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Abstract

Information systems are designed, constructed, and used by people. Therefore, a software design process is not
purely a technical task, but a complex psycho-socio-technical process embedded within organizational, cultural, and

social structures. These structures influence the behavior and products of the programmer’s work such as source code
and documentation. This chapter (1) discusses the non-technical (organizational, social, cultural, and psychological)
aspects of software development reflected in program source code; (2) presents a taxonomy of the social disciplines of
computer science; and (3) discusses the socio-technical software analysis methods for discovering the human, organiza-

tional, and technical aspects embedded within software development artifacts.
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1. Introduction

Software engineering (SE) is primarily concerned with developing software that satisfies functional and
non-functional requirements, internal and external constraints, and other requirements for usability,
compatibility, portability, reusability, documentation, etc. Such requirements reflect social and organiza-
tional expectations of how, where, when, and why a software system may be used. However, software
developers are not influenced just by given requirements and constraints. The quality, structure, and other
characteristics of the developed software systems also depend upon education of software designers and
programmers, their work experience, problem-solving strategies [56], organizational structure and social
relations, shared mental models [22], cultural traditions and nationality [6], worldview, religion
(Eleutheros), and even such minor aspects whether a coffee machine is installed in their workplace [27].
The importance of non-technical factors in information systems development (ISD) is underscored by a
survey [17], which claims that 90% of ISD project failures can be attributed to non-technical (social,
organizational, etc.) factors. Therefore, a software design process is not purely a technical task, but also a
social process embedded within organizational and cultural structures. These structures influence and
govern the work behavior of programmers and their final products, such as source code and
documentation.

The socio-technical relationships between programmers and their developed software are very
complex to register and study and they cannot be replicated experimentally or described using formal
models. The actions and environment of software designers are rarely directly available for study. In many
cases the only available material for analysis is program source code. The knowledge gained from source
code analysis despite its likely partiality and ambiguity can tell us about software design processes, its
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development history, and provides us with some information about its author. Comprehension of source
code may allow us to understand what the original programmer had comprehended [18].

From the socio-technical perspective, the structure of software systems can be described in terms of
technical relationships between software units (components, classes, units, etc.) and social relationships
between software developers and their environment. By analyzing such relationships and dependencies, we
can uncover and comprehend not just the links between programmers and their code, but also the relations
between programmers through their code. Socio-technical software analysis [62, 63, 16, 28] tries to uncover
these socio-technical dependencies by analyzing artifacts of software design processes.

The aims of this chapter are (1) to overview the psycho-socio-technical aspects of software design
reflected in program source code; (2) to discuss the social disciplines of computer sciences; and (3) to focus
on socio-technical software analysis methods for discovering psycho-socio-technical aspects embedded
within it.

2. Non-Technical Aspects of Software Development

2.1. Social Aspects

ISD is a socio-technical process [45, 57], which is affected by personal [13] and group [68] factors.
Sawyer and Guinan [58] even claim that social processes had more influence on software quality than
design methodologies or automation. There is considerable evidence that software design processes are
influenced by social and psychological factors [30, 4, 27, 47, 7, 19, 10, 57]. The social nature of software
development and use suggests the applicability of social psychology to understanding aspects of SE.

Programmers do not exist in isolation. They usually communicate about technical aspects of their
work. Several studies [25, 62] suggest that technical dependencies among software components create
‘‘social dependencies’’ or ‘‘networks’’ among software developers implementing these components. For
example, when developers are working to implement a software system within the same team, the devel-
opers responsible for developing each part of the system need to interact and coordinate to guarantee a
smooth flow of work [65]. Inevitably, during such coordination and communication, the designers are
influenced by each others’ domain knowledge, programming techniques, and styles. Such influence can
be uncovered in software repositories and found in the structure of the software artifact itself [63]. There-
fore, software development (certainly at a large-scale) can be considered as a fundamental social process
embedded within organizational and cultural structures. These social structures enable, constrain, and
shape the behavior, knowledge, programming techniques, and styles of software developers [27].

2.2. Organizational Aspects

Other socio-technical aspects that influence the work of software designer are organizational aspects
(e.g., structure of organization, management strategy, business model). Such dependence is often formu-
lated as Conway’s Law: ‘‘organizations which design systems are constrained to produce designs which are
copies of the communication structures of these organizations’’ [11]. There are numerous interpretations of
Conway’s Law [29, 2]. In general, Conway’s Law states that any piece of software reflects the organiza-
tional structure that produced it. For example, two software components A and B cannot interface
correctly with each other unless the designer of component A communicates with the designer of compo-
nent B. Thus the interface structure of a software system will match the structure of the organization that
has developed it.

