Chapter 2
Overview of SystemC

The previous chapters gave a brief context for the application of SystemC. This
chapter presents an overview of the SystemC language elements. Details are dis-
cussed in-depth in subsequent chapters.

Despite our best efforts not to use any part of the language before it is fully explained,
some chapters may occasionally violate this goal due to the interrelated nature of
SystemC. This chapter briefly discusses the major components of SystemC and their
general usage and interactions as a way of giving context for the subsequent chapters.

The following diagram, Fig. 2.1, illustrates the major components of SystemC.
As a form of roadmap, we have included a duplicate of this diagram at the beginning
of each new chapter. Bolded type indicates the topics discussed within that chapter.

For the rest of this chapter, we will discuss all of the components within the
figure that are outlined in bold; but first, we will discuss the mechanics of the
SystemC development environment.

SystemC addresses the modeling of both hardware and software using C++.
Since C++ already addresses most software concerns, it should come as no surprise
that SystemC focuses primarily on non-software issues. The primary application
area for SystemC is the design of electronic systems. However, SystemC also pro-
vides generic modeling constructs that can be applied to non-electronic systems'

User libraries SystemC Verification library Other IP
Predefined Primitive Channels: Mutexs, FIFOs, & Signals
Channels &
O Threads & Methods Interfaces Data types:
E, Simulation Logic,
2 Kernel Integers,
7] Events, Sensitivity Modules & Fixed point
& Notifications Hierarchy
C++ STL

Fig. 2.1 SystemC language architecture

!For example, the book, Microelectrofluidic Systems: Modeling and Simulation by Tianhao Zhang
et al., CRC Press, ISBN: 0849312760, describes applying SystemC to a non-electronic system.

D.C. Black et al., SystemC: From the Ground Up, Second Edition, 19
DOI 10.1007/978-0-387-69958-5_2, © Springer Science+Business Media, LLC 2010

20 2 Overview of SystemC

2.1 C++ Mechanics for SystemC

We would like to start with the obligatory Hello SystemC program; but first we
will look at the mechanics of compiling and executing a SystemC program or model.
As stated before, SystemC is a C++ class library. Therefore, to compile and run
a Hello SystemC program, one must have a working C++ and SystemC
environment.
The components of a SystemC environment include a:

e SystemC-supported platform

e SystemC-supported C++ compiler

e SystemC library (downloaded and compiled for your C++ compiler)
e Compiler command sequence make file or equivalent

The latest Open SystemC Initiative (OSCI) SystemC release (2.2 at this writing)
is available for free from www.systemc.org. The download contains scripts and
make files for installation of the SystemC library as well as SystemC source code,
examples, and documentation. The install scripts are compatible with the supported
operating systems, and the scripts are relatively straightforward to execute by care-
fully following the documentation.

The latest OS requirements can be obtained from the download in a ReadMe file
currently called INSTALL. SystemC is supported on various versions of Sun
Solaris, Linux, HP/UX, Windows, and Mac OS X. At this time, the OS list is lim-
ited by the use of minor amounts of assembly code that is used for increased simu-
lation performance in the SystemC simulation kernel. The current release is also
supported for various C++ compilers including GNU C++, Sun C++, HP C++, and
Visual C++. The currently supported compilers and compiler versions can also be
obtained from the TNSTALL ReadMe file in the SystemC download.

For beginners, this OS and compiler list should be considered exhaustive.
Notably, some hardy souls have ported various SystemC versions to other unsup-
ported operating systems and C++ compilers. In addition to one of these platforms
and compilers, you will need GNU make installed on your system to compile and
quickly install the SystemC library with the directions documented in the
INSTALL file.

The flow for compiling a SystemC program or design is very traditional and is
illustrated in Fig. 2.2 for GNU C++. Most other compilers will be similar. The C++
compiler reads each of the SystemC code file sets separately and creates an object
file (the usual file extension is .0). Each file set usually consists of two files, typi-
cally with standard file extensions. We use .h and .cpp as file extensions, since
these are the most commonly used in C++. The .k file is generally referred to as the
header file and the .cpp file is often called the implementation file.

Note that the compiler and linker need to know two special pieces of informa-
tion. First, the compiler needs to know where the SystemC header files are located.
Second, the linker needs to know the location of the compiled SystemC libraries.
This information is typically passed by providing an environment variable named

http://www.systemc.org.

