding the effect of the
proper subsets of x,;. We note that the integral of f over —u is a function
of only x,. For example, if s =2, f =2? 4+ 23, u= {1} and —u= {2},

/{2} (22 4 23)dxy = 22 + 1/4. (2.88)
C

Hence, the ANOVA terms are defined as

)= felx ) u (2.89)

vCu

= X)dx_u— » _ fu(x (2.90)

¢ vCu

To compute the function f,, we subtract out the effect of all the proper
subsets of u and then average over the dimensions that are not in u.
Note that for the empty set, fj(x sz x)dx = @) is a constant equal
to the integral of f. These AN OVA terms enjoy the following properties.

. fol fudzj =0 for any j € u.
»  The ANOVA decomposition is orthogonal: [, fufvdx=0if u#v.

n Ifo?= fcs(f(x) — @Q)%dx is the variance of f, then o2 = E\u|>0 o2,
where 02 = [, fu(x)?dx is the variance of fy. Note that oy = 0 since
fo(x) is constant.

We can use the variance contribution o2 of any f, to measure the relative
importance of f,. In fact, normalized variances o2 /0? are used as such
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measures and are called global sensitivity indices in [SK05]. These are
similar, but more general, in concept to the relative global sensitivity
metric proposed in Sect. 1.6.3.1 of this thesis.

We now make some observations regarding f using its ANOVA de-
composition. Let g¢(x) =37y =; fu(x) for 0 <t <s. Then g; captures
that part of f that depends on ¢ dimensional inputs, or, in other words,
the part that is exactly ¢t dimensional. Consequently, 22:1 gi(x) is that
part of f that is at most ¢ dimensional. From the orthogonality of the
ANOVA terms, it follows that the variance of g; is 02(g;) = > jul=t ol.

If, for some f, 02(g1) > 0.9902, then most (99%) of the variance of f
is contributed by one dimensional ANOVA terms, and we say that f is
effectively one dimensional in its inputs. Similarly, if 02(g1) + 0%(g2) +
02(g3) > 0.9902, then f is effectively three dimensional in its inputs.
Caflish et al. [CMO97| formalize two measures of the effective dimen-
ston of any function f.

Superposition sense: The effective dimension of f with variance o2,
in the superposition sense, is the smallest integer sg such that

> on =099 (2.91)

0<|u|<sg

Truncation sense: The effective dimension of f with variance o2, in

the truncation sense, is the smallest integer st such that

> 00>0.990". (2.92)
uQ{lv"?ST}

From these definitions, we can see that sg < sy. Wang and Fang
[WF03] extend Sobol’s method of computing ANOVA variances [SK05],
to compute effective dimension. The proposed technique uses extensive
Monte Carlo runs to approximate the variances of the ANOVA terms.
The threshold of 0.99 in the definitions is arbitrary; other values may
be preferable in different setting. sg is an indicator of whether only low
dimensional interactions dominate the variance in f, while s7 is the num-
ber of leading dimensions, given an ordering, that account for most of
the variance in f. For example, if f = x1 + x2 + 24, only one dimensional
“interactions” can be added up to explain f. Hence, sg = 1. However,
the four leading dimensions {z1,...,2z4} are needed to explain at least
99% of the variance of f. Hence, sp = 4. Note that if we reorder the
dimensions by swapping zs and x4, then only the leading 3 dimensions
are needed and st is now reduced to 3. We will rely on such reorderings
to make QMC effective even in high dimensions for our circuit analy-
sis problems. We note here that, typically, circuit performance metrics
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are significantly affected only by some small subset of the parameters in
the circuit. This claim is supported by results from experiments on the
SiLVR model proposed in Chap. 1 of this thesis. These results are pre-
sented in Sect. 1.7. Hence, in many cases, the integrand for a statistical
circuit analysis problem (e.g., Sect. 2.2.1.2) has a low effective dimen-
sion, at least in the truncation sense, assuming a proper ordering of the
statistical parameters. The following result from [CMO97] provides hints
as to how we can exploit this feature of our integrands.

For an n-point sample from an LDS, let D ,, be the star discrepancy
of the |u| dimensional points obtained by selectmg only the coordinates
in u. For example the discrepancy of the two dimensional projection of
the Sobol” points on u = {38,39} is denoted by D* (38,39} Denote the

integration error of an n-point quadrature on any function f by

x)ix— 3 f(x)
=1

where {x;}" ; are the quadrature points: the sample points for Monte
Carlo or QMC. We can write this error using the ANOVA terms of f as

wtn=|[ > R -1y ¥ o

uC{]‘7 7 Z 1 uC{17 7

— [/ quudxu——qu qu”

uc{l,. ,s} [u[>0

en(f) = (2.93)

(using fp(x) = constant Q)

[ e s

(using the triangle inequality)

_ 3 en(fu)- (2.94)

uC{1,...,s}:|u|>0

<

uc{1,. ,s} [u[>0

Then, using the Koksma-Hlawka inequality (2.26) for each ANOVA
term, we can write

en(f) < Z en(fu) < Z Va(fu)D n, nous (2.95)

uC{1,...,s}:|ul>0 uC{l,...,s}:|u|>0

where Vy(fu) is the variation of f, taken as a function over C". Dif-
ferent versions of this relation are given in [WS07]. Also see [Hic98|. If,
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for the subsets u that show large variance oy (related to Vyu(fu)), the
discrepancy Dy, ,, of the projection of the LDS onto u is small, then all
the terms in the error bound are small, leading to a small error bound.
This suggests two possible ways of achieving low integration error in
high dimensions with QMC points that are not very uniform in high
dimensions. In both these ways we exploit any low effective dimension
properties of the integrand, for example, the integrand for circuit yield
analysis.

1) If the effective dimension of f in the superposition sense, sg, is small,
it may be possible achieve very low integration error with an LDS
that has good uniformity in low dimensional projections. From the
discussion at the beginning of this Sect. 2.4, we know that QMC
points can achieve good uniformity in low dimensional projections.
This may not be true for some combinations of dimensions, as shown
in Fig. 2.6, but on average the low dimension projections can show
better uniformity than pseudorandom points even for realistic sample
sizes [WF03][WS07]. In other words, for small |ul, D}, ,, is often small.
If sg is small then the high variance ANOVA terms are functions on
subsets u with small |u|. Hence, from (2.95), this can lead to low
integration errors, even if the overall discrepancy (2.86) of the LDS
is large.

