Chapter 2
Cryptographic Hardness Assumptions

As noted in the previous chapter, it is impossible to construct a digital signature
scheme that is secure against an all-powerful adversary. Instead, the best we can
hope for is to construct schemes that are secure against computationally bounded
adversaries (that, for our purposes, means adversaries running in probabilistic poly-
nomial time). Even for this “limited” class of adversaries, however, we do not cur-
rently have any constructions that can proven, unconditionally, to be secure. In fact,
it is not too difficult to see that the existence of a secure signature scheme would
imply! P # NP, a breakthrough in complexity theory. (While there is general belief
that P # NP is true, we seem very far away from being able to prove this.) Actually,
as we will see below, the existence of a secure signature scheme implies the exis-
tence of one-way functions, something not known to follow from P # NP and thus
an even stronger result. (Informally, the issue is that P = NP only guarantees the ex-
istence of problems that are hard in the worst case. But a secure signature scheme is
required to be “hard to break” on the average — in particular, for “average” public
keys generated by signers.)

Given this state of affairs, all existing constructions of signature schemes are
proven secure relative to some assumption regarding the hardness of solving some
(cryptographic) problem. We introduce some longstanding and widely used assump-
tions in this chapter; other, more recent cryptographic assumptions are introduced
as needed throughout the rest of the book.

2.1 “Generic” Cryptographic Assumptions

We begin by discussing “generic” cryptographic assumptions before turning to var-
ious concrete, number-theoretic constructions conjectured to satisfy these assump-

1 See any book on complexity theory for definitions of these classes, which are not essential to the
rest of the book.

J. Katz, Digital Signatures, DOI 10.1007/978-0-387-27712-7 2, 35
© Springer Science+Business Media, LLC 2010



36 2 Cryptographic Hardness Assumptions

tions. While any scheme used in practice must be based on some concrete “hard”
problem, there are several advantages of studying generic assumptions:

e A signature scheme based on generic assumptions is not tied to any particu-
lar “hard” problem, and therefore offers greater flexibility to the implementor.
As but one illustration of this flexibility, note that a signature scheme based on
a specific assumption must be scrapped if the assumption is found to be false,
whereas a signature scheme based on generic assumptions (that was instantiated
with the particular assumption found to be false) can simply be instantiated using
a different concrete problem.

e Constructions based on generic assumptions are often simpler to analyze and
understand, since abstracting away the “unnecessary” details has the effect of
highlighting those details that are important.

e Generic constructions are interesting from a theoretical point of view insofar as
they indicate what is feasible, and what are the minimal assumptions that are
necessary. These are often useful steps toward developing practical schemes.

On the other hand, tailoring a signature scheme to a specific assumption can often
lead to a much more efficient scheme than simply “plugging in” that same assump-
tion to a generic template. Indeed, constructions based on specific assumptions are
generally orders of magnitude more efficient than schemes based on generic as-
sumptions, regardless of how the latter are instantiated.

2.1.1 One-Way Functions and Permutations

The most basic building block in cryptography — in fact, as we will see, the mini-
mal assumption needed for constructing secure signature schemes — is a one-way
function. Informally, a one-way function f is a function that is “easy” to compute
but “hard” to invert on the average, in a way made precise below. We give two def-
initions of a one-way function: the first is easier to work with, while the second is
easier to instantiate using known number-theoretic primitives (and can also yield
more efficient constructions). Fortunately, the two definitions are equivalent in the
sense that one exists if and only if the other does. We also define two notions of
one-way permutations, though equivalence in this case is not known to hold.

Definition 2.1. A function f: {0,1}* — {0,1}* is a one-way function if:

1. (Easy to compute:) There is a deterministic, polynomial-time algorithm Eval
such that for all k and all x € {0, 1} we have Eval(x) = f(x). (From now on, we
do not explicitly mention Evaly and only refer to f itself, keeping in mind that f
can be computed in polynomial time.)

2. (Hard to invert:) The following is negligible for all PPT algorithms A:

Pr[ix — {0, 15y = flx)ed’ —A(1hy): £() =]

Note that it is not required that x = x in the above.



2.1 “Generic” Cryptographic Assumptions 37

A one-way function f is a one-way permutation if f is bijective and length-
preserving (i.e., | f(x)| = |x| for all x).

It is not difficult to show that the existence of a one-way function implies P # NP.
On the other hand, we do not currently know whether P # NP necessarily implies
the existence of one-way functions.

While the above definition is convenient when one-way functions or permuta-
tions are used to construct other objects, it does not provide a natural model for the
concrete examples of one-way functions/permutations that we currently know. In-
stead, it is often simpler to work with families of one-way functions/permutations,
defined next.

Definition 2.2. A tuple IT = (Gen,Samp, f) of PPT algorithms is a function family
if the following hold:

1. Gen, the parameter-generation algorithm, is a probabilistic algorithm that
takes as input a security parameter 1% and outputs parameters I with |I| > k.
Each value of I output by Gen defines sets Dy and R; that constitute the domain
and range, respectively, of the function f; defined below.

2. Samp, the sampling algorithm, is a probabilistic algorithm that takes as input
parameters I and outputs an element of D; (except possibly with negligible prob-
ability).

3. f, the evaluation algorithm, is a deterministic algorithm that takes as input pa-
rameters / and an element x € Dy, and outputs an element y € R;. We write this
as y:= fi(x). (That is, the function f; is defined by the behavior of f on parame-
ters 1.)

I1 is a permutation family if the following additionally hold:

1. For all I output by Gen, the distribution defined by the output of Samp(I) is
(statistically close to) the uniform distribution on Dj.
2. For all I output by Gen it holds that D; = R; and the function f7 is a bijection.

If IT is a permutation family and there exists a polynomial p such that D; =
{0,1}7%) for all I output by Gen(1¥), then we say that IT is a permutation family
over bit-strings. In this case we will assume the trivial sampling algorithm (that
simply outputs its random coins).

Definition 2.3. A function/permutation family IT = (Gen,Samp, Eval) is one-way
if for all PPT algorithms A, the following is negligible (in k):

Pr[l < Gen(1%);x < Samp(I);y := fi(x);x' — A(L,y) : fi(x) =]

Any one-way permutation family satisfying some mild additional conditions
can be transformed into a one-way permutation family over bit-strings, and we
now sketch this transformation. Let II be a one-way permutation family with
D; € {0,1}*%) (for some polynomial p) for all I output by Gen(1¥). We additionally
require that:



38 2 Cryptographic Hardness Assumptions

e Given I, the set Dy is efficiently recognizable. (L.e., there is a polynomial-time
algorithm A that takes as input / and a string x € {0, 1} (¥) and correctly decides
whether I € D;.)

e Forall I, the set D; is dense in {0,1}7®)_ That is, | D;| /2P%) = 1/poly(k).

Construct a permutation family IT' = (Gen’,Samp’, f) as follows: Gen’ is identical
to Gen. The sampling algorithm Samp’ is the trivial one that outputs a random string
of length p(k) (we assume that k can be determined from 7). Finally, define function
f1:10,13%) — {0,117 as:

fit) = { 1) e

x  otherwise

Note that IT' is not necessarily one-way, since f] is trivial to invert on any point
y & Dj. Nevertheless, it is hard to invert f] on a noticeable fraction of its range.
This hardness can be “amplified” by running many copes of IT' in parallel. That is,
define IT" = (Gen”,Samp”, f') as follows: Gen” is the same as Gen. The sampling
algorithm Samp’ outputs a random string of length £(k) - p(k) for an appropriate
polynomial /. Finally,

el 1) € A1 1 Fow)-

Intuitively, it is clear that inversion is difficult as long as any of the x; are in Dy, and
this is true for some x; with all but negligible probability (for ¢ chosen appropri-
ately). A formal proof that IT” is a one-way permutation family over bit-strings is
not much more difficult.

We have defined both one-way functions (cf. Definition 2.1) and one-way func-
tion families (cf. Definition 2.3). We now show that these definitions are equivalent.

Lemma 2.1. A one-way function f (in the sense of Definition 2.1) exists iff a one-
way function family (in the sense of Definition 2.3) exists.

Proof (sketch). It is immediate that a one-way function f implies the existence of
a one-way function family: simply let Gen be the trivial algorithm that on input
1% outputs I = 1¥; take Samp to be the algorithm that on input 7 = 1¥ outputs a
uniformly distributed string x € {0, 1}¥; and define f;(x) = f(x).

The other direction is also conceptually simple, just more technical. Let IT =
(Gen,Samp, f) be a one-way function family such that the running time of Gen is

bounded by p; and the running time of Samp is bounded by p,, and let p def P1+pa;
note that p is a polynomial and furthermore that the combined length of the random
tapes used by Gen and Samp for security parameter k is bounded by p(k). Define f
as follows: on input 7 € {0, 1}* find the largest integer k such that p(k) < k. Parse r
as r1|rp with [ry| = py (k) and |r2| > pa(k). Set I := Gen(1*;r,) and x := Samp(I;r2)
(note that we fix the random tapes of Gen and Samp, so this step is deterministic),
and compute y := f;(x). The output of f is the pair (/,y). The proof that f is a
one-way function is tedious, but straightforward.



2.1 “Generic” Cryptographic Assumptions 39

The above shows that one-way functions are equivalent to one-way function fam-
ilies. In contrast, while the existence of one-way permutations is easily seen to
imply the existence of one-way permutation families, the converse is not known.
Moreover, the specific number-theoretic assumptions discussed below yield one-
way permutation families (indeed, one-way permutation families over bit-strings)
much more naturally than they do one-way permutations. We will therefore work
exclusively with the notion of one-way permutation families over bit-strings.

This is a good place to record the following observation.

Theorem 2.1. The existence of a signature scheme that is existentially unforgeable
under a one-time random-message attack implies the existence of a one-way func-
tion.