2.1 C++ Mechanics for SystemC 21

I

: —>.

Source Compiler Object Linker Executable
Files P Files File

Compilation Flow

Fig. 2.2 SystemC compilation flow

SYSTEMC and by ensuring the makefile rules use the information.? If using gcc, the
command probably looks something like Fig. 2.3.

The downloadable examples available from our web site include a makefile setup
for Linux and gcc. Please refer to your C++ tool manuals for more information.

g++ —I$(SYSTEMC)/include \
-L$ (SYSTEMC) /1ib-$ (ARCH) -lsystemc \
$ (SRC)

Fig. 2.3 Partial gcc options to compile and link SystemC

After creating the object files, the compiler (actually the loader or linker) will
link your object files and the appropriate object files from the SystemC library (and
other libraries such as the standard template library or STL). The resulting file is
usually referred to as an executable, and it contains the SystemC simulation kernel
and your design functionality.

For the hardcore engineer types, you now have everything you need to compile
and run a Hello SystemC program; we have provided the obligatory program in
Fig. 2.4 Keywords for both C++ and SystemC are in bold. The rest of you now have
an overview of how to compile and run the code examples in this book as well as your
own SystemC creations. Everyone is now ready to dive into the language itself.

2For some installations, dynamic libraries may also be referenced if using the SystemC Verification
library.

22 2 Overview of SystemC

#include <systemc>
SC_MODULE (Hello_SystemC) { // declare module class

SC_CTOR (Hello_SystemC) { // create a constructor
SC_THREAD (main_thread) ;// register the process
}//end constructor

void main_thread (void) {
SC_REPORT_INFO (" Hello SystemC World!");
}
}i

int sc_main(int sc_argc, char* sc_argv[]) {

//create an instance of the SystemC module
Hello_SystemC HelloWorld i ("HelloWorld_i");

sc_start(); // invoke the simulator

return 0;
}

Fig. 2.4 Hello_SystemC program example

2.2 SystemC Class Concepts for Hardware

SystemC provides mechanisms crucial to modeling hardware while using a lan-
guage environment compatible with software development. SystemC provides
several hardware-oriented constructs that are not normally available in a software
language; however, these constructs are required to model hardware. All of the
constructs are implemented within the context of the C++ language. This section
looks at SystemC from the viewpoint of the hardware-oriented features. The major
hardware-oriented features implemented within SystemC include:

e Time model

e Hardware data types

* Module hierarchy to manage structure and connectivity

* Communications management between concurrent units of execution
e Concurrency model

The following sections briefly discuss the implementation of these concepts
within SystemC.

2.2.1 Time Model

SystemC tracks time with 64 bits of resolution using a class known as sc_ time.
Global time is advanced within the kernel. SystemC provides mechanisms to
obtain the current time and implement specific time delays. To support ease of

2.2 SystemC Class Concepts for Hardware 23

use, an enumerated type defines several natural time units from seconds down
to femtoseconds.

For those models that require a clock, a class called sc_clock is provided.
Since many applications in SystemC do not require a clock (but do require a notion
of time), the clock discussion is deferred to later chapters of the book. Additionally,
clocks do not add to the fundamental understanding of the language. By the later
chapters, you should be able to implement the clock class yourself with the funda-
mentals learned throughout the book.

2.2.2 Hardware Data Types

The wide variety of data types required by digital hardware are not provided inside
the natural boundaries of C++ native data types, which are typically 8-, 16-, 32-,
and 64-bit entities.

SystemC provides hardware-compatible data types that support explicit bit
widths for both integral and fixed-point quantities. Furthermore, digital hardware
requires non-binary representation such as tri-state and unknowns, which are pro-
vided by SystemC.

Finally, hardware is not always digital. SystemC does not currently directly
support analog hardware; however, a working group has been formed to investi-
gate the issues associated with modeling analog hardware in SystemC. For those
with immediate analog issues, it is reasonable to model analog values using
floating-point representations and provide the appropriate behavior.

2.2.3 Hierarchy and Structure

Large designs are almost always broken down hierarchically to manage complexity,
easing understanding of the design for the engineering team. SystemC provides
several constructs for implementing hardware hierarchy. Hardware designs tradi-
tionally use blocks interconnected with wires or signals for this purpose. For mod-
eling hardware hierarchy, SystemC uses the module entity interconnected to other
modules using channels. The hierarchy comes from the instantiation of module
classes within other modules.