Parnas further clarified how the relationship between organization and its product occurs during
software development process. He defined a software module as ‘‘a responsibility assignment’’ [53], which
means that the divisions of a software system correspond to a division of labor. This division of labor
among different software developers creates the need to discuss and coordinate their design efforts [29].
Therefore, the analysis of software architectures can allow us tomake conclusions about the organizational
structure and social climate of the software designer’s team.
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2.3. Psychological Aspects

Software design decisions are often based on psychological rationale, rather than purely computa-
tional or physical factors [69]. Software developers frequently think about the behavior of a program in
mental or anthropomorphic terms, e.g., what a component ‘‘knows’’ or is ‘‘trying to do,’’ rather than
formal, logical, mathematical, or physical ones [68]. About 70% of software representations are metapho-
rical [19], representing system behavior as physical movement of objects, as perceptual processes, or
anthropomorphically by ascribing beliefs and desires to the system [30].

Software architecture is commonly considered as a structure of a software system. However, software
architecture can also be analyzed as a mental model shared among software developers [51, 8, 33]. Mental
models are high-level knowledge concepts of a designer that reflect both domain system structure and
functions, software goals, design tasks, implementation strategies together with social, organizational, and
psychological aspects that influenced the development of this system [31]. Uncovering and analyzing a
mental model of a program is as important as analyzing formal or abstract models, and contributes toward
a more comprehensive understanding of software development processes [44].

2.4. Cultural Aspects

To fully understand the relationship between software and programmers’ thoughts and actions, we
need to understand the relationships between software and programmer culture [52]. The improvement of
software design processes requires understanding of cultural context, practices, and sensitivities that these
processes may relate to [60]. For example, although the need of transition to a new technology to improve
the process of developing quality software products is well understood, new technologies are often adopted
as a ‘‘silver bullet’’ without any convincing evidence that they will be effective, yet other technologies are
ignored despite the published data that they will be useful [70]. Cultural concepts such as postmodernism
[50] migrate to computer science and affect software development methodologies (e.g., claiming that there
are no longer correct algorithms, but only contextual decisions), emphasizing code reuse, glue program-
ming, and scripting languages.

For a long times the adaptation of software to a different culture has been only focused on the user
interface (software internationalization). However, there is a growing trend that not only software, but also
its development processes and methodologies need to be adapted [40]. Methods that were thought to be
‘‘best practices’’ for some cultural groups turn out to be ineffective or very difficult to implement for
software developers from other cultural groups [6]. Nationality also has the influence. For example, one
study [6] shows that American teams are culturally well suited for iterative development and prototyping.
The same study asserts that American teams seem to enjoy the chaos, often to the detriment of project
progress, whereas Japanese software project teams are more suited toward waterfall development styles.

3. Social Disciplines of Computer Science

The interdisciplinary nature of aspects related to software design has led to the arrival of social
branches of computer science. The taxonomy of such branches is proposed in Table 2.1. The main object of
research in these disciplines is the virtual world of software and its relationship with the real world
of designers and users. These disciplines reflect a multitude of diverse views toward software as an object
of creativity, medium of communication and idea sharing, and an evolving entity with its own life cycle and
habitat.

When people program they express a philosophy about what operations are important in the world
[21]. Common propositions such as ‘‘The best way to develop software is to use object-oriented design
methodology’’ and ‘‘GOTO statements are harmful’’ relate as much to SE methodologies and program-
ming language semantics as to philosophy and epistemology. Software epistemology [32, 38], which
analyzes forms and manifestations of knowledge in software, examines the truthfulness of these and
other propositions based on authority (expert’s opinion), reason (using rules of deductive logic), and
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experience (anecdotal and experimental). Neither of these methods produces absolute truth, but rather a

probable truth that depends upon human opinion or prejudice. Software ontology is another philosophy-

oriented discipline that analyzes kinds and structures of the software objects, properties, and relations (the

reader should not confuse software ontology with the ontologies, i.e., data models).
Postmodern computer languages, such as Perl, put the focus not so much onto the problem to be

solved, but rather onto the person trying to solve the problem [67]. The way humans interact with software

and the effect software structures and systems have on human behavior become a factor that influences

software development methodologies and even the syntax of programming languages [61]. Such a human

behavior in creating or using software systems is studied by software psychology [14, 23].
Software axiology analyzes the value and quality of software based on formal as well as aesthetic

