
Chapter 2
The Real Numbers

2.1 An Overview of the Real Numbers

Doing analysis in a rigorous way starts with understanding the properties of the
real numbers. Readers will be familiar, in some sense, with the real numbers from
studying calculus. A completely rigorous development of the real numbers requires
checking many details. We attempt to justify one definition of the real numbers
without carrying out the proofs.

Intuitively, we think of the real numbers as the points on a line stretching off to
infinity in both directions. However, to make any sense of this, we must label all the
points on this line and determine the relationship between them from different points
of view. First, the real numbers form an algebraic object known as a field, meaning
that one may add, subtract, and multiply real numbers and divide by nonzero real
numbers. There is also an order on the real numbers compatible with these algebraic
properties, and this leads to the notion of distance between two points.

All of these nice properties are shared by the set of rational numbers:

Q =
{a

b
: a,b ∈ Z,b 6= 0

}
.

The ancient Greeks understood how to construct all fractions geometrically and
knew that they satisfied all of the properties mentioned above. However, they were
also aware that there were other points on the line that could be constructed but
were not rational, such as

√
3. While the Greeks were focussed on those numbers

that could be obtained by geometric construction, we have since found other reason-
able numbers that do not fit this restrictive definition. The most familiar example is
perhaps π , the area of a circle of radius one. Like the Greeks, we accept the fact that√

3 and π are bona fide numbers that must be included on our real line.
We will define the real numbers to be objects with an infinite decimal expansion.

A subtle point is that an infinite decimal expansion is used only as a name for a point
and does mean the sum of an infinite series. It is crucial that we do not use limits to
define the real numbers because we deduce properties of limits from the definition.
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10 2 The Real Numbers

This construction of the real numbers appears to be strongly dependent on the
choice of 10 as the base. We are left with the nagging possibility that the number
line we construct depends on the number of digits on our hands. For this reason,
some purists prefer a base-independent method of defining the real numbers, albeit
a more abstract one. (See Exercise 2.8.L.) Our construction does yield the same
object, independent of choice of base; but the proof requires considerable work.

2.2 The Real Numbers and Their Arithmetic

We define a real number using an infinite decimal expansion such as

1
3

= 0.33333333333333333333333333333333333333333333333333 . . .
√

3 = 1.73205080756887729352744634150587236694280525381038 . . .

π = 3.14159265358979323846264338327950288419716939937510 . . .

In general, an infinite decimal expansion has the form

x = a0.a1a2a3a4a5a6a7a8a9a10a11a12a10a11a12a13a14a15a16a17a18 . . . .

Formally, an infinite decimal expansion is a function x(n) = an from {0}∪N into
Z such that for all n≥ 1, an ∈ {0,1, . . . ,9}.

Be warned that, by this construction, the point usually thought of as −5/4 will
be denoted by 2.75, for example, because we think of this as −2 + .75. The notation
is simpler if we do this. After we have finished the construction, we will revert to
the standard notation for negative decimals.

To relate infinite decimal expansions to our geometric idea of the real line, start
with a line and mark two points on it; and call the left one 0 and the right one 1.
Then we can construct points for every integer Z, equally spaced along the line. Now
divide each interval from an integer n to n+1 into 10 equal pieces, marking the cuts
as n.1, n.2, . . . , n.9. Proceed in this way, cutting each interval of length 10−k into
10 equal intervals of length 10−k−1 and mark the endpoints by the corresponding
number with k +1 decimals. In this way, all finite decimals are placed on the line.

To obtain a geometric version of the line, we postulate that for every infinite
decimal x = a0.a1a2a3 . . ., there will be a point (also called x) on this line with
the property that for each positive integer k, x lies in the interval between the two
rational numbers y = a0.a1 . . .ak and y+10−k. For example,

3.141592653589≤ π ≤ 3.141592653590.

One difficulty with using infinite decimal expansions to define the real num-
bers is that some points have two names. For example consider the expansions
1.000000000 . . . and 0.999999999 . . . . Call them 1 and z, respectively. Clearly these
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are different infinite decimal expansions. However, for each positive integer k,

1−10−k = 0.99999999999999︸ ︷︷ ︸
k

≤ z≤ 1.

Thus the difference between z and 1 is arbitrarily small. It would create quite an un-
intuitive line if we decided to make z and 1 different real numbers. To fit in with our
intuition, we must agree that z = 1. That means that some real numbers (precisely
all those numbers with a finite decimal expansion) have two different expansions,
one ending in an infinite string of zeros, and the other ending with an infinite string
of nines. For example, 0.12500 . . . and 0.12499999 . . . are the same number.

Formally, this defines an equivalence relation on the set of infinite decimals by
pairing off each decimal expansion ending in a string of zeros with the correspond-
ing decimal expansion ending in a string of nines:

a0.a1a2 . . .ak−1ak000 . . . = a0.a1a2 . . .ak−1(ak−1)999 . . . ,

where ak 6= 0. Each real number is an equivalence class of infinite decimal expan-
sions given by this identification. The set of all real numbers is denoted by R.

To recognize the rationals as a subset of the reals, we need a function F that
sends a fraction a/b to an infinite decimal expansion. This is accomplished by long
division, as you learned in grade school. For example, to compute 27/14, divide 14
into 27 to obtain

F
( 27

14

)
= 1.9285714285714285714285714285714 . . . .

Notice that this decimal expansion is eventually periodic because after the initial
1.9, the six-digit sequence 285714 is repeated ad infinitum. In the exercises, hints
are provided to show that an infinite decimal represents a rational number if and
only if it is eventually periodic.

We have a built-in order on the real line given by the placement of the points
which extends the natural order on the finite decimals. When two infinite decimals
x = a0.a1a2 . . . and y = b0.b1b2 . . . represent distinct real numbers, we say that x < y
if there is some integer k≥ 0 such that ai = bi for i < k and ak < bk. For example, if

x = 2.7342118284590452354000064338325028841971693993 . . . ,

y = 2.7342118284590452353999928747135224977572470936 . . . ,

then y < x because

y < 2.734211828459045235399993 < 2.734211828459045235400000 < x.

For two real numbers x and y, either x < y, x = y, or x > y.
Next we extend the addition and multiplication operations on Q to all of R. The

basic idea is to extend addition and multiplication on finite decimals to R respecting
the order properties. That is, if w≤ x and y≤ z, then w+y≤ x+z, and if x≥ 0, then
xy≤ xz. Some of the subtleties are explored in the exercises.
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A basic fact about the order and these operations is known as the Archimedean
property of R: for x,y > 0, there is always some n ∈ N with nx > y. It is not hard
to show this is equivalent to the following almost-obvious fact: if z > 0, then there
is some integer k ≥ 0 so that 10−k < z. To see this fact, observe that a decimal
expansion of z = z0.z1z2 . . . has a first nonzero digit, zk−1 and, since zk−1 ≥ 1, we
have z≥ 10−(k−1) > 10−k.

Finally, consider the distance between two points. The absolute value function
is |x|= max{x,−x}. Define the distance between x and y to be |x−y|. This is always
nonnegative, and |x− y|= 0 only if x− y = 0, namely x = y.

Exercises for Section 2.2

A. Why, in defining the order on R, did we insist that x and y be distinct real numbers?
HINT: consider a real number with two decimal expansions.

B. Prove that |xy|= |x| |y| and |x−1|= |x|−1.

C. (a) Prove the triangle inequality: |x+ y| ≤ |x|+ |y|.
HINT: Consider x and y of the same sign and different signs as separate cases.

(b) Prove by induction that |x1 + x2 + · · ·+ xn| ≤ |x1|+ |x2|+ · · ·+ |xn|.
(c) Prove the reverse triangle inequality:

∣∣|x|− |y|∣∣≤ |x− y|.
D. (a) Prove that if x < y, then there is a rational number r with a finite decimal expansion and

an integer k so that x < r < r +10−k < y.
(b) Prove that if x < y, then there is an irrational number z such that x < z < y.

HINT: Use (a) and add a small multiple of
√

2 to r.