2.2.4 Communications Management

The SystemC channel provides a powerful mechanism for modeling communica-
tions. Conceptually, a channel is more than a simple signal or wire. Channels can
represent complex communications schemes that eventually map to significant

24 2 Overview of SystemC

hardware such as the AMBA bus®. At the same time, channels may also represent
very simple communications such as a wire or a FIFO (first-in first-out queue).

The ability to have several quite different channel implementations used inter-
changeably to connect modules is a very powerful feature. This feature enables an
implementation of a simple bus replaced with a more detailed hardware implemen-
tation, which is eventually implemented with gates.

SystemC provides several built-in channels common to software and hardware
design. These built-in channels include locking mechanisms like mutex and sema-
phores, as well as hardware concepts like FIFOs, signals and others.

Finally, modules connect to channels and other modules via port classes.

2.2.5 Concurrency

Concurrency in a simulator is always an illusion. Simulators execute the code on a
single physical processor. Even if you did have multiple processors performing the
simulation, the number of units of concurrency in real hardware design will always
outnumber the processors used to do the simulation by several orders of magnitude.
Consider the problem of simulating the processors on which the simulator runs.

Simulation of concurrent execution is accomplished by simulating each concur-
rent unit. Each unit is allowed to execute until simulation of the other units is
required to keep behaviors aligned in time. In fact, the simulation code itself deter-
mines when the simulator makes these switches by the use of events. This simula-
tion of concurrency is the same for SystemC, Verilog, VHDL, or any other hardware
description languages (HDLs). In other words, the simulator uses a cooperative
multitasking model. The simulator merely provides a kernel to orchestrate the
swapping of the various concurrent elements, called simulation processes. SystemC
provides a simulation kernel that will be discussed lightly in the last section of this
chapter and more thoroughly in the rest of the book.

2.2.6 Summary of SystemC Features for Hardware Modeling

SystemC implements the structures necessary for hardware modeling by providing
constructs that enable concepts of time, hardware data types, hierarchy and structure,
communications, and concurrency. This section has presented an overview of
SystemC relative to a generic set of requirements for hardware design. We will
now give a brief overview of the constructs used to implement these requirements
in SystemC.

3See AMBA AHB Cycle-Level Interface Specification at www.arm.com.

http://www.arm.com

2.3 Overview of SystemC Components 25

2.3 Overview of SystemC Components

In this section, we briefly discuss all the components of SystemC that are high-
lighted in Fig. 2.1 from the beginning of this chapter, that we will see at the beginning
of each chapter throughout the book.

2.3.1 Modules and Hierarchy

Hardware designs typically contain hierarchy to reduce complexity. Each level of
hierarchy represents a block. VHDL refers to blocks as entity/architecture pairs,
which separate an interface specification from the body of code for each block. In
Verilog, blocks are called modules and contain both interface and implementation in
the same code.

SystemC separates the interface and implementation similar to VHDL. The C++
notion of header (.h file) is used for the entity and the notion of implementation
(.cpp file) is used for the architecture.

Design components are encapsulated as “modules”. Modules are classes that
inherit from the sc_module base class. As a simplification, the SC_MODULE
macro is provided.

Modules may contain other modules, processes, and channels and ports for
connectivity.

2.3.2 SystemC Threads and Methods

Before getting started, it is necessary to have a firm understanding of simulation
processes in SystemC. As indicated earlier, the SystemC simulation kernel
schedules the execution of all simulation processes. Simulation processes are
simply member functions of sc_module classes that are “registered” with the
simulation kernel.

Because the simulation kernel is the only caller of these member functions, they
need no arguments and they return no value. They are simply C++ functions that
are declared as returning a void and having an empty argument list.

An sc_module class can also have processes that are not executed by the
simulation kernel. These processes are invoked as function calls within the simula-
tion processes of the sc_module class. These are normal C++ member functions
or class methods.

From a software perspective, processes are simply threads of execution.
From a hardware perspective, processes provide necessary modeling of indepen-
dently timed circuits. Simulation processes are member functions of an sc_module
that are registered with the simulation kernel. Generally, registration occurs
during the elaboration phase (during the execution of the constructor for the

26 2 Overview of SystemC

sc_module class) using an SC_METHOD, SC _THREAD, or SC_CTHREAD*
SystemC macro.

