Chapter 2
Nonlinear Programming and Discrete-Time
Optimal Control

The primary intent of this chapter is to introduce the reader to the theoretical
foundations of nonlinear programming as well as the theoretical foundations of de-
terministic discrete-time optimal control. In fact, deterministic discrete-time optimal
control problems, as we shall see, are actually nonlinear mathematical programs
with a very particular type of structure. In a later chapter, we will also discover that
deterministic continuous-time optimal control problems are specific instances of
mathematical programs in topological vector spaces. Consequently, it is imperative
for the student of optimal control to have a command of the foundations of nonlinear
programming. Particularly important are the notions of local and global optimality
in mathematical programming, the Kuhn-Tucker necessary conditions for optimal-
ity in nonlinear programming, and the role played by convexity in making necessary
conditions sufficient. Readers already comfortable with finite-dimensional nonlinear
programming may wish to go immediately to Section 2.9. We do caution, however,
that subsequent chapters of this book assume substantial familiarity with finite-
dimensional nonlinear programming, so that an overestimate of one’s nonlinear
programming knowledge can be very detrimental to ultimately obtaining a deep
understanding of optimal control theory and differential games.
The following is an outline of the principal topics covered in this chapter:

Section 2.1: Nonlinear Program Defined. A formal definition of a finite-
dimensional nonlinear mathematical program, with a single criterion and both
equality and inequality constraints, is given.

Section 2.2: Other Types of Mathematical Programs. Definitions of linear,
interger and mixed integer mathematical programs are provided.

Section 2.3: Necessary Conditions for an Unconstrained Minimum. We derive
necessary conditions for a minimum of a twice continuously differentiable function
when there are no constraints.

Section 2.4: Necessary Conditions for a Constrained Minimum. Relying on
geometric reasoning, the Kuhn-Tucker conditions, as well as the notion of a con-
straint qualification, are introduced.
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34 2 Nonlinear Programming and Discrete-Time Optimal Control

Section 2.5: Formal Derivation of the Kuhn-Tucker Conditions. A formal
derivation of the Kuhn-Tucker necessary conditions, employing a conic definition
of optimality and theorems of the alternative, is provided.

Section 2.6: Sufficiency, Convexity, and Uniqueness. We provide formal defini-
tions of a convex set and a convex function. Then we show formally how those
notions influence sufficiency and uniqueness of a global minimum.

Section 2.7: Generalized Convexity and Sufficiency. We extend the notion of
convexity to include quasiconvexity and pseudoconvexity; we then show how these
extensions may be used to state less restrictive conditions assuring optimality.

Section 2.8: Numerical and Graphical Examples. We provide numerical and
graphical examples that illustrate the abstract optimality conditions introduced in
previous sections of this chapter.

Section 2.9: Discrete-Time Optimal Control. We use the necessary conditions
for nonlinear programs to derive the so-called minimum principle for discrete-time
optimal control and associated necessary conditions.

2.1 Nonlinear Program Defined

We are presently interested in a type of optimization problem known as a finite-
dimensional mathematical program, namely: find a vector x € " that satisfies

min f(x)
s.t. h(x) =0 2.1
g(x) <0
where
x = (x1,..., xp)T en?
fG): R\ — 9!
gx) = (g1(x),.... gm(x)T : R* > nm
h(x) = (hi(x),..., hg(x)T : R"* — N4
We call the x; for i € {1,2,...,n} decision variables, f(x) the objective function,

h(x) = 0 the equality constraints and g(x) < 0 the inequality constraints. Becuase
the objective and constraint functions will in general be nonlinear, we shall con-
sider (2.1) to be our canonical form of a nonlinear mathematical program (NLP).
The feasible region for (2.1) is

X={x:g(x)<0, h(x) =0} C Q" (2.2)
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which allows us to state (2.1) in the form

min f(x) 2.3)

st. x e X

The pertinent definitions of optimality for NLP are:

Definition 2.1. Global minimum. Suppose x* € X and f (x*) < f (x) for all
x € X. Then f (x) achieves a global minimum on X at x*, and we say x* is a
global minimizer of f (x) on X.

Definition 2.2. Local minimum. Suppose x* € X and there exists an € > 0 such
that f (x*) < f (x) forall x € [Ne (x*) N X], where N¢ (x*) is a ball of radius
€ > 0 centered at x*. Then f (x) achieves a local minimum on X at x*, and we say
x* is a local minimizer of f (x).

In practice, we will often relax the formal terminology of Definition 2.1 and
Definition 2.2 and refer to x* as a global minimum or a local minimum, respectively.

2.2 Other Types of Mathematical Programs

We note that the general form of a continuous mathematical program (MP) may
be specialized to create various types of mathematical programs that have been
studied in depth. In particular, if the objective function and all constraint functions
are linear, (2.1) is called a linear program (LP). In such cases, we normally add
slack/surplus variables to the inequality constraints to convert them into equality
constraints. That is, if we have the constraint

gi(x) =0 2.4)

we convert it into
gi(x)+si =0 (2.5)

and solve for both x and s;. The variable s; is called a slack variable and obeys
s5i >0 (2.6)
If we have an inequality constraint of the form
gj(x) =0 2.7

we convert it to the form
gj(x)—s; =0 (2.8)

where
520 2.9)
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is called a surplus variable. Thus, we take can convert any problem with inequality
constraints into one that has only equality constraints and non-negativity restrictions.
So without loss of generality, we take the canonical form of the linear programming
problem to be

min Z?:l Ci Xi

s.t. Z'}:laijxj =b i=1,....m
(2.10)
Uj>x;>L; j=1...,n
x en”

where n > m. This problem can be re-stated further, using matrix and vector nota-
tion, as
T

min ¢’ x
st. Ax=b
LP (2.11)
U>x>L
x en”

where c € ", b € N", and A € R,
If the objective function and/or some of the constraints are nonlinear, (2.1) is
called a nonlinear program (NLP) and is written as:

min f(x)
st. gix)<0i=1,....m

NLP (2.12)
h,-(x) =01i= 1,...,(]

x ef”

If all of the elements of x are restricted to be a subset of the integers and /" denotes
the integer real numbers, the resulting program

min f(x)

st. gix)<0i=1,....m
1P (2.13)
hix)=0i=1,...,q

xel”
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is called an integer program (IP). If there are two classes of variables, some that are
continuous and some that are integer, as in

min f(x,y)
st. gi(x,y)<0i=1,....m

MIP, (2.14)
hi(x,y)=0i=1,...,q

xen yeln

the problem is known as a mixed integer program (MIP).

2.3 Necessary Conditions for an Unconstrained Minimum

Necessary conditions for optimality in the mathematical program (2.1) are systems
of equalities and inequalities that must hold at an optimal solution x* € X. Any
such condition has the logical structure:

If x* is optimal, then some property P(x*) is true.

Necessary conditions play a central role in the analysis of most mathematical pro-
gramming models and algorithms. Understanding them is also extremely important
to understanding the theory of optimal control, even when considering problems
in the infinite-dimensional vector spaces associated with continuous-time optimiza-
tion. This is because the optimal control necessary condition known as the minimum
principle requires solution of a finite-dimensional nonlinear program.

We begin our discussion of necessary conditions for mathematical programs by
considering a special case of the general finite-dimensional mathematical program
introduced in the previous section. In particular, we want to state and prove the
following result for mathematical programs without constraints:

Theorem 2.1. Necessary conditions for an unconstrained minimum. Suppose f :
R — R is twice continuously differentiable for all x € R". Then necessary
conditions for x* € X" to be a local or global minimum of min f (x) s.t. x € N" are

Vf(x*)=0 (2.15)

2 *
Vif (x*) = (%) must be positive semidefinite (2.16)
X 0X

That is, the gradient vanishes and the Hessian is positive semidefinite matrix at the
minimum of interest.



38 2 Nonlinear Programming and Discrete-Time Optimal Control

Proof. Since f (.) is twice continuously differentiable, we may make a Taylor series
expansion in the vicinity of x* € 0", a local minimum:

£ = £ )+ VS )] (=) + 5 (=) 927 () (v =)
+ lx = x*P O (x — x*)

where O (x — x*) —> 0as x —> x*. If V f (x*) # 0, then by picking x = x* —
OV f (x*) we can make f (x) < f (x*) for sufficiently small § > 0 and, thereby,
directly contradict the fact that x* is a local minimum. It follows that condition
(2.15) is necessary, and we may write

S0 = F () 45 (0= x) V27 () (=) =P O (- )

If the matrix V2 f (x*) is not positive semidefinite, there must exist a direction
vector d € R" such that d # 0 and dTV2f (x*)d < 0. If we now choose x =
x* 4+ 6d, it is possible for sufficiently small 6 > 0 to realize f (x) < f (x*) in
direct contradiction of the fact x* is a local minimum. H

2.4 Necessary Conditions for a Constrained Minimum

We comment that necessary conditions for constrained programs have the same
logical structure as necessary conditions for unconstrained programs introduced in
Section 8.4.4; namely:

If x* is optimal, then some property P(x*) is true.