Proof (sketch). In fact even security against a no-message attack suffices to prove
the claim. Let IT = (Gen, Sign, Vrfy) be a signature scheme that is existentially un-
forgeable under a no-message attack, where an adversary is given only the public
key pk and succeeds if it outputs (m, o) with Vrfy ,, (m, &) = 1. Let p(k) be a polyno-
mial bounding the length of the random tape used by Gen on security parameter 1¥.
Define a one-way function f as follows: on input r € {0,1}*, compute the largest
integer k such that p(k) < k. Then run Gen(1¥;7) to obtain (pk, sk), and output pk.

Observe that any PPT algorithm A inverting f can be used to forge signatures in
IT as follows: given pk, run A to obtain a string r. If f(r) = pk, then this means that
running Gen(1%;7) yields a pair (pk,sk’). It is then trivial to output a forgery on any
message m by computing the signature o < Signg (m). (Note that sk’ need not be
equal to the “real” secret key sk used by the signer; i.e., there may be multiple valid
secret keys associated with the single public key pk. But correctness of IT implies
that this does not matter, since valid signatures with respect to pk can be produced
using any secret key associated with pk.)

2.1.2 Trapdoor Permutations

A stronger notion than that of one-way functions is obtained by introducing an
“asymmetry” of sorts whereby one party can efficiently accomplish some task that
is infeasible for anyone else. This leads to the idea of trapdoor permutations that
may be viewed, informally, as one-way permutations that can be efficiently inverted
given some additional “trapdoor” information. (One can also consider trapdoor func-
tions but these turn out to be much less useful.) A definition follows.

Definition 2.4. A tuple IT = (Gen,Samp, f, f~!) of PPT algorithms is a trapdoor
permutation family if the following hold:

e Gen, the parameter-generation algorithm, is a probabilistic algorithm that
takes as input a security parameter 1¥ and outputs parameters I (with |7| > k)
along with an associated trapdoor td.



40 2 Cryptographic Hardness Assumptions

Each value of I output by Gen defines a set Dy that constitutes the domain and
range of a permutation f; defined below.

e Samp, the sampling algorithm, is a probabilistic algorithm that takes as input
parameters I and outputs an element x € D; whose distribution is statistically
close to the uniform distribution over D;. We will sometimes leave Samp implicit
and just write” x «— Dj.

e f, the evaluation algorithm, is a deterministic algorithm that takes as input pa-
rameters / and an element x € D;, and outputs an element y € D;. We write this
asy:= fi(x).

e f~! the inversion algorithm, is a deterministic algorithm that takes as input
parameters /, a trapdoor td, and an element y € D;. It outputs an element x € D;.
We leave I implicit, and write this as x := f;3'(y).

e For all k, all (1,td) output by Gen(1¥), and all x € D; we have f,;'(fi(x)) = x,
and hence f,3'(-) and f;(-) are both permutations over Dy, and inverses of each
other.

e The following is negligible for all PPT algorithms A:

Pr [(I,td) — Gen(1¥);y — Dpsx — A(Ly) : fi(x) =y|.

For brevity, and since it will not cause confusion, we simply refer to a “trapdoor
permutation” rather than a “trapdoor permutation family”.

Because f7 is a permutation, choosing x uniformly from Dy and then setting y :=
fi(x) results in a value y that is uniformly distributed in D;. We note also that it
is possible for f; to be defined over some set that (strictly) contains Dy, but the
function is only guaranteed to be a bijection when its inputs are taken from D;. The
final condition of the definition, however, requires that it be “hard” to find any x
mapping to y (i.e., even an x & Dy).

Occasionally, when we do not care about the particular index / or trapdoor td,
we will write (f,f~!) « Gen(1¥) and write f(-) in place of f;(-) and f~'(-) in
place of ftgl . Of course, it is important to keep in mind that / is required in order to
evaluate f, and that f~! can only be evaluated efficiently with knowledge of td.

Trapdoor permutations, in the sense defined above, do not suffice for most of the
applications we will see in this book. Instead, we need the following strengthening:

Definition 2.5. A trapdoor permutation family IT = (Gen,Samp, f, f~!) is called
doubly enhanced? if the following conditions hold:

1. The following is negligible for all PPT algorithms A:

Pr [(I,td) — Gen(1%); 7« {0,1}*;y := Samp(I;r);x — A(L,y,r) : fi(x) =] .

2 Technically, x < Dy refers to selecting x uniformly from D;. Since the distribution produced by
Samp is statistically close to uniform, the difference is unimportant.

3 We use this terminology to distinguish our definition from that of enhanced trapdoor permuta-
tions, which satisfy only the first condition.



2.1 “Generic” Cryptographic Assumptions 41

That is, it should be difficult to find a pre-image of y even when given the random
coins used to sample y.

2. Let p(k) denote the length of the random tape used by Samp on security param-
eter 1X. There exists a PPT algorithm Samp’ that takes as input I and outputs a
tuple (x,y,r) with x € Dy and r € {0,1}”®) and such that:

o fi(x) =yandy=Samp(I;r);
e The distribution on r is statistically close to uniform.

We can also define a trapdoor permutation over bit-strings in the natural way (cf.
Definition 2.2). It is not hard to see that any trapdoor permutation over bit-strings
is also a doubly enhanced trapdoor permutation: the first condition of Definition 2.5
holds by virtue of the fact that Samp is trivial (since y = Samp(/;y)), and the second
condition holds by letting Samp’ be the algorithm that chooses x uniformly, sets
y:= fi(x), and sets r := y. All the concrete examples of trapdoor permutations that
we will see in this book can be suitably “massaged” to be trapdoor permutations
over bit-strings.

2.1.3 Clawfree (Trapdoor) Permutations

A pair of clawfree permutations is, informally, a pair of efficiently computable per-
mutations fo, fi defined over the same domain for which it is hard to find a claw:
namely, a pair xq,x; with fo(xo) = fi1(x1). A pair of clawfree frapdoor permutations
additionally has an associated frapdoor td that allows for efficient inversion of fj
and f;. Observe that given such trapdoor information, it is easy to find a claw: sim-
ply choose arbitrary y and compute xo := f;,’ 1(y) and x; := fl_l(y); thus, hardness
of finding a claw holds only for algorithms that do not have access to the trapdoor.

Definition 2.6. A tuple IT = (Gen,Samp, fo, f1) of PPT algorithms is a clawfree
permutation family if the following hold:

e Gen, the parameter-generation algorithm, is a probabilistic algorithm that
takes as input a security parameter 1¥ and outputs parameters I (with |I| > k)
along with an associated trapdoor td.

Each value of I output by Gen defines a set D; that constitutes the domain and
range of permutations f ¢, f7,1 defined below.

e Samp, the sampling algorithm, is a probabilistic algorithm that takes as input
parameters / and outputs an element x € D; whose distribution is statistically
close to the uniform distribution over D;. We usually leave Samp implicit, and
just write x < Dj.

e fo and fi, the evaluation algorithms, are deterministic algorithms that take as
input parameters / and an element x € Dy, and output an element y € D;. We write

this as y 1= fro(x) ory := f71(x).



42 2 Cryptographic Hardness Assumptions

e The following is negligible for all PPT algorithms A:
Pr [(1,td) < Gen(1¥); (xo,x1) < A(I) : fro(x0) = fr1(x1)] -

II = (Gen,Samp,fo,fl,f(;' 7ffl) is a clawfree trapdoor permutation family if
(Gen,Samp, fo, f1) is a clawfree permutation family and the following additionally
hold:

e fu and f ! the inversion algorithms, are deterministic algorithms that take as
input parameters /, a trapdoor td, and an element y € D;. They output an element
x € Dy. We leave I implicit, and write this as x := £, (y) or x := f;g ().

e For all k, all (I,td) output by Gen(1%), all x € Dy, and b € {0,1} we have
ftg}b( f15(x)) = x. Thus, ft;1b(~) and f(-) are permutations over Dy and inverses
of each other.

As in the case of trapdoor permutations, we often refer to “clawfree (trapdoor)
permutations” rather than “clawfree (trapdoor) permutation families.” We may also
switch to a less cumbersome notation and write (fo, fi, fy ', f"') < Gen(1¥) for the
output of Gen, and then use fo(-), fi(-) in place of fro(-), f1,1(-) and, similarly, use
57 1C), £71() in place of ft;}()(-),ft;}] (+). As before, it is important to keep in mind
that f;” t S ! cannot be efficiently evaluated without knowledge of td.

We also note, once again, that it is possible for fy, fi to be defined over some
set (strictly) containing the domain D over which these functions are guaranteed to
be permutations. The final condition of the definition, however, requires that it be
“hard” to find any xo,x; for which fy(xo) = f1(x1) (i.e., even xo,x; & D).

The existence of clawfree trapdoor permutations represents a (possibly) stronger
assumption than the existence of trapdoor permutations:

Lemma 2.2. If IT = (Gen,Samp, fy, fi ,f(;l,ffl) is a clawfree trapdoor permuta-
tion family, then IT' = (Gen, Samp,fo,f(;l) is a trapdoor permutation family. Thus,
the existence of clawfree permutations implies the existence of trapdoor permuta-
tions.

Proof (sketch). The syntactic requirements are easily seen to match up, and so all
we need to prove is hardness of inversion. Fix any PPT algorithm A’ and define:

Su (k) &l py (I,td) < Gen(1%);y «— Dpsx — A'(L,y) : fo(x) = y| .

This is exactly the probability with which A" inverts IT’, and so we prove that IT' is
a trapdoor permutation family by showing that 8,/ (k) is negligible.

Consider the following algorithm A for finding a claw in IT, using A’ as a sub-
routine:

Algorithm A:
The algorithm is given parameters /, generated using Gen(1%).
Its goal is to find a claw.



2.2 Specific Assumptions 43

e Choose x| < D; and compute y := fj(x1).
e Run A’(1,y) to obtain xo.
e If fo(xo) =, then output the claw (xo,x).