The most basic type of simulation process is known as the SC_METHOD.
An SC_METHOD is a member function of an sc_module class where time
does not pass between the invocation and return of the function. In other
words, an SC_METHOD is a normal C++ function that happens to have no
arguments, returns no value, and is repeatedly and only called by the simula-
tion kernel.

The other basic type of simulation process is known as the SC_THREAD. This
process differs from the SC_METHOD in two ways. First, an SC_METHOD is
invoked (or started) multiple times and the SC_THREAD is invoked only once.
Second, an SC_THREAD has the option to suspend itself and potentially allow time
to pass before continuing. In this sense, an SC_THREAD is similar to a traditional
software thread of execution.

The SC_METHOD and SC_THREAD are the basic units of concurrent execu-
tion. The simulation kernel invokes each of these processes. Therefore, they are
never invoked directly by the user. The user indirectly controls execution of the
simulation processes by the kernel as a result of events, sensitivity, and
notification.

2.3.3 Events, Sensitivity, and Notification

Events, sensitivity, and notification are very important concepts for understanding
the implementation of concurrency by the SystemC simulator.

Events are implemented with the SystemC sc_event and sc_event queue
classes. Events are caused or fired through the event class member function,
notify. The notification can occur within a simulation process or as a result of
activity in a channel. The simulation kernel invokes SC_METHOD and SC_THREAD
when they are sensitive to an event and the event occurs.

SystemC has two types of sensitivity: static and dynamic. Static sensitivity is
implemented by applying the SystemC sensitive command to an SC_METHOD
or SC_THREAD at elaboration time (within the constructor). Dynamic sensitivity
lets a simulation process change its sensitivity on the fly. The SC_METHOD imple-
ments dynamic sensitivity with a next trigger(arg) command. The SC
THREAD implements dynamic sensitivity with a wait(arg) command. Both
SC_METHOD and SC_THREAD can switch between dynamic and static sensitivity
during simulation.

4SC_CTHREAD is a special case of SC_THREAD. This process type is a thread process that has
the requirement of being sensitive to a clock. SC_CTHREAD is under consideration for depreca-
tion; however, several synthesis tools depend on it at the time of writing.

2.3 Overview of SystemC Components 27

2.3.4 SystemC Data Types

Several hardware data types are provided in SystemC. Since the SystemC language
is built on C++, all of the C++ data types are available. Also, SystemC lets you
define new data types for new hardware technology (i.e., multi-valued logic) or for
applications other than electronic system design.

These data types are implemented using templated classes and generous
operator overloading, so that they can be manipulated and used almost as easily as
native C++ data types. Hardware data types for mathematical calculations like
sc_fixed<T> and sc_int<T> allow modeling of complex calculations like
DSP functions. These data types evaluate the performance of an algorithm when
implemented in custom hardware or in processors without full floating-point capa-
bility. SystemC provides all the necessary methods for using hardware data types,
including conversion between the hardware data types and conversion from hard-
ware to software data types.

Non-binary hardware types are supported with four-state logic (0,1,X,Z) data
types (e.g., sc_logic). Familiar data types like sc_logic and sc_1v<T> are
provided for RTL hardware designers who need a data type to represent basic logic
values or vectors of logic values.

2.3.5 Ports, Interfaces, and Channels

Processes need to communicate with other processes both locally and in other
modules. In traditional HDLs, processes communicate via ports/pins and sig-
nals or wires. In SystemC, processes communicate using channels or events.
Processes may also communicate across module boundaries. Modules may
interconnect using channels, and connect via ports. The powerful ability to
have interchangeable channels is implemented through a component called an
interface. SystemC uses the constructs sc_port<T>, sc_export<T>, and
the base classes sc_interface, and sc_channel to implement
connectivity.

SystemC provides some standard channels and interfaces that are derived from
these base types. The provided channels include the synchronization primitives
sc_mutex and sc_semaphore, and the communication channels sc_fifo<T>,
sc_signal<T>, and others. These channels implement the SystemC-provided inter-
faces sc_mutex if, sc_semaphore if, sc fifo in if<T>, sc fifo
out if<T>,sc signal in if<T> and sc_signal inout if<T>.

Interestingly, module interconnection happens programmatically in SystemC
during the elaboration phase. This interconnection lets designers build regular
structures using loops and conditional statements. From a software perspective,
elaboration is simply the period of time when modules invoke their constructor
methods.