For constrained programs, we will shortly find that P(x*) is either the so-called
Fritz John conditions or the Kuhn-Tucker conditions. We now turn to the task of
providing an informal motivation of the Fritz John conditions, which are the perti-
nent necessary conditions for the case when no constraint qualification is imposed.

2.4.1 The Fritz John Conditions

The fundamental theorem on necessary conditions is:

Theorem 2.2. Fritz John conditions. Let x* be a (global or local ) minimum of

min f(x)
st. x e F={xe€ Xo:g(x) <0,h(x) =0} C Q"

where Xy is a nonempty open set, g : R — R and h : N* — N9. Assume
that f(x), gi(x) for i € [1,m] and h; (x) for i € [1,q] have continuous first
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derivatives everywhere on X. Then there must exist multipliers o € ER}F, u =
(U1, .., um)T € RY, and A* = (A7, ... ;k;)T € N9 such that

oV F(x*) + 27 wiVei(x*) + Y1 AiVhi(x*) =0 (2.17)

pigi(x*) =0 Viel[l,m] (2.18)
=0 Yielo,m (2.19)
(10, jt, A) # 0 € fmtat! (2.20)

Conditions (2.17), (2.18), (2.19), and (2.20) together with A(x) = 0 and g(x) <0
are called the Fritz John conditions. We will give a formal proof of their validity
in Section 2.5.3. For now our focus is on how the Fritz John conditions are related
to the Kuhn-Tucker conditions, which are the chief applied notion of a necessary
condition for optimality in mathematical programming.

2.4.2 Geometry of the Kuhn-Tucker Conditions

Under certain regularity conditions called constraint qualifications, we may be cer-
tain that uo # 0. In that case, without loss of generality, we may take puo = 1.
When ¢ = 1, the Fritz John conditions are called the Kuhn-Tucker conditions and
(2.17) is called the Kuhn-Tucker identity. In either case, (2.18) and (2.19) together
are called the complementary slackness conditions. Sometimes it is convenient to
define the Lagrangean function:

L(x.A pro. p) = pof(x) +ATh(x) + u"g(x) (2.21)
By virtue of this definition, identity (2.17) can be expressed as
ViL(x*, A, o, ) =0 (2.22)
At the same time (2.18) and (2.19) can be written as

nfg(x*)=0 (2.23)
w>0 (2.24)

Furthermore, we may give a geometrical motivation for the Kuhn-Tucker conditions
by considering the following abstract problem with two decision variables and two
inequality constraints:
min f(x1, x2)
s.t. &1 ()Cl ,X2) <0 (2.25)
g2(x1,x2) <0
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The functions f (.), g1 (.) , and g5 (.) are assumed to be such that the following are
true:

1. all functions are differentiable;

2. the feasible region X = {(x1,x32) : g1(x1,x2) <0, g2(x1,x2) < 0}is a convex
set;

3. all level sets S = {(x1,x2) : f(x1,x2) < fr} are convex, where f; €
[, +00) C EY{}F is a constant and « is the unconstrained minimum of f(x1, x2);
and

4. the level curves

Cr = {(x1.x2) : f (x1.x2) = fr € R}

for the ordering
fo<fi<fo<-<Jfi

do not cross one another, and Cy is the locus of points for which the objective
function has the constant value f.

Figure 2.1 is one realization of the above stipulations. Note that there is an uncount-
able number of level curves and level sets since f; may be any real number from the
interval o, +00) C EY{L. In Figure 2.1, because the gradient of any function points
in the direction of maximal increase of the function, we see there is a (41 € ER}F X
such that

Vf(XT,X;) = _M1Vgl(x=1ksx;)s (226)

where (x7, x3) is the optimal solution formed by the tangency of g;(x},x3) = 0
with the level curve f(x],x5) = f>. Evidently, this observation leads directly to

Vf(x1,x3) + Ve (xt, x3) + naVgalxy, x3) =0 (2.27)
p1gi(xy,x3) =0 (2.28)
1282(x7, x3) =0 (2.29)
M1, 2 = 0, (2.30)
Global
optimum

Fig. 2.1 Geometry of an

optimal solution fy>6H>1>1
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Note that gi(x],x5) = 0 allows us to conclude that (2.28) holds even though
@1 > 0. Similarly, (2.26) implies that u, = 0, so (2.29) holds even though
82(x7,x5) # 0. Clearly, the nonnegativity conditions (2.30) also hold. By inspec-
tion, (2.27), (2.28), (2.29), and (2.30) are the Kuhn-Tucker conditions (Fritz John
conditions with ;9 = 1) for the mathematical program (2.25).

2.4.3 The Lagrange Multiplier Rule

We wish to give a statement of a particular instance of the Kuhn-Tucker theorem on
necessary conditions for mathematical programming problems, together with some
informal remarks about why that theorem holds when a constraint qualification is
satisfied. Since our informal motivation of the Kuhn-Tucker conditions in the next
section depends on the Lagrange multiplier rule (LMR) for mathematical programs
with equality constraints, we must first state and motivate the LMR. To that end, take
x and y to be scalars and F(x, y) and h(x, y) to be scalar functions. Consider the
following mathematical program with two decision variables and a single equality
constraint:

min F (x,y)

st. hix,y)=0 @31

Assume that & (x, y) = 0 may be manipulated to find x in terms of y. That is, we
know
x = H(y) (2.32)

so that
F(x,y)=F[H(y),y]=2(y) (2.33)

and (2.31) may be thought of as the one-dimensional unconstrained problem

myin@ ) (2.34)

which has the apparent necessary condition

do(y)
dy

0 (2.35)

By the chain rule we have the alternative form

d®(y) _0F(H.y) OF(H,y)oH _
dy — dy OH  dy

0 (2.36)

Applying the chain rule to the equality constraint z (x, y) = 0 leads to

dh(x,y) = %dx + %dy =0 (2.37)
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from which we obtain 3 o/
X y
= (=)L 2.
dy =D oh/ox (2.38)

The necessary condition (2.36), with the help of (2.32) and (2.38), becomes

OF | DFx _OF OF . ihdy
dy  dxdy dy  ox oh/dx
oF dF/dx 0h
= -1 -
oy TV 5 oy
= a_F+A%:o (2.39)
dy dy

where we have defined the Lagrange multiplier to be

daF /0x
A= (-1 2.4
=D oh/ox (2.40)
The LMR consists of (2.39) and (2.40), which we restate as

oF oh

4+ A— =0 2.41
ax + ax ( )
F

8_ + A% =0 (2.42)
dy dy

Recognizing that the generalization of (2.41) and (2.42) involves Jacobian matrices,
we are not surprised to find that, for the equality constrained mathematical program

min f(x)
st. h(x)=0
where x € " and i € N9, the following result holds:

Theorem 2.3. Lagrange multiplier rule. Let x* € R" be any local maximum or
minimum of f(x) subject to the constraints hi(x) = 0 fori € [1, q], where x € R"
and g < n. Ifit is possible to choose a set of q variables for which the Jacobian

ohy(x™) ohy(x™)
x1 x4
TIh(x*)] = : - : (2.43)
dhg(x*) dhg(x*)

9x1 o 9x4
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has an inverse, then there exists a unique vector of Lagrange multipliers A =
(A1,..., )Lm)T satisfying

Af(*) | N, hi(x¥)

+ Ai =0 jell,n 2.44

o Z o Jj ell.n] (2.44)
i=1

The formal proof of this classical result is contained in most texts on advanced

calculus. Note that (2.44) is a necessary condition for optimality.

2.4.4 Motivating the Kuhn-Tucker Conditions

We now wish, using the Lagrange multiplier rule, to establish that the Kuhn-Tucker
conditions are valid when an appropriate constraint qualification holds. In fact we
wish to consider the following result:

Theorem 2.4. Kuhn-Tucker conditions. Let x* € X be a local minimum of

min  f(x)
st. xeX={xeXo:g(x)<0,h(x) =0} CRH"

where Xo is a nonempty open set. Assume that f(x), gi(x) for i € [1,m]
and h; (x) for i € [1,q] have continuous first derivatives everywhere on X and
that a constraint qualification holds. Then there must exist multipliers u =
(U1s-..s wm)T € R and A* = (Af,..., )L;)T € RN™ such that

VA" + Y miVgi(x*) + Y7 ALiVhi(x*) =0 (2.45)
nigi(x*)=0 Viell,m (2.46)
wi >0 Viellm (2.47)

Expression (2.45) is the Kuhn-Tucker identity and conditions (2.46) and (2.47), as
we have indicated previously, are together referred to as the complementary slack-
ness conditions. Do not fail to note that the Kuhn-Tucker conditions are necessary
conditions. A solution of the Kuhn-Tucker conditions, without further informa-
tion, is only a candidate optimal solution, sometimes referred to as a “Kuhn-Tucker
point.” In fact, it is possible for a particular Kuhn-Tucker point not to be an optimal
solution.