2) If the effective dimension of f in the truncation sense, s, is small,
we can lower the error bound with an LDS that is uniform in the
first sy dimensions, even if the higher dimensions are not sampled
uniformly. Typically, the initial dimensions are sampled more uni-
formly than the higher dimensions by samples from an LDS. Hence,
Dy},  can be small for u={1,...,s7} if s is not too large. We can
see this for the case of Sobol’ points, where the early dimensions
are generated using the lowest degree primitive polynomials. Hence,
using (2.72) the ¢ value of the sequence containing only the first sp
dimensions (e.g., dimensions 1-10) will be lower than the ¢ value of
any sequence containing any higher sy dimensions (e.g., dimensions
91-100). For circuit yield problems, low sp can be achieved for the
integrand by arranging the statistical parameters in decreasing order
of their impact on the relevant circuit performance, assuming that
the total number of important parameters is not large.

Researchers in finance use linear transformations such as Brownian
bridge (BB) and principal components analysis (PCA) on the input
variables to reduce the truncation dimension: most of the variance in
the resulting joint probability distribution of the transformed inputs is
concentrated in the early dimensions. Extensive experiments showing
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the advantage of exploiting reduced effective dimension can be found in
[MC96][CMO97][ABGI8][WF03][Owe03b]. For example, [WF03] shows
that for the problem of pricing an Asian option, the truncation dimension
can be reduced from 53 to 2 using PCA for a 64 dimensional problem,
resulting in large reductions in error and much improved convergence.
PCA is widely used in the electronic design automation community for
reducing the number of statistical parameters to a few dominant ones
that explain most of their variance [Ism93][CS05][LLPS05][LLP04]. In
our proposed framework, we start from the result of any such PCA, and
must further reduce the truncation dimension without the option of us-
ing PCA. Hence, we skip a detailed explanation. For details regarding
PCA and BB, please refer to [Gla04].

2.4.2 Why Is Quasi-Monte Carlo (Sobol’ Points)
Better Than Latin Hypercube Sampling?

We saw in Sect. 2.3.4 that an LHS sample is essentially a scrambled
(t,m, s)-net, specifically a (0,1, s)-net in base n, where n is the sample
size. Hence, it is natural to ask if we gain any improvement by moving
to a more general QMC approach, say using Sobol” sequences? If yes,
then what are the reasons for such improvement? With the knowledge of
ANOVA decomposition and effective dimension, we now address these
questions, and provide simple illustrative examples in the results section,
Sect. 2.6.

We know that LHS is able to maintain very good uniformity in all
one dimensional projections because of its per-dimension stratification
scheme. As a result of this, the variance error in integrating the one
dimensional ANOVA terms {fy : |u| =1} is very small. Using the or-
thogonality of ANOVA decomposition, we can write the overall function
variance as

2 2 2 . 2 __ 2 2 2
oc=01+0%;: o1= E oL, 0% = E o, (2.96)
[ul=1 [u|>1

where o7 is the variance of the one dimensional part of f given by

g1(x) = szl fu(x) and 02 is the remaining variance of f — g;. Also
write the asymptotic variance of the standard Monte Carlo estimate as

5 o2 _0%4—021

n

Using ANOVA decomposition, Stein [Ste87] showed that the asymptotic
variance of an LHS estimate is

o2 1
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Hence, compared to the Monte Carlo estimate (2.97), LHS achieves a
variance reduction by reducing the variance in estimating the integral of
the one dimensional part of f to o(n™1).

Note that every one dimensional projection of the LHS sample is a
scrambled (0, 1,1)-net in base n. As a result, if the one dimensional part
is smooth (the derivatives of fy, for |u| =1 are continuous) then the
second term on the right hand side of (2.98) reduces as O(n~3), as per
the results of Owen [Owe97b] regarding scrambled nets (see (2.104)). It
is clear from (2.98) that this reduction is effective only if f has significant
variance contribution from its one dimensional component g;. If f has
an effective dimension of 1 in the superposition sense (sp =1) then LHS
is an excellent quadrature technique. Even if sp > 1, many integrands
have large variance contribution from their one dimensional components,
explaining the success of LHS as a variance reduction technique. This
result also explains why LHS is unsuccessful as a variance reduction
technique in many settings: the integrand in those cases is probably not
primarily one dimensional, because of which the gains over standard
Monte Carlo are minimal.

Based on (2.98), for reasonably large sample size n, we can assume

2 2
2 >1 2 o
~——= d ~—. 2.99
oLus n a4 dme ( )
Then, using (2.97) we get
2 2
U—iz ~ Dl s (2.100)
g (o2 O'MC

We can estimate opgg and onc by taking the sample variance across
the estimates from several LHS and Monte Carlo runs, respectively. This
gives a way of using LHS to estimate the contribution of one dimensional
ANOVA terms to the variance of f. We use this estimate in Sect. 2.6
to study the efficiency of LHS for different examples, and illustrate the
conditions when Sobol’ points perform better than LHS. For now we
discuss these conditions theoretically.

The numerical results in [WS07] indicate why QMC, and Sobol’ points
in specific, can outperform LHS. We enumerate three types of functions
for which Sobol’ points can provide quadrature with improved integra-
tion errors, along with the corresponding features of Sobol’ points that
enable the improvement.

1) High contribution from one dimensional ANOVA components: This
is the class of functions for which LHS provides large improvements
over standard Monte Carlo. Numerical results in [WS07] show that
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the discrepancies of one dimensional projections of Sobol” points are
even better than for LHS. This allows us to retain the advantages
that LHS provides: low variation in integration of the one dimensional
parts of the integrand f.

2) High contribution from one dimensional ANOVA components, but
truncation dimension sp > 1: LHS is not able exploit small trunca-
tion dimension if it is greater than 1, since it only targets one dimen-
sional components of the integrand. If we take any set u={1,...,l},
1 <l < s of the early dimensions of an LHS sample, the correspond-
ing discrepancy can be as high as that for pseudorandom point sets.
However, for [ around 10 or less, the discrepancy of the early di-
mensions of a Sobol’ point set can be much lower for practical sam-
ple sizes. Hence, for integrands with truncation dimension sp < 10,
Sobol’ points may provide significant improvement in quadrature er-
ror, compared to LHS and random sampling.