criteria (based on visual attractiveness of a software system or source code) [64]. The example of the latter

can be literate programming [12], a problem which is totally irrelevant for computers, yet very important

for programmers. Software aesthetics also has a practical level: often an elegant code runs faster, compiles

better, and is more resource efficient and less prone to software bugs. Therefore, aesthetics and elegance in

programming are often equivalent to good design [46].
Software archeology (or software paleontology) presents another view to software as a historical and

material artifact and aims at the excavation of essential details about a software system sufficient to reason

about it [3, 36, 34]. Archeology is a useful metaphor, because researchers try to understand what was in the

minds of other software developers using only the artifacts they have left behind [41].
According to Minsky [48], computer programs are societies. The study of such societies and their

relationship to human societies is a subject of software sociology or social informatics [26, 59]. Social

Table 2.1. Taxonomy of social disciplines of computer science.

Discipline Object of research Aims

Social

informatics (software

sociology)

Uses and consequences of IT that takes into

account their interaction with institutional

and cultural contexts

To understand the relationship of technological

systems to social systems

Software

archeology

Legacy software or software versions To recover, analyze, and interpret legacy software

artifacts including source code, documentation, and

specifications

Software

axiology

Value and quality of software To analyze formal methods for evaluating software

value (formal software axiology), to analyze

principles of visual beauty and appeal of software

(software aesthetics), and to propose elegant

programming methods and techniques

Software

ecology

Software environment To analyze methods for prevention of software

pollution

Software epistemology Forms and manifestations of knowledge in

software

To analyze interaction between belief, intention,

justification, and action that occurs in complex

software systems

Software

anthropology

Practices of software engineering To analyze the day-to-day work of software engineers

in the field

Software

gerontology

Software aging processes To analyze software aging, its causes, and prevention

Software

morphology

Forms and shapes of software

representations

To analyze the relationships between various parts of

software

Software

ontology

Kinds and structures of the objects,

properties, and relations in software

To analyze structure and relationships between

software elements, models, and meta-models

Software

psychology

Human factors in computer systems To study, model, and measure human behavior in

creating or using software systems
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informatics envisions information systems in general and software in particular as a web-like arrange-
ment of technological artifacts, people, social norms, practices, and rules. As a result, the technological
artifact and the social context are inseparable [42]. All stages of software’s life cycle are shaped by the
social context [59]. Software anthropology (ethnography) uses field study techniques in industrial soft-
ware settings to study the work practices of individuals and teams during SE activities, and their
material artifacts such as the tools used and the products of those tools (documentation, source code,
etc.) [35, 5, 66].

Large software systems follow the same distribution laws as social systems [1, 39]. OO programs have
fractal-like properties [55] similar to natural, biologic, or social systems. These observations lead to
software morphology, a discipline that studies forms of shapes of software, its parts (components, objects),
and their representations. Software gerontology continues this view toward software as living entities,
which grow, mature, and age [54]. Software ecology [43] becomes important, where sustainable software
development and prevention of software pollution (i.e., harm to environments and users) are the main
issues.

4. Socio-Technical Software Analysis

4.1. Concept, Context, and Aims of Socio-Technical Software Analysis

Analysis of a domain is the essential activity in SE, ormore generally, in domain engineering. The aim
of domain analysis (DA) is to recognize a domain by identifying its scope and boundaries, common and
variable parts, which are then used to produce domain models at different levels of abstraction (such as
feature models, UML models, source code). Though the objects of socio-technical analysis (STA) are
artifacts of SE process in general, STA focuses on real world rather than on a particular domain problem.
That is, the objects of study are the influence of used design methods, techniques, styles, programming
practices, tool usage patterns, and the designer himself, his behavior, mental models, rationale and
relationship with other designers, the organizational structure of a design team and business models on
developed systems, and their quality and impact on other systems.

The new emerging discipline of STA should be viewed within the context of meta-engineering and
meta-design. Meta-design [24, 15] extends the traditional system design beyond the development of a
specific system to include the end-user-oriented design for change, modification, and reuse. A particular
emphasis is given to increasing participation of users in system design process, and evolutionary develop-
ment of systems during their use time when dealing with future uses and problems unanticipated at domain
analysis and system design stages. A fundamental objective of meta-design is to create socio-technical
environments that empower users to engage actively in the continuous development of systems rather than
use of existing systems. Rather than presenting users with closed systems, meta-design provides them with
opportunities, tools, and social structures to extend the system to fit their needs. Other approaches that
argue for a more active user participation in IS and software design are ETHICS [49], soft system
methodology [9].