Clearly, A runs in polynomial time. Furthermore, A succeeds in outputting a claw
whenever A’ succeeds in inverting y with respect to fy. Since A chooses x; uniformly
at random from Dy and fj is a permutation over this set, the value y given by A to A’
is also uniformly distributed in D;. Thus, the probability that A’ succeeds in inverting
y is exactly &4 (k), and this is exactly the probability with which A outputs a claw.
The fact that IT is clawfree thus implies that 8,/ (k) is negligible, as desired.

By analogy with the case of trapdoor permutations, we may also define a notion
of doubly enhanced clawfree trapdoor permutations:

Definition 2.7. Let IT = (Gen,Samp,fo,fl,fo_l,fl_l) be a clawfree trapdoor per-
mutation family. We say IT is doubly enhanced if both ITy = (Gen,Samp, fy, f;; D)

and IT; = (Gen,Samp, f1, fi l) are doubly enhanced trapdoor permutation families.
That is:

e For b € {0,1} and any PPT algorithm A the following is negligible:
Pr ((I,td) « Gen(1¥);r « {0,1}%;y := Samp(I;7);x «— A(L,y,7) : f1.(x) :y} .

e If we let p(k) denote the length of the random tape used by Samp on security
parameter 1%, there exist PPT algorithms Samp,, Samp, where Samp,, takes as
input / and outputs a tuple (x,y,r) with x € Dy and r € {0,1}?%) and such that:

L. fip(x) =y andy = Samp(I;r);
2. the distribution on r is statistically close to uniform.

We may also define a clawfree trapdoor permutation family over bit-strings in
the obvious way, and it is easy see that any such family is also a doubly enhanced
clawfree trapdoor permutation family.

2.2 Specific Assumptions

The discussion thus far has been very general. We now show some concrete ex-
amples of number-theoretic problems conjectured to be hard, and demonstrate how
these can be used to instantiate the generic assumptions described thus far. We as-
sume in this section some familiarity with basic number theory; see the notes at the
end of this chapter for pointers to existing references covering this material.

In this chapter we have chosen to focus on the most well known and long-
standing cryptographic assumptions; some more recent assumptions are introduced
and discussed in Chapters 4 and 5.



44 2 Cryptographic Hardness Assumptions

2.2.1 Hardness of Factoring

The factoring problem is probably the longest-studied “hard” problem in algorith-
mic number theory. It is also one of the easiest one-way functions to explain, at least
informally, since multiplication is clearly “easy” (i.e., polynomial time) yet finding
the prime factorization of a (large) number is widely believed* to be “hard”. But
does the conjectured “hardness of factoring” trivially imply a one-way function? A
natural first candidate for a one-way function is the function fiui(x,y) = xy. A little
thought, however, shows that fi,, is decidedly nor one-way: with probability 3 /4
at least one of x or y will be even, making it trivial to find a factor of xy (recall that
one-wayness is defined in terms of the inability to find any preimage of a randomly
generated point). To avoid problems of this sort, we simply need to restrict the in-
puts of frut to (large) primes of equal length. Formally, we construct a function
family (Gen,Samp, f) as follows (cf. Definition 2.3):

e Gen(1*) simply outputs I = 1*. We let D; denote the set of all pairs of k-bit
primes.

e Samp(l k) is a randomized algorithm that outputs two random (and independently
chosen) k-bit primes.

e f(p,q) outputs the product pq.

One way to state the factoring conjecture is as the assumption that the family
(Gen,Samp, f) defined above is one-way.

Of course, we have omitted what is perhaps the most important detail in the
above: how to generate random primes in polynomial time. An algorithm computing
Samp follows fairly readily from the following two facts:

1. Prime numbers are sufficiently dense that a random integer is prime with “suffi-
ciently high” probability.

2. There exist (probabilistic) polynomial-time algorithms that can determine (ex-
cept with negligibly small error) whether a given integer is prime.

We refer the reader to the references listed in the notes at the end of this chapter for
further information.

For our purposes, it will be convenient to let GenModulus denote an (unspecified,
but polynomial-time) algorithm that, on input 1%, outputs (N, p,q) such that N = pq,
and p and ¢ are k-bit primes (with all but negligible probability in k). We can then
express the factoring assumption relative to a particular algorithm GenModulus:

Definition 2.8. We say that factoring is hard relative to GenModulus if for all PPT
algorithms A, the following is negligible:

Pr[(N,p,q) — Genl\/lodulus(lk);(p,q) —A(N) : pg=N].

4 Tt is crucial to keep in mind here that running time is measured in terms of the length(s) of the
input(s) and not their magnitude. It is easy to factor a number N in time linear in N using trial
division by all numbers less than N. But a polynomial-time algorithm for factoring N is required
to work in time polynomial in |N| = © (logN).



2.2 Specific Assumptions 45

The factoring assumption is that there exists a GenModulus relative to which factor-
ing is hard.

We stress that we do not require that GenModulus choose p and g to be random
k-bit primes; though that is certainly one possibility (that is also used frequently in
practice), we allow for other means of choosing the primes p and ¢ so long as the
factoring assumption (relative to GenModulus) is still believed to hold.
Interestingly, the factoring assumption — that, at first glance, seems only to
guarantee the existence of a one-way function — can be used to construct a much
stronger cryptographic primitive: a (doubly enhanced) clawfree trapdoor permuta-
tion family. We first show how to use the factoring assumption to construct a trap-
door permutation family, and then describe the extension to give the result claimed.

We begin with a small amount of (standard) number-theoretic background. Given

any integer N > 1, let Zy &ef {0,...,N—1}.Itis a well-known fact that this is a group

under addition modulo N. We also define

7, ¥ ixe{l,...,N—1}| ged(x,N) = 1}.
It is not too difficult to prove that Zy; is a group under multiplication modulo N;
this follows from the fact that Zy, contains exactly those elements of Zy that have a
multiplicative inverse modulo N.

The squaring function modulo N is the function that maps x € Zy; to x*> mod N.
Elements of Zj, that have a square root are called quadratic residues modulo N, and
we denote the set of quadratic residues modulo N by QRy. If N is a product of two
distinct, odd primes, then squaring modulo N is a four-to-one function; i.e., each
quadratic residue modulo N has exactly four square roots. We use this fact in the
proof of the following:

Lemma 2.3. Let N = pq with p,q distinct, odd primes. Given x, % such that x* =y =
#2 mod N but x # 4% mod N, it is possible to factor N in polynomial time.

Proof. We claim that either gcd(N,x + £) or gcd(N,x — £) is equal to one of the
prime factors of N. Since gcd computations can be carried out in polynomial time,
this proves the lemma.

If x> = £2 mod N then

0=x>—% = (x—2%)-(x+£) mod N,

and so N | (x—2)(x+X£). Then p| (x —£)(x+ %) and so p divides one of these terms.
Say p| (x+2%) (the proof proceeds similarly if p | (x—£)). If ¢ | (x+£) then N | (x+ %),
but this cannot be the case since x # —£ mod N. So g fx+ £ and gcd(N,x+ %) = p.

The following important result shows (roughly) that if N is hard to factor then
squaring modulo N is one-way. Formally, define a function family Ilquaring =
(Gen,Samp, f) as follows:

e Gen(1%) computes (N, p,q) < GenModulus(1¥), and outputs parameters N. Let
DN = Z;(V and RN = QRN



46 2 Cryptographic Hardness Assumptions

e Samp(N) chooses a uniform element of Zj,. (This can be done easily by choosing
random elements of Zy until one is found that is relatively prime to N.)
e fy(x) outputs x> mod N.

Theorem 2.2. If factoring is hard relative to GenModulus, then Ilsquaring is a one-
way function family.

Proof. Let A be a probabilistic polynomial-time algorithm, and define

ea(k) &l py [N — Gen(1%);y < QRy;x < A(N,y) : x* = y mod N} .

Since setting y := x> mod N for a uniformly random x € Zy is equivalent to choosing
y uniformly from QRy (because squaring is four-to-one), the above exactly repre-
sents A’s success probability in inverting the squaring function modulo N. Showing
that &4 (k) is negligible thus proves the theorem.

Consider the following probabilistic polynomial-time algorithm A¢, that at-
tempts to factor moduli output by GenModulus:

Algorithm Ag,:
The algorithm is given a modulus N as input.

e Choose random x < Z7 and compute y := x> mod N.

e Run A(N,y) to obtain output £.

e If 22 =ymodN and £ # 4x mod N, then factor N using
Lemma 2.3.

By Lemma 2.3, we know that A, succeeds in factoring N exactly when £ #
+x mod N and > = y mod N. Since the modulus N given as input to Ag,; is gen-
erated by GenModulus(1¥), and y is a random quadratic residue modulo N (since
x was chosen uniformly at random from Z},), the probability that A outputs £ sat-
isfying £> =y mod N is exactly &4 (k). Moreover, conditioned on the value of the
quadratic residue y given to A, the value x used by A, is equally likely to be any
of the four possible square roots of y. This means that, conditioned on A outputting
some square root £ of y, the probability that £ # +x mod N is exactly 1/2. Putting
this together, we have:

Pr[(N, p,q) — GenModulus(1¥) : A¢,c; factors N]

_ (N7P7Q)<—GenMOdU|US(lk);x<_Z;‘v; . N
_Pr{ y:=x? mod N;£ — A(N,y) :£# txmod N \£* =y mod N
— 1 (N7p7q) — Genl\/lodulus(lk);x «— ZX/’ 2

2.Pr[ yi:xzmodN;)h—A(N’y) (X" =ymod N

= e (k)/2.

Since factoring is hard relative to GenModulus, we conclude that &4 (k) must be
negligible, completing the proof.