E. (a) Explain how x+ y is worked out for

x = 2.1357

107 nines︷ ︸︸ ︷
999999 . . .999999

1019 repetitions︷ ︸︸ ︷
0123456789 . . .012345678934524 . . . ,

y = 3.8642999999 . . .999999︸ ︷︷ ︸
107 nines

9876543210 . . .9876543210︸ ︷︷ ︸
1019 repetitions

39736 . . . .

(b) How many digits of x and y must we know to determine the first 6 digits of x+ y?
(c) How many digits of x and y must we know to determine the first 108 digits of x+ y?

F. Describe an algorithm for adding two infinite decimals. You should work from ‘left to right’,
determining the decimal expansion in order, as much as possible. When are you assured that
you know the integer part of the sum? In what circumstance does it remain ambiguous?
HINT: Given infinite decimals a and b, define a carry function γ : {0}∪N→ {0,1} and then
define the decimal expansion of a+b in terms of a(n)+b(n)+ γ(n).

G. Show that if x and y are known up to k decimal places, then the x + y is known to within
2 ·10−k, i.e., there is a finite decimal r with r ≤ x+ y≤ r +2 ·10−k.

H. An infinite decimal x = a0.a1a2 . . . is eventually periodic if there are positive integers n and k
such that ai+k = ai for all i > n. Show that any decimal expansion which is eventually periodic
represents a rational number. HINT: Compute 10n+kx−10nx.

I. Prove that the decimal expansion of a rational number p/q is eventually periodic. We will use
the Pigeonhole Principle, which states that if n+1 items are divided into n categories, then at
least two of the items are in the same category.
(a) Assume q > 0. Let rk be the remainder when 10k is divided by q. Use the Pigeonhole

Principle to find two different exponents k < k +d with the same remainder.
(b) Express p/q = 10−k

(
a+b/(10d −1)

)
with 0≤ b < 10d −1.

(c) Write b as a d-digit number b = b1b2 . . .bd even if it starts with some zeros. Show that the
decimal expansion of p/q ends with the infinitely repeated string b1b2 . . .bd .
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J. Explain how the associative property of addition for real numbers: x +(y + z) = (x + y)+ z
follows from knowing it for for finite decimals.

K. Show that if r is rational and x is irrational, then r + x and, if r 6= 0, rx are irrational.

L. Show that the two formulations of the Archimedean property of R are equivalent.

2.3 The Least Upper Bound Principle

After defining the least upper bound of a set of real numbers, we prove the Least
Upper Bound Principle (2.3.3). This result depends crucially on our construction of
the real numbers. It will be the basis for the deeper properties of the real line.

2.3.1. DEFINITION. A set S ⊂ R is bounded above if there is a real number
M such that s ≤ M for all s ∈ S. We call M an upper bound for S. Similarly, S is
bounded below if there is a real number m such that s≥m for all s ∈ S, and we call
m a lower bound for S. A set that is bounded above and below is called bounded.

Suppose a nonempty subset S of R is bounded above. Then L is the supremum
or least upper bound for S if L is an upper bound for S that is smaller than all other
upper bounds, i.e., for all s ∈ S, s ≤ L, and if M is another upper bound for S, then
L≤M. It is denoted by supS.

Similarly, if S is a nonempty subset of R which is bounded below, the infimum
or greatest lower bound, denoted by infS, is the number L such that L is an lower
bound and whenever M is another lower bound for S, then L≥M.

The supremum of a set, if it exists, is unique. We have not defined suprema
or infima for sets that are not bounded above or bounded below, respectively. For
example, R itself has neither a supremum nor an infimum. For a nonempty set S⊆R,
sometimes we write supS = +∞ if S is not bounded above and infS =−∞ if S is not
bounded below. Finally, by convention, sup∅ =−∞ and inf∅ = +∞.

Note that supS = L ∈R if and only if L is a upper bound for S and for all K < L,
there is x ∈ S with K < x < L. There is an equivalent characterization for infS.

Recall that the maximum of a set S ⊂ R, if it exists, is an element m ∈ S such
that s≤m for all s ∈ S. Thus, when the maximum of a set exists, it is the least upper
bound. The situation for the minimum of a set and its infimum is the same. We use
maxS and minS to denote the maximum and minimum of S.

2.3.2. EXAMPLES.
(1) If A = {4,−2,5,7}, then any L ≤−2 is a lower bound for A and any M ≥ 7 is
an upper bound. So, infA = minA =−2 and supA = maxA = 7.

(2) If B = {2,4,6, . . .}, then infB = minB = 2 and supB = +∞.

(3) If C = {π/n : n ∈ N}, then supC = maxC = π . However, for any element of
C, say π/n, we have a smaller element of C, such as π/(2n). So C does not have a
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minimum. Clearly, 0 is a lower bound and for all x > 0, there is some π/n ∈C with
π/n < x, showing that 0 is the greatest lower bound.

(4) If D = {(−1)nn/(n + 1) : n ∈ N}, then D has neither a maximum nor a min-
imum. However, D has upper and lower bounds, and infD = −1 and supD = 1.
Neither 1 nor −1 belongs to D.

In proving the Least Upper Bound Principle, the definition of the real numbers
as all infinite decimals is essential. The principle is not true for some subsets of the
rational numbers. For example, {s ∈ Q : s2 < 2} is bounded above but has no least
upper bound in Q.

2.3.3. LEAST UPPER BOUND PRINCIPLE.
Every nonempty subset S of R that is bounded above has a supremum. Similarly,
every nonempty subset S of R that is bounded below has an infimum.

PROOF. We prove the second statement first, since it is more convenient. Let M be
some lower bound for S with decimal expansion M = m0.m1m2 . . . . Let s be some
element of S with decimal expansion s = s0.s1s2 . . . . Notice that since m0 ≤ M, we
have that m0 is a lower bound for S. On the other hand, s < s0 +2. So s0 +2 is not a
lower bound. There are only finitely many integers between m0 and s0 +1. Pick the
largest of these that is still a lower bound for S, and call it a0. Since a0 + 1 is not a
lower bound, we may also choose an element x0 in S such that x0 < a0 +1.

Next pick the greatest integer a1 such that y1 = a0 +10−1a1 is a lower bound for
S. Since a1 = 0 works and a1 = 10 does not, a1 belongs to {0,1, . . . ,9}. To verify
our choice, pick an element x1 in S such that a0.a1 ≤ x1 < a0.a1 +0.1. Continue in
this way recursively. Figure 2.1 shows how a2 and x2 would be chosen.

x2

a0.a1 a0.a1a2 a0.(a1 +1)

FIG. 2.1 The second stage (k = 2) in the proof.

At the kth stage, we have a lower bound yk−1 = a0.a1 . . .ak−1 and an element
xk−1 ∈ S such that yk−1 ≤ xk−1 < yk−1 + 101−k. Select the largest integer ak in
{0,1, . . . ,9} such that yk = a0.a1a2 . . .ak is a lower bound for S. Since yk + 10−k

is not a lower bound, we also pick an element xk in S such that xk < yk + 10−k to
verify our choice.

We claim that L = a0.a1a2 . . . is infS. If L = yk for some k, then L is a lower
bound for S. Otherwise, L > yk for all k and, in particular, for each k there is l > k
with yl > yk. If s = s0.s1s2 . . . is in S, then it follows that s > yk for each k. By the
definition of the order, either si = ai for 1≤ i≤ k or there is some j, 0≤ j ≤ k, with
si = ai for 1 ≤ i < j and s j > a j. If the latter occurs for some k, then s > L; if the
former occurs for every k, then s = L. Either way, L is a lower bound for S.
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To see that L is the greatest lower bound, suppose M = b0.b1b2 . . . > L. By the
definition of the ordering, there is some first integer k such that bk > ak and bi = ai
for all i with 0≤ i < k. But then

M ≥ a0.a1 . . .ak−1bk ≥ yk +10−k > xk.

So M is not a lower bound for S. Hence L is the greatest lower bound.
A simple trick handles upper bounds. Notice that S ⊂ R is bounded above if

and only if −S = {−s : s ∈ S} is bounded below and that L is an upper bound for S
precisely when−L is a lower bound for−S. Further, M < L if and only if−M >−L,
so M is an upper bound of S less than L exactly when −M is a lower bound of −S
greater than −L. Thus supS =− inf(−S), so supS exists. �

Exercises for Section 2.3
A. Suppose that S ⊂ R is bounded above. When does S have a maximum? Your answer should

be expressed in terms of supS.