STA includes the application of other empirical methods for studying complex socio-technical
relationships between designers, software systems and their environment, including the social, organiza-
tional, psychological, and technological aspects. The ultimate aim of STA is the evaluation of design
methodologies, the discovery of design principles, the formalization of mental models of designers, which
precede design meta-models, comparison of design metrics, comparison of design subjects (actors,
designers) rather than design objects (programs), discovery and analysis of design strategies, patterns
and meta-patterns, and analysis of external factors that affect software design.

4.2. Socio-Technical Software Analysis vs. Traditional Domain Analysis

The following is a result of author’s observations on differences between socio-technical analysis
(STA) of software systems and domain analysis (DA).
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In general, analysis is the procedure by which we break down an intellectual or substantial system

into parts or components. DA is a part of SE that deals with the analysis of existing complex, large-scale

software systems, and other relevant information in a domain (interactions within those systems, their

development history, etc.) aiming to fill a gap in the business framework where a newly designed software

system should exist. DA results in the development of domain models, which are further used for

developing required software system(s).
The STA methods attempt to uncover information about software engineers by looking at their

produced output (source code, comments, documentation, reports) and by-products (tool usage logs,

program traces, events). It deals with the analysis of models and meta-models behind these systems and

their application domain rooted in the mental models of system designers and social (organizational)

structure of the environment. STA aims to understand complexity, interconnectedness, and wholeness of

components of systems in specific relationship to each other.
DA focuses on separation and isolation of smaller constituent parts of a system, and analyzes their

interaction and relationship. STA aims at expanding its view and including other related systems and

domains in order to take into account larger number of interactions involved with an object of study. It

adopts a holistic approach and focuses on the interaction of the study object with other objects and its

environment, including other systems, domains, and the designer himself.
Traditional DA tends to involve linear cause and effect relationships. STA aims to include the whole

complex of bidirectional relationships. Instead of analyzing a problem in terms of an input and an output,

e.g., we look at the whole system of inputs, processes, outputs, feedback controls, and interaction with its

environment. This larger picture can typically provide more useful results than traditional DA.
Traditional DA focuses on the behavior and functionality of designed domain systems (components,

entities). The result is the data that characterize domain systems (e.g., its features, aspects, characteristics,

and metrics). STA continues the DA further by analyzing data and content yielded during previous

analysis stages using mathematical, statistical, and/or socio-technical methods. The aim is to obtain data

about data (or meta-data) that help to reveal deeper properties of software systems that are usually buried

in its source code or documentation.
STA does not replace the traditional DA methods, but rather extends them for deeper analysis and

domain knowledge. The results of STA (meta-knowledge) can be used for increasing quality of software

products, improving software design processes, providing recommendations for better management of

design organizations, raising the level of education, spreading good design practices and programming

styles, improving workplace conditions, etc.

5. Discussion and Conclusions

Software design processes and their artifacts have many perspectives: technological, social, cultural,

and psychological. The psycho-socio-technical perspectives of software and IS development provide

deeper insight into the relationship among methods, techniques, tools and their usage habits, software

development environment and organizational structures, and allow to highlight the analytic distinction

between how people work and the technologies they use. These perspectives can be traced to program

source code analyzed and uncovered using social disciplines of computer science and the socio-technical

software analysis methods.
The main object of research in the social disciplines of computer science is the virtual world of

software and its relationship with the real world of designers and users. These disciplines reflect diverse

views toward software as an environment (software ecology), imprints of the programmer’s psyche (soft-

ware psychology), artifacts of past information systems (software archeology), form of knowledge (soft-

ware epistemology), growing and aging entities (software gerontology) that have their own form and shape

(software morphology), and entities that interact with institutional and cultural contexts (software

sociology).
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Socio-technical analysis (STA) can be used for a number of problems, including program compre-
hension, plagiarism detection, design space exploration, and pattern mining. However, in practice it is very
difficult to disentangle social aspects from purely technological aspects of software design, because they are
mutually interdependent. The application of the STAmethods may provide valuable insights into software
development processes, the structure of the development team, the relationship of the software developers
with their environments, understanding of programmer communication knowledge sharing, cognitive and
mental processes of the developers and what influence it has on the quality and other characteristics of the
produced software product. The results of STA can be used for improving programmer education,
spreading good programming practices and styles, improving the management structure of the develop-
ment team and the quality of its environment, and improving the performance of software design processes
and quality of design artifacts (source code, documentation, etc.).
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