2.2 Specific Assumptions 47

One approach to making Ilsquaring @ permutation family is to consider specific
moduli N and restrict the domain of the function. For N = pg a product of two
distinct primes p and g, we say that N is a Blum integer if p=g=3 mod 4. Itis a
fact that if NV is a Blum integer, then any quadratic residue modulo N has exactly one
square root that is also a quadratic residue. Thus, the squaring function for a Blum
integer N is a permutation over QRy.

It is also known that computing square roots modulo N is “easy” (i.e., can be done
in polynomial time) given the factorization of N. Combining this with the previous
observation, we obtain a trapdoor permutation family based on factoring:

e Gen(1%) computes (N, p,q) + GenModulus(1¥), where GenModulus is such that
p = ¢ =3 mod 4. It then outputs parameters N and trapdoor (p,q). Let Dy =
QRy.

e Samp(N) chooses a uniform element of y € QRy. (This can be done easily by
choosing a random element r € Zj, and setting y := r> mod N.)

f(x) outputs x> mod N.
f(;}q> (y) computes the unique square root of y modulo N that is itself a quadratic
residue.

Theorem 2.2 implies that the above is a trapdoor permutation family as long as
factoring is hard relative to GenModulus. Notice, however, that (as described) it is
not a doubly enhanced trapdoor permutation family: given the random coins r used
by Samp, which we view® as an element of Zy, it is trivial to compute a square root
of the output value y = > mod N. We will see below how this can be addressed.

Extending the above gives a construction of a clawfree trapdoor permutation fam-
ily:

e Gen(1%) computes (N, p,q) «+ GenModulus(1¥), where p = g = 3 mod 4, and
chooses random z < QRy. It then outputs parameters (N, z) and trapdoor (p,q).
Let Dy = QRy.

Samp(N) chooses a uniform element of QRy as above.
Given (N, z), we define fj and f; as follows:

fo(x) =x* mod N and f;(x) =z-x* mod N.

e Given (N,z) and the trapdoor information (p,q), the inverses of fy and f; can
be computed as follows: To compute f,” ! (y), find the unique square root of y
modulo N that is itself a quadratic residue. To compute f|° ! (y), find the unique
square root of y/z mod N that is itself a quadratic residue.

Theorem 2.3. If factoring is hard relative to GenModulus, then the above consti-
tutes a clawfree trapdoor permutation family.

> This is justified since it is easy to map a sufficiently long bit-string to an element of Z}, such that
arandom bit-string yields an element of Z3, whose distribution is statistically close to uniform, and
the mapping is invertible in the sense required.



48 2 Cryptographic Hardness Assumptions

Proof. The only condition difficult to verify is that it is computationally infeasible
to find a claw. We show that any “claw-finding” algorithm A can be used to compute
square roots modulo N. Theorem 2.2 thus implies that finding a claw is computa-
tionally infeasible.

Fix any PPT algorithm A and define

£4(k) & Pr{(N, 2, p,q) — Gen(1%); (xo,x1) —A(N,2) : g =z-x]].  (2.1)

Since this is exactly the probability with which A succeeds in finding a claw, we
need to show that g4 (k) is negligible.
Construct a PPT algorithm A’ computing modular square roots as follows:

Algorithm A’:
The algorithm is given a modulus N and an element z € QRy
as input.

e Run A(N,z) to obtain output (xg,x1).
. Ifx(z) =z -x% mod N, then output xp/x; mod N.

It is easy to see that if the input z given to A’ is chosen uniformly from QRy, then the
input (N, z) given to A is distributed identically to the experiment of Equation (2.1).
Thus, the probability that A outputs (xg,x;) with xj = z-x7 mod N is exactly & (k).
Furthermore, whenever this occurs A’ outputs a square root of its input z. But if
factoring is hard relative to GenModulus, we know from Theorem 2.2 that this can
happen with only negligible probability.

As in the case of the trapdoor permutation family presented earlier, the construc-
tion just given is not doubly enhanced. We will fix this below. To do so, we need
to introduce some brief facts about the Jacobi function Zy : Zy — {—1,+1}. (We
introduce here all the facts that are needed for the construction that follows. For fur-
ther information about the Jacobi function, consult the references at the end of the
chapter.) An element x € Zj; with _Zx(x) = +1 is said to have Jacobi symbol +1,
and similarly if #y(x) = —1 then we say that x has Jacobi symbol —1. The relevant
facts are:

1. Exactly half the elements of Zj}, have Jacobi symbol +1, and half have Jacobi
symbol —1.

2. Given N,ux, it is possible to compute _Zy(x) in polynomial time without knowl-
edge of the factorization of N.

3. For N a Blum integer, we have seen that every quadratic residue z has exactly
one square root x that is also a quadratic residue. It is furthermore the case that
z has exactly two square roots with Jacobi symbol +1, and these are given by
£x mod N.

Let 7 J ! denote the set of elements of Zy with Jacobi symbol +1. We now present
the construction of a doubly enhanced clawfree trapdoor permutation:



2.2 Specific Assumptions 49

e Gen(1¥) computes (N, p,q) «+ GenModulus(1¥), where p = g = 3 mod 4, and
chooses random z < QRy. It then outputs parameters (N, z) and trapdoor (p,q).
Let Dy = QRy.

e Samp(N) chooses a uniform element y € QRy by choosing a random r € ¢!
and setting y := > mod N. (The random r € Iy !'is chosen by taking random
bit-strings ry, ... of the appropriate length, and letting r be the first of these that
is in Zy and has Jacobi symbol +1.)

e Given (N,z), we define fp and f; as follows:

fo(x) =x* mod N and fi(x) =z%-x* mod N.

e Given (N,z) and the trapdoor information (p,q), the inverses of fp and f; can
be computed as follows: To compute f;,” 1(y), find the unique fourth root of y
modulo N that is itself a quadratic residue. To compute f]_1 (), find the unique
fourth root of y/z> mod N that is itself a quadratic residue.

Theorem 2.4. If factoring is hard relative to GenModulus, then the above consti-
tutes a doubly enhanced clawfree trapdoor permutation family.

Proof (sketch). We first show that finding a claw implies the ability to compute
square roots modulo N; it follows from Theorem 2.2 that finding a claw is infeasible.
Say we are given N and a quadratic residue z € QRy. Given a claw (xg,x1) such
that xj = 7% - x} mod N, we have (x3/x})? = z2 mod N. Since the quadratic residue
7> mod N has a unique square root that is also a quadratic residue (namely, z itself),
it must be the case that x3/x] = z mod N and so xo/x; mod N is a square root of z
as desired.

A similar proof shows that it is hard to find a pre-image of y with respect to
J1 even when given the randomness used to generate y. Let A be a PPT algorithm
inverting f1, and consider the following probabilistic polynomial-time algorithm A’
for computing square roots:

Algorithm A’:
The algorithm is given a modulus N and 7 € QRy as inputs.

Choose random Z € Zy, and set 7 := 2% mod N.

Choose random b € {0, 1} and set r := (—1)”7 mod N.
Compute y := 7> mod N.

Run A(N,z,y,r) to obtain output x.

Output Z- x.

The input to A is distributed correctly, since r is uniformly distributed in _#, ! (this
follows because _Zn(7#) = +1 since 7 is a quadratic residue) and z is uniform in
QRpy. Furthermore, we have

A 2 A N
Zx* =ymod N = (szz) =# mod N = 2°x*> = #mod N



50 2 Cryptographic Hardness Assumptions

(the final implication uses the fact that quadratic residues have a unique square root
that is also a quadratic residue), and so Zx is a square root of 7. Lemma 2.3 thus im-
plies that A inverts with only negligible probability. A proof for the case of inverting
fo follows analogously.

To conclude, we show algorithms Samp,, Samp, as required® by Definition 2.7.
Samp, proceeds as follows: Given (N,z), choose random x € Zjy, and compute
y :=x* mod N. Choose a random bit b and compute r := (—1)? - x> mod N. Output
(x,y,r). It is clear that (x,y,r) satisfy the functional requirement of Definition 2.7.
Furthermore, y is uniform in QRy and r is a random square root of y having Jacobi
symbol +1. From this it follows that r is uniform in _#, L

Algorithm Samp, as required by Definition 2.7 can be defined analogously as
follows: Given (N, z), choose random x € Z}, and compute y := z2x* mod N. Choose
a random bit b and compute 7 := (—1)?-z- x> mod N; output (x,y,r). Once again,
(x,y,r) satisfy the functional requirement of Definition 2.7. Also, y is uniform in
QRy and r is a random square root of y having Jacobi symbol +1. From this it
follows that r is uniform in 7.

2.2.2 The RSA Assumption

Another popular assumption related to factoring is the RSA assumption, named after
R. Rivest, A. Shamir, and L. Adleman who proposed this assumption in 1978. The
RSA assumption implies that factoring is hard, while the converse it not known;
thus, the RSA assumption is potentially stronger than the assumption that factor-
ing is hard. (In other words, it is possible that an efficient algorithm for the RSA
problem might be developed even while the factoring problem remains infeasible.)
Nevertheless, the RSA assumption has stood the test of time for over 30 years.

We begin with a little background. Let N = pg be a product of two odd primes
p and g. Then we have seen that Zj, is a group with respect to multiplication mod-

ulo N. An easy computation shows that the number of elements in Zj; is given by

#(N) &f (p—1)-(g—1); in other words, ¢(N) is the order of the group Z},. From

this it follows that if e is an integer that is relatively prime to ¢ (N), then the func-
tion fy : Zy — Zy given by fy .(x) =x° mod N is in fact a permutation. In other
words, for every y € Zjy, there exists a unique x € Zy, satisfying x* = y mod N. For
x,y satisfying this relation, we write x = yl/ ¢ mod N.

The RSA problem, roughly speaking, is to compute the eth root of y modulo N;
the RSA assumption is that computing eth roots modulo an integer N of unknown
factorization is hard. Formally, let GenRSA be a probabilistic polynomial-time al-
gorithm that, on input 1%, outputs a modulus N that is the product of two k-bit
primes (except possibly with negligible probability), along with an integer e > 0

® We concentrate on showing how a uniform r € 7, ! can be sampled, since going from this to
the random coins needed to generate r is easy (due to the fact that the Jacobi symbol is efficiently
computable).