3) High contribution from higher dimensional ANOVA components with
small truncation dimension st > 1: This condition on f further ex-
pands the class of functions from item 2, since now we allow higher
dimensional ANOVA components to have a large contribution to the
function variance, as long as the corresponding dimensions are from
the early dimensions of the point set. Clearly, LHS provides no extra
advantage beyond that for the one dimensional projections. Sobol’
points, however, do. The discrepancy of the projection of Sobol’
points onto some subset u, with small |u| > 1, tends to be lower
than that for LHS, as long as the subset is from the early dimen-
sions; i.e., u C {1,...,l} for small [ > 1. These conditions on f are
significantly less restrictive in practice than those for LHS quadra-
ture being the best option, and suggest that Sobol’ sequences — and
any other competitive LDS — will perform better than, or as well as,
LHS in general.

The reader is referred to [WS07] for some convenient mathematical con-
structs for the discrepancy of projections of any point set, and simi-
lar discussions using these constructs. We stress here that all the the-
oretical results presented here to illustrate the implications of low ef-
fective dimension for QMC are suggestive since they rely on bounds
and asymptotes (e.g., the Koksma—Hlawka bound) and not exact rela-
tions. There may be cases where QMC performs well even with high
effective dimension, as shown in [Tez05] for a class of functions that
have full effective dimension in both the truncation and superposition
senses. Tezuka shows that for these functions the QMC error decreases as
O(n~1), without the troublesome log®(n) in the numerator, and that the
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Koksma—Hlawka bound is so loose for this case as to be completely use-
less. This shows that low effective dimension is not necessary for QMC
to beat Monte Carlo. Owen [Owe03b] points out that is also not a suffi-
cient condition. Given these caveats however, we and several researchers
[MC96][CMO97][ABGI8|[WF03][Owe03b] believe that low effective di-
mensions play a significant role in creating the conditions for improved
quadrature using QMC as compared to Monte Carlo. We provide some
simple examples to illustrate and support these arguments in Sect. 2.6.
For now, we believe these suggestive theoretical arguments and the cited
references, and propose a flow for applying QMC to statistical analysis
of circuits.

2.5 Quasi-Monte Carlo for Circuits

The foregoing sections provide us sufficient information to propose a
flow for applying QMC to statistical analysis of circuits. As suggested
by discussions in Sect. 2.3.2, we use the Sobol’ sequence as our represen-
tative LDS in the proposed flow. Once the construction of the promising
Niederreiter—Xing sequences [NX96] becomes feasible, we can use them
instead of the Sobol’ sequence in the reasonable hope of even better
performance.

2.5.1 The Proposed Flow

From Sect. 2.4.1 we know the importance of using transforms like prin-
cipal components analysis to maximize the amount of variance in the
inputs to the minimum number of early dimensions. Also, PCA is pop-
ularly used by researchers and practitioners in EDA [Ism93][CS05] to
reduce the number of statistical parameters into a small uncorrelated
set while still accounting for most of the variance of the original pa-
rameters. Hence, we assume that our QMC flow starts with post-PCA
statistical parameters: this enables us to focus on aspects that are truly
novel in the context of circuit analysis. In fact, if we have transformed
the input sampling space to be the unit cube, then we have effectively
used some orthogonal transformation like PCA to obtain independent
inputs with the same variance. Another way of exploiting low effective
dimension in this setting is to measure the contribution of each input of
f to the variation in f, and sort the inputs in decreasing order of this
measure. Such a rearrangement of the inputs helps minimize the effective
dimension sy in the truncation sense and exploit the good uniformity
of the early dimensions of Sobol’ points, as discussed in Sect. 2.4.2. We
refer to such a rearrangement as a variable-dimension mapping. The im-
pact of any input on the function can be estimated with some measure
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Algorithm 2.2 QMC for statistical simulation of circuits

Require: circuit performance functions f = {fi,..., fs, }, joint proba-
bility distribution of inputs II(x), input dimensionality s, and sample
size n

1: m < InputOrdering(s, f, II) — w(j) € {1,..., s} is the j-th most im-
portant input index
skip 2Ul°g27) points of the s dimensional Sobol’ sequence
for i=1ton do
z «+— NextSobolPoint|()
Lr(§) = Zjs Jj= {17"'78}
Xi = {xla---al‘s}
evaluate y; = f(IT7!(x;))
end for
return QMC sample points {(x;,y;)}7,

of global sensitivity, as in [SKO05] or in Sect. 1.6.3.1 of this thesis. Here
we use one of two much simpler options:

1) The designer can select the parameters that most affect the relevant
performance metrics, and these can be assigned to the initial dimen-
sions of the QMC. This can be a feasible option in manual design
settings where the statistical parameters correspond to different de-
vices in the circuit being designed, since circuit designers often have
good insight regarding the devices that significantly affect the rele-
vant performance metrics.

2) Run a small standard Monte Carlo run and compute Spearman’s rank
correlation coefficient between each input x; and the circuit perfor-
mance metric. Use this rank correlation as the measure of global sen-
sitivity and sort the inputs in decreasing order of correlation before
running QMC. For multiple performance metrics, use the sum of the
rank correlation coefficients across all metrics with each input. Spear-
man’s rank correlation is more robust than Pearson’s linear correla-
tion in the presence of nonlinear relationships. For an explanation of
Spearman’s rank correlation, please refer to Sect. 1.6.4.1. Of course,
better sampling techniques, like Latin hypercube sampling, or more
accurate estimates of global sensitivity, if available, may be used here.
However, this simple approach also proves to be sufficiently useful,
as demonstrated by the experimental results in Sect. 2.6.

Our proposed QMC algorithm is shown as Algorithm 2.2. The function
InputOrdering(), shown as Algorithm 2.3, performs the global sensi-
tivity computation to determine a permutation 7 such that 7(j) gives
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Algorithm 2.3 The function InputOrdering() used in Algorithm 2.2

Require: circuit performance functions f = {fi,..., fs,, }, joint proba-
bility distribution of inputs II(x), input dimensionality s

1: pi=0,1=1,...,s

2: for i=1ton do

3. randomly generate x; = (x;1,...,%;s) from II

4:  evaluate y; = (Yi1,. .-, Yisy | using y;; = f;(x;) for j={1,...,sy}
5: end for

6: for j =1 to sy do

7. for k=1to s do

S pu=pe+RankCorr({ra )y, {yi}y)]

9: end for

10: end for

11: return 7:{1,...,s} — {1,...,s} such that p.(;) is the j-th largest

element in {px};_,

the index of the input with the j-th largest measure of global sensitiv-
ity. In our implementation, this computation involves a n, = 1,000-point
Monte Carlo run followed by computation of the rank correlation coef-
ficients. Note that, in Algorithm 2.2, we skip the first 20827 points of
the Sobol” sequence, as recommended empirically in [ABG98] for better
performance. The function NextSobolPoint () uses the smallest degree
primitive polynomials and direction numbers satisfying Sobol’s Prop-
erty A, as discussed in Sect. 2.3.3. The function RankCorr() in Algo-
rithm 2.3 computes Spearman’s rank correlation, as per Sect. 1.6.4.1.

The sample points returned by QMC can be used for computing some
metric, like circuit yield (Sect. 2.2.1.2) or the 99-th percentile, or for
further analysis, like visualization or response surface modeling.

2.5.2 Estimating Integration Error

In practice, the exact value of @ = [ f(x)dx is unknown, for example
the exact value of circuit yield. Usually, this is the reason for using
numerical quadrature methods. Then how do we estimate the error in
the quadrature estimate @,,7 Random methods, namely Monte Carlo,
make this easy since the variance of the Monte Carlo estimate can be
used as a probabilistic measure of the error.

2.5.2.1 Estimating Monte Carlo Error

Theorem 2.3 in Sect. 2.2.2 shows us how, using the central limit theorem,
we can approximate the distribution of the Monte Carlo error as being
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normal, and derive such a probabilistic measure of error. In practice,
relying on this assumption of normality, we can use the sample standard
deviation of the estimates from several different n-point Monte Carlo
runs, to compute this probabilistic measure. Suppose we computed nyic

estimates {ng )}?:Mlc. The sample standard deviation is then given by
o TEPQY —Qu)

omMmC nyc — 1 ) ( )

where the sample mean @, is given by

nme (2
Qn= Limi On (2.102)
n
Then the magnitude of the Monte Carlo error is within
1
6MC¢_1<¥) (2.103)

with probability p, where ® is the standard normal cumulative distrib-
ution function. This corresponds to the confidence interval with a con-
fidence level of p.

2.5.2.2 Estimating QMC Error with Scrambled Sequences

Quasi-Monte Carlo is a deterministic quadrature technique: we get the
same estimate (), every time we run QMC with the same number of
points, assuming no changes in the parameters of the LDS (e.g., primitive
polynomials for Sobol” points). Hence, there is no natural variance that
we can exploit to estimate the error as in the case of Monte Carlo. Also,
bounds on the error, like the Koksma—Hlawka bound (2.26), do not help
because of at least two reasons:

m It is usually computationally infeasible to estimate both V(f) and
D} with acceptable accuracy. It should be noted here that some ver-
sions of discrepancy can be computed in reasonable time. Warnock
[War72| derived an explicit formula for the Ly star discrepancy, that
was generalized in [CMO97]. See [Hic98] for some generalized error
bounds. However, computing the variation of the function still re-
mains infeasible.

m  Even if the error bound can be computed, it can be very different
from the actual error value, as discussed in Sects. 2.3.1 and 2.3.2.3.

One way to get around this problem is to artificially randomize the
QMC points. Then, we can run randomized QMC several times and es-
timate probabilistic error values, just as we did for Monte Carlo. Several
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schemes for randomizing deterministic LDSs have been proposed, and
are surveyed in [LL02]. Owen [Owe95] proposed a randomization scheme
that scrambles (t,s)-sequences and (t,m,s)-nets while maintaining two
important properties:

1) Every point in the scrambled set has a uniform distribution over C*,
so that the approximation @, is unbiased.

2) The resulting nets or sequences, are still (¢,m,s)-nets and (¢,s)-
sequences in base, respectively, b with probability one, and with no
change to t, m or b.

As mentioned in Sect. 2.3.4, a Latin hypercube sample falls under this
class of scrambled (¢,m, s)-nets. Since scrambled sequences have the two
properties mentioned above, they obey the asymptotic properties and
error bounds of their deterministic counterpart. Hence, we can use mul-
tiple runs with different scramblings to estimate the variance oqmc of
randomized QMC and the corresponding probabilistic error estimates
using (2.103), with omc replaced by oqumc.

For theoretical results on the variance of randomized (t,m, s)-nets,
see [Owe97a][Owe97b][Owe9d8b] by Owen. Owen shows that under cer-
tain smoothness conditions on the integrand, scrambled (¢, m, s)-nets can
actually achieve variance of

O<M>, (2.104)

n3

implying an asymptotic integration error rate of n~1'°, which is even
better than the standard QMC asymptotic error rate. The smoothness
condition requires that the mixed partial derivative,

o°f
h = 2.105
() 0x1...0zs’ ( )
satisfies the Lipschitz condition,
|h(x) — h(x')| < Bllx — ¥/||5, (2.106)

for some finite B >0 and € (0, 1]. Although we will see an example of
this rate in the results section (Sect. 2.6), these properties of scrambled
nets and their implications for statistical circuit analysis, are not studied
in detail in this thesis and can be a fruitful target for future research.
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2.5.3 Scrambled Digital (t,m,s)-Nets and
(t,s)-Sequences

2.5.3.1 Owen’s Scrambling

Let {x1,x9,...} and {z1,z2,...} denote the original sequence and a ran-

domly scrambled version, respectively, both in base b. Let :rg) be the
i-th coordinate of x,, and let its b-ary expansion be

o0
e =N b =0aimin..., i={1,...,s}, (2.107)
j=1

where z; ; € {0,...,b—1} is a digit in base b. Note that we have dropped
the subscript n in the expansion, to reduce notation clutter. Assume
(4)

similar meanings for z,’ and z; ;. Then,
zig =7 (i), (2.108)

where 7¢:{0,...,b—1} —{0,...,b— 1} is a randomly chosen permuta-
tion for dimension ¢; a different such permutation is chosen randomly for
each dimension. This operation is, thus, scrambling the first digit of every
coordinate. Similarly, we scrambling all other digits with independent,
randomly chosen permutation schemes. Furthermore, the permutation of
the j-th digit depends on the precise values of the previous j — 1 digits.
We write this as

Zi,j :77;1-’17;31-72,,__,@7]-_1(:L"i,j)' (2109)

For example, the permutation scheme of the third bit in 0.111 will be
separate from the permutation scheme of the third bit in 0.101 even
though the value of the third bit is the same in both cases. This is
because the entire sequence of bits before the third bit determines the
permutation applied to the third bit.