B. A more elegant way to develop the arithmetic properties of the real numbers is to prove the
results of this section first and then define addition and multiplication using suprema. Let D
denote the set of all finite decimals.
(a) Let x,y ∈ R. Prove that x+ y = sup{a+b : a,b ∈D , a≤ x, b≤ y}.
(b) Suppose that x,y∈R are positive. Show that xy = sup{ab : a,b∈D , 0≤ a≤ x, 0≤ b≤ y}.
(c) How do we define multiplication in general?

C. With D as in the previous exercise, show that sup{a ∈D : a2 ≤ 3}=
√

3.

D. For the following sets, find the supremum and infimum. Which have a max or min?
(a) A = {a+a−1 : a ∈Q, a > 0}.
(b) B = {a+(2a)−1 : a ∈Q, 0.1≤ a≤ 5}.
(c) C = {xe−x : x ∈ R}.

E. Show that the decimal expansion for the L in the proof of the Least Upper Bound Principle
does not end in a tail of all 9’s.

2.4 Limits

The notion of a limit is the basic notion of analysis. Limits are the culmination of
an infinite process. It is the concern with limits in particular that separates analysis
from algebra. Intuitively, to say that a sequence an converges to a limit L means that
eventually all the terms of the (tail of the) sequence approximate the limit value L
to any desired accuracy. To make this precise, we introduce a subtle definition.

2.4.1. DEFINITION OF THE LIMIT OF A SEQUENCE. A real number
L is the limit of a sequence of real numbers (an)

∞

n=1 if for every ε > 0, there is an
integer N = N(ε) > 0 such that

|an−L|< ε for all n≥ N.

We say that the sequence (an)
∞

n=1 converges to L, and we write lim
n→∞

an = L.
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The important issue in this definition is that for any desired accuracy, there is a
point in the sequence such that every element after that point approximates the limit
L to the desired accuracy. It suffices to consider only values for ε of the form 1

2 10−k.
The statement |an − L| < 1

2 10−k means that an and L agree to at least k decimal
places. Thus a sequence converges to L precisely when for every k, no matter how
large, eventually all the terms of the sequence agree with L to at least k decimals of
accuracy.

2.4.2. EXAMPLE. Consider the sequence (an) = (n/(n+1))∞

n=1, which we
claim converges to 1. Observe that

∣∣ n
n+1 −1

∣∣= 1
n+1 . So if ε = 1

2 10−k, we can choose
N = 2 ·10k. Then for all n≥ N,∣∣∣ n

n+1
−1
∣∣∣= 1

n+1
≤ 1

2 ·10k +1
< 1

2 10−k = ε.

We could also choose N = 73 ·10k. It is not necessary to find the best choice for N.
But in practice, better estimates can lead to better algorithms for computation.

2.4.3. EXAMPLE. Consider the sequence (an) with an = (−1)n. Since this flips
back and forth between two values that are always distance 2 apart, intuition says
that it does not converge. To show this using our definition, we need to show that
the definition of limit fails for any choice of L. However, for each choice of L, we
need find only one value of ε that violates the definition. Observe that

|an−an+1|= |(−1)n− (−1)n+1|= 2

for all n, no matter how large. So let L be any real number. We notice that L cannot
be close to both 1 and −1. To avoid cases, we use a trick. For any real number L,

|an−L|+ |an+1−L| ≥ |(an−L)− (an+1−L)|= |an−an+1|= 2.

Thus, for every n ∈ N,

max{|an−L|, |an+1−L|} ≥ 1. (2.4.4)

Now take ε = 1. If this sequence did converge, there would be an integer N such
that |an−L| < 1 for all n ≥ N. In particular, |aN −L| and |aN+1−L| are both less
than 1, contradicting (2.4.4). Consequently, this sequence does not converge.

2.4.5. EXAMPLE. Consider the sequence ((sinn)/n)∞

n=1.The numerator oscil-
lates, but it remains bounded between±1 while the denominator goes off to infinity.
We obtain the estimates

−1
n
≤ sinn

n
≤ 1

n
.

We know that lim
n→∞

1/n = 0 = lim
n→∞

−1/n, since this is exactly like Example 2.4.2.
Therefore, the limit can be computed using a familiar principle from calculus:



2.4 Limits 17

2.4.6. THE SQUEEZE THEOREM.
Suppose that three sequences (an), (bn), and (cn) satisfy

an ≤ bn ≤ cn for all n≥ 1 and lim
n→∞

an = lim
n→∞

cn = L.

Then lim
n→∞

bn = L.

PROOF. Let ε > 0. Since lim
n→∞

an = L, there is some N1 such that

|an−L|< ε for all n≥ N1,

or equivalently, L− ε < an < L+ ε for all n≥ N1. There is also some N2 such that

|cn−L|< ε for all n≥ N2

or L− ε < cn < L+ ε for all n≥ N2. Then, if n≥max{N1,N2}, we have

L− ε < an ≤ bn ≤ cn < L+ ε.

Thus |bn−L|< ε for n≥max{N1,N2}, as required. �

Returning to our example (sinn/n)∞

n=1, we have lim
n→∞

1
n = lim

n→∞

−1
n = 0. By the

Squeeze Theorem,

lim
n→∞

sinn
n

= 0.

2.4.7. EXAMPLE. For a more sophisticated example, consider the sequence(
nsin

( 1
n

))∞

n=1. To apply the Squeeze Theorem, we need to obtain an estimate for
sinθ when the angle θ is small. Consider a sector of the circle of radius 1 with
angle θ and the two triangles as shown in Figure 2.2.

O A

B

C

θ

FIG. 2.2 Sector OAB between 4OAB and 4OAC.
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Since 4OAB ⊂ sector OAB ⊂ 4OAC, we have the same relationship for their
areas:

sinθ

2
<

θ

2
<

tanθ

2
=

sinθ

2cosθ
.

A manipulation of these inequalities yields

cosθ <
sinθ

θ
< 1.

In particular, cos 1
n < nsin 1

n < 1. Moreover,

cos
( 1

n

)
=
√

1− sin2( 1
n

)
>

√
1−
( 1

n

)2
> 1− 1

n2 .

However,

lim
n→∞

1− 1
n2 = 1 = lim

n→∞
1.

Therefore, by the Squeeze Theorem, lim
n→∞

nsin 1
n = 1.

Exercises for Section 2.4
A. In each of the following, compute the limit. Then, using ε = 10−6, find an integer N that

satisfies the limit definition.

(a) lim
n→∞

sinn2
√

n
(b) lim

n→∞

1
loglogn

(c) lim
n→∞

3n

n!
(d) lim

n→∞

n2 +2n+1
2n2−n+2

(e) lim
n→∞

√
n2 +n−

n

B. Show that lim
n→∞

sin nπ

2 does not exist using the definition of limit.

C. Prove that if an ≤ bn for n≥ 1, L = lim
n→∞

an, and M = lim
n→∞

bn, then L≤M.

D. Prove that if L = lim
n→∞

an, then L = lim
n→∞

a2n and L = lim
n→∞

an2 .

E. Sometimes, a limit is defined informally as follows: “As n goes to infinity, an gets closer and
closer to L.” Find as many faults with this definition as you can.

(a) Can a sequence satisfy this definition and still fail to converge?
(b) Can a sequence converge yet fail to satisfy this definition?

F. Define a sequence (an)
∞

n=1 such that lim
n→∞

an2 exists but lim
n→∞

an does not exist.

G. Suppose that lim
n→∞

an = L and L 6= 0. Prove there is some N such that an 6= 0 for all n≥ N.

H. Give a careful proof, using the definition of limit, that lim
n→∞

an = L and lim
n→∞

bn = M imply that

lim
n→∞

2an +3bn = 2L+3M.

I. For each x ∈ R, determine whether
( 1

1+ xn

)∞

n=1
has a limit, and compute it when it exists.

J. Let a0 and a1 be positive real numbers, and set an+2 =
√

an+1 +
√

an for n≥ 0.

(a) Show that there is N such that for all n≥ N, an ≥ 1.
(b) Let εn = |an−4|. Show that εn+2 ≤ (εn+1 + εn)/3 for n≥ N.
(c) Prove that this sequence converges.

K. Show that the sequence (logn)∞

n=1 does not converge.
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2.5 Basic Properties of Limits

2.5.1. PROPOSITION. If (an)
∞

n=1 is a convergent sequence of real numbers,
then the set {an : n ∈ N} is bounded.

PROOF. Let L = lim
n→∞

an. If we set ε = 1, then by the definition of limit, there is some

N > 0 such that |an−L|< 1 for all n≥ N. In other words,

L−1 < an < L+1 for all n≥ N.

Let M = max{a1,a2, . . . ,aN−1,L + 1} and m = min{a1,a2, . . . ,aN−1,L − 1}.
Clearly, for all n, we have m≤ an ≤M. �

It is also crucial that limits respect the arithmetic operations. Proving this is
straightforward. The details are left as exercises.

2.5.2. THEOREM. If lim
n→∞

an = L, lim
n→∞

bn = M, and α ∈ R, then

(1) lim
n→∞

an +bn = L+M,

(2) lim
n→∞

αan = αL,

(3) lim
n→∞

anbn = LM, and

(4) lim
n→∞

an

bn
=

L
M

if M 6= 0.

In the sequence (an/bn)
∞

n=1, we ignore terms with bn = 0. There is no problem
doing this because M 6= 0 implies that bn 6= 0 for all sufficiently large n (see Exer-
cise 2.4.G). (We use “for all sufficiently large n” as shorthand for saying there is
some N so that this holds for all n≥ N.)

Exercises for Section 2.5

A. Prove Theorem 2.5.2. HINT: For part (4), first bound the denominator away from 0.

B. Compute the following limits.

(a) lim
n→∞

tan π

n

nsin2 2
n

(b) lim
n→∞

2100+5n

e4n−10 (c) lim
n→∞

csc 1
n

n
+

2arctann
logn

C. If lim
n→∞

an = L > 0, prove that lim
n→∞

√
an =

√
L. Be sure to discuss the issue of when

√
an makes

sense. HINT: Express |√an−
√

L| in terms of |an−L|.

D. Let (an)
∞

n=1 and (bn)
∞

n=1 be two sequences of real numbers such that |an−bn|< 1
n . Suppose

that L = lim
n→∞

an exists. Show that (bn)
∞

n=1 converges to L also.

E. Find lim
n→∞

log(2+3n)
2n

. HINT: log(2+3n) = log3n + log 2+3n

3n

F. (a) Let xn = n
√

n−1. Use the fact that (1+ xn)n = n to show that x2
n ≤ 2/n.

HINT: Use the Binomial Theorem and throw away most terms.
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(b) Hence compute lim
n→∞

n1/n.

G. Show that the set of rational numbers is dense in R, meaning that every real number is a limit
of rational numbers.

H. (a) Show that b−1
b ≤ logb≤ b−1. HINT: Integrate 1/x from 1 to b.

(b) Apply this to b = n
√

a to show that loga≤ n( n
√

a−1)≤ n
√

a loga.
(c) Hence evaluate lim

n→∞
n
(

n
√

a−1
)
.

I. Suppose that lim
n→∞

an = L. Show that lim
n→∞

a1 +a2 + · · ·+an

n
= L.

J. Show that the set S = {n + m
√

2 : m,n ∈ Z} is dense in R. HINT: Find infinitely many
elements of S in [0,1]. Use the Pigeonhole Principle to find two that are close within 10−k.

2.6 Monotone Sequences

We now consider some consequences of the Least Upper Bound Principle (2.3.3).
A sequence (an) is (strictly) monotone increasing if an ≤ an+1 (an < an+1) for

all n≥ 1. Similarly, we define (strictly) monotone decreasing sequences.

2.6.1. MONOTONE CONVERGENCE THEOREM.
A monotone increasing sequence that is bounded above converges.
A monotone decreasing sequence that is bounded below converges.

PROOF. Suppose (an)
∞

n=1 is an increasing sequence that is bounded above. Then by
the Least Upper Bound Principle, there is a number L = sup{an : n ∈ N}. We will
show that lim

n→∞
an = L.

Let ε > 0 be given. Since L−ε is not an upper bound for A, there is some integer
N such that aN > L− ε . Then because the sequence is monotone increasing,

L− ε < aN ≤ an ≤ L for all n≥ N.

So |an−L|< ε for all n≥ N as required. Therefore, lim
n→∞

an = L.

If (an) is decreasing and bounded below by B, then the sequence (−an) is
increasing and bounded above by −B. Thus the sequence (−an)

∞

n=1 has a limit
L = lim

n→∞
−an. Therefore −L = lim

n→∞
an exists. �

2.6.2. EXAMPLE. Consider the sequence given recursively by

a1 = 1 and an+1 =
√

2+
√

an for all n≥ 1.

Evaluating a2,a3, . . . ,a9, we obtain 1.7320508076, 1.8210090645, 1.8301496356,
1.8310735189, 1.831166746, 1.8311761518, 1.8311771007, 1.8311771965. It ap-
pears that this sequence increases to some limit.
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To prove this, first we show by induction that

1≤ an < an+1 < 2 for all n≥ 1.

Since 1 = a1 <
√

3 = a2 < 2, this is valid for n = 1. Suppose that it holds for some
n. Then

an+2 =
√

2+
√

an+1 >
√

2+
√

an = an+1 ≥ 1,

and

an+2 =
√

2+
√

an+1 <

√
2+

√
2 < 2.

This verifies our claim for n+1. Hence by induction, it is valid for each n≥ 1.
Therefore, (an) is a monotone increasing sequence. So by the Monotone Con-

vergence Theorem (2.6.1), it follows that there is a limit L = lim
n→∞

an. It is not clear
that there is a nice expression for L. However, once we know that the sequence
converges, it is not hard to find a formula for L. Notice that

L = lim
n→∞

an+1 = lim
n→∞

√
2+

√
an =

√
2+
√

lim
n→∞

an =
√

2+
√

L.

We used the fact that the limit of square roots is the square root of the limit (see
Exercise 2.5.C). Squaring both sides gives L2−2 =

√
L, and further squaring yields

0 = L4−4L2−L+4 = (L−1)(L3 +L2−3L−4).

Since L > 1, it must be a root of the cubic p(x) = x3 + x2 − 3x− 4 in the interval
(1,2). There is only one such root. Indeed,

p′(x) = 3x2 +2x−3 = 3(x2−1)+2x

is positive on [1,2]. So p is strictly increasing. Since p(1) =−5 and p(2) = 2, p has
exactly one root in between. (See the Intermediate Value Theorem (5.6.1).)

For the amusement of the reader, we give an explicit algebraic formula:

L =
1
3

(
3
√

79+
√

2241
2 + 3

√
79−

√
2241

2 −1
)
.

Notice that we proved first that the sequence converged and then evaluated the
limit afterward. This is important, for consider the sequence given by a1 = 2 and
an+1 = (a2

n +1)/2. This is a monotone increasing sequence. Suppose we let L denote
the limit and compute

L = lim
n→∞

an+1 = lim
n→∞

(a2
n +1)/2 = (L2 +1)/2.

Thus (L−1)2 = 0, which means that L = 1. This is an absurd conclusion because this
sequence is monotone increasing and greater than 2. The fault lay in assuming that
the limit L actually exists, because instead it diverges to +∞ (see Exercise 2.6.A).
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The following easy corollary of the Monotone Convergence Theorem is again a
reflection of the completeness of the real numbers. This is just the tool needed to es-
tablish the key result of the next section, the Bolzano–Weierstrass Theorem (2.7.2).

Again, the corresponding result for intervals of rational numbers is false. See
Example 2.7.6. The result would also be false if we changed closed intervals to
open intervals. For example,

⋂
n≥1(0, 1

n ) = ∅.

2.6.3. NESTED INTERVALS LEMMA.
Suppose that In = [an,bn] = {x ∈ R : an ≤ x ≤ bn} are nonempty closed intervals
such that In+1 ⊆ In for each n≥ 1. Then the intersection

⋂
n≥1 In is nonempty.

PROOF. Notice that since In+1 is contained in In, it follows that

an ≤ an+1 ≤ bn+1 ≤ bn.

Thus (an) is a monotone increasing sequence bounded above by b1; and likewise
(bn) is a monotone decreasing sequence bounded below by a1. Hence by Theo-
rem 2.6.1, a = lim

n→∞
an exists, as does b = lim

n→∞
bn. By Exercise 2.4.C, a≤ b. Thus

ak ≤ a≤ b≤ bk.

Consequently, the point a belongs to Ik for each k ≥ 1. �

Exercises for Section 2.6
A. Say that lim

n→∞
an = +∞ if for every R ∈R, there is an integer N such that an > R for all n≥ N.

Show that a divergent monotone increasing sequence converges to +∞ in this sense.

B. Let a1 = 0 and an+1 =
√

5+2an for n≥ 1. Show that lim
n→∞

an exists and find the limit.

C. Is S = {x ∈ R : 0 < sin( 1
x ) < 1

2} bounded above (below)? If so, find supS (infS).

D. Evaluate lim
n→∞

n
√

3n +5n.

E. Suppose (an) is a sequence of positive real numbers such that an+1−2an + an−1 > 0 for all
n≥ 1. Prove that the sequence either converges or tends to +∞.

F. Let a,b be positive real numbers. Set x0 = a and xn+1 = (x−1
n +b)−1 for n≥ 0.

(a) Prove that xn is monotone decreasing.
(b) Prove that the limit exists and find it.

G. Let an = (∑n
k=1 1/k)− logn for n ≥ 1. Euler’s constant is defined as γ = lim

n→∞
an. Show that

(an)
∞

n=1 is decreasing and bounded below by zero, and so this limit exists.
HINT: Prove that 1/(n+1)≤ log(n+1)− logn≤ 1/n.

H. Let xn =

√
1+

√
2+
√

3+ · · ·+
√

n.

(a) Show that xn < xn+1.
(b) Show that x2

n+1 ≤ 1+
√

2xn. HINT: Square xn+1 and factor a 2 out of the square root.
(c) Hence show that xn is bounded above by 2. Deduce that lim

n→∞
xn exists.



2.7 Subsequences 23

I. (a) Let (an)
∞

n=1 be a bounded sequence and define a sequence bn = sup{ak : k ≥ n} for n≥ 1.
Prove that (bn) converges. This is the limit superior of (an), denoted by limsupan.

(b) Without redoing the proof, conclude that the limit inferior of a bounded sequence (an),
defined as liminfan := lim

n→∞

(
infk≥n ak

)
, always exists.

(c) Extend the definitions of limsupan and liminfan to unbounded sequences. Provide an
example with limsupan = +∞ and liminfan =−∞.

J. Show that (an)
∞

n=1 converges to L ∈ R if and only if limsupan = liminfan = L.

K. If a sequence (an) is not bounded above, show that sup{an : n ≥ k} = +∞ for all k. What
should limsupan be? Formulate and prove a similar statement if (an) is not bounded below.

L. Suppose (an)
∞

n=1 and (bn)
∞

n=1 are sequences of nonnegative real numbers and lim
n→∞

an ∈ R

exists. Prove that limsupanbn = lim
n→∞

an
(

limsupbn
)
.

M. Suppose that (an)
∞

n=1 has an > 0 for all n. Show that limsupa−1
n =

(
liminfan

)−1.

N. Suppose (an)
∞

n=1 and (bn)
∞

n=1 are sequences of positive real numbers and limsupan/bn < ∞.
Prove that there is a constant M such that an ≤Mbn for all n≥ 1.

2.7 Subsequences

Given one sequence, we can build a new sequence, called a subsequence of the
original, by picking out some of the entries. Perhaps surprisingly, when the original
sequence does not converge, it is often possible to find a subsequence that does.

2.7.1. DEFINITION. A subsequence of a sequence (an)
∞

n=1 is a sequence(
ank

)∞

k=1 = (an1 ,an2 ,an3 , . . .), where n1 < n2 < n3 < · · · .

For example, (a2k)
∞

k=1 and (ak3)∞

k=1 are subsequences, where nk = 2k and nk =
k3, respectively. Notice that if we pick nk = k for each k, then we get the original
sequence; so (an)

∞

n=1 is a subsequence of itself.
It is easy to verify that if (an)

∞

n=1 converges to a limit L, then
(
ank

)∞

k=1 also
converges to the same limit. On the other hand, the sequence (1,2,3, . . .) does not
have a limit, nor does any subsequence, because any subsequence must diverge to
+∞. However, we will show that as long as a sequence remains bounded, it has
subsequences that converge.

2.7.2. BOLZANO–WEIERSTRASS THEOREM.
Every bounded sequence of real numbers has a convergent subsequence.

PROOF. Let (an) be a sequence bounded by B. Thus the interval [−B,B] contains the
whole (infinite) sequence. Now if I is an interval containing infinitely many points
of the sequence (an), and I = J1 ∪ J2 is the union of two smaller intervals, then at
least one of them contains infinitely many points of the sequence, too.

So let I1 = [−B,B]. Split it into two closed intervals of length B, namely [−B,0]
and [0,B]. One of these halves contains infinitely many points of (an); call it I2.
Similarly, divide I2 into two closed intervals of length B/2. Again pick one, called
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I3, that contains infinitely many points of our sequence. Recursively, we construct a
decreasing sequence Ik of closed intervals of length 22−kB such that each contains
infinitely many points of our sequence. Figure 2.3 shows the choice of I3 and I4,
where the terms of the sequence are indicated by vertical lines.

−B B0

I3

I4

FIG. 2.3 Choice of intervals I3 and I4.

By the Nested Interval Lemma (2.6.3), we know that
⋂

k≥1 Ik contains a number
L. Choose an increasing sequence nk such that ank belongs to Ik. This is possible
since each Ik contains infinitely many numbers in the sequence, and only finitely
many have index less than nk−1. We claim that lim

k→∞
ank = L. Indeed, both ank and L

belong to Ik, and hence
|ank −L| ≤ |Ik|= 2−k(4B).

The right-hand side tends to 0, and thus lim
k→∞

ank = L. �

2.7.3. EXAMPLE. Consider the sequence (an) = (sign(sinn))∞

n=1, where the
sign function takes values±1 depending on the sign of x except for sign0 = 0. With-
out knowing anything about the properties of the sine function, we can observe that
the sequence (an) takes at most three different values. At least one of these values is
taken infinitely often. Thus it is possible to deduce the existence of a subsequence
that is constant and therefore converges.

Using our knowledge of sine allows us to get somewhat more specific. Now
sinx = 0 exactly when x is an integer multiple of π . Since π is irrational, kπ is never
an integer for k > 0. Therefore, an takes only the values ±1. Note that sinx > 0 if
there is an integer k such that 2kπ < x < (2k+1)π; and sinx < 0 if there is an integer
k such that (2k−1)π < x < 2kπ . Observe that n increases by steps of length 1, while
the intervals on which sinx takes positive or negative values has length π ≈ 3.14.
Consequently, an takes the value +1 for three or four terms in a row, followed by
three or four terms taking the value −1. Consequently, both 1 and −1 are limits of
certain subsequences of (an).

2.7.4. EXAMPLE. Consider the sequence (an) = (sinn)∞

n=1. As the angles n
radians for n ≥ 1 are marked on a circle, they appear gradually to fill in a dense
subset. If this can be demonstrated, we should be able to show that sinθ is a limit
of a subsequence of our sequence for every θ in [0,2π].