28 2 Overview of SystemC

2.3.6 Summary of SystemC Components

Now, it is time to tie together all of the basic concepts that we have just discussed
into one illustration, Fig. 2.5 This illustration is used many times throughout
the book when referring to the different SystemC components. It can appear
rather intimidating since it shows almost all of the concepts within one diagram.
In practice, a SystemC module typically will not contain all of the illustrated
components.

The figure shows the concept of an sc_module that can contain instances of
another sc_module. An SC_METHOD or SC_THREAD can also be defined within
an sc_module.

Communication among modules and simulation processes (SC_METHOD and
SC_THREAD) is accomplished through various combinations of ports, interfaces,
and channels. Coordination among simulation processes is also accomplished
through events.

We will now give a brief initial overview of the SystemC simulation kernel that
coordinates and schedules the communications among all of the components illus-
trated in Fig. 2.5

Modules ...,

Threads e
& Methods B

Fig. 2.5 SystemC components

2.4 SystemC Simulation Kernel 29

2.4 SystemC Simulation Kernel

The SystemC simulator has two major phases of operation: elaboration and execu-
tion. A third, often minor, phase occurs at the end of execution; this phase could be
characterized as post-processing or cleanup.

Execution of statements prior to the sc_start () function call are known as the
elaboration phase. This phase is characterized by the initialization of data structures, the
establishment of connectivity, and the preparation for the second phase, execution.

The execution phase hands control to the SystemC simulation kernel, which
orchestrates the execution of processes to create an illusion of concurrency.

The illustration in Fig. 2-6 should look very familiar to those who have studied
Verilog and VHDL simulation kernels. Very briefly, after sc_start(), all simu-
lation processes (minus a few exceptions) are invoked in unspecified deterministic
order® during initialization.

After initialization, simulation processes are run when events occur to which
they are sensitive. The SystemC simulator implements a cooperative multitasking
environment. Once started, a running process continues to run until it yields con-
trol. Several simulation processes may begin at the same instant in simulator time.
In this case, all of the simulation processes are evaluated and then their outputs are
updated. An evaluation followed by an update is referred to as a delta cycle.

If no additional simulation processes need to be evaluated at that instant (as a
result of the update), then simulation time is advanced. When no additional simulation
processes need to run, the simulation ends.

This brief overview of the simulation kernel is meant to give you an overview
for the rest of the book. This diagram will be used again to explain important

sc_main () SystemC Simulation Kernel
Execute code possibly
issuing events or While -
Elaborate updates. Either suspend processes -notify ()
waiting or exit entirely. Ready immediate
sc_startl)——35e |nitialize — Evaluate GUIEE
Time
/-\ .notify (SC_ZERO l g;’étlz T
L\ _TIME)delayed \
—
Cleanup Update “notify (1)
timed

Fig. 2.6 SystemC simulation kernel

SDiscussed later.

30 2 Overview of SystemC

intricacies later. It is very important to understand how the kernel functions to fully
understand the SystemC language.

We have provided an animated version of this diagram walking through a small
code example at our web site, www.scftgu.com. The IEEE Standard 1666-2005
SystemC LRM (Language Reference Manual) specifies the behavior of the
SystemC simulation kernel. This manual is the definitive source about SystemC.
We encourage the reader to use any or all of these resources during their study of
SystemC to fully understand the simulation kernel.

http://www.scftgu.com.

2 Springer
http://www.springer.com/978-0-387-69957-8

SystemC: From the Ground Up, Second Edition
Black, D.C.; Donovan, |.; Bunton, B.; Keist, A
2010, XX, 281 p., Hardcover

ISBN: @78-0-387-600857-8

	Chapter 2
	Overview of SystemC
	2.1 .C++ Mechanics for SystemC
	2.2 .SystemC Class Concepts for Hardware
	2.2.1 .Time Model
	2.2.2 .Hardware Data Types
	2.2.3 .Hierarchy and Structure
	2.2.4 .Communications Management
	2.2.5 .Concurrency
	2.2.6 .Summary of SystemC Features for Hardware Modeling

	2.3 .Overview of SystemC Components
	2.3.1 .Modules and Hierarchy
	2.3.2 .SystemC Threads and Methods
	2.3.3 .Events, Sensitivity, and Notification
	2.3.4 .SystemC Data Types
	2.3.5 .Ports, Interfaces, and Channels
	2.3.6 .Summary of SystemC Components

	2.4 .SystemC Simulation Kernel