Such a scrambling scheme can be computationally tedious because
of the extensive bookkeeping required: the number of permutations is
sb;n:ll for m digits. Less expensive scrambling schemes have been pro-
posed in [Mat98]|[FT02][Owe03a], among others. Owen [Owe03a] also
studies the variance of quadrature estimates from these different scram-
bling schemes. We use the linear matriz scrambling method for digital
nets and sequences, as implemented in [HHO3].
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2.5.3.2 Linear Matrix Scrambling: A Simpler Scheme

Let us rewrite the digital construction of (2.52) in current notation. For

integer n=1,2,..., the b-ary expansion of n — 1 is
o0
n—1=Y ab"=.. aaao. (2.110)
k=0

Then the digital construction of the i-th coordinate of n-th point is

4,1 ao
Tiz | =CO [ a1 | (mod b), (2.111)

where we have suppressed n to reduce clutter. The linear matrix scram-
bling method modifies this construction as

Zi,1 €g,1
Zi72 — L(Z) + e(@) a:i72

ap
—1LOc® | a1 —|—e(i) (mod b), i=1,...,s.

(2.112)

Here, L(® are randomly and independently chosen non-singular lower-
triangular matrices over Z, = {0,...,b — 1}, of size 0o X oo for infinite
precision, and m x m for m digits of precision. e are randomly and
independently chosen vectors over Zj, of length same as L®. The n-th
scrambled point is

z,=(0.211212..., 0.221222..., ..., 0.251262...). (2.113)

This scrambling method is clearly much simpler than Owen’s scrambling,
but is also less rich in its range of random permutations. For example,

from (2.112), the first digit z;; = lgil):cm + egi), where lﬁ) and ¢!” are

i
the first elements of L and e(®, respectively. lgzl) e{l,...,b—1} for
non-singular L, and e](f) €{0,...,b— 1}, giving us b(b — 1) possible
permutations, while in Owen’s method we have b! possibilities. However,
this smaller range of possibilities is not too restrictive and suffices for
our experiments. We now show how this scrambling technique can be

incorporated into Sobol’s construction using direction numbers.
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2.5.3.3 Scrambling Sobol’ Sequences with Linear Matrix
Scrambling

We know from (2.59) that the j-th column of C¥) contains the bits of

(%)
Vi

the bits of v( D, ; i.e., v( " is the j-th column of C@. If we write

j-th direction number vj( D for dimension i. Let v\" denote the vector of

LOCH =LOND ) =P, (2.114)

then, denoting l](lk) as the (j,k)-th element of L), and vj(l,)C as the k-th
bit in Vgi), we get
U0+ 1200

V’gi) = ggl)vj({ + légvj(% - (2.115)

Let 15.) (lﬁ),lg]), ...)T be the j-th column of L. Then, using bitwise

Boolean operations we can write

1(3) _

v =00 P e Ve, 1<i<s, j>0. (2.116)

1(4)
] )
matrix given by LOC®  and corresponds to a new scrambled direction

/(4

vector v/ for the Sobol’ construction. Then, corresponding to (2.60),
the i-th coordinate for the n-th point is given by

This bit vector, v/}”, is the j-th column of the i-th scrambled generator

20 = aq ()EBa vé)@ B Gy v(l)@e(z) (2.117)
If we use the Gray code construction as in (2.79), we need to XOR e
only once, to the first point, and subsequent points are given simply as

A =200, (2.118)

where [ is the index of the bit where the Gray codes of n — 1 and n
differ. We are now well-equipped to demonstrate the performance of
QMC using experiments. We do this in the next section.

2.6 Experimental Results

In Sect. 2.4.2 we concluded, based on theoretical considerations, that
QMC using Sobol” points should result in smaller errors and possibly
faster convergence, when compared to Latin hypercube sampling. We
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now test this conclusion experimentally on some simple examples that
also allow us to validate the results analytically. After this, we demon-
strate the performance of QMC on a variety of circuit benchmarks, in
comparison with standard Monte Carlo and LHS.

2.6.1 Comparing LHS and QMC (Sobol’ Points)

Let f be our integrand. We test two conclusions from Sect. 2.4.2 here:

1) LHS almost completely and exclusively removes the variance contri-
bution of the one dimensional ANOVA components of f, to achieve
variance reduction. Hence, we can estimate the variance contribution
of the one dimensional components via (2.100). See Sect. 2.4.1 for a
discussion on the ANOVA decomposition.

2) LHS restricts its variance reduction activity to the one dimensional
components of f. Sobol’ points provide further benefit by reducing
the error in integrating also some higher dimensional components,
because they enjoy highly uniform higher dimensional projections in
the early dimensions.

2.6.1.1 LHS (Almost) Exactly Removes One Dimensional
Variance Contribution

Consider the following three functions in five dimensions.

1) An additive function with only one dimensional nonzero components;
i.e., with effective dimension sg equal to 1, in the superposition sense.

fo=ai+ 22+ 22+ 22 422 (2.119)

Note that the function has full truncation dimension s = 5. We
expect LHS to almost completely remove any variance in the integral
estimate for this function, because there is no contribution from any
multi-dimensional components.

2) A cross-term function with significant contributions from multi-
(two-)dimensional components; i.e., with superposition dimension
sg = 2. The truncation dimension is still 5.

fe= (x1+w2+x3+m4+x5)2. (2.120)

Note that f, is part of f.. We expect the effectiveness of LHS to
be less for this function, and that the remaining variance in the
estimate (0?,g) is proportional to the variance contribution from
the two dimensional components.
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fa fC fs
e 4.024 x 107° 9.483 x 10~* 6.112 x 10~*
62 us 5.284 x 10713 2.839 x 107° 2.839 x 107°
o) ~2
ALHS = j—i =1— s 1.000 0.970 0.954
MC
Exact o2 - 193 /g 125 /g
Exact o} - /g 20/,
2
n=2% 1 0.974 0.960

Table 2.3. Fractional variance contribution from one dimensional components of f,,
fe and fs computed using LHS estimate (2.100) and analytically. We see that LHS
does exclusively remove the variance from one dimensional components

3) A strongly cross-term function with even higher relative contribution
from two dimensional components.

4 5
fs:fc_faZQZ Z Tixy- (2.121)

i=1 j=i+1

We expect that the variance of LHS, O‘%HS will not change from the
case of f. since we have only removed the one dimensional compo-
nents and not changed anything in the two dimensional components.

We ran 30 Monte Carlo runs and 30 LHS runs, each with a sam-
ple size of n =10,000, to estimate the Monte Carlo variance (01%/10) and
the LHS variance (O’%HS), respectively. We use the sample variance for-
mula (2.101). Plugging these variance estimates into (2.100), we can
estimate the fraction of variance contributed by the one dimensional
components of f. Let 02 be the total function variance, o? the variance
from the one dimensional components and 1 = 0% /o2 the fraction of vari-
ance from one dimensional components. Table 2.3 shows the results in
data rows 1-3. We can see that, as expected, the LHS variance for the
additive function f, is negligibly small. Since f, has only one dimen-
sional components, all its variance is from one dimensional components.
The estimate 7y is almost exact (= 1). For the other functions, we
can analytically compute o2, 02 and 7. These exact values are shown in
data rows 4—6. Derivations are given in Appendix A. We see that the
estimates fpgg are very close to the exact values, providing strong evi-
dence for the claim that LHS exclusively removes o7 from the estimate
variance.
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2.6.1.2 Sobol’ Points Are Better Than LHS for Functions
with Significant Higher Dimensional Components

All three test functions above allow a simple analytical computation of
their exact integrals over the unit cube C%, this being one of the reasons
for choosing them as test functions. These exact values are Q(f,) =5/3,
Q(f.) =20/3 and Q(fs) =5. We also computed these integrals numeri-
cally in three different ways:

1) Using standard Monte Carlo with increasing number of points n.
The values of n are chosen to match those for the LHS samples sizes
below.

2) Using Latin hypercube samples with sample sizes of n = 100-210-7} =
{100, 200,400, ...,12,800}.

3) Using Sobol’” point with the same samples sizes as LHS.

Since we know the exact answers, we can directly compute the relative
error without having to resort to probabilistic errors based on sample
variance. The plots in Fig. 2.8 show the relative integration error for
these three methods on all three test functions on a log;y —logq scale.
Least squared-error linear fits in this scale, shown as dashed straight
lines, estimate the convergence exponent of each integration method as
the slope of the fit. These estimated rates are annotated on the corre-
sponding linear fits. We now discuss each of the three test cases is some
detail, in the context of these results.

»  Additive function f, (Fig. 2.8(a)): Monte Carlo achieves an esti-
mated error rate of n~ 9493 which is close to the expected n~9?
rate. The Sobol’ points achieve a rate of n~98%3 which is close to
the asymptotic rate of n=! for QMC. This suggests that the trunca-
tion and superposition dimensions (sp =5,sg = 1) are small enough
for the Sobol” points to exploit. Interestingly, LHS achieves a much
faster convergence of n~1°792 along with lower error. This superior-
ity of LHS over Sobol’ points is actually expected. We know, from
Sect. 2.3.4, that an LHS sample is a scrambled (¢,m, s)-net. Since the
function f, satisfies Owen’s smoothness condition (2.106), the result
in (2.104) predicts an asymptotic n=% convergence for LHS error.
Similar behavior is predicted by Fox in [Fox99], Theorem 9.1.2.

n  (Cross-term function f. (Fig. 2.8(b)): Even with contribution from
higher dimensional components in f, Monte Carlo achieves more or
less the same convergence rate (n=243%3)  close to the expected, as-
ymptotic n7"5. However, we see a big change in the performance
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Figure 2.8. Comparison of relative errors of Monte Carlo, LHS and QMC (Sobol’
points) with increasing number of points. The three test functions have different
relative contributions from their one dimensional ANOVA components

of LHS. It provides no benefit over Monte Carlo in integrating the
two dimensional components of f, resulting in an overall error rate
of n79%%29 which is closer to the Monte Carlo error rate. Note that
it is still significantly better than Monte Carlo because its excellent
performance on the one dimensional components. Interestingly, the
Sobol’ points maintain their low error and fast convergence in spite
of the increased superposition dimension of the integrand. This sup-
ports our argument that Sobol’ points have good uniformity in higher
dimensional projections of the early dimensions, which allows them
to integrate the higher dimensional ANOVA components with better
accuracy than Monte Carlo or LHS.

Strong cross-term function fs (Fig. 2.8(c)): This function has even
higher relative contribution from its two dimensional components.
However, we see no significant difference in the performance of any
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of the three methods. This is not surprising. The variance of Monte
Carlo, of course, does not exploit any ANOVA features of the inte-
grand. This explains the lack of change in its performance. LHS pri-
marily targets the one dimensional components and has Monte Carlo-
type performance on higher dimensional components of f;. f. and f;
differ only in their one dimensional components and have identical
two dimensional components. Hence, the error in the LHS estimate,
which is almost completely due to the latter, does not change. Simi-
lar arguments apply to the Sobol’ points: the change in the error due
to changes in the one dimensional components is very small.

Based on these experiments and the arguments in Sect. 2.4.2, we can con-
fidently conclude that, in the general case, Sobol’ sequences will show
lower error and faster convergence than LHS or Monte Carlo, as long as
the truncation dimension of the integrand is not too large. The only ex-
ception is when almost all of the variance contribution is due to the one
dimensional components of the integrand and the integrand is smooth, in
which case LHS or scrambled QMC will perform better. For the case of
statistical circuit analysis, we neither expect the integrand to be primar-
ily one dimensional, nor to be smooth (e.g., the characteristic function
integrand (2.12) for circuit yield). However, from common design knowl-
edge, we believe that the truncation dimension of the integrand will
not be too large. Hence, Sobol’ points (or any other competitive QMC
method) seem an appropriate choice.

2.6.2 Experiments on Circuit Benchmarks

We now demonstrate the performance of QMC on circuit benchmarks.
Before we discuss the benchmarks and the results, we briefly mention
some relevant implementation details. A linear congruential generator
(LCG) [Gla04] (drand48() in C) was used to generate the pseudoran-
dom sequences for standard Monte Carlo and for random scramblings of
the Sobol’ points. This generator enjoys widespread popularity and the
obtained results will be immediately relevant to the general practitioner.
Also, variance results in [OE04] comparing LCG with a generalized feed-
back shift register generator (GFSR) [MK94], do not show significant
improvements for GFSR in the context of randomized QMC. The stan-
dard Box Muller [BM58] method for generating normally distributed
variates is inaccurate, especially for a large number of samples [Tez95].
Hence, an inverse transform method, by Acklam [Ack], was used. This
is the Hi_1 in (2.17) for the case of normal variates. Now we describe the
benchmark circuits and the experiments. All results will be discussed
together after this description. We use the following three benchmarks.
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1) Master—slave flip-flop with scan chain (MSFF): This is the
same circuit used as a benchmark for SiILVR in Sect. 1.7.1. In this
case, we are computing the parametric yield, given a maximum ac-
ceptable clock-output delay (7.4) of 200 ps. This is a 31 dimensional
problem. 10 Monte Carlo runs with 50,000 points each were run to
compute the Monte Carlo variance. The QMC variance is computed
across a set of 10 runs: one run using 50,000 Sobol’” points and 9 runs
using 50,000 scrambled Sobol” points each. Each scrambled run uses
a distinct set of permutations.

2) Sub-1 V CMOS bandgap voltage reference: This benchmark
is also used for testing SiLVR in Sect. 1.7.3, where a detailed de-
scription is also provided. In this case, we compute the parametric
yield, given three specifications: 1) output voltage, V;..r within 10%
of 600 mV, 2) output settling time 75 < 200 ns, and 3) dropout volt-
age Vg, <900 mV. The settling time is defined as the time taken
by the output to settle within 1% of its final value. This is a 122
dimensional problem. We use the same run plan as for the flip-flop
benchmark, but with a sample size of 20,000 for each run.

3) 64-bit SRAM column: This benchmark is also used for testing
Statistical Blockade in Sect. 3.3.4, where a detailed description is
also given. In this case, we are computing the 90-th percentile of the
write time 7, in the presence of manufacturing variations. This is
a 403 dimensional problem. The same run plan as for the flip-flop
is used, with the only difference being the sample size for each run:
here we use 10,000 points.

It is clear that the problem dimensions are large enough such that
10,000-50,000 Sobol’ points will not be uniformly distributed over all
dimensions. We are bound to get undesirable patterns in several projec-
tions, similar to the ones shown in Sect. 2.4. Here, it becomes important
that we use some technique to reduce the effective dimension of the
problem. As described in Sect. 2.5.1, we use Spearman’s rank correla-
tion (1.69) as a measure of variable importance (or global sensitivity),
and arrange the statistical parameters in decreasing order of importance,
before running QMC.

As an illustrating example, let us look at how the rank correlation
based variable-dimension mapping works for the flip-flop, shown in
Fig. 2.9(a). Figure 2.9(b) shows the magnitude of the rank correlation
(|ps|) of each parameter with the clock-output delay for rising output,
computed from an initial Monte Carlo run of 1,000 samples. The vari-
ables are sorted in decreasing order of importance (rank correlation mag-
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Figure 2.9. These figures illustrate the use of rank correlation as a measure of para-
meter importance, to be used for variable-dimension mapping

nitude): this is now the order they will be mapped to the increasing di-
mensions of the Sobol” sequence. The three most important parameters
are labeled: 1) ,,: global gate oxide variation, 2) Prg;: the V; variation
in the pMOS device in the input transmission gate Tg;, and 3) Nyp1:
the V; variation in the nMOS device in the inverter Invy. The latter two
devices are on the critical signal path for a high input causing a rising
output, and are important for correctly sampling a “1” at the input,
especially when the input timing is close to the setup limit. Since the
input was timed in such a manner in the testbench, these measures of
importance make intuitive sense.
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Figure 2.10. Comparison of Monte Carlo and QMC estimates and std. deviation
convergence, for the flip-flop benchmark

2.6.2.1 Analysis of Results

Figures 2.10(a), 2.11(a) and 2.12(a) plot the values of the estimates
with increasing number of points for each Monte Carlo (pseudorandom)
and QMC (Sobol’) run. For all three cases, we can clearly see that the
QMC graphs converge more quickly than the Monte Carlo graphs in
general. In particular, the non-scrambled Sobol’ points converge very
fast towards the final result. This fact provides indirect validation that
our rank correlation based dimension mapping is an effective heuristic.
Scrambling the digits of an LDS sample changes the way the sampling
space is filled up, and hence, changes the patterns and the discrepan-
cies of the projections of the point set. We observe here that chang-
ing the patterns in this way causes the QMC performance to degrade
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Figure 2.11. Comparison of Monte Carlo and QMC estimates and std. deviation
convergence, for the voltage reference benchmark

in general for our benchmarks. This implies that the rank correlation
arranges the variables in a way that is optimal (or at least, advanta-
geous), given the patterns of the non-scrambled LDS. This behavior is
more pronounced as the problem dimensionality increases from MSFF
to the SRAM Column, suggesting that for low dimensionality (e.g., 31
dimensional MSFF), the LDS uniformity does not show large variation
for different projections. For high dimensional problems, however, ef-
fective variable-dimension mapping should give notable improvement,
over a random or uneducated assignment of variables to LDS dimen-
sions. Of course, the impact of such mappings depends on the mini-
mum possible truncation dimension of the integrand. If the truncation
dimension of a problem cannot be made much smaller than the full di-
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Figure 2.12. Comparison of Monte Carlo and QMC estimates and std. deviation
convergence, for the SRAM column benchmark

mensionality, then all mappings will achieve similar performance. Again,
in high dimensions, it is very likely that the minimum possible trunca-
tion dimension will be much smaller than the full dimensionality. As a
result, using the correct mapping will result in much improved perfor-
mance.