The key is to approximate the angle 0 modulo 2π by integers. Let m be a posi-
tive integer and let ε > 0. Choose an integer N so large that Nε > 2π . Divide the
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circle into N arcs of length 2π/N radians each. Then consider the N + 1 points
0,m,2m, . . . ,Nm modulo 2π on the circle. Since there are N + 1 points distributed
into only N arcs, the Pigeonhole Principle implies that at least one arc contains two
points, say im and jm, where i < j. Then n = jm− im represents an angle of abso-
lute value at most 2π/N < ε radians up to a multiple of 2π . That is, n = ψ + 2πs
for some integer s and real number |ψ| < ε . In particular, |sinn| < ε and n ≥ m.
Moreover, since π is not rational, n is not an exact multiple of 2π .

So given θ ∈ [0,2π], construct a subsequence as follows. Let n1 = 1. Recursively
we construct an increasing sequence nk such that

|sinnk− sinθ |< 1
k
.

Once nk is defined, take ε = 1
k+1 and m = nk +1. As in the previous paragraph, there

is an integer n > nk such that n = ψ + 2πs and |ψ| < 1
k+1 . Thus there is a positive

integer t such that |θ − tψ|< 1
k+1 . Therefore

|sin(tn)− sin(θ)|= |sin(tψ)− sin(θ)| ≤ |tψ−θ |< 1
k +1

. (2.7.5)

Set nk+1 = tn. This completes the induction. The result is a subsequence such that

lim
k→∞

sin(nk) = sinθ .

To verify equation (2.7.5), recall the Mean Value Theorem (6.2.2). There is a
point ξ between tψ and θ such that∣∣∣∣ sin(tψ)− sin(θ)

tψ−θ

∣∣∣∣= ∣∣cosξ
∣∣≤ 1.

Rearranging yields |sin(tψ)− sin(θ)| ≤ |tψ−θ |.
Therefore, we have shown that every value in the interval [−1,1] is the limit of

some subsequence of the sequence (sinn)∞

n=1.

2.7.6. EXAMPLE. Consider the sequence b1 = 3 and bn+1 = (bn + 8/bn)/2.
Notice that

b2
n+1−8 =

b2
n +16+(64/b2

n)−32
4

=
b2

n−16+(64/b2
n)

4

=
(bn−8/bn)2

4
=

(b2
n−8)2

4b2
n

.

It follows that b2
n > 8 for all n≥ 2, and b2

1−8 = 1 > 0 also. Thus

0 < b2
n+1−8 <

(b2
n−8)2

32
.
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Iterating this, we obtain b2
2−8 < 32−1, b2

3−8 < 32−3, and b2
4−8 < 32−7. In general,

we establish by induction that

0 < b2
n−8 < 321−2n−1

.

Since bn is positive and b2−8 = (b−
√

8)(b+
√

8), it follows that

0 < bn−
√

8 =
b2

n−8
bn +

√
8

<
321−2n−1

2
√

8
< 6(32−2n−1

).

Lastly, using the fact that 322 = 1024 > 103, we obtain

0 < bn−
√

8 < 10 ·10−3·2n−2
.

In particular, lim
n→∞

bn =
√

8. In fact, the convergence is so rapid that b10 approximates
√

8 to more than 750 digits of accuracy. See Example 11.2.2 for a more general
analysis in terms of Newton’s method.

Let an = 8/bn. Then an is monotone increasing to
√

8. Both an and bn are rational,
but

√
8 is irrational. Thus the sets Jn = {x ∈ Q : an ≤ x ≤ bn} form a decreasing

sequence of nonempty intervals of rational numbers with empty intersection.

Exercises for Section 2.7

A. Show that (an) =
(

ncosn(n)√
n2+2n

)∞

n=1
has a convergent subsequence.

B. Does the sequence (bn) =
(
n+ cos(nπ)

√
n2 +1

)∞

n=1 have a convergent subsequence?

C. Does the sequence (an) = (cos logn)∞
n=1 converge?

D. Show that every sequence has a monotone subsequence.

E. Use trig identities to show that |sinx− siny| ≤ |x− y|.
HINT: Let a = (x+ y)/2 and b = (x− y)/2. Use the addition formula for sin(a±b).

F. Define x1 = 2 and xn+1 = 1
2 (xn +5/xn) for n≥ 1.

(a) Find a formula for x2
n+1−5 in terms of x2

n−5.
(b) Hence evaluate lim

n→∞
xn.

(c) Compute the first ten terms on a computer or a calculator.
(d) Show that the tenth term approximates the limit to over 600 decimal places.

G. Let (xn)
∞

n=1 be a sequence of real numbers. Suppose that there is a real number L such that
L = lim

n→∞
x3n−1 = lim

n→∞
x3n+1 = lim

n→∞
x3n. Show that lim

n→∞
xn exists and equals L.

H. Let (xn)
∞

n=1 be a sequence in R. Suppose there is a number L such that every subsequence(
xnk

)∞

k=1 has a subsubsequence
(
xnk(l)

)∞

l=1 with lim
l→∞

xnk(l) = L. Show that the whole sequence

converges to L. HINT: If not, you could find a subsequence bounded away from L.

I. Suppose (xn)
∞

n=1 is a sequence in R, and that Lk are real numbers with lim
k→∞

Lk = L. If for

each k ≥ 1, there is a subsequence of (xn)
∞

n=1 converging to Lk, show that some subsequence
converges to L. HINT: Find an increasing sequence nk such that |xnk −L|< 1/k.
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J. (a) Suppose that (xn)
∞

n=1 is a sequence of real numbers. If L = liminfxn, show that there is a
subsequence

(
xnk

)∞

k=1 such that lim
k→∞

xnk = L.

(b) Similarly, prove that there is a subsequence
(
xnl

)∞

l=1 such that lim
l→∞

xnl = limsupxn.

K. Let (xn)
∞

n=1 be an arbitrary sequence. Prove that there is a subsequence
(
xnk

)∞

k=1 which con-
verges or lim

k→∞
xnk = ∞ or lim

k→∞
xnk =−∞.

L. Construct a sequence (xn)
∞

n=1 such that for every real number L, there is a subsequence(
xnk

)∞

k=1 with lim
k→∞

xnk = L.

2.8 Cauchy Sequences

Can we decide whether a sequence converges without first finding the value of the
limit? To do this, we need an intrinsic property of a sequence which is equivalent to
convergence that does not make use of the value of the limit. This intrinsic property
shows which sequences are ‘supposed’ to converge. This leads us to the notion of
a subset of R being complete if all sequences in the subset that are ‘supposed’ to
converge actually do. As we shall see, this completeness property has been built into
the real numbers by our construction of infinite decimals.

To obtain an appropriate condition, notice that if a sequence (an) converges to L,
then as the terms get close to the limit, they are getting close to each other.

2.8.1. PROPOSITION. Let (an)
∞

n=1 be a sequence converging to L. For every
ε > 0, there is an integer N such that

|an−am|< ε for all m,n≥ N.

PROOF. Fix ε > 0 and use the value ε/2 in the definition of limit. Then there is an
integer N such that |an−L|< ε/2 for all n≥ N. Thus if m,n≥ N, we obtain

|an−am| ≤ |an−L|+ |L−am|<
ε

2
+

ε

2
= ε.

�

In order for N to work in the conclusion, for every m ≥ N, am must be within ε

of aN . It is not enough to just have aN and aN+1 close (see Exercise 2.8.B).
We make the conclusion of this proposition into a definition. This definition re-

tains the flavour of the definition of a limit, in that it has the same logical structure:
For all ε > 0, there is an integer N . . . .

2.8.2. DEFINITION. A sequence (an)
∞

n=1 of real numbers is called a Cauchy
sequence provided that for every ε > 0, there is an integer N such that

|am−an|< ε for all m,n≥ N.
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2.8.3. PROPOSITION. Every Cauchy sequence is bounded.

PROOF. The proof is basically the same as Proposition 2.5.1. Let (an)
∞

n=1 be a
Cauchy sequence. Taking ε = 1, find N so large that

|an−aN |< 1 for all n≥ N.

It follows that the sequence is bounded by max{|a1|, . . . , |aN−1|, |aN |+1}. �

Since the definition of a Cauchy sequence does not require the use of a potential
limit L, it permits the following definition.

2.8.4. DEFINITION. A subset S of R is said to be complete if every Cauchy
sequence (an) in S (that is, an ∈ S) converges to a point in S.