We may informally motivate Theorem 2.4 using the Lagrange multiplier rule.
This is done by first positing the existence of variables s;, unrestricted in sign, for
i € [1,m] such that

g(x*)+ ()’ =0 Viell,m] (2.48)
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so that the mathematical program (2.1) may be viewed as one with only equality
constraints, namely
min f(x)
st. h(x)=0 (2.49)
g(x) + diag(s)-s =0

where s € R and

S1 0 0 0
52 0 0
diag (s) = : : . : : (2.50)
0O 0 -+ sp—1 O
o o0 - 0 Sm

To form the necessary conditions for this mathematical program, we first construct
the Lagrangian

L(xs.2,m) = f(x) +ATh(x) + uT [g(x) + diag (5) - 5]

q m
= f)+ Y Aihi )+ wi[e () +s7] @250

i=1 i=1

and then state, using the LMR, the first-order conditions

L (x.s.Ap)  Af(x) . Ohj(x) <N g (x)
8xl~ 8x,~ +/Z=:1 J 8x,~ + szluj 8xl~
ie[l,n] (2.52)
M = s =0 i€ [lm] (2.53)
Si

Result (2.52) is of course the Kuhn-Tucker identity (2.45). Note further that both
sides of (2.53) may be multiplied by —s; to obtain the equivalent conditions

pi (—s?) =0 ie€[l,m] (2.54)

1

which can be restated using (2.48) as
pigi(x) =0 i €[l,m] (2.55)

Conditions (2.55) are of course the complementary slackness conditions (2.46).

It remains for us to establish that the inequality constraint multipliers u; for
i € [1, m] are nonnegative. To that end, we imagine a perturbation of the inequality
constraints by the vector

T

e=(e1e2-em) €N,
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so that the inequality constraints become
g(x) + diag(s)-s = ¢

or
gi(x)+st—e =0 ic[l,m] (2.56)

There is an optimal solution for each vector of perturbations, which we call x (¢)
where x* = x (0) is the unperturbed optimal solution. As a consequence there is an
optimal objective function value

Z () = f[x* ()] (2.57)

for each x* (¢). We note that

26 _ 3 ()25 0

2.58)
85,- = 8x,- 881' (
by the chain rule. Similarly for k € [1, m]
a - 2 ifi =
agr (x) _ [Sk sk] _ 1 lfl k (2.59)
dei de 0 ifi #k
and for k € [1,¢]
ohy (x) ohy (x) ax] (e)
2.60
8:3[ Z Ox d¢; ( )
Furthermore, we may define
0Z (&) | s, e (¥) |~ 0gk ()
d; = A 2.61
i o2, + Z=: L + ];Mk 9, (2.61)
and note that a9z
_Z@ (2.62)

With the help of (2.58), (2.59), and (2.60), we have

®, — 2": af (x) dx; (e) ZA dhy (x) 3x; (&) Z Z dgk (x) dx; (£)

= 0x; dg; — = 8x 0g; = 0x; 0¢;

_y [8f W Z RTINS SR (x)} 2 2.63)

= =1 3)6_/‘ 38,‘
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by virtue of the Kuhn-Tucker identity (2.52). From (2.62) and (2.63) it is immediate

that a7z
Wi = (—1)% i €[l,m] (2.64)

We now note that, when the unconstrained minimum of f (x) is external to the
feasible region
X () ={x: g(x) =& h(x) =0},

increasing ¢; can never increase, and may potentially lower, the objective function
forall i € [1,m]; that is
aZ (e)

38,'
From (2.64) and (2.65) we have the desired result

<0 ie[l,m] (2.65)

wi =0 Viell m (2.66)

ensuring that the multipliers for inequality constraints are nonnegative.

2.5 Formal Derivation of the Kuhn-Tucker Conditions

We are interested in formally proving that, under the linear independence constraint
qualification and some other basic assumptions, the Kuhn-Tucker identity and the
complementary slackness conditions form, together with the original mathematical
program’s constraints, a valid set of necessary conditions. For finite-dimensional
mathematical programs, the only type we consider in this chapter, such a demon-
stration is facilitated by Gordon’s lemma, which is in effect a corollary of Farkas’
lemma of classical analysis. The problem structure needed to apply Gordon’s lemma
can be most readily created by expressing the notion of optimality in terms of cones
and separating hyperplanes. Throughout this section we consider the mathematical
program

min f(x) st xeF (2.67)

where, depending on context, either F is a general set or

F={xeXo:g(x) <0} CR" (2.68)

and
R > gt (2.69)
g R > xm (2.70)

where Xy is a nonempty open set in :i”. Note that we presently consider only in-
equality constraints, as any equality constraint

he (x) =0
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may be stated as two inequality constraints

hi (x) <0
—1-hg(x) <0

2.5.1 Cones and Optimality

A cone is a set obeying the following definition:

Definition 2.3. Cone. A set C in R" is a cone with vertex zero if x € C implies that
Ox € C forall 0 € Eﬁﬁ_

Now consider the following definitions:
Definition 2.4. Cone of feasible directions. For the mathematical program (2.67),
provided F is not empty, the cone of feasible directions at x € X is

Do(x)={d #0:x+0d € F V6O € (0,8) and some § > 0}

Definition 2.5. Feasible direction. Every nonzero vectord € Dy is called a feasible
direction at x € X for the mathematical program (2.67).

Definition 2.6. Cone of improving directions. For the mathematical program
(10.1), if f is differentiable at x € F, the cone of improving directions at x € F is

Fo(x) ={d : [Vf(x)]" -d <0}

Definition 2.7. Feasible direction of descent. Every vector d € Fy () Dy is called
a feasible direction of descent at x € F for the mathematical program (2.67).

Definition 2.8. Cone of interior directions. For the mathematical program (10.1),
if gi is differentiable at x € X for alli € I (x), where

I(x)={i:gi(x) =0},
then, the cone of interior directions at x € F is
Go(x) ={d : [Vgi(x))"-d <0 V}

Note that in Definition 2.4 and Definition 2.6, if F is a convex set, we may set § = 1
and refer only to 8 € [0, 1], as will become clear in the next section after we define
the notion of a convex set. Furthermore, the definitions immediately above allow
one to characterize an optimal solution of (2.67) as a circumstance for which the
intersection of the cone of feasible directions and the cone of improving directions is
empty. This has great intuitive appeal for it says that there are no feasible directions
that allow the objective to be improved. In fact, the following result obtains:
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Theorem 2.5. Optimality in terms of the cones of feasible and improving directions.
Consider the mathematical program

min f(x) st xeF (2.71)

where f : RN — R, F C N" and F is nonempty. Suppose also that f is
differentiable at the local minimum x* € F of (2.71). Then at x* the intersection of
the cone of feasible directions Do and the cone of improving directions Fy is empty:

Fo(x™) N Do(x*) = 0

That is, at the local solution x* € F, no improving direction is also a feasible
direction.

Proof. The result is intuitive. For a formal proof see Bazaraa et al. (1993). B

Theorem 2.6. Optimality in terms of the cones of interior and improving directions.
Let x* € F be a local minimum of the mathematical program

minf(x) st xeF={xeXp:gx)<0}CR" (2.72)

where Xo is a nonempty open set in K", f : W" — R, and g : K" — K™
are differentiable at x*, while the g; fori € I are continuous at x*. The cone of
improving directions and the cone of interior directions satisfy

Fo(x*) N Go(x™) =0

Proof. This result is also intuitive. For a formal proof see Bazaraa et al. (1993). B

2.5.2 Theorems of the Alternative

Farka’s Lemma is a specific example of a so-called theorem of the alternative. Such
theorems provide information on whether a given linear system has a solution when
arelated linear system has or fails to have a solution. Farkas’ lemma has the follow-
ing statement:

Lemma 2.1. Farkas’ lemma. Let A be an m xn matrix of real numbers and ¢ € R".
Then exactly one of the following systems has a solution: System 1: Ax < 0 and
cTx > 0 for some x € RN*; or System 2: ATy = c and y > 0 for some y € R™.
Proof. Farkas’ lemma is proven in most advanced texts on nonlinear programming.
See, for example, Mangasarian (1969). B

Corollary 2.1. Gordon’s corollary. Let A be an m x n matrix of real numbers. Then
exactly one of the following systems has a solution: System 1: Ax < 0 for some
x € W"; or System 2: ATy = 0andy > 0 for some y € R™.

Proof. See Mangasarian (1969). B
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2.5.3 The Fritz John Conditions Again

By using Corollary 2.1 it is quite easy to establish the Fritz John conditions intro-
duced previously and restated here without equality constraints:

Theorem 2.7. The Fritz John conditions. Let x* € F be a minimum of

min  f(x)
st xe F={xeXo:gx) <0}

where X is a nonempty open set in W* and g : B" —> N™. Assume that f(x) and
gi (x) for i € [1,m] have continuous first derivatives everywhere on F. Then there

must exist multipliers |1 € ER},_ and o = (1, ..., )T € R such that
oV f(x*) + 37 i Vgi(x*) =0 (2.73)
pigi(x*) =0 Viel[l,m] (2.74)
wi >0 Viellm (2.75)
(ho. p) # 0 € R+ (2.76)

Proof. Since x* € F solves the mathematical program of interest, we know from
Theorem 2.6 that Fo(x*) N Go(x*) = @; that is, there is no vector d satisfying

Vi -d <0 (2.77)
[Veix)]"-d <0 iel(x* (2.78)

where 7(x*) is the set of indices of constraints binding at x*. Without loss of gen-
erality, we may consecutively number the binding constraints from 1 to | /(x*)| and
define

[V fee)" 0 0 0
0 Va0 0
0 0 Ve (x)]T - 0
A =
0 0 0 0

0 0 0 o [Vanen a9]”
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As a consequence we may state (2.77) and (2.78) as
d
d
Al . | <0 (2.79)
d

According to Corollary 2.1, since (2.79) cannot occur, there exists

_ Mo >0
Y (Mi = I(X*)) B

AT = AT Ko =0 2.
Y (,ui:iel(x*) (2.80)

such that

Expression (2.80) yields

[1(x™)]
poV S (x*) + Y miVei(x) =0 (2.81)

i=1
We are free to introduce the additional multipliers
wi=0 i=|Ix")+1,...,m (2.82)

which assure that the complementary slackness conditions (2.74) and (2.75) hold
for all multipliers. As a consequence of (2.81) and (2.82), we have (2.73), thereby
completing the proof. B

2.5.4 The Kuhn-Tucker Conditions Again

With the apparatus developed so far, we wish to prove the following restatement of
Theorem 2.4 in terms of the linear independence constraint qualification:

Theorem 2.8. Kuhn-Tucker conditions. Let x* € F be a local minimum of

min f(x)
st. x e F={xe€ Xo:g(x) <0,h(x) =0}

where X is a nonempty open set in R". Assume that f(x), gi (x) fori € [1,m]
and h; (x) fori € [1, q] have continuous first derivatives everywhere on F and that
the gradients of binding constraint functions are linearly independent. Then there
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must exist multipliers 1 = (U1,..., wm)T € R and A = (A;, ..., )Lq)T e N4
such that
m q
V) + D Ve + Y AiVhi(x*) =0 (2.83)
i=1 i=1
wigix®) =0 Viellm (2.84)
ni =0 Viellm (2.85)

Proof. Recall that a constraint qualification is a condition that guarantees the mul-
tiplier po of the Fritz John conditions is non-zero. We again use the notation

1 (x*) = {i L g (x*) = 0} , (2.86)

for the set of subscripts corresponding to binding inequality constraints. Note also
that by their very nature equality constraints are always binding. Linear indepen-
dence of the gradients of binding constraints means that only zero multipliers

pi =0 Viel(x") (2.87)
Ai=0 Viel[lg] (2.88)
allow the identity
q
Y wiVE(™) + ) A Vhi(x*) =0, (2.89)
iel(x*) i=1

to hold. We are free to set the multipliers for nonbinding constraints to zero; that is
gix")<0=p; =0 Vig¢l(x¥)

which assures (2.84) and (2.85) hold for i € [1,m]. Consequently, linear inde-
pendence of the gradients of binding constraints actually means that there are no
nonzero multipliers assuring

m q
D iV () + ) AiVhi(x*) =0 (2.90)

i=1 i=1

That is, either all A; = O and all u; = 0 or

m q
Do iV + Y AiVhi(x*) #0 (2.91)

i=1 i=1
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In the latter case, the Fritz John identity
m q
oV f (x*) + D wiVei(x*) + ) AiVhi(x*) =0 (2.92)
i=1 i=1

immediately forces
o # 0 (2.93)

unless V 1 (x*) = 0 € R"; in this latter case (2.90) must hold and so we may still
enforce (2.93) without contradiction or loss of generality. l

2.6 Sufficiency, Convexity, and Uniqueness

Sufficient conditions for optimality in a mathematical program are conditions that,
if satisfied, ensure optimality. Any such condition has the logical structure:

If property P(x™) is true, then x™* is optimal.

It turns out that convexity, a notion that requires careful definition, provides useful
sufficient conditions that are relatively easy to check in practice. In particular, we
will define a convex mathematical program to be a mathematical program with a
convex objective function (when minimizing) and a convex feasible region, and we
will show that the Kuhn-Tucker conditions are not only necessary but also sufficient
for global optimality in such programs.

2.6.1 Quadratic Forms

A key concept, useful for establishing convexity of functions, is that of a quadratic
form, formally defined as follows:

Definition 2.9. Quadratic form. A quadratic form is a scalar-valued function de-
fined for all x € N" that takes on the following form:

n n
O(x) = Z Z ajjXiX; (2.94)
i=1j=1
where each a;; is a real number.

Note that any quadratic form may be expressed in matrix notation as

0(x) = xT Ax (2.95)
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where A = (a;;) is an n x n matrix. It is well known that for any given quadratic
form there is a symmetric matrix S that allows one to to re-express that quadratic
form as

0(x) =xTSx (2.96)

where the elements of § = (s;;) are given by s;; = 5;; = (a;; + a;;)/2. Because
of this symmetry property, we may assume, without loss of generality, that every
quadratic form is already expressed in terms of a symmetric matrix. That is, when-
ever we encounter a quadratic form such as (2.95) or (2.96), the underlying matrix
generating that form may be taken to be symmetric if so doing assists our analysis.

A quadratic form may exhibit various properties, two of which are the subject of
the following definition:

Definition 2.10. Positive definiteness. The quadratic form Q(x) = xT Sx is posi-
tive definite on Q C RN" if Q(x) > O forall x € Q2 and x # 0. The quadratic form
0(x) = xT Sx is positive semidefinite on Q@ € R" if Q(x) > 0 forall x € Q.

Analogous definitions may be made for negative definite and negative semidefinite
quadratic forms. An important lemma concerning quadratic forms, which we state
without proof, is the following:

Lemma 2.2. Properties of positive definite matrix. Let the symmetric n X n matrix
S be positive (negative) definite. Then

1. The inverse S~ exists;
2. S~V is positive (negative) definite; and
3. AT SA is positive (negative) semidefinite for any m x n matrix A.

In addition, we will need the following lemma, which we also state without proof:

Lemma 2.3. Nonnegativity of principal minirs. A quadratic form Q(x) = xT Sx,
where S is the associated symmetric matrix, is positive semidefinite if and only if it
may be ordered so that s11 is positive and the following determinants of the principal
minors are all nonnegative:

S11 S12 S13
>0, $21 S22 s23 | =0, ... ,|S]|=0

$31 832 833

S11 S12
$21 822

2.6.2 Concave and Convex Functions

This section contains several definitions, lemmas, and theorems related to convex
functions and convex sets that we need to fully understand the notion of sufficiency.
First, consider the following four definitions:

Definition 2.11. Convex set. A set X € K" is convex if for any two vectors x', x? €

X and any scalar A € [0, 1] the vector



54 2 Nonlinear Programming and Discrete-Time Optimal Control
x = Ax' 4+ (1-21)x? (2.97)

also liesin X.

Definition 2.12. Strictly convex set. A set X C R" is strictly convex if for any two
vectors x' and x? in X and any scalar A € (0, 1) the point

x = Ax' 4+ (1-21)x? (2.98)

lies in the interior of X.

Definition 2.13. Convex function. A scalar function f(x) is a convex function de-
fined over a convex set X € R" if for any two vectors x', x? € X

FOxt+ 0 =)xH) < AfGH+ A=) fx?) VYAielol] (2.99)

Definition 2.14. Strictly convex function. In the above, f(x) is strictly convex if the
inequality is a strict inequality (<) for all A € (0, 1).

Note that concave and strictly concave functions are defined by reversing the in-
equalities in the preceding definitions.
We are now ready to state the following theorems:

Theorem 2.9. Sum of convex functions. The sum of any two convex functions is
convex.

Theorem 2.10. Convexity of linear functions. Any linear function is both convex
and concave.

Theorem 2.11. Convexity of quadratic form. For any positive semidefinite and sym-
metric matrix S, the quadratic form Q(x) = xT Sx is a convex function over all

of M.

The proofs of the preceding results are straightforward and are left to the reader.
Another important result is the following that relates convex level sets and convex
functions:

Theorem 2.12. Level sets of convex funtion. If f(x) is a (strictly) convex function
over R", then the set of points

S ={x: f(x) <b}, (2.100)

where b is any real number, is a (strictly) convex set.

Proof. The definition of convexity tells us that

FAx'+ (1 =)x%) < Af(x) + (1=2) f(x?)
<A+ (1—-Nb=b
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A strict version of this inequality is obtained for strictly convex functions, thereby
completing the proof. B

We will also need the following lemma:

Lemma 2.4. Intersection of convex sets. The intersection of any two convex sets is
itself a convex set.

Proof. Take x! and x2? within the intersection X! N X2, where X! and X2 are
convex sets. Join these points by a line segment. That line segment and all the points
on it are both in X! and X2. W

It is now trivial to establish the following result:

Theorem 2.13. Convex feasible region. The feasible region X of the mathematical
program (2.3) is a convex set if the following two conditions are met:

1. the equality constraint functions h; (x) : W* — R fori € [1,q] are all linear
on X; and

2. the inequality constraint functions g;(x) : " — R! fori € [1,m] are all
convexon X.

Proof. For the given, the sets
Sp={x:h(x) =0}
Sg ={x:g(x) <0}
are convex. The feasible region X obeys
X=8NnS,
Hence, X is convex, since the intersection of two convex sets is a convex set. ll
Now we are ready to deal with the following key result:

Theorem 2.14. Global minimum of a convex program. If the function f(x) :
M" — R is defined and convex on the closed convex set X < R", then any
constrained local minimum of f(x) for x € X is a global minimum on X. Similarly,
if f(x) is concave on the closed convex set X, then any constrained local maximum
of f(x) for x € X is a global maximum on X.

Proof. Suppose x° € X is a constrained local minimum but not a global minimum,
so that there exists some x* € X such that f(x*) < f(x°). Then for any A € [0, 1]
the convexity of f(x) tells us that

FOX* +(1=20)x% < Af () + (1 =2) f(x°)
<A+ A= f(%) = f(% @101
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Now, consider a straight line segment from x° to x* which must lie entirely in X
(by convexity). For any small positive § (a scalar), there exists A > 0 such that

x = Ax* + (1 —2)x° (2.102)

lies in X at a distance § away from x°. However, we have already shown in (2.101)
that

fx) < f(x%) (2.103)

Since § may be infinitesimally small, x° cannot be a local minimum. Hence, we
have a contradiction. l

Another important result is the following:

Theorem 2.15. Tangent line property of a convex function. Let f(x) have continu-
ous first partial derivatives. Then f(x) is convex over the convex region X C R" if
and only if

) = fO*) + [VAEH] (= x*) (2.104)

for any two vectors x* and x in X. Moreover, f(x) is concave over the convex
region X C N" if and only if

) < fO6*) + [VAEH] (= x*) (2.105)
Sor any two vectors x* and x in X.

This result may be proven by taking a Taylor series expansion of f(x) about the
point x* and arguing that the second order and higher terms sum to a positive
number. Theorem 2.15 expresses the geometric property that a tangent to a convex
function will underestimates that function. Still another related result is:

Theorem 2.16. Convexity and positive semidefiniteness of the Hessian. Let f(x)
have continuous second partial derivatives. Then f(x) is convex (concave) over
some the region X C N" if and only if its Hessian matrix

o 0%f 02 f 2f
W 9x10x2 T Ox10x,
0% f 02 f 02 f
H(x)= | 0x20x1  0x? T Oxp0xp (2.106)
aZf aZf aZf
L 0x,0x7 Ox,0x, W _

is positive (negative) semidefinite.
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Proof. We give the proof for concave functions, although the case of convex
functions is completely analogous.

(i) [negative semidefiniteness = concavity] First note that the Hessian H is
symmetric by its very nature. We may make a second-order Taylor series expansion
of f(x) about a point x* € X to obtain

SO = FON) +[VSON] (x=x") + S =x")THI" +0(x = x)](x = x7)
(2.107)
for some 6 € (0, 1). Because X is convex we know that the point

X*+60(x—x")=0x+(1-0)x*, (2.108)

a convex combination of x and x*, must lie within X. Now suppose that H is
negative definite or negative semidefinite throughout X, so that the last term on the
righthand side of the Taylor expansion is clearly negative or zero. We get

) < fO*) + [VAEH]T (= x%) (2.109)

It follows from the previous theorem that f(x) is concave.

(ii) [concavity => negative semidefiniteness] Now assume f(x) is concave
throughout X but that the Hessian matrix H is not negative semidefinite at some
point x* € X . Then, of course, there will exist a vector y such that

yITH(x*)y >0 (2.110)
Now define x® = x* + y and rewrite this last inequality as
= x)THGE*)(x®=x*) >0 (2.111)

Consider another point x = x* 4+ B(x® — x*) where B is a real positive number, so
that

(x% —x*) = %(x—x*) (2.112)
It follows that for any such 8
(x —x)THX*)(x=x*) >0 (2.113)
Since H is continuous, we may choose x so close to x* that

(x —x)TH[x* 4+ 0(x —x")](x —x*) >0 (2.114)

forall 6 € [0, 1]. By hypothesis f(x) is concave over ) so that

) < )+ [VAEH]T (= x%) (2.115)
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holds, together with the Taylor series expansion (2.107). Subtracting (2.115) from
(2.107) gives

1
0> E(x—x*)TH[x* +0(x — xM)](x —x*) (2.116)
for some 6 € (0, 1). This contradicts (2.114). B

Note this last theorem cannot be strengthened to say a function is strictly convex
if and only if its Hessian is positive definite. Examples may be given of functions
that are strictly convex and whose Hessians are not positive definite. However, one
can establish that positive definiteness of the Hessian does imply strict convexity by
employing some of the arguments from the preceding proof.

Furthermore, the manner of construction of the preceding proofs leads directly
to the following corollary:

Corollary 2.2. Solution set convex. If the constrained global minimum of f(x) for
x € X CR" isawhen f(x) : R — R is convex on X, a convex set, then
the set

U={x:xeX R, f(x)<oa} (2.117)

is the set of all solutions and is itself convex.

We now turn our attention to the question of additional regularity conditions that will
assure that the set W is a singleton. In fact, we will prove the following theorem:

Theorem 2.17. Unique global minimum. Let f(-) be a strictly convex function de-
fined on a convex set X C N". If f(-) attains its global minimum on X, it is attained
at a unique point of X.

Proof. Suppose there are two global minima: x! € X and x> € X. Let f(x!) =
f(x?) = a. Then, by the previous corollary the set W is a convex set and is the set
of all solutions. Therefore

xt, x?, x3evw (2.118)

where x3 = Ax! 4+ (1 — 1)x2, and
o= f(x}) = fOx'+ 0 =-1x?) < AfGH + (1 -2 f(x?) =a.

This is a contradiction and therefore there cannot be two global minima. l

2.6.3 Kuhn-Tucker Conditions Sufficient

The most significant implication of imposing regularity conditions based on con-
vexity is that they make the Kuhn-Tucker conditions sufficient as well as necessary
for global optimality. In fact, we may state and prove the following:
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Theorem 2.18. Kuhn-Tucker conditions sufficient for convex programs. Let

f i X R —R"
g XCR" — Q"
h:XCcRh" — R

be real-valued, differentiable functions. Suppose X is an open convex set, while f
is convex, the g; are convex fori € [1,m], and the h; are linear fori € [1,q]. Take
X*to be a feasible solution of the mathematical program

min f(x)

st hi(x) =0(A;) i €l,q]
gi(x) =0 (ui) i €[1,m]
x € Xo

(2.119)

If there exist multipliers u* € R™ and A* € N9 satisfying the Kuhn-Tucker
conditions

m q
VO 4+ uiVei(x*) + Y A Vhi(x*) =0

i=1 i=1
uigix*)=0 wuf >0 iell,m] ,
then x* is a global minimum.