2.2 Specific Assumptions 51

with ged(e, ¢(N)) = 1 and an integer d > 0 satisfying ed = 1 mod ¢ (N). (We will
see below the role played by d. Note that such a d is guaranteed to exist since e is
relatively prime to ¢ (N).) Then:

Definition 2.9. We say that the RSA problem is hard relative to GenRSA if for all
PPT algorithms A, the following is negligible:

Pr[(N,e,d) «— GenRSA(1¥);y « Zi;x < A(N,e,y) : x = y mod N].

The RSA assumption can be formalized as the assumption that there exists a
GenRSA relative to which the RSA problem is hard. For certain applications, how-
ever, additional assumptions regarding the output of GenRSA are required.

The RSA assumption implies the existence of a one-way permutation family.
Moreover, for any (N, e,d) output by GenRSA and any y € Zj, we have

(yd)e — yde — yde mod ¢(N> — yl = y mOd ]\,7

and so computing eth roots is equivalent to raising to the dth power. Thus, viewing
d as a trapdoor we see that the RSA assumption implies the existence of trapdoor
permutations. Moreover, since sampling uniformly from Zj; is trivial, we actually
obtain a doubly enhanced trapdoor permutation “for free”.

As with GenModulus in the previous section, here too we are agnostic regarding
the exact way GenRSA is implemented. One way to implement GenRSA based on
any algorithm GenModulus (not necessarily outputting Blum integers) is as follows:

1. On input 1%, compute (N, p,q) + GenModulus(1¥). Then compute

¢(N):=(p—1)(g—1).

2. Choose e > 0 such that gcd(e,¢(N)) = 1. (We leave the exact manner in which
e is chosen unspecified, though in practice certain values of e may be preferred.)
Compute d := e~ mod ¢(N) and output (N, e,d).

Since ¢(N) can be computed given the factorization of N, and d = ¢~! mod ¢ (N)
can be computed in polynomial time given ¢ (N), it is clear that hardness of the RSA
problem relative to GenRSA as constructed above implies hardness of factoring rel-
ative to GenModulus. As mentioned earlier, the converse is not known to be true.
On the other hand, the only techniques currently known for attacking the RSA prob-
lem rely on first factoring N. In addition, it is known that recovering the trapdoor d,
given N and e, is as hard as factoring (nevertheless, it is not clear that recovery of
d is necessary in order to compute eth roots). With respect to existing technology,
then, the RSA and factoring problems may be viewed as “equally hard”.

As in the case of the factoring assumption, the RSA assumption may also be
used to construct a (doubly enhanced) clawfree trapdoor permutation family in a
very similar fashion:

e Gen(1%) computes (N,e,d) < GenRSA(1¥) and chooses random z < Z};. It then
outputs parameters (N, e,z) and trapdoor d. Let Dy = Zj,.



52 2 Cryptographic Hardness Assumptions

e Samp(N) chooses a uniform element of Zj, in the trivial way.
e Given (N,e,z), define fj and f; as follows:

fo(x) =x*mod N and fi(x) =z-x° mod N.

e Given (N,e,z) and the trapdoor information d, the inverses of fy and f| can be
computed as follows: To compute f; ! (v), simply compute y? mod N. To com-
pute f; ' (y), simply compute (y/z)¢ mod N.

The proof that the above is a clawfree trapdoor permutation follows the proof of
Theorem 2.3, and is omitted. Observe that this construction is also doubly enhanced
(once again, this comes “for free” due to the triviality of sampling from Z3,).

In Chapter 4, we will introduce the (more recent) strong RSA assumption that
offers additional flexibility as compared to the RSA assumption described here.

2.2.3 The Discrete Logarithm Assumption

An assumption of a different flavor is obtained by considering the discrete logarithm
problem, which may be defined in any finite cyclic group G. For the most part, we
will consider only groups G of prime order ¢ (though this is not required in any
sense); such groups have the feature that every element in G other than the identity
is a generator, and have several other advantages as well. Letting g be a generator of
the group, and & € G be arbitrary, define the discrete logarithm of 4 with respect to
g (denoted log, /1) as the smallest non-negative integer x such that ¢g* = h. (Note that
we always have log, i < g.) The discrete logarithm problem is to compute x given
g and a random group element s. We remark that it is easy to sample a random
element i € G by choosing a uniform integer y € {0,...,¢— 1} and setting h := g”.

For certain classes of groups, the discrete logarithm problem is believed to be
hard. The problem is certainly not hard in all cyclic groups, and hardness depends
to a great extent on the way elements of the group are represented. (This must be so,
since all cyclic groups of the same order g are isomorphic yet the discrete logarithm
problem is easy in the additive group Z,.)

To formally state the discrete logarithm assumption, we must consider an infinite
sequence of groups as defined by an appropriate group-generation algorithm. Let 4
be a polynomial-time algorithm that, on input 1, outputs a (description of a) cyclic
group G, its order g (with g a k-bit integer), and a generator g € G. (Unless stated
otherwise, we will also assume that g is prime except with negligible probability.)
We also require that membership in G can be tested efficiently, and that the group
operation in G can be computed efficiently (namely, in time polynomial in k). This
implies that exponentiation in G can be performed efficiently as well.

Definition 2.10. The discrete logarithm problem is hard relative to ¢ if for all
PPT algorithms A, the following is negligible:

Pr((G.q,8) — 4 (1°);h — Gix — A(1,G,q,8,h) : g = h].



2.3 Hash Functions 53

The discrete logarithm assumption is that there exists a ¢ relative to which the
discrete logarithm problem is hard.

We often abuse terminology and say that the discrete logarithm problem is hard for
G when G is a group that is output by ¢.

It is immediate that the discrete logarithm assumption implies the existence of a
one-way function family; take fg ,,(x) that outputs g*. The functions in this family
are one-to-one if we take the domain of fg 4 ,(x) to be Z,. For certain groups G (for
which the discrete logarithm problem is assumed to be hard), we can in fact obtain
a one-way permutation family. One example, commonly used in cryptography, is
given by groups of the form Z,, for p prime. (The order of this group is g =p—1,
and is not prime. The fact that groups of this form are cyclic is not obvious, but
can be proved using basic field theory.) In this case, the “natural” mapping fc 4 :
Zp-1 — Z, is the one given above, where fG 4¢(x) = g* mod p. But by simply
“shifting” the domain we get the function f({;’ 7 Z,, — Z,, given by

ftge(¥) =g mod p.

We do not discuss other examples of groups for which the discrete logarithm
problem is assumed to be hard. For the purposes of this book, abstracting the choice
of group will be more convenient and suffices for our purposes.

The reader may be familiar with other assumptions related to the discrete log-
arithm assumption, most prominently the computational and decisional Diffie-
Hellman assumptions. Interestingly, although these assumptions are extremely use-
ful for the construction of efficient public-key encryption schemes, they have thus
far had little application to the construction of efficient signature schemes. An ex-
ception is in the context of bilinear maps, discussed in Chapter 5, and we defer any
discussion to there.

2.3 Hash Functions

Hash functions play a central role in the construction of secure signature schemes.
Constructions of hash functions based on various assumptions are known, and we
also have extremely efficient constructions (not based on any particular hard cryp-
tographic problem) that one can reasonably assume to be secure. We will return to
this point after defining the basic types of hash functions we will consider.

2.3.1 Definitions

A hash function is simply a function that compresses its input. Hash functions are
used throughout computer science, but we will be interested in two types of cryp-
tographic hash functions. Our hash functions will be keyed: that is, a function H is



54 2 Cryptographic Hardness Assumptions

defined (this is sometimes also called a hash family); a key s is sampled uniformly
at random and published; and we then look at the security of the keyed function H;.
A hash function H is said to be collision-resistant if, roughly speaking, it is hard
to find distinct x,x’ that “collide”, that is, for which H,(x) = Hy(x'). A hash func-
tion is called universal one-way if, informally, it is hard to find a collision for a
pre-specified input x, chosen independently of the key s;

Definition 2.11. A hash function is a pair of probabilistic polynomial-time algo-
rithms (Gen, H) such that:

e Gen is a probabilistic algorithm that on input 1¥ outputs a key s. (We assume that
1¥ is implicit in s.)

e There exists a polynomial ¢ such that H takes as input a key s and x € {0,1}*, and
outputs a string Hy(x) € {0,1}/®). (Note that the running time of H is allowed to
depend on |x].)

If H, is defined only for inputs x € {0,1}'®), where ¢ (k) > £(k) for all k, then we
say that (Gen, H) is a fixed-length hash function for inputs of length ¢'.

We now define the security properties stated informally earlier.

Definition 2.12. Hash function (Gen,H) is collision-resistant if the following is
negligible for all PPT algorithms A:

Pr [s — Gen(1%); (x,x) — A(1%,s) 1 x # X' NH,(x) = Hs(x/)} .

Definition 2.13. (Gen, H) is universal one-way if the following is negligible for all
stateful PPT algorithms A:

Pr {x — A(1%);5 — Gen(15);x" «— A(1%s) : x # X' A Hy(x) :Hs(x/)} .

This is sometimes also called second pre-image resistance in the literature.

It is easy to see that collision-resistance implies universal one-wayness.

2.3.2 The Merkle-Damgard Transform

The Merkle-Damgard (MD) transform can be used to convert a fixed-length hash
function (Gen,H’) to a hash function (Gen,H) taking inputs of arbitrary length,
while preserving collision-resistance. Besides being useful in its own right, the ex-
istence of the MD transform means that we can focus our attention on designing
collision-resistant compression functions operating on short, fixed-length inputs,
and then automatically convert such compression functions into full-fledged hash
functions. The MD transform is also used extensively in practical constructions of
hash functions.



