2 | Combinations and Permutations

January 5. In his first lecture, Pélya discussed in general terms what
combinatorics is about: The study of counting various combinations
or configurations. He started with a problem based on the mystical
sign known, appropriately, as an “abracadabra”.

The question is, how many different ways are there to spell out
“abracadabra”, always going from one letter to an ad jacent letter?
Due to the way some letters (especially C and D) are found only in
certain rows, it turns out the only ways to spell “abracadabra” start
with the topmost ‘A’ and zig-zag down to the bottommost ‘A", If we
think of the letters as points, then any spelling of “abracadabra”
specifies a sequence of points forming a crooked line from the top to
the bottom. One such line is shown below.

You can also think of this problem in terms of a network of streets
in a city where all blocks are the same size. Then the problem
becomes one of computing how many ways there are of getting from
the northern corner to the southern corner in the minimum number
(10) of blocks. (That 10 is the minimum can be seen from the fact
that each block, in addition to taking us either east or west, takes us
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southward one-tenth the t tal southward distance between the two
corners.)

It was decided empirically (i.e, by taking a vote) that there
were more than 100 paths, but there was disagreement over whether
there were more than 1000, so Pélya proceeded to approach the
problem by more formal methods. He began by emphasising an
important maxim which you should always consider when working
on any problem: “If you cannot solve the proposed problem, solve first
a suitable related problem.” In this instance, the related problem is
that of computing how many different paths there are from the
northern corner to various other corners, still restricting ourselves to
travelling only southeast and southwest. For starters, there is only
one path to each of the corners on the northeast edge, namely the
path consisting of travelling always southeast and never southwest.
Similarly, there is only one path to each of the corners on the
northwest edge. We note these values by writing them next to the
corners involved.

Now what about the corner marked with a x? You could get there
by going one block southeast followed by one block southwest, or by
going first southwest and then southeast. Similarly, to get to the
corner marked *x, you could go southeast, then southwest twice, or
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you could go southwest, then southeast, then southwest, or you could
go southwest twice and then southeast. Moving down the diagonal
in the manner and, by symmetry, the corresponding diagonal on the
eastern side, we can fill in some more values.

Had we tried to go much further like this, it would probably
have gotten rather tiresome, so instead we came up with a general
observation regarding an arbitrary corner, such as the one marked z
above. If we know that there are x ways to get to the corner just
northwest of z, and y ways to get to the corner northeast of z, then
there are x+y ways to get to z, since to get there we must first get to
either x or y, after which there’s only one way to continue on to z.
For instance, there are 3+3=6 paths to the corner marked x. This
general rule provides us with an easy method to finish computing
the number of paths to the southern corner. The first homework
assignment was to complete this computation. It comes as no surprise
that everyone got it right. For the record, here it is.
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The numbers we've been computing are known as binomial
coefficients, for reasons we'll get to eventually. The arrangement of
the numbers, when cut off by any horizontal line so as to form a
triangular pattern, is known as Pascal’s triangle. (Pascal referred to
it as “the arithmetical triangle”) The numbers are uniquely defined
by the boundary condition (the I's along the edges) together with the
recursion formula (each number not on the edge is the sum of the
two above it). In addition to this recursion formula, which defines
each number in terms of earlier ones, there is another way to look at
the situation. Here's a small chunk of the street network we’ve been

working with:

o

Suppose we want to know the number of different paths (of
minimum length) from the origin O to the starred corner. Each
such path must consist of 5 blocks, of which exactly 3 go to the right
(as seen from above). If we specify which 3 of the 5 blocks will go to
the right, we uniquely specify the path. For instance, if we choose
the 1, 4th, and 5th blocks, we get this path:

o

Conversely, each path from O to x specifies a unique set of 3
blocks that go to the right. So the number of paths is the same as
the number of ways of choosing 3 blocks out of the total 5. Euler’s
notation for this sort of thing is (:) or, in general, (7), denoting the
number of ways of choosing a subset of size r from a set of size n.
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This is usually read “n-choose-r". (Another name often heard to
describe this value, but which recently has fallen out of favor, is that
used by Jacob Bernoulli: the combinations of n elements taken r at
a time)) Computing this value is the first problem of combinatorics.

Next we come to some basic rules for working with multiple
sets. The rules are fairly simple (as basic rules are wont to be), but
are nevertheless very important (again as basic rules are wont to be).
First off, suppose that out of a set of possibilities, 4, it is possible to
choose any one of m different elements. From another set, B, it is
possible to choose any one of n elements. We wish to select an
element from either 4 or B; we don't care which. Assuming A and B
have no elements in common, there are m+n possible choices.

Next, suppose the elements of A are a), ay,..., a,, and the
elements of B are b, b,,...,b,. We wish to select two elements, one
from each set, in a specific order (say, first one from A and then one
from B). This operation is known as the Cartesian product of the
two sets, due to its relationship with the rectangular (Cartesian)
coordinate system. For instance, if 4 has three elements and B has
two, there are six possible pairs: (a,,0)), (a).bo), (ag.,0)), (32.05), (as.hy),
and (ag,b,). In general, there are men possibilities.

Finally, take a more general case of the Cartesian product.
Suppose that, having chosen @,, we then have a choice among a set
of elements by, by, ..., b, If we start by choosing a,, we then
have a choice from a different set: by, by, . .., byy, and so on. In
general, the possibilities for b differ depending upon our choice for
a, but there are always n of them. As long as the number of
possibilities for b is constant, the total number of pairs (ayb)) is still
men. We'll see an application of this in a moment.

A permutation is an ordering of a set of ob jects. For instance,
given the set of three numbers {1,2,3}, we could order them in any of
6 different ways: {1,2,3}, {1,3,2}, {2,1.3}, {2,3,1}, {3,1.2}, or {3,2,1}. The
number of different permutations of n elements is denoted by P,.
Hence P3 = 6. We also see fairly easily that P, = | and Py = 2. At
this point Pélya stated another important maxim: “T"Ae beginning of
most discoveries is to recognise a pattern.” There is a pattern to the
three numbers we've got so far; to make it more apparent, we can
rewrite them as follows:
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P|-|.]
P2-2-l°2
Py=6=1:2-8

We con jecture that P, = | <2+ 3 +.. .« n. This product is
called n factorial and is usually written “n!”. Now we need to prove
our conjecture. Well, suppose it's true that P, = n.. Then what
would P,,; be? It is the number of ways of ordering n+1 ob jects.
The n+1% object could be in any one of n+1 positions. Whichever
of these positions we choose, the remaining n ob jects can be ordered
in any of P, ways. Using the generalisation of the Cartesian
product rule, we conclude that the total number of ways we can
order n+1 objects is (n+1)sP,. Therefore, if P, = 1+2¢3¢, . . on,
then Ppy=1¢2¢3¢. . one(n+el)=(n+l). But we know that
Py = 3, so taking n=3 we conclude that P, = 4. Knowing this, we
can take n=4 and conclude that Py = 5, and so on. For any finite n,
we can prove that P, = n! by starting at Py and chugging away for a
while. This method of proof, which Pélya describes as “a diabolic
way of proving things”, is called mathematical induction. It is
extremely useful since it saves you from having to figure out the
formula you're proving. If you can make a “lucky guess” as to what
the answer is, you may be able to prove it by induction.

January 10. Pélya began the lecture by reviewing the material from
the previous lecture. In doing so he brought out some points that
hadn’t been explicitly stated before. In particular, there’s the formal
definition of the binomial coefficients:

Boundary condition: (g) = (7) = |

Recursion: "= (N + O
[n and r integers, O<r<n+1)

Similarly, P, can be defined by boundary conditions and recursion:
Boundary condition: Py = I!= |
Recursion: P, = n! = nP,_,.

If we apply this recursion formula with n=1, we find that P, = 1+P,.
Hence we define Py = 0f = |.
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From here, we move on to look at something Pélya called a
“variation”, a word you may immediately forget. It is defined as
follows. Given a set of n ob jects, we wish to choose r of them in
some order. That is, choosing the first object and then the second
would be considered different from choosing the second and then
the first. How many such variations are there? One approach is to
start by choosing some ob ject to be the first one selected. There are
n choices. For each choice, there are n-1 choices for the second
object. Thus, by the product rule, there are n(n-1) choices for the
first two ob jects together. For each such pair, there are (n-2) ob jects
remaining from which to choose the third object. So there are
n(n-1Xn-2) choices for the first three objects. Continuing in this
manner, we find that there are n(n-1Xn-2) . .. (n-r+1) variations.