Figures 2.10(b), 2.11(b) and 2.12(b) compare the standard deviation
of the Monte Carlo runs (6ymc) and the QMC runs (6qmc) with in-
creasing number of points, showing the effectiveness of scrambled QMC
as a variance reduction method. The plots are in log;y—log;, scale,
where a 0 x n™ relationship will appear as a straight line with slope
—a, similar to the plots in Fig. 2.8. Linear fits, via least squared error,
are shown as dashed straight lines, and are annotated with the cor-
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responding convergence exponent. We can see that, in general, QMC
shows lower variance and faster convergence than Monte Carlo across
all three benchmarks. The estimated Monte Carlo convergence rates are
a little slower than the asymptotic rate of n~0?. This can be because
we have not reached the asymptotic rate and also because the estimates
are computed from only 10 runs. A larger number of runs is definitely
desirable, but eludes us because of the large circuit simulation times.
Even with these approximate estimates we do get a good sense of the
performance of QMC relative to Monte Carlo. oquc shows convergence
rates in between the Monte Carlo and QMC asymptotic rates of n =9
and n~!, respectively. This suggests that the integrands for these bench-
marks have superposition dimension greater than 1 and moderately large
truncation dimension. Another reason for these reduced rates can be the
lack of smoothness in characteristic function integrand (2.12). Integrand
smoothness can lead to better QMC performance as indicated in [MC96]
and [Fox99]. Figure 2.13 provide evidence for larger than one superpo-
sition dimension. Here we plot the standard deviation of LHS estimates
for the SRAM column and voltage reference cases. We can see that the
LHS curve lies in between the curves for Monte Carlo and QMC. This
indicates that there are some significant multi-dimensional components
of the integrands for which the Sobol’ points further reduce the inte-
gration error over LHS, similar to the case of functions f. and fs in
Fig. 2.8.

We now compute some estimates of the samples size needed to achieve
a given accuracy criterion. Say the exact value of the integral is () and
we specify an accuracy criterion as follows: we want the estimate @, to
be within 6% of @) with a probability of p. In other words, we want the
error magnitude to be less than or equal to Q(%O). Using the estimate
for probabilistic error from (2.103), we can write this as

opc® ! <1¥) <Q <%>. (2.122)

For p =0.9545, we get

200

Using the linear fits from Figs. 2.10(b), 2.11(b) and 2.12(b), we can
then estimate the number of points n needed to satisfy this criterion.
The same arguments hold for oqvc and the QMC sample size. The
results for 6 =1, 0.1 are shown in Table 2.4. Since, we do not know @
for these circuit benchmarks, we estimate it using all the points at our
disposal — from 10 Monte Carlo and 10 QMC runs — and assume that
the error in this estimate is negligible in comparison with Q(%O). Even

oMC gQ( 0 > (2.123)
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Figure 2.18. Comparison of std. deviation convergence of Monte Carlo, LHS and
QMC

if the error is not negligible, because we are using the same assumption
for both Monte Carlo and QMC, the relative trends seen here can be
believed. We can see moderate to large speedups (2x to 50x), showing
the effectiveness of scrambled QMC as a variance reduction method.
Furthermore, these speedups tend to improve as the required accuracy
increases.

The results presented in this section are promising and recommend
using QMC for general circuit analysis problems. Of course, these are
initial results and there is much scope for more research in this area.
We discuss some immediate directions for future work in the following
section.
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1) MSFF SRAM column Voltage ref.
MC / QMC MC / QMC MC / QMC

1% 1,114 / 588 1,631 / 354 89,115 / 10,360
(1.9x) (4.6x) (8.6x)

0.1% 180,232 / 24,465 586,771 / 11,451 15,182,252 / 838,062
(7.4%) (51.2x) (18.1x)

Table 2.4. Number of points needed to achieve a given error with a confidence level
of 95.45%. Speedup of QMC over MC is shown in brackets

2.

7 Future Work

This study brings up many relevant questions and possibilities. We

outline a few here.

D

2)

Owen proposes Latin supercube sampling (LSS) in [Owe98al]. LSS
combines LHS and QMC in an attempt to exploit the excellent prop-
erties of QMC for the small dimensional projections, while achieving
at least Monte Carlo-type performance for the high dimensional pro-
jections. The set of s dimensions is divided into k exclusive subsets.
Scrambled QMC is used for each subset, with different scramblings
for each subset. Then, the points in each subset are randomly per-
muted, as in LHS, before combining them together to achieve an
s dimensional LSS sample. Each subset enjoys the scrambled QMC
rate of convergence and the variance resulting from the interaction
between subsets enjoys the Monte Carlo rate. We can see the sim-
ilarity with LHS, where each subset is of size one. In practice, the
number of statistical parameters in a circuit can become extremely
large (1,000s or more). In such cases, it will likely be essential to use
such mixed sampling methods to achieve effective performance from
QMC. Spanier [Spa95] suggests a less powerful, but easier to apply,
hybrid sampling technique using QMC for the first d dimensions and
Monte Carlo for the rest.

We saw theoretical results in Sect. 2.5.2 and experiments (on LHS)
in Sect. 2.6.1 that suggest that scrambled QMC can achieve up to
n~1% error convergence asymptotically, if the integrand is smooth.
Morokoff and Caflisch [MC95] show that the lack of continuity in the
integrand can reduce the effectiveness of non-scrambled QMC, re-
sulting in Monte Carlo type performance. Integrands in circuit yield
analysis are typically characteristic functions as in (2.12), which are
discontinuous at the boundary of the acceptance region where they
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suddenly change from 1 to 0. For any arbitrary boundary, whether a
QMC point falls within the boundary to contribute a 1 to the inte-
gral, or outside the boundary to contribute a 0, is essentially random.
This random sampling around the entire boundary leads to the degra-
dation in QMC performance towards Monte Carlo performance. In
high dimensions, the boundary becomes relatively more significant
(e.g., the ratio of the boundary area of a unit cube to its volume,
in s dimensions is 2s), and the degradation worsens with increas-
ing dimensions. Moskowitz and Caflisch [MC96] shows a method of
“smoothing” such integrands by enforcing continuity, without chang-
ing the value of the integral. Fox [Fox99] discusses other forms of
smoothing in the context of randomized QMC. Using such, or novel,
smoothing techniques can help further improve the performance of
QMC for circuits with medium dimensionality, and make QMC ef-
fective on problems with very large dimensionality.

3) Variance reduction techniques [Gla04][Fis06] are widely employed to
reduce the variance — and, hence, the error — of standard Monte
Carlo. Since QMC shows Monte Carlo type performance on inte-
grands with large effective dimension, variance reduction techniques
like control variates, stratification and importance sampling should
be very useful in such cases. In fact, LSS is a form of stratified sam-
pling applied to QMC. Some applications of these techniques are
discussed in [Fox99].
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