Elements Of
Cryptography

The discussion of computer security issues and threats in the previous chap-
ters makes it clear that cryptography provides a solution to many security
problems. Without cryptography, the main task of a hacker would be to
break into a computer, locate sensitive data, and copy it. Alternatively,
the hacker may intercept data sent between computers, analyze it, and help
himself to any important or useful “nuggets.” Encrypting sensitive data com-
plicates these tasks, because in addition to obtaining the data, the wrongdoer
also has to decrypt it. Cryptography is therefore a very useful tool in the
hands of security workers, but is not a panacea. Even the strongest cryp-
tographic methods cannot prevent a virus from damaging data or deleting
files. Similarly, DoS attacks are possible even in environments where all data
is encrypted.

Because of the importance of cryptography, this chapter provides an
introduction to the principles and concepts behind the many encryption al-
gorithms used by modern cryptography. More historical and background ma-
terial, descriptions of algorithms, and examples, can be found in [Salomon 03]
and in the many other texts on cryptography, code breaking, and data hiding
that are currently available in libraries, bookstores, and the Internet.

Cryptography is the art and science of making data impossible to read.
The task of the various encryption methods is to start with plain, readable
data (the plaintext) and scramble it so it becomes an unreadable ciphertext.
Each encryption method must also specify how the ciphertext can be de-
crypted back into the plaintext it came from, and Figure 1 illustrates the
relation between plaintext, ciphertext, encryption, and decryption.

Thus, cryptography hides or obscures the meaning of data, but does not
hide the data itself. Hiding data is also a useful computer security technique.
A small data file (the payload) can be hidden inside a larger file (the cover),
such that an examination of the cover will not uncover the data and will not
raise any suspicion.

2 Elements Of Cryptography

Encryption

Plaintext Ciphertext
Decryption

Figure 1: Encryption and Decryption.

1 Principles of Cryptography

First, a simple classification. The field of cryptography is huge and covers
many methods and approaches. At the most basic level, these methods can
be classified into codes and ciphers.

A code is a short symbol or word that replaces an entire message. Codes
are secure but are not general purpose. Before a spy is sent to a foreign
country he and his runner may agree on a set of codes. The words happy and
sad used by the spy in otherwise-innocuous sentences may indicate good and
bad economies in the foreign country, whereas deep and shallow may be codes
for success and failure of the spy’s mission. It is easy to see why the use of
codes is limited, but it is also true that codes can be broken. If the same spy
sends many messages that use the same codes, then clever codebreakers who
intercept the messages may eventually guess the meaning of certain codes,
and then test their guesses by applying them to future messages to see if the
guesses make sense.

A cipher is a rule that tells how to scramble (encrypt) data in a nonran-
dom way, so it can later be unscrambled (decrypted). Perhaps the simplest
example of a cipher is to replace each letter with the one following it (cycli-
cally) n positions in the alphabet. This is the well-known Caesar cipher.
Here is an example for n = 3 (note how X is replaced by A).

ABCDEFGHIJKLMNOPQRSTUVWXYZ
DEFGHIJKLMNOPQRSTUVWXYZABC

The top line is the plain alphabet and the bottom line is the cipher alphabet.
The plaintext COME BACK is encrypted by this method to the unreadable
ciphertext FRPH EDFN. This simple cipher illustrates several important
facts about ciphers as follows:

= Decrypting this cipher requires knowledge of n (3 in our example). Thus,
the number n is the key of this cipher. Long experience with ciphers has
convinced cryptographers that the security provided by a cipher depends on
the key, and not on the encryption method. The reason for this is easy
to understand. When two persons want to communicate privately, they can
develop an encryption method without a key and hope that no one will break
it, but when a bank needs encryption for its sensitive operations, it cannot
keep its encryption algorithm secret. Many people work for a bank, they
come and go and it is inevitable that the details of such a secret algorithm
will leak out. It makes more sense for a bank (and for other entities such as
government agencies, army units, and spies) to use a well-tested, key-based
commercial encryption program and base their security on the key.

2 Kerckhoffs’s Principle 3

s There are 26 letters in the English alphabet, so n can take the values
1 through 25 (the keys 0 and 26 produce ciphertext that’s identical to the
plaintext). Thus, the keyspace of the Caesar cipher is very small, which
makes it easy to break this cipher by trying all 25 keys. A practical, useful
cipher must have a very large keyspace. Current cryptographic algorithms
are executed on computers and are therefore based on binary numbers. Keys
typically vary in size from 64 to 256 bits (see exercise 1).