We can often learn something by solving a problem in two
different ways, so here’s a second approach. We first choose the
subset of r ob jects from among the n. We know there are (7) ways to
do this. We then choose the ordering for the r ob jects. We know
how many ways there are to do this, too; it's P,. So there are (7 )Py
variations. But this answer must be the same as the one we got the
other way. Therefore ()P, = n(n-1Xn-2)...(n-r+1). So we have
learned something new:

™ - n(n-1Xn-2) ... (n-r+1)
r r

_ nn-1Xn-2) ... (n-r+1)
102¢8¢, oy '

(Note that, in the second form, the sum of ‘corresponding’ terms in
the numerator and denominator is always n+l; this can be a useful
mnemonic for remembering what the last term in the numerator is.)
For example, the number that we computed for the first homework
assignment is ( °) which by this formula is (109+8+76)/(1:2+3+4 5) =
(1040-746)/(1+3+5) = (2:0-76)/3 = 2:0-72 = 252. It's always a good
idea to test out a formula on some special cases where we already
know the answer, so let’s look at (7) and (7). We have

™ - n(n-1Xn-2) . .
f+2 3-...-n

which, since the numerator and denominator have all the same
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factors, albeit in different orders, indeed equals 1. (7), however,
poses a bit of a problem, since the numerator has no factors. By
defining the product of zero factors to be equal to 1 (just as 0! = 1)
we find that (;) = | as expected.

Another way we can get this explicit form for the binomial
coefficients iIs by using mathematical induction. We assume it's true
for small n (we can check this by hand) and then show that, if it's
true for n, it's true for n+l. The first problem on the second
homework assignment was to carry out this proof. Here it is: We
assume that, for some value of n,

™. n{n-1%n-2)... (n-r+1)
' 1628+, .00

for all values of r. Substituting r-1 for r, we find

(") n(n-1Xn-2) . .. (n-r+2)
T e2e8e, . o(r-1)"

By the definition of the binomial coefficients, we know that

N =C+ O

. nn=1)n-2) ... (n-r+2) R n(n-1Xn-2) ... (n-r+1)
1«23« ., +(r-1) 1 ¢2¢83¢, 07

Jn(n-1)n-2)...(n-r+2) o r +ﬂ(ﬂ-l)(ﬂ-i.’)...(n-r-r-l)
1263, o(r-1)er 10283+, .07

o (n=1Xn-2) . .. (n-r+2) + (r + n-r+1)
1 o283, o(r-1)er

_ (n+Dn(n-1)n-2) . . . (n-r+2)
[¢2+3«. . .1 ’

which is the formula we're trying to prove (with n+1 substituted for
n). Hence, if the formula is true for n, it's true for n+l. This,
combined with the fact that it's true for n=1, means it is true for all
finite n. (Actually, there's a minor flaw in this proof. To wit, the
recursion formula cannot be used to compute (7) or (g), since it would
involve coefficients outside the range 0 s r s n. However, we've
already shown separately that these two special cases satisfy the
formula, so we're all right.)
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A more compact way to write the formula for the binomial
coefficient can be derived by multiplying both the numerator and
denominator by the factors (n-r), (n-r-1), and so on down to 1.

" - n(n-1)n-2) ... (n-r+1) ¢ (n-r¥n-r-1)...2
(1 e2e3e, . 0n)(l+2¢...¢(n-r=1) ¢« (n-r)
n!
B (n-r)

Notice that, based on this formula, it is immediately apparent that
(M =(") This was to be expected, since by the method of its

construction Pascal's triangle is clearly symmetric.

Next, we consider n houses. They are built identically, because
it's easier that way. But then, to make them look different, they are
painted different colors: r of them are painted red, s of them yellow,
and the remaining ¢ of them green. In how many ways can we
assign the colors to the houses? We first choose which houses will be
painted red; there are () ways to make this choice. Whatever choice
we make, there are n-r houses left, of which we choose s to be
painted yellow; there are ( ') ways to do this. At this point we have
no choices left to make, smce all the rest must be green (that is,
r+s+t=n). So what do we have? By the product rule, there are
(’X™) ways to paint the houses. Using the formula we worked out a
moment ago, we find

(:Xn-r) n_ . _(n-r)

7T o) Mner-s)
But n-r-s=t, and the (n-r)! factors cancel, leaving us with

n!
s’

which is, fortunately, symmetric with respect to r, 5, and t. (The
alternative to its being symmetric would be for it to be wrong, since
the original problem was symmetric.) This sort of formula is called a
multinomial coefficient.
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