2.3 Hash Functions 55

Construction 2.1: The Merkle-Damgard transform

Let (Gen,H’) be a fixed-length hash function for inputs of length 2¢(k). (This as-
sumption is for simplicity only.) Construct a hash function (Gen, H) as follows:

o The key-generation algorithm Gen is unchanged.
e H; is defined for inputs of length at most 2° — 1. To compute Hj(x) do:

1. Set L:=|x| and B := [%] (i.e., B is the number of blocks in x). Pad the input
x with zeroes until its length is an integer multiple of ¢, and parse the result
as the sequence of ¢-bit blocks x1,...,xp. Set xp+| := L, where L is encoded
using exactly £ bits.

2. Set zp:=0°.

. Fori=1,...,B+1, compute z; := H.(z;—1|x;).

4. Output zp41.

(O8]

Theorem 2.5. [f (Gen,H') is collision-resistant, then so is (Gen, H).

Proof (sketch). The proof follows easily from the observation that any collision in
H; yields a collision in H,. Let x and x’ be two different strings, of lengths L and L’
respectively, with Hy(x) = Hy(x'). Let xy, . ..,xp denote the padded version of x, and
letx],...,x be the result of padding x'. Recall further that xp,1 = Land x| =L'.
Let z; (resp, zﬁ) be as in Construction 2.1. There are two cases to consider:

1. Case 1: L # L. We have
Hy(x) = Hy(zp|L) = Hy (2 L) = H,(x').

Since zg|L # Zj|L’, this is a collision in Hj.

2. Case2: L=L'. In this case, note that B= B’ and xp | = x3, . Since x # x’, there
must exist an index i with 1 <i < B such that x; # x?. Leti* < B+ 1 be the largest
index for which z;_1 ||x # 2}« [|x.. If i* = B+ 1 then zp||xp41 and zp|[xp, | are
a collision in H] exactly as in the previous case. If i* < B, then maximality of i*
implies z;+ = /., in which case z;+_1||x; and z}._, ||x}. are a collision in Hj.

The MD transform is only guaranteed to preserve collision-resistance; it is not
guaranteed to preserve universal one-wayness. (A variant of the MD transform
where an independent key is chosen for each iteration does preserve universal one-
wayness, although this approach yields a hash function with a very long key. See
further discussion at the end of Section 2.3.4.)



56 2 Cryptographic Hardness Assumptions

2.3.3 Constructing Collision-Resistant Hash Functions

In this section we describe constructions of (fixed-length) collision-resistant hash
functions based on the number-theoretic assumptions introduced earlier in this chap-
ter. We conclude with a brief discussion of hash functions used in practice.

Collision-resistant hash functions from clawfree permutations. We begin with
a construction of collision-resistant hashing from any clawfree permutation fam-
ily. Although not very practical, the construction provide a good illustration of
how “strong” cryptographic primitives can be constructed from “weaker” building
blocks. It also shows that the factoring and RSA assumptions imply the existence of
collision-resistant hash functions.

Construction 2.2: Collision resistance from clawfree permutations

Let (Gen,Samp, fo, f1) be a clawfree permutation family, and assume that if I is
output by Gen(1¥) then elements of D; can be described using ¢ bits. Define the
fixed-length hash function (Geng, H) as follows:

e Geny(1%) computes I « Gen(1%), chooses r +— Dy, and outputs the key s = (1, 7).
In what follows, let ¢ = £(k) and write fy, f1 in place of fi, f1,1.

e Hy(x), where x € {0,1}2®), parses s as (I, ) and parses x = xi - - - xpy where each
x; is a single bit. It then outputs fy,, (fo,, , (-++ (fx, (r)) ).

Theorem 2.6. If (Gen,Samp, fy, f1) is a clawfree permutation family, then hash
Sfunction (Geng,H) from Construction 2.2 is collision-resistant.

Proof (sketch). The proof follows easily from the observation that any collision in
Hy yields a claw. For x € {0,1}?* and 1 < i < 2/ define

H; = fxi (fxi—l ( o (fxl (r)) o )) ;

note that Hy(x) = H>*(x). Let x = x| - --xo and ¥’ =, - - - x5, be two different strings
with H(x) = Hy(x'), and let i denote the largest index such that x; # x] (so x; = x’j
for all j > i). Since fy, f| are permutations,

H'(x)=H'({) = H@)=H() = fH @)= foH @)
but then H!~!(x) and HI~!(x') are a claw.

Collision-resistant hash functions from the discrete logarithm assumption. In
certain groups G (namely, where there is an efficiently computable bijection from
G to Zg)), the discrete logarithm assumption implies a clawfree permutation family



2.3 Hash Functions 57

and thus a construction of a collision-resistant hash function as discussed above.
We give a more direct and more efficient construction here, that additionally has the
advantage of not working with arbitrary G.

Let ¢ be a group-generation algorithm, and assume that if (G, g, g) « 4(1¥) then
elements of G can be described using k + O(1) bits. (This assumption is for simplic-
ity only, and a generalization of the following construction works if this assumption
does not hold.) Define a fixed-length hash function (Gen, H) as follows:

e Gen(1¥) computes (G,q,g) < %(1¥) and chooses random % € G. It outputs the
key s = (G, q,8,h).
o Lets=(G,q,g,h), and define H, : Zy x Zy — G as

Hy(x,y) =g"h.

If we want to view H; as mapping bit-strings to bit-strings, note that Hy can
handle inputs of length 2- (k— 1) (since any (k — 1)-bit integer can be viewed
naturally as an element of Z,, using the fact that g is a k-bit integer), and the
output of Hy can be encoded using k + O(1) bits. Thus, for k large enough we
have compression.

Theorem 2.7. If the discrete logarithm problem is hard relative to ¢, the above
construction is collision resistant.

Proof. Let A be a PPT collision-finding algorithm, and let

(G.q,8,h) — Gen(1%);

def
| ey XY) —A(G,q,8,h)

8A<k) Pr : (xvy) 7é (x',y’) /\Hs(xay) :HS(X/ay/)

(where s = (G, q,g,h)) denote the probability with which A finds a collision. Con-
struct the following PPT algorithm B solving the discrete logarithm problem relative
to ¢:

Algorithm B:
The algorithm is given (G, ¢, g, h) as input.
Its goal is to compute log, /.

e RunA(G,q,g,h) to obtain x,y,x',y € Z,.

o Ify#y, output (x—x')-(y/ —y)~' mod g. (Any (y —y) #0
has an inverse modulo g since ¢ is prime.)

First note that A’s input when run as a sub-routine by B is distributed identically to
the keys output by Gen (this is true because B’s input has /4 chosen uniformly from
G). Thus, A returns a collision with probability exactly €4 (k). We complete the proof
of the theorem by showing that B outputs the correct answer log, h whenever A finds
a collision. To see this, note that

gxhy _ g(l hy/ :> gxix, _ hy,iy 7



58 2 Cryptographic Hardness Assumptions

and if the above holds and furthermore (x,y) # (x’,)’) then it must be the case that
y —y#0.So g("’x/)/@/’” = h, and this is exactly what is output by B.

Dedicated collision-resistant hash functions. We have seen that collision-resistant
hash functions can be constructed based on a variety of number-theoretic assump-
tions. Yet these constructions are rather inefficient. In practice, dedicated construc-
tions of (conjectured) collision-resistant hash functions are used that are orders of
magnitude faster. These functions are generally unkeyed and have fixed length out-
puts. For these reasons, they cannot be said to satisfy asymptotic notions of secu-
rity; nevertheless, appropriate concrete notions of security can be defined. Notable
examples of hash functions in widespread use as of the time of this writing in-
clude SHA-1 (which hashes arbitrary-length inputs to 160-bit outputs) and SHA-256
(which hashes arbitrary-length inputs to 256-bit outputs).

2.3.4 Constructing Universal One-Way Hash Functions

Collision-resistance is a strong requirement. From a theoretical point of view, we
currently know how to construct collision-resistant hash functions only from con-
crete, number-theoretic assumptions; constructions based on generic assumptions
such as trapdoor permutations are not known. (Moreover, there is evidence that such
constructions are impossible.) From a practical point of view, recent years have seen
tremendous progress developing methods to attack hash functions. A prime exam-
ple is the hash function MDS5. For well over a decade MD5 was considered to be
collision-resistant for all practical purposes. In 2005, however, Chinese cryptana-
lysts discovered a new technique for finding collisions in MDS5. The attacks only
got better, to the point where collisions in MDS5 can now be found in minutes, and
structured collisions in MD3 (i.e., colliding inputs x,x’ that each satisfy certain for-
matting requirements) can now easily be found as well.

It is thus useful, when possible, to rely on the weaker assumption of universal
one-wayness. Doing so potentially allows constructions based on weaker assump-
tions, and only makes it harder for an adversary to attack a deployed scheme. (In
particular, MDS5 is still considered to be universal one-way for the time being.) As
an example of the former, we show here a construction of a (fixed-length) universal
one-way hash function from any one-way permutation. (The construction can be
easily modified to work with families of one-way permutations over bit-strings as
well.) It is known that universal one-way hash functions can be constructed based on
the (minimal) assumption of one-way functions; this construction is quite complex,
unfortunately, and is beyond the scope of this book.

The construction of a universal one-way hash function from one-way permuta-
tions will use a particular pairwise-independent function family we now introduce.
Let IFx denote the field with 2k elements, and note that there is a natural correspon-
dence between elements in F,« and k-bit strings. Define the function family

S gy Fo — {0,131 | b eFp,a e Fy \ {0}},



2.3 Hash Functions 59
as

hap(x) = chop(ax+D),
where chop simply removes the final bit of its input. We will use the following
properties of J7;:
Lemma 2.4. For every b € Fy, a € Fy \ {0}, the function h,, is two-to-one.