Proof. To simplify the exposition, we shall assume only constraints that are inequal-
ities; this is possible since any linear equality constraint

hi (x) =0
fork € [1, m] may be restated as two convex inequality constraints in standard form:

hr (x) <0
—hi (x) <0

and absorbed into the definition of g(x). The Kuhn-Tucker identity is then

VIO + Y i Vgi(x*) =0 (2.120)

i=1

Post multiplying (2.120) by (x — x*) gives

[V =2+ 3o ul [Vai )] (= a") =0 @.121)



60 2 Nonlinear Programming and Discrete-Time Optimal Control

where x* is a solution of the Kuhn-Tucker conditions and
x,x*eX={xeXp:g(x)<0,h(x) =0}
‘We know that for a convex, differentiable function
() = g(*) + [Ve ()] (x —x*) (2.122)
From (2.121) and (2.122), we have
(VA @ —x) == [Vai )] (x —x*)
Do nflei (") — g (x)]
i

=[-8 ()] = 0 (2.123)

A%

because p} g; (x*) =0, u* > 0 and g; (x) < 0. Hence

VA9 x=x*) =0 (2.124)

Because f(x) is convex

) = fO6*) + [VAEH] (= x*) (2.125)

Hence, from (2.124) and (2.125) we get

) = fx*) = [V x=x) =0 (2.126)

That is
fx) = f(x),

which establishes that any solution of the Kuhn-Tucker conditions is a global mini-
mum for the given. l

Note that this theorem can be changed to one in which the objective function
is strictly convex, thereby assuring that any corresponding solution of the Kuhn-
Tucker conditions is an unique global minimum. Its given may also be relaxed if
certain results from the theory of generalized convexity are employed.

2.7 Generalized Convexity and Sufficiency

There are certain generalizations of the notion of convexity that allow the sufficiency
conditions introduced above to be somewhat weakened. We begin to explore the
notion of more general types of convexity by introducing the following definition of
a quasiconvex function:
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Definition 2.15. Quasiconvex function. The function f : X —> N" is quasiconvex
on the set X C N" if

£ (Aixt + 2ox?) <max [ f (x'), f (x?)]

for every x', x% € X and every (A1, ) € {(/\1,/\2) € 9%3_ A+ A= 1}.
We next introduce the notion of a pseudoconvex function:

Definition 2.16. Pseudoconvex function. The function [ : X — N", differen-
tiable on the open convex set X C W", is pseudoconvex on X if

(x1 —xz)T Vf (xz) >0

implies that
1 2
f(x7) = f(x)
for every x!,x? € X.
Pseudoconcavity of f occurs of course when — f is pseudoconvex. Furthermore,
we shall say a function is pseudolinear (quasilinear) if it is both pseudoconvex (qua-
siconvex) and pseudoconcave (quasiconcave).

The notions of generalized convexity we have given allow the following theorem
to be stated and proven:

Theorem 2.19. Kuhn-Tucker conditions sufficient for generalized convex pro-
grams. Let

f X — R
h:XCR*—n"
g XCcR" —n

be real-valued, differentiable functions. Suppose X is an open convex set, while f
is pseudoconvex, the g; are quasiconvex for i € [1,m], and the h; are quasilinear
fori €[1,q]. Take x*to be a feasible solution of the mathematical program

min  f(x)

st hi(x)=0 () i€l q]
gi(x) =0 (&) i€([l,m]
X € X()

If there exist multipliers u* € R™ and A* € N9 satisfying the Kuhn-Tucker
conditions

m q
VA + Y ufVe(x) + > A Vhi(x*) =0
i=1 i=1
wrigi(x*)=0 wu*>0 iell,m,

then x* is a global minimum.
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Proof. The proof is left as an exercise for the reader. B

We close this section by noting that if in addition to the given of Theorem 2.19 an ap-
propriate notion of strict pseudoconvexity is introduced for the objective function f,
then the Kuhn-Tucker conditions become sufficient for a unique global minimizer.

2.8 Numerical and Graphical Examples

In this section we provide several numerical and graphical examples meant to test
and refine the reader’s knowledge of the material on nonlinear programming pre-
sented above. We will need the notions of a level curve Cj, and a level set Sy of the
objective function f(x) of a mathematical program:

Co ={x: f(0) = fi} (2.127)
Sk ={x: f(¥) = fi} (2.128)

where f; signifies a numerical value of the objective function of interest. Solving
any mathematical program graphically involves four steps:

1. Draw the feasible region.

2. Draw level curves of the objective function.

3. Choose the optimal level curve by selecting, from the points of tangency of level
curves and constraint boundaries, the fesible point or points giving the best ob-
jective function value.

4. Identify the optimal solution as the point of tangency between the optimal level
curve and the feasible region

2.8.1 LP Graphical Solution

Consider the following linear program:
max f(x,y) =x +y

subject to
3x+2y <6 (2.129)

1
JXty =2 (2.130)

For the present example the optimal solution is, by inspection of Figure 2.2, the

point
*
x* = (i}*) = (2.131)
2

N W —
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feasible
0.5x + y= 2 region

level curves

optimal level curve

Fig. 2.2 LP graphical solution

63

One can easily verify the Kuhn-Tucker conditions hold at this point. To do so, it is

helpful to restate the problem as follows:

min f(x,y) = —x—y

g1(x,y) =3x+2y—-6<0

1
gz(x,y)=§x+y—250

‘We note that

v = (7))

Vei(x.y) = (;)
1

Vea(x.y) = 2)
1

The Kuhn-Tucker identity is

0
Vi (x1,x2)+A1Vgr (x1,x2) + A2Vgs (x1,x2) = ( )

That is

—_— N =

(2)en ()

g

0

o)

(2.132)
(2.133)

(2.134)

(2.135)

(2.136)

(2.137)

(2.138)

(2.139)
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The complementary slackness conditions are

A1g1(x1,x2) =0 A; >0 (2.140)
A2g2 (x1,x2) =0 A2>0 (2.141)

Note that 3
I ={i:g (1,5):0}:{1,2} (2.142)

and we must find multipliers that obey
A, A2 >0 (2.143)
It is easy to solve the above system and show

1 1
/\121>0,/\2:§>0 (2144)

Hence x* satisfies the Kuhn-Tucker conditions. Because the problem is a linear
program, it is a convex program. Therefore, the Kuhn-Tucker conditions are not
only necessary but also sufficient, making x* a global solution.

2.8.2 NLP Graphical Example

Consider the following nonlinear program

min f(x1.x2) = (x1 —5)° + (x2 — 6)° (2.145)
subject to
1
g1 (x1,x2) = 7%+ = 3<0 (2.146)
g2 (x1,x2) =x1—2=<0 (2.147)

By inspection of Figure 2.3, the point (2, 2) is the globally optimal solution with a
corresponding objective function value of 25. Note that

V£(2,2) = (:2) (2.148)

1
Vei2,2) = | 2 (2.149)
1
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X

objective functi
level curves

=

objective function
values

2.5 __/v

0.5x; +x, =3
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Fig. 2.3 NLP graphical solution

Vg2(2,2) = (é) (2.150)

The Kuhn-Tucker identity is

-8 1 0
(_6)“1‘)&1 + Az (0)2(0) (2.151)

The complementary slackness conditions are

—_— N | =

A1g1(x1,x2) =0 A1 >0 (2.152)
A2g2 (x1,x2) =0 A2 >0 (2.153)

and
I={i:g(1,2)=0}={1,2) = 11,1, >0 (2.154)

Solving the above linear system (2.151) yields multipliers of the correct sign:

M =6>0 (2.155)
A =5>0 (2.156)

Consequently, the Kuhn-Tucker conditions are satisfied. Because the program
is convex with a strictly convex objective function, we know that the Kuhn-Tucker
conditions are both necessary and sufficient for an unique global optimum. So, even
without further analysis, we know (2, 2) is the unique global optimum.



66 2 Nonlinear Programming and Discrete-Time Optimal Control

2.8.3 Nonconvex, Nongraphical Example

Consider the nonlinear program

min f (x1,x2) = —x1 + 0x2 (2.157)

subject to
g1 (x1,x2) = (x> + (x2)> =2 <0 (2.158)
g2 (x1,x2) = x1 — (x2)> <0 (2.159)

Note that the feasible region of this mathematical program is not convex; hence, we
will have to enumerate all the combinations of binding and nonbinding constraints
in order to solve it using the Kuhn-Tucker conditions alone. We begin by observing
that

Vf(x1.x2) = (_01) (2.160)
Vg1 (x1,%2) = (22) (2.161)
ng (xl,xz) = (_21x2) (2162)

The Kuhn-Tucker identity is
-1 2x1 1 0
A A = 2.163
(0)+ 1(2362)—i_ 2(—2x2) (0) (2109
from which we obtain the equations

ktil : =1 4+2A1x1 + A2, =0 (2.164)
kti2 : ()&1 — )Lz) x, =0 (2.165)

The complementary slackness conditions are

cscl I)ngl (x1,x2) =0 A1 >0 (2.166)
csc2 : )ngz (x1,x2) =0 Ay >0 (2.167)

Because there are N = 2 inequality constraints, there are 2V = 22 = 4 possible
cases of binding and nonbinding constraints:
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Case|g1 (g2

I <0|<0

I |[(<0|=0 (2.168)
I (=0|<0

IV [=0|=0

It is convenient to use the following symbols and operators for analyzing each of
the four cases:

Symbol/Operator(Meaning

® consider two statements

- the implication of such a consideration (2.169)
h a contradiction has occurred

dno does not occur

Remembering that we must show each case to either involve a contradiction, thereby
indicating that case does not occur, or derive non-negative multipliers which satisfy
the Kuhn-Tucker conditions, we present the following analysis:

: [cscl ® csc2] = [A = A2 = 0] & [ktil] = [—1 =0 rh] = dno
(Case 1| cscl = [A = 0] @ [keil kti2] => [Ay = 1 > 0, Apxy = 0] =

[x2 =0]& [gz =x; —(0)* = 0] — csc2 satisfied =
[xA = (0, O)T is a valid Kuhn-Tucker point]

Case Il | csc2 = [Ap = 0] @ [ktil , kti2] = [-1 + 211x1 = 0, A1x = 0] =
Subcase ITA [ [A; = 0] & [-1 + 241x; = 0] = [—1 =0 rh] = dno
Subcase IIB [: [A; > 0] ® [A1x2 = 0] = [x2 = 0] D

(61 =@’ + 0 —2=0] =
[11 = £v2]8[g2 = 11 — 0% < 0] = [11 = —v2@[-1 + 20131 = 0] =

[0 < =Qx) ' = (-2&)_l <0 rh} — dno
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[Case IV [g1 = (0 + (12)* =2 = 0] @ [g2 = 1 — (x2)” = 0] =

[x1 =1,x = £1] & [ktil  kti2]| = [-14+241 + A2 = 0,41 — A, = 0] =

A1 =1/3> 0,42 = 1/3 > 0] = cscl and csc2 satisfied =

[xB = (1, l)T ,x€ = (1, —I)T are valid Kuhn-Tucker points].

The global optimum is found by noting

f(xA) =0

(2.170)
f(xP)=f(x)=-1</(x)

which means xZ, x€ are alternative global minimizers. Note also that x4 is not a

local minimizer.

2.8.4 A Convex, Nongraphical Example

Let us now consider the mathematical program

mmf (XI,XZ) = 0)C1 — X2 (2171)

subject to
g1 (x1,x2) = (x1)* + (x2)> =2 <0 (2.172)
g2 (x1,x2) = —x1 +x2 <0 (2.173)

Note that this problem is a convex mathematical program since the objective func-
tion is linear and the inequality constraint functions are convex. We know the
Kuhn-Tucker conditions will be both necessary and sufficient for a nonunique global
minimum. This means that we need only find one case of binding and nonbinding
constraints that leads to nonnegative inequality constraint multipliers in order to
solve (2.171), (2.172), and (2.173) to global optimality. We begin by observing that

Vf(x1.x2) = (_01) (2.174)
Vg1 (x1,%2) = (;2) (2.175)

Vga (x1,x2) = (_11) (2.176)



2.9 Discrete-Time Optimal Control 69

The Kuhn-Tucker identity is

0 2x1 -1\ _ (0
(_1)+Al(2x2)+kz( 1 )— (0) (2.177)

from which we obtain the equations

ktil :2A1x1 — X2 =0 (2.178)
kti2 : =1 42 A 1x2 + A2 =0 (2.179)

The complementary slackness conditions are

csel : /\1g1 (XI,X2) =0 A1>0 (2.180)
csc2 : )ngz (x1,x2) =0 Ay >0 (2.181)

Since the present mathematical program has two constraints, the table (2.168) still
applies. Let us posit that both constraints are binding, so that the following analysis
applies:

1 [gl =)+ ()’ -2= 0] Blgz2=—x1+x=0=

[xf = x5 = 1] @ [kiil kti2] =241 — A2 = 0,—1 + 241 + A = 0] =

1 1 .
AL = ) > 0,1, = 3 > 0| = [cscl and csc? are satisfied] —

[x* = (xi“,x;‘)T = (1,1)T is a global minimizer]

However, since the objective function is only convex and not strictly convex, we
cannot ascertain without analyzing the three remaining cases whether this global
minimizer is unique. The reader may verify that the other three cases lead to contra-
dictions, and thereby determine that x* = (1, l)T is a unique global solution.

2.9 Discrete-Time Optimal Control

We are now ready to formulate a fairly general version of the discrete-time optimal
control problem. Because time is treated discretely, we avoid in this initial foray into
optimal control theory the complications and nuances of infinite-dimensional vector
spaces. In particular, we will show that the discrete-time optimal control problem
can be restated as a nonlinear mathematical program in standard form. We then show
that application of the Kuhn-Tucker conditions leads us directly to a discrete version
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of Pontryagin’s minimum (maximum) principle and the other necessary conditions
of discrete-time optimal control.

The equations of motion, also called the dynamics, that we consider take the form
of the following difference equations:

Xt4+1 = Xt + ﬁ (Xt,lztz) t = 0, 1,,q—1 (2182)

where ¢ is a discrete time index (a nonnegative integer) and ¢ is the number of
time steps that constitute our planning or analysis horizon. Note further that x; €
N" and u, € N are vectors, as is f; : R"* x R — R". We refer to the x;
as state variables and the u; as control variables. We assume f; is continuously
differentiable on R x MR”. The initial and terminal conditions for these dynamics
are taken, respectively, to be

Do (x0) =0 (2.183)
D, (x4) =0 (2.184)

where ®g : K" —> RM0and @, : R” —> R4, while @y and @, are both C! on
N". The control constraints are stated in abstract form as

u el ={u:g () <0}CH 1=01,...,q—1 (2.185)

where g; : W — N and g, is C! on N”. As stressed in our development of
the Kuhn-Tucker conditions, there is no loss of generality arising from the fact that
we have only explicitly considered inequality constraints on the controls, as any
equality constraint may be represented by two appropriately defined inequalities.
The final piece of the discrete-time optimal control problem is its cost function
defined by
q—1
J=W(xg)+ Y Fi(x.u) (2.186)
t=0
where ¥ : " — R is C! on M”, while Fy : R x R — R is C! on R” x R".
We assume that J is meant to be minimized.
Assembling the individual pieces presented above, we have the following canon-
ical form of the discrete-time optimal control problem:

g—1
minJ =W (xg) + > Fr (x¢.ur) (2.187)

t=0

subject to

Xe41 = X¢ + fr (rouy) t=0,1,...,g—1 (2.188)
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u,EUZZ{u:g,(ut)fO}giﬁr l:O,l,...,q—l (2189)

Do (x0) =0 Py (xg) =0 (2.190)

Note that we have included no constraints involving the state variables.

2.9.1 Necessary Conditions

It should be apparent that the discrete-time optimal control problem given by
(2.187), (2.188), (2.189), and (2.190) is a finite-dimensional nonlinear mathemat-
ical program. Let us put it in the following form:

g—1

minZ (x.u) = W (xg) + > F (x.u7) (2.191)
t=0
subject to
he (Xey Xe41) = —Xeq1 + X0 + fr (5, u) =0 (Te41) (2.192)
t=0,1,...,qg—1
g ) <0 (&) t=0,1,...q—1 (2.193)
®@p (x0) =0 (po) (2.194)
Dy (xg) =0 (pq) (2.195)

where for convenience we employ the following notation

X0

x=|: |enr@tD (2.196)
Xq
Uo

u=| 1 |end (2.197)
Ug—1

for the vectors of decision variables for our mathematical program; as we have men-
tioned, in the parlance of optimal control theory, these vectors are vectors of state
variables and control variables, respectively.

We assume that a relevant constraint qualification is in force so that the
Kuhn-Tucker conditions for the mathematical program (2.191), (2.192), (2.193),
(2.194), and (2.195) are a valid characterization of optimality. The names of
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multipliers for the constraints of (2.192), (2.193), (2.194), and (2.195) are indi-
cated in parentheses next to each constraint. We state the Kuhn-Tucker conditions
by first forming the Lagrangean; that is, we price out all constraints and adjoin them
to the original objective function to obtain

g—1
Lxup.1)=V(xg) + > F (xe.u) + po®o (x0) + pgPq (xg)
=0

q—1 g—1

YT (X xS Gaun) + YA & ()

t=0 t=0

where the symbol 7" denotes the transpose operation and

p = (100) c E“mo-‘rmq
Pq

T1
T = e W
Tq
are vectors of dual variables (p) and adjoint variables' (), respectively.