This brings us to an important conclusion about the real numbers themselves,
another property that distinguishes the real numbers from the rational numbers.

2.8.5. COMPLETENESS THEOREM.
Every Cauchy sequence of real numbers converges. So R is complete.

PROOF. Suppose that (an)
∞

n=1 is a Cauchy sequence. By Proposition 2.8.3, {an :
n≥ 1} is bounded. By the Bolzano–Weierstrass Theorem (2.7.2), this sequence has
a convergent subsequence, say

lim
k→∞

ank = L.

Let ε > 0. From the definition of Cauchy sequence for ε/2, there is an integer N
such that

|am−an|<
ε

2
for all m,n≥ N.

And from the definition of limit using ε/2, there is an integer K such that

|ank −L|< ε

2
for all k ≥ K.

Pick any k ≥ K such that nk ≥ N. Then for every n≥ N,

|an−L| ≤ |an−ank |+ |ank −L|< ε

2
+

ε

2
= ε.

So lim
n→∞

an = L. �

2.8.6. REMARK. This theorem is not true for the rational numbers. Define the
sequence (an)

∞

n=1 by

a1 = 1.4, a2 = 1.41, a3 = 1.414, a4 = 1.4142, a5 = 1.41421, . . .
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and in general, an is the first n+1 digits in the decimal expansion of
√

2. If n and m
are greater than N, then an and am agree for at least first N +1 digits. Thus

|an−am|< 10−N for all m,n≥ N.

This shows that (an)
∞

n=1 is a Cauchy sequence of rational numbers. (Why?)
However, this sequence has no limit in the rationals. In our terminology, Q is

not complete. Of course, this sequence does converge to a real number, namely
√

2.
This is one way to see the essential difference between R and Q: the set of real
numbers is complete and Q is not.

2.8.7. EXAMPLE. Let α be an arbitrary real number. Define an = [nα]/n,
where [x] is the nearest integer to x. Then

∣∣[nα]−nα
∣∣≤ 1/2. So

|an−α|=
∣∣[nα]−nα

∣∣
n

≤ 1
2n

.

We claim lim
n→∞

an = α . Indeed, given ε > 0, choose N so large that 1
N < ε . Then for

n≥ N, |an−α|< ε/2. Moreover, if m,n≥ N,

|an−am| ≤ |an−α|+ |α−am|<
ε

2
+

ε

2
= ε.

Thus this sequence is Cauchy.

2.8.8. EXAMPLE. Consider the infinite continued fraction

1

2+
1

2+
1

2+
1

2+ · · ·

To make sense of this, it has to be interpreted as the limit of the finite fractions

a1 =
1
2
, a2 =

1

2+ 1
2

=
2
5
, a3 =

1

2+ 1
2+ 1

2

=
5
12

, · · · .

We need a better way of defining the general term. In this case, there is a recursive
formula for obtaining one term from the preceding one:

a1 =
1
2
, an+1 =

1
2+an

for n≥ 1.

In order to establish convergence, we will show that (an) is Cauchy. Consider
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an+1−an+2 =
1

2+an
− 1

2+an+1
=

an+1−an

(2+an)(2+an+1)
.

Now a1 > 0, and it is readily follows that an > 0 for all n ≥ 2 by induction. Hence
the denominator (2+an)(2+an+1) is greater than 4. So we obtain

|an+1−an+2|<
|an−an+1|

4
for all n≥ 1.

Since |a1−a2|= 1/10, we may iterate this inequality to estimate

|a2−a3|<
1

10 ·4
, |a3−a4|<

1
10 ·42 , |an−an+1|<

1
10 ·4n−1 = 2

5 (4−n).

The general formula estimating the difference may be verified by induction.
Now it is straightforward to estimate the difference between arbitrary terms am

and an for m < n:

|am−an|=
∣∣(am−am+1)+(am+1−am+2)+ · · ·+(an−1−an)

∣∣
≤ |am−am+1|+ |am+1−am+2|+ · · ·+ |an−1−an|

< 2
5 (4−m +4−m−1 + · · ·+41−n) <

2 ·4−m

5(1− 1
4 )

=
8
15

4−m < 4−m.

This tells us that our sequence is Cauchy. Indeed, if ε > 0, choose N such that
4−N < ε . Then

|am−an|< 4−m ≤ 4−N < ε for all m,n≥ N.

Therefore by the Completeness Theorem 2.8.5, it follows that (an)
∞

n=1 converges;
say, lim

n→∞
an = L. To calculate L, use the recurrence relation

L = lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

1
2+an

=
1

2+L
.

It follows that L2 + 2L− 1 = 0. Solving yields L = ±
√

2− 1. Since L > 0, we see
that L =

√
2−1.

We have accumulated five different results for R that distinguish it from Q.

(1) the Least Upper Bound Principle (2.3.3),
(2) the Monotone Convergence Theorem (2.6.1),
(3) the Nested Intervals Lemma (2.6.3),
(4) the Bolzano–Weierstrass Theorem (2.7.2),
(5) the Completeness Theorem (2.8.5).

It turns out that they are all equivalent. Indeed, each of the proofs of items (2) to (5)
relies only on the previous item in our list. To show how the Completeness Theorem
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implies the Least Upper Bound Principle, go through our proof to obtain an increas-
ing sequence of lower bounds, yk, and a decreasing sequence of elements xk ∈ S
with xk < yk +10−k. Show that the sequence x1,y1,x2,y2, . . . is Cauchy. The limit L
will be the greatest lower bound. Fill in the details yourself (Exercise 2.8.G).

Exercises for Section 2.8

A. Let (xn) be Cauchy with a subsequence (xnk ) such that lim
k→∞

xnk = a. Show that lim
n→∞

xn = a.

B. Give a sequence (an) such that lim
n→∞

|an−an+1|= 0, but the sequence does not converge.

C. Let (an) be a sequence such that lim
N→∞

∑
N
n=1 |an−an+1|< ∞. Show that (an) is Cauchy.

D. If (xn)
∞

n=1 is Cauchy, show that it has a subsequence (xnk ) such that ∑
∞
k=1 |xnk − xnk+1 |< ∞.

E. Suppose that (an) is a sequence such that a2n ≤ a2n+2 ≤ a2n+3 ≤ a2n+1 for all n ≥ 0. Show
that this sequence is Cauchy if and only if lim

n→∞
|an−an+1|= 0.

F. Give an example of a sequence (an) such that a2n ≤ a2n+2 ≤ a2n+3 ≤ a2n+1 for all n ≥ 0
which does not converge.

G. Fill in the details of how the Completeness Theorem implies the Least Upper Bound Principle.

H. Let a0 = 0 and set an+1 = cos(an) for n≥ 0. Try this on your calculator (use radian mode!).

(a) Show that a2n ≤ a2n+2 ≤ a2n+3 ≤ a2n+1 for all n≥ 0.
(b) Use the Mean Value Theorem to find an explicit number r < 1 such that

|an+2−an+1| ≤ r|an−an+1| for all n≥ 0. Hence show that this sequence is Cauchy.
(c) Describe the limit geometrically as the intersection point of two curves.

I. Evaluate the continued fraction
1+

1

1+
1

1+
1

1+ · · · .

J. Let x0 = 0 and xn+1 =
√

5−2xn for n ≥ 0. Show that this sequence converges and compute
the limit. HINT: Show that the even terms increase and the odd terms decrease.

K. Consider an infinite binary expansion (0.e1e2e3 . . .)base 2, where each ei ∈ {0,1}. Show that
an = ∑

n
i=1 2−iei is Cauchy for every choice of zeros and ones.

L. One base-independent construction of the real numbers uses Cauchy sequences of rational
numbers. This exercise asks for the definitions that go into such a proof.

(a) Find a way to decide when two Cauchy sequences should determine the same real number
without using their limits. HINT: Combine the two sequences into one.

(b) Your definition in (a) should be an equivalence relation. Is it? (See Appendix 1.3.)
(c) How are addition and multiplication defined?
(d) How is the order defined?