Proof. Fix a,b and any z € {0,1}*"!. Let zp = z||0 and z; = z||1. The equation
ax+b = zo has the unique solution x = a~! - (z0 — b) in Fy (using a # 0), and
similarly for the equation ax+ b = z;.

Lemma 2.5. Fix arbitrary y € Fy, and consider choosing a,b in the following way:

1. Choose uniformy’ € Fqy \ {y}, uniform z € {0,1}*=1, and uniform c € {0,1}. Set
7 =z||c and 7 = z||¢, and view 7,7 as elements of Fy.
2. Solve for a,b in the following system of equations:

ay+b =7 2.2)
ay+b=7. 2.3)

Then the distribution induced on (a,b) is uniform over (F \ {0}) X Fy.

Proof. Note first that y’, z, ¢ determine a, b uniquely, and that a # 0 always. Now fix
a € Fy \ {0} and b € Fy and let us see how many choices of y',z,¢ result in this
(a,b) being chosen. Since a,y, b are now fixed, there is a unique choice of z, ¢ satis-
fying Equation (2.2). Given this, y = (Z —b)-a~! # y is the unique value satisfying
Equation (2.3). We thus see that each pair (a, b) is selected with probability

1 1
[Fo \ {0} < {0, 1Y T [{0, 1} [Py \ {0} x [F|

and so the distribution of (a,b) is uniform over the indicated sets.

Let f:{0,1}* — {0,1}* be a length-preserving bijection. Define (Gen,H) as
follows:

e Gen(1¥) chooses uniform a € F, \ {0} and b € F,, and outputs the key (a,b).
o H,p(x) outputs Ay, (f(x)).

Note that H,, ;, is two-to-one for every a, b; this follows from Lemma 2.4 and the fact
that f is one-to-one.

Theorem 2.8. If f is a one-way permutation, then the above hash function is uni-
versal one-way.

Proof. Let A be a PPT collision-finding algorithm in the sense of Definition 2.13.
Define



60 2 Cryptographic Hardness Assumptions

€A (k)

L pr |x — A(15); (a,b) — Gen(1¥);x' — A(a,b) :x A X NHyp(x) = Hyp(x)] -

Construct the following PPT algorithm B inverting f:

Algorithm B:
The algorithm is given y' € {0, 1}* as input.
Its goal is to compute ¥’ € {0, 1}* with f(x') =y

e Run A(1%) to obtain x; set y = f(x). If y/ = y then output x
and stop.

e Otherwise choose random z,c¢ and then compute a,b as in
Lemma 2.5. Run A(a,b) to obtain x’. Output x'.

If y =y then B clearly outputs an inverse of y. Conditioned on the event that this
does not occur, y' is uniform in Fy \ {y}. (This follows because B’s input y' is
computed as y = f(x’) for uniform x’, and f is a permutation.) It follows from
Lemma 2.5 that a, b are distributed identically to the output of Gen, and so A finds a
collision with probability exactly €4 (k) in this case.

By construction of B,

H, (x) = chop(a- f(x)+b) = chop(a-y+b) = chop(z||c) =z.

Since H, j, is two-to-one and

Hap(f'(Y')) = chop(a-)' +b) = chop(z]|¢) =z

collides with x, it follows that f~! (') is the only input that collides with x, and so B
outputs the correct result f~!(y") whenever A finds a collision. The theorem follows.

Improving the compression. The construction above only compresses its input by
a single bit. Nevertheless, this suffices for constructing a universal one-way hash
function mapping p(k)-bit inputs to (k — 1)-bit outputs (for any desired polyno-
mial p) using a variant of the Merkle-Damgard transform, with the difference being
that independent keys must be used in each iteration. This gives a universal one-
way hash function where the key size grows linearly in the input length and, in
fact, is longer than the input. (This is no problem as far as the definition of uni-
versal one-wayness is concerned, but causes difficulty in some applications as will
become clear in Chapter 3.) Transformations that improve the compression using
smaller keys are also known; these can be used to construct universal one-way hash
functions handling inputs of unbounded length. The details are beyond the scope of
this book. Furthermore, as noted earlier, universal one-way hash functions can be
constructed from one-way functions. For completeness we record the following:

Theorem 2.9. Assuming the existence of one-way functions, there exist universal
one-way hash functions (for arbitrary-length inputs).



2.4 Applications of Hash Functions to Signature Schemes 61

2.4 Applications of Hash Functions to Signature Schemes

We wrap up this chapter by showing how to use cryptographic hash functions to
improve the parameters of digital signature schemes. We first show how to increase
the message length of a signature scheme: specifically, we show how to convert a
signature scheme capable of signing k-bit messages into one that can sign messages
or arbitrary length. (We have already shown such a construction in Section 1.9, but
the one given here is much more efficient.) This technique is used extensively in
practice to enable signing large files. We then show how to decrease the size of pub-
lic keys (at the expense of increasing the signature length), constructing in particular
a one-time signature scheme that can sign messages twice as long as its own public
key. This will form a crucial ingredient in our construction (in the following chapter)
of an existentially unforgeable signature scheme from any one-way function.

2.4.1 Increasing the Message Length

Given a signature scheme for “short” messages, a natural way of handling longer
messages is to hash all messages before signing them. We show how this can be
implemented using both collision-resistant and universal one-way hash functions.

Using collision-resistant hash functions. When using collision-resistant hash func-
tions, the above idea is simple to implement.

Construction 2.3: Increasing the message length using collision resistance

Let IT = (Gen,Sign,Vrfy) be a signature scheme for k-bit messages, and let
(Geng,H) be a hash function mapping p(k)-bit inputs to k-bit outputs. Construct
signature scheme IT' = (Gen’, Sign’, Vrfy’) for p(k)-bit messages as follows:

Key generation: Gen'(1¥) computes (pk,sk) < Gen(1*) and s « Geng (1¥). The
public key is (pk,s) and the secret key is (sk,s).

Signature generation: Algorithm Sign{, ((m) outputs Sign (H,(m)).

Signature verification: Algorithm Vrfy,, (m, o) outputs Vrfy . (Hy(m), o).

Theorem 2.10. If I1 is existentially unforgeable (resp., strongly unforgeable) under
an adaptive chosen-message attack and (Geny,H) is collision-resistant, then IT
is existentially unforgeable (resp., strongly unforgeable) under an adaptive chosen-
message attack.

Proof (sketch). The proof is quite straightforward, and so we merely provide a
sketch for the case of existential unforgeability. Let my,...,m, denote the messages



62 2 Cryptographic Hardness Assumptions

submitted by an adversary A to the signing oracle Signj; (), and let (m, &) denote

a purported forgery output by A. There are two possibilities: either Hy(m) = Hy(m;)
for some i € {1,...,£} or not. If so, then A has found a collision in H; (something
that, by assumption on (Gengy, H), occurs with only negligible probability). If not,
then H,(m) is a k-bit string different from all k-bit strings {H;(m),...,Hs(m)} that
were signed using scheme I1. But then A has in fact output a valid forgery for IT
(something that, by assumption on I1, occurs with only negligible probability).

Using universal one-way hash functions. In order to use universal one-way hash
functions, we have to work a little harder. Note first that Theorem 2.10 is no longer
guaranteed to hold if (Gengy, H) is only universal one-way: In that case an adversary
who observes s — which is included in the public key — might be able to find two
different messages m,m’ hashing to the same value, and then forge a signature on
m’ after requesting a signature on m. However, we can claim the following weaker
version of Theorem 2.10:

Theorem 2.11. If I1 is existentially unforgeable (resp., strongly unforgeable) un-
der a known-message attack and (Geny,H) is universal one-way, than IT' (as in
Construction 2.3) is existentially unforgeable (resp., strongly unforgeable) under a
known-message attack.

Proof (sketch). The proof uses exactly the same ideas as in the proof of Theo-
rem 2.10, the key difference being that in a known-message attack on IT’ the ad-
versary must “‘commit” to its messages my, . ..,my before it sees the public key (and
s0, in particular, before it sees the key s used for the hash function). Thus, if the
adversary were able to output a forgery (m, o) with H;(m) = Hy(m;) for some i, this
would violate the assumed universal one-wayness of (Geny,H).

The above already suffices to increase the message length for signature schemes
secure against an adaptive chosen-message attack: given an existentially unforge-
able signature scheme IT (which is in particular also secure against known-message
attacks) for k-bit messages, apply the above theorem to obtain scheme IT’ for
arbitrary-length messages that is secure against known message attacks (and hence
also against random-message attacks); then apply either of Theorems 1.1 or 1.2. As
we shall see, a direct construction with better efficiency is possible.

The problem with Construction 2.3 (when a universal one-way hash function is
used in place of a collision-resistant hash function) is that the adversary may select
messages to be signed in a manner that depends on the hash key s included as part
of the public key. We would like to prevent this, and “force” the adversary to choose
the messages submitted to the signing oracle independently of the hash key. We can
accomplish this by choosing the hash key “on the fly” as part of signature genera-
tion. Specifically, consider the following construction starting with an existentially
unforgeable signature scheme IT = (Gen,Sign, Vrfy) and universal one-way hash
function (Geny,H):

e Key generation is unchanged; i.e., compute (pk,sk) < Gen(1).



2.4 Applications of Hash Functions to Signature Schemes 63

e To sign a message m using secret key sk, compute s < Geng (1¥) and output the
signature

(s, Signyi (s|Hs(m)))

We stress that a fresh key s is computed for every message signed.
e To verify the signature (s,0) on a message m with respect to a public key pk,

output 1 iff Vrfy , (s|Hs(m), o) 2.