The Kuhn-Tucker identity is, of course, obtained by setting the partial derivatives
of £ (x, u, p, T) equal to zero; let us begin with the following:

VL (x,u,p,7) =0 (2.198)
It follows that
oL 8F0 a<I>0 afO
= -9 _—_ “— =0 2.199
3o axO+ 080+ Itz ! 9o ( )
L OF, s
o AR R il (2200
If we agree to define
300"
0= — [—0] 00 (2.201)
aX()

! These discrete-time adjoint variables are clearly mathematical programming dual variables; in
optimal control theory, we refer to them as adjoint variables by tradition.
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then (2.199) and (2.200) can be written as

a T
To = 71 + [ﬁ} 1 + Vi Fo (2.202)
8x0
a T
Tt = Tr+1 + [%} Tr+1 + Vx, Ft = 1, o q — 1 (2203)
t

We note that (2.203) and (2.204) have the same form as one another, so they may be
conveniently represented by the single statement

1"
T = Tr41 + [g} T+1+ Ve, F; t=0,...,9—-1 (2.204)
t

Next note that ar - 90
T 9%¢ T
—_— = — — = =0 2.205
dxg  Oxg Pq dxg ta ( )

which can be rewritten as

o, 17
g = Vi, ¥ + [W:} g (2.206)

The remaining partial derivatives of interest are those of the Lagrangean with respect
to the control variables, which are set to zero:

VoL (x,u,p,7) =0 (2.207)

It follows that

L _ Tagt T aﬁ aFt

3ut o 3ut t+lal/tt 814,

=0 t=0,....q—1 (2.208)

which can be rewritten as

q—1 g—1
Vi |:Z Fy (x¢,u:) + Z 7:17;1-1 (=Xe41 + x¢ + fr (xr,ur))

t=0 t=0

q—1
+Y Mg (u,)} =0 (2.209)

=0
The final conditions for us to mention are
Mg=0 420 t=1,....q-1 (2.210)

which are recognized as the complementary slackness conditions associated with
the control inequality constraints and their multipliers.
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In deriving the equations and inequalities of this section that express the
necessary conditions, the arguments of all functions and their derivatives have
been purposely omitted in order to simplify the notation. The complete set of neces-
sary conditions for the discrete-time optimal control problem consist of the original
problem constraints together with the conditions we have derived. That is to say,
the necessary conditions are

equations of motion : (2.182)
initial conditions : (2.183)
terminal conditions : (2.184)
control constraints : (2.185)
adjoint equations : (2.202)
transversality conditions : (2.206)

stationarity conditions for the controls : (2.209)

Note that these conditions constitute a so-called two-point boundary-value problem.

2.9.2 The Minimum Principle

In this section we wish to manipulate the necessary conditions for the discrete-time
optimal control problem developed from application of the Kuhn-Tucker conditions
into the traditional form used to study and analyze optimal control problems; in
the process we will articulate Pontryagin’s minimum principle. The mathematics
of this section are essentially algebra and some simple differentiation; the substan-
tive aspect of the discrete-time optimal control problem analysis has already been
completed in the previous section. However, the success of modern optimal control
theory is in no small part due to the elegant, concise statement of the necessary con-
ditions that we are about to give (and which is usually attributed to Pontryagin and
his colleagues); packaging is important!

We begin the task of reformulating the necessary conditions by defining the
Hamiltonian:

Hy (x¢, tgr,ue) = Fr (oue) + 100y fr (oug) 1=0,...,g—1  (2.211)

where x; € %" will be called the state variable vector while t; and u; were named,
in Section 2.9.1, the adjoint vector and control vector, respectively; furthermore
H; : " x R" x K™ —> N1, It is immediate that the equations of motion may be
stated as

Xt41 — X = V-,_—,_HHZ (x,,r,+1,u,) t :O,,q—l (2212)
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and the adjoint equations as
T+1— Tt Z—VxIHt (.Xt,ft+1,lxtt) t =0,,q—1 (2213)

Results (2.212) and (2.213) are completely analogous to Hamilton’s equations of
classical mechanics that describe conservative Newtonian systems in terms of gen-
eralized coordinates (position and momentum). For this reason, these equations are
sometimes still called Hamilton’s equations, although there is no implication that
(2.212) and (2.213) carry with them any of the assumptions or implications of clas-
sical mechanics.

We may also, in light of the definition of the Hamiltonian (2.211), restate the
stationarity conditions for the optimal controls as

g—1
Vu, |:Ht (x,,rt+1,ut)+z/\,Tgt (I/tz):| =0 t :O,...,(]— 1 (2214)
t=0

AMlgi(u)=0 2 >0 t=0,...,q—1 (2.215)

The system (2.214) and (2.215) is immediately recognized as the necessary condi-
tions for statically minimizing the Hamiltonian with respect to the controls under
the assumption that all other variables are held fixed. We restate this observation as

Ht (xt,t,+1,ut) < Hz ()Cz,l't+1,u) VuEZ/{t t :0,,q—1 (2216)

Expression (2.216) is Pontryagin’s minimum principle.

2.9.3 Discrete Optimal Control Example

Consider the following discrete-time optimal control problem:

5
. 1 2
min J =) 5 (x0) (2.217)
t=0
subject to
Xe+1 — Xt = Ug t=0,1,2,3,4 (2.218)
X0 =3 (2.219)
—1<wu <1 t=0,1,2,3,4 (2.220)

The Hamiltonian is

1
Hz = E(Xt)2+kz+1(ut) t 20,1,2,3,4
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The minimum principle is

+1 /\H_l <0
Uy = uf Ai+1 =0 t=20,1,2,3,4
—1 /\H_l >0

The adjoint equations are

kt+1 —A = _thHt(xt,)Lt+1,ut)
= —X; t=0,1,2,3,4

Inspection indicates that the objective function will be minimized by the application
of the control u; = —1 until the state variable reaches zero at an unknown time
t1; thereafter a so-called singular control #f = 0 is applied, until the end of time
horizon. Then

x,.H—xt:ut:—l ZZO,l,...,ll

Since xo = 3 is given, we have

X1:XO—1:

xz=x1—1=1

X3 x2—1=0

Consequently it is discovered that
Hh=2
Following the prior assumption, we find that
Xe41— X =usr =0 t=3,4
which yields

X4=X5=O

Now let us consider the conditions for adjoint variables. According to the minimum
principle, we should have A; > 0 for t = 0, 1, 2 in order that u; = —1 for the same
time intervals. From the transversality conditions and the adjoint equations, we have

As =0

Ay =As5+x4=0
A3 =As+x3=0
Ay =Az+x =1
AM=Ar+x1 =3
A =A1+Xx0=6
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which satisfies the minimum principle. In summary, the solution is

t 0 1 2

Xt +3 +2 +1
Uz —1 —1 —1
As +6 +3 +1

(=) Keol Hanl BN

(=) Rl Neol JU)

S|O|O| W

It is instructive to approach the same problem from a purely mathematical program-
ming perspective. In fact off-the-shelf finite-dimensional mathematical program-
ming software or the Kuhn-Tucker conditions (without invoking the notion of the
Hamiltonian and the minimum principle) may be applied directly to the nonlinear
program (2.217), (2.218), (2.219), and (2.220). We leave the demonstration that the
mathematical programming approach yields an identical result as an exercise for
the reader.

2.10 Exercises

1. Create an example of a mathematical program with two decision variables for
which no constraint qualification exists.

2. Prove or disprove: a nonlinear program with a strictly convex objective function
and a non-convex feasible region arising from constraints satisfying the linear
independence constraint qualification may never have a unique global optimum.

3. Solve the following nonconvex, nonlinear program graphically:

min f (x1,x2) = —x1 + 0x;

subject to
g1 (x1,x2) = (x1)2 + (x2)2 -2<0

g2 (x1,x2) = x1 — (x2)> <0

4. Solve the nonconvex, nonlinear program of Exercise 3 above using the Kuhn-
Tucker conditions without appeal to graphical information.

5. The example of Section 2.9.3 suggests that a singular control arises when it ap-
pears linearly in the Hamiltonian and has a coefficient that vanishes. Propose
an alternative definition that relies on the language and optimality conditions of
nonlinear programming.

6. Use the minimum principle to solve the following discrete-time optimal control

problem:
5

minJ = Z [%(Xt)z + uz:|

t=0
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subject to

Xt4+1 — Xt = Uy t=0,1,2,3,4
X0=3
-1 <u =<1 t=0,1,2,3,4

7. Use the minimum principle to solve the following discrete-time optimal control

problem:
5

1 1
inJ = - 2 - 2
min Z |:2(xt) + 5 (ur) :|
=0
subject to
Xt4+1 — Xt = Uy t=0,1,2,3,4
X0 = 3

-1 <u =<1 t=0,1,2,3,4
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