2.9 Countable Sets
Cardinality measures the size of a set in the crudest of ways—by counting the num-
bers of elements. Obviously, the number of elements in a set could be 0, 1, 2, 3, 4,
or some other finite number. Or a set can have infinitely many elements. Perhaps
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surprisingly, not all infinite sets have the same cardinality. We distinguish only be-
tween sets having the smallest infinite cardinality (countably infinite sets) and all
larger cardinalities (uncountable sets). We use the term countable for sets that are
either countably infinite or finite.

2.9.1. DEFINITION. Two sets A and B have the same cardinality if there is a
bijection f from A onto B. Write |A| = |B| in this case. We say that the cardinality
of A is at most that of B (write |A| ≤ |B|) if there is an injection f from A into B.

The definition says simply that if all of the elements of A can be paired, one-to-
one, with all of the elements of B, then A and B have the same size. If A fits inside
B in a one-to-one manner, then A is smaller than or equal to B. It is natural to ask
whether |A| ≤ |B| and |B| ≤ |A| imply |A| = |B|. The answer is yes, but this is not
obvious for infinite sets. The Schroeder–Bernstein Theorem establishes this, but we
do not include a proof.

2.9.2. EXAMPLES.
(1) The cardinality of any finite set is the number of elements, and this number
belongs to {0,1,2,3,4, . . .}. This property is, essentially, the definition of finite set.

(2) Many sets encountered in analysis are infinite, meaning that they are not fi-
nite. The sets of natural numbers N, integers Z, rational numbers Q, and real num-
bers R are all infinite. Moreover, we have the containments N ⊂ Z ⊂ Q ⊂ R.
Therefore |N| ≤ |Z| ≤ |Q| ≤ |R|. Notice that the integers can be written as a
list 0,1,−1,2,−2,3,−3, . . . . This amounts to defining a bijection f : N → Z by
f (2n−1) = 1−n and f (2n) = n for n≥ 1. Therefore, |N|= |Z|.

2.9.3. DEFINITION. A set A is a countable set is it is finite or if |A|= |N|. If
|A| = |N|, we say that A is countably infinite. The cardinal |N| is also denoted by
ℵ0, pronounced aleph nought. Aleph is the first letter of the Hebrew alphabet.

An infinite set that is not countable is called an uncountable set.

Equivalently, A is countable if the elements of A may be listed as a1,a2,a3, . . . .
Indeed, the list itself determines a bijection f from N to A by f (k) = ak. It is a basic
fact that countable sets are the smallest infinite sets.

Notice that two uncountable sets might have different cardinalities.

2.9.4. LEMMA. Every infinite subset of N is countable. Moreover, if A is an
infinite set such that |A| ≤ |N|, then |A|= |N|.

PROOF. Any nonempty subset X of N has a smallest element. This follows from
induction: if X does not have a smallest element, then 1 /∈ X and 1, . . . ,n all not in
X imply n+1 /∈ X . By induction, X is empty, a contradiction.
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Let B be an infinite subset of N. List the elements of B in increasing order as
b1 < b2 < b3 < · · · . This is done by choosing the smallest element b1, then the
smallest of the remaining set B \ {b1}, then the smallest of B \ {b1,b2}, and so on.
The result is an infinite list of elements of B in increasing order. It must include
every element b ∈ B because {n ∈ B : n ≤ b} is finite, containing say k elements.
Then bk = b. As noted before the proof, this implies that |B|= |N|.

Now consider an infinite set A with |A| ≤ |N|. By definition, there is an injection
f of A into N. Let B = f (A). Note that f is a bijection of A onto B. Thus B is an
infinite subset of N. So |A|= |B|= |N|. �

2.9.5. PROPOSITION. The set N×N is countable.

PROOF. Rather than starting with the formula of a bijection from N to N×N, note
that each ‘diagonal set’ Dn = {(i, j)∈N×N : i+ j = n+1}, n≥ 1, is finite. Thus, if
we work through these sets in some methodical way, any pair (i, j) will be reached
in finitely many steps. See Figure 2.4.

Noting that |Dn| = n and 1 + 2 + . . .+ n = n(n + 1)/2, we define our bijection
for m ∈ N by first picking n such that n(n− 1)/2 < m ≤ n(n + 1)/2. Letting k =
m−n(n−1)/2, we define ϕ(m) to be (k,n+1−k). It is routine, if tedious, to verify
that ϕ is a bijection, i.e., one-to-one and onto. �

a1,1

a2,1

a3,1

a4,1

a5,1

a1,2 a1,3 a1,4 a1,5

FIG. 2.4 The ordering on N×N.

2.9.6. COROLLARY. The countable union of countable sets is countable.

PROOF. Let A1,A2,A3, . . . be countable sets. To avoid repetition, let B1 = A1 and
Bi = Ai \∪i−1

k=1Ak. Each Bi is countable, so list its elements as bi,1,bi,2,bi,3, . . . . Map
A = ∪i≥1Ai = ∪i≥1Bi into N×N by f (bi j) = (i, j). This is an injection; therefore
|A| ≤ |N×N|= |N|. Hence the union is countable. �

2.9.7. COROLLARY. The set Q of rational numbers is countable.
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PROOF. Observe that Z×N is countable, since we can take the bijection f : N→ Z
of Example 2.9.2 (2) and use it to define g : N×N→ Z×N by g(n,m) = ( f (n),m),
which you can check is a bijection.

Define a map from Q into Z×N by h(r) = (a,b) if r = a/b, where a and b are
integers with no common factor and b > 0. These conditions uniquely determine the
pair (a,b) for each rational r, and so h is a function. Clearly, h is injective since r is
recovered from (a,b) by division. Therefore, h is an injection of Q into a countable
set. Hence Q is an infinite set with |Q| ≤ |N|. So Q is countable by Lemma 2.9.4. �

There are infinite sets that are not countable. The proof uses a diagonalization
argument due to Cantor.

2.9.8. THEOREM. The set R of real numbers is uncountable.

PROOF. Suppose to the contrary that R is countable. Then all real numbers may be
written as a list x1,x2,x3, . . . . Express each xi as an infinite decimal, which we write
as xi = xi0.xi1xi2xi3 . . . , where xi0 is an integer and xik is an integer from 0 to 9 for
each k ≥ 1. Our goal is to write down another real number that does not appear in
this (supposedly exhaustive) list. Let a0 = 0 and define ak = 7 if xkk ∈ {0,1,2,3,4}
and ak = 2 if xkk ∈ {5,6,7,8,9}. Define a real number a = a0.a1a2a3 . . . .

Since a is a real number, it must appear somewhere in this list, say a = xk. How-
ever, the kth decimal place ak of a and xkk of xk differ by between 3 and 7. This
cannot be accounted for by the fact that certain real numbers have two decimal ex-
pansions, one ending in zeros and the other ending in nines because this changes any
digit by either 1 or 9. So a 6= xk, and hence a does not occur in this list. It follows
that there is no such list, and thus R is uncountable. �

Exercises for Section 2.9
A. Prove that the set Zn, consisting of all n-tuples a = (a1,a2, . . . ,an), where ai ∈Z, is countable.

B. Show that (0,1) and [0,1] have the same cardinality as R.

C. Show that if |A| ≤ |B| and |B| ≤ |C|, then |A| ≤ |C|.
D. Prove that the set of all infinite sequences of integers is uncountable.

HINT: Modify the diagonalization argument.

E. A real number α is called an algebraic number if there is a polynomial with integer coeffi-
cients with α as a root. Prove that the set of all algebraic numbers is countable.
HINT: First count the set of all polynomials with integer coefficients.

F. A real number that is not algebraic is called a transcendental number. Prove that the set of
transcendental numbers has the same cardinality as R.

G. Show that the set of all finite subsets of N is countable.

H. Prove Cantor’s Theorem: that for any set X , the power set P(X) of all subsets of X satisfies
|X | 6= |P(X)|. HINT: If f is an injection from X into P(X), consider A = {x∈ X : x 6∈ f (x)}.

I. If A is an infinite set, show that A has a countable infinite subset.
HINT: Use recursion to choose a sequence an of distinct points in A.

J. Show that A is infinite if and only if there is a proper subset B of A such that |B|= |A|.
HINT: Use the previous exercise and let B = A\{a1}.
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