The above construction is existentially unforgeable. To see this, let my,...,m, de-
note the messages submitted by the adversary A to its signing oracle, and let
(s1,01),..-,(s¢,00) be the signatures returned. Say A outputs forgery (m,(s,0))
with m & {my,...,my}. Arguing as in the proof of Theorem 2.10, if (s,Hs(m)) #
(si,Hy;(m;)) for all i then A has, in fact, generated a forgery in the original scheme IT
(something that is assumed to occur with only negligible probability). On the other
hand, if (s,H;(m)) = (si, H;(m;)) but m # m; (making the simplifying, but inessen-
tial, assumption that the {s;} are distinct), then A has violated the assumed universal
one-wayness of (Geny,H). (The key point being that the adversary chose m; before
it knew the hash key s;.)

The main problem with this transformation is that the hash key itself is signed
(along with the hashed message) by the underlying scheme, yet many theoretical
constructions of universal one-way hash functions use rather long keys. In particular,
when the hash key is longer than the input length of the hash function (as was the
case for the construction described at the end of Section 2.3.4) the transformation is
of no use. Instead, Construction 2.4 — which can be viewed as following the same
paradigm used in Construction 1.2 — can be utilized.

Construction 2.4: Increasing the message length using universal one-wayness

Let IT = (Gen,Sign, Vrfy) be a signature scheme for 2k-bit messages, (Geng, H)
be a hash function mapping p(k)-bit inputs to k-bit outputs and having keys of
length h(k), and (Gen};,H’) be a hash function mapping &(k)-bit inputs to k-bit
outputs. Construct signature scheme IT' = (Gen’, Sign’, Vrfy') for p(k)-bit messages
as follows:

Key generation: Gen’(1%) computes (pk,sk) < Gen(1¥) and s’ < Genl;(1¥). The
public key is (pk,s’) and the secret key is (sk,s’).

Signature generation: Sign;k,sl (m) computes s < Geny (1%) and outputs
(s, Signg. (HL () | Hy(m))
Once again, we stress that a fresh key s is chosen for each message signed.

Signature verification: Vrfy;,m, (m, (s,0)) outputs Vrfy , (H,, (s)|Hy(m),0).




64 2 Cryptographic Hardness Assumptions

The reader is referred to [11] for a proof of the following:

Theorem 2.12. If I1 is existentially unforgeable (resp., strongly unforgeable) under
an adaptive chosen-message attack and (Geng,H) and (Genyy, H') are both univer-
sal one-way, then I1' is existentially unforgeable (resp., strongly unforgeable) under
an adaptive chosen-message attack.

2.4.2 Reducing the Public-Key Length

As our next application of hash functions to signature schemes, we consider ways of
shortening the public key. While these techniques are generally useful — in partic-
ular, they show that schemes with optimal public-key size are possible — our goal
here is to use these techniques to construct a (one-time) signature scheme capable
of signing messages twice as long as its own public key; this will be used when we
construct existentially unforgeable signature schemes based on general assumptions
in the next chapter.

The obvious way to decrease the public-key size is to simply hash the orig-
inal public key. Formally, let IT = (Gen, Sign,Vrfy) be an existentially unforge-
able signature scheme having g(k)-bit public keys, and let (Geng,H) be a hash
function mapping ¢(k)-bit inputs to k-bit outputs. Then the following scheme
IT = (Gen’,Sign’, Vrfy') has public keys of length k:

e Gen'(1¥) computes (pk,sk) «— Gen(1*) and s < Geng/(1¥), and sets pk’ :=
Hi(pk). The public key is (s, pk’) and the secret key is (pk, sk).

d Sign;k,.sk(m) outputs (pkaslgn\k(m))

o Vrfy, i (m, (pk,)) outputs 1 iff (1) Hy(pk) = pk’ and (2) Vrfy  (m,0) = 1.

It is not difficult to verify that IT' is existentially unforgeable if (Geng,H) is uni-
versal one-way. (Note that the hashed input pk is chosen independently of the hash
key s.) But public keys in IT" have length |pk’| + |s| = k + |s| bits, an improvement
only if |s| < g(k) — k. While this bound on the length of the hash key s can be
achieved fairly easily if we are willing to assume collision-resistance, the bound is
more difficult to ensure based on universal one-wayness alone (cf. the discussion at
the end of Section 2.3.4).

Fortunately, it is possible to guarantee a public key shorter than the message by
running sufficiently many copies of the original signature scheme in parallel.

Let us first verify the claim regarding the lengths of the public key and the mes-
sages. I1' has public keys of size h(k) + £ - k and can sign messages of length 3k - £.
By our choice of ¢ we have

3kl > 2kl + k- (2h(k) k) = 2k€ +2h(k),

and so the messages that can be signed have length at least twice that of the public
key. As for the security of the construction, we have:



2.4 Applications of Hash Functions to Signature Schemes 65

Construction 2.5: A signature scheme for messages twice as long as public keys

Let IT = (Gen, Sign, Vrfy) be a signature scheme for 3k-bit messages having g(k)-
bit public keys, and let (Gengy,H) be a hash function mapping g(k)-bit inputs to
k-bit outputs and having keys of length A (k). Choose £(k) > 2h(k)/k, and construct
signature scheme IT' = (Gen’,Sign’, Vrfy’) as follows:

Key generation: Gen’(1%) does as follows:

1. Compute s « Geng (1%).
2. Fori=1to ¢, compute (pk;,sk;) «— Gen(1¥) and set pk} := H,(pk;).

The public key is (s, pk},..., pk}), and the secret key is (pki,ski,..., pke,ske).

/

Signature generation: Sign ;. .

for all i. It then outputs the signature (pky,Signg, (m1), ..., pke,Signg, (my)).

pky sk, (1) Parses mas my, ..., my with [m;| = 3k

/

Signature verification: Vrfy (m, (pki1,01,...,pke,0r)) parses the message

?

m as my,...,my with |m;| = 3k for all i. It then outputs 1 iff for all i: (1) Hy(pk;)
pki, and (2) Virfy i (mi, 07) = 1.

Theorem 2.13. If I1 is existentially unforgeable (resp., strongly unforgeable) under
a one-time chosen-message attack and (Geny,H) is universal one-way, then IT'
is existentially unforgeable (resp., strongly unforgeable) under a one-time chosen-
message attack.

Proof (sketch). We treat the case of existential unforgeability; strong unforgeabil-
ity can be proven similarly. Consider a PPT adversary A attacking IT’ in a one-time
chosen-message attack. Let m’ = m, ..., mj be the message whose signature is re-
quested by A, and say A outputs the forged signature (1/77{1,61 yeen ,;}4,64) on the
message m = my,...,my #m' If ﬂi = pk; for some i, then A has violated the as-
sumed universal one-wayness of (Geny,H). Letting j be any index with m; # m;,
we thus have that o; is a forged signature on the message m; with respect to
scheme IT (and public key pk;).

An alternate, somewhat easier proof of the above theorem relies on the construc-
tion of universal one-way hash functions with high compression and short keys. We
have given the above proof in order to keep the exposition self-contained.

Construction 2.5 is not existentially unforgeable when an adversary can request
signatures on more than one message (even if Il is). However, a variant of the con-
struction — in which each block of a signed message is pre-pended with a random,
message-specific identifier — is secure in that sense (when IT is). See Construc-
tion 1.4 for the general idea.



66 2 Cryptographic Hardness Assumptions

2.5 Further Reading

Goldreich’s book [56] is a good source for further information regarding generic
assumptions, while more details regarding the number-theoretic assumptions dis-
cussed here can be found in [72]. The notions of a one-way function and a trapdoor
permutation originate in the work of Diffie and Hellman [40], though formal defi-
nitions appeared only much later. Clawfree trapdoor permutations were introduced
by Goldwasser, Micali, and Rivest [61] in the course of constructing the first secure
digital signature scheme, and that work also contains a construction of clawfree
trapdoor permutations based on the hardness of factoring (that is slightly different
from the one given here).

Rabin [97] was the first to propose a trapdoor function based on the hardness of
factoring, and Williams [110] and Blum [16] suggested restricting N to a special
form to obtain a trapdoor permutation. As mentioned previously, the RSA assump-
tion is due to Rivest, Shamir, and Adleman [99]. A recent survey by Boneh [17]
discusses various attacks on RSA and also covers known results on the relationship
between the RSA and factoring assumptions. The discrete logarithm assumption
(without the restriction to prime order groups) is due to Diffie and Hellman [40].

Collision-resistant hash functions were first formally defined by Damgard [37],
and the construction of collision-resistant hash functions from clawfree permuta-
tions is from that work as well. The Merkle-Damgard transformation was introduced
independently in [38, 81], and our treatment in Section 2.3.2 is adapted from [72,
Section 4.6.4]. Universal one-way hash functions originated in the work of Naor
and Yung [88], where the construction of universal one-way hash functions based
on one-way permutations was given. Rompel [100] (see also [71]) showed that uni-
versal one-way hash functions could be built from any one-way function. See [72]
for extensive further discussion about hash functions and their applications.

Techniques for increasing the compression of universal one-way hash functions
with reduced key expansion can be found in [11, 105]. Construction 2.4 is due
to [11].



2 Springer
http://www.springer.com/978-0-387-27711-0
Digital Signatures

Katz, |.

2010, ¥, 192 p., Hardcover
ISBN: @78-0-387-27711-0



	Chapter 2Cryptographic Hardness Assumptions
	2.1 “Generic” Cryptographic Assumptions
	2.1.1 One-Way Functions and Permutations
	2.1.2 Trapdoor Permutations
	2.1.3 Clawfree (Trapdoor) Permutations

	2.2 Specific Assumptions
	2.2.1 Hardness of Factoring
	2.2.2 The RSA Assumption
	2.2.3 The Discrete Logarithm Assumption

	2.3 Hash Functions
	2.3.1 Definitions
	2.3.2 The Merkle-Damg°ard Transform
	2.3.3 Constructing Collision-Resistant Hash Functions
	2.3.4 Constructing Universal One-Way Hash Functions

	2.4 Applications of Hash Functions to Signature Schemes
	2.4.1 Increasing the Message Length
	2.4.2 Reducing the Public-Key Length

	2.5 Further Reading