» In the Caesar cipher, a plainletter is always encrypted to the same ci-
pherletter. Such a cipher is called monoalphabetic and it is easy to break
because the ciphertext reflects the statistical properties of the plaintext. In
English, for example, the most common letter is E. A plaintext encrypted with
a monoalphabetic cipher that replaces E with K, will produce ciphertext with
K as its most common letter. Section 3 describes a simple monoalphabetic
cipher designed in antiquity by Polybius. A better approach is offered by a
polyalphabetic encryption method, where the same plainletter is encrypted to
different cipherletters. However, modern ciphers are based on binary num-
bers, not on letters, so they use different approaches.

2 Kerckhoffs’s Principle

The entire field of cryptography is based on an important assumption, namely,
that some information can be kept and disseminated securely, accessible only
to authorized persons. This information is the key used by an encryption
algorithm.

An important principle in cryptography, due to the Dutch linguist Au-
guste Kerckhoffs von Nieuwenhoff [Kerckhoffs 83], states that the security of
an encrypted message must depend on keeping the key secret. It should not
depend on keeping the encryption algorithm secret. This principle is widely
accepted and implies that there must be many possible keys to an algorithm;
the keyspace must be very large. The Caesar algorithm, for example, is very
weak because its keyspace is so small. Notice that a large keyspace is a neces-
sary but not a sufficient condition of security. An encryption algorithm may
have an immense keyspace but may nevertheless be weak.

Kerckhoffs’s Principle

One should assume that the method used to encipher data is known to
the opponent, and that security must lie in the choice of key. This does
not necessarily imply that the method should be public, just that it is
considered public during its creation.

—Auguste Kerckhoffs

It is possible to use a brute force approach to break a cipher. A would-
be codebreaker can simply search the entire keyspace—every possible key!
There are, however, two good reasons why this approach is impractical and
has at best a limited value. One reason is the large number of keys, and
the other is the problem of recognizing the correct plaintext once it has been

4 Elements Of Cryptography

obtained when the right key is tried. Table 2 lists the times it takes to check
all the keys, for several key sizes n. The table lists the times for the cases
where one mega and one giga keys are checked each second (a mega is 229,
about a million, and a giga is 23, about a billion). It is clear that doubling
the key size more than doubles the total number of keys. In fact, for an n-bit
key, the number of keys is 2™, so it grows exponentially with n. Recognizing
the plaintext is not easier. If the plaintext is text, it may be recognized by
a computer program by looking up words in a dictionary. Even this can be
defeated by artificially inserting many nonsense “words” in the text, but the
plaintext may be compressed data, or executable machine code. These types
of data are random or close to random and may be virtually impossible to
recognize. The plaintext may also be image, video, or audio data, and these
types, although nonrandom, may not always be easy to recognize.

n 2" Time
(approx) 1M tests/s 1G tests/s
32 4.3x10° 4096 sec 4 sec
40 1.1x10'?2 291 hrs 1024 sec
56 72x10% 2179 yrs 777 days
64 1.84x10'° 557845 yrs 545 yrs
128 3.4x10% 10%® yrs 10?2 yrs

Table 2: The Security Provided by Certain Key Sizes.

Exercise 1: Cryptographers often have to refute the following statement: “I
can always crack an encrypted message by trying the entire key space. With
a really fast computer, I can easily try all the possible 64-bit keys. Besides, I
may succeed on the first try.” Use real-life examples to illustrate the fallacy
of this boast.

3 Polybius’s Monoalphabetic Cipher

Before we get to the details of modern, computer-based encryption algo-
rithms, we present two examples of old, letter-based ciphers. This section
and the next one describe a monoalphabetic and polyalphabetic ciphers de-
veloped in antiquity by the same person.

The second century B.C. Greek author and historian Polybius (or Poly-
bios) had an interest in cryptography and developed the simple monoalpha-
betic cipher that today bears his name. The cipher is based on a small square
of letters, so when applied to English text, the number of letters is artificially
reduced from 26 to 25 by considering I and J identical. The resulting 25 let-
ters are arranged in a 5x5 square (Figure 3a) where each letter is identified
by its row and column (integers in the interval [1,5]). Encrypting is done by
replacing each plainletter with its coordinates in the Polybius square. Thus,

3 Polybius’s Monoalphabetic Cipher 5

the plaintext POLYBIUS CIPHER is encrypted into the numeric sequence 35,
34, 31, 54, 12, 24, 45, 43, 13, 24, 35, 23, 15, and 42.

Even though the ciphertext consists of numbers, this cipher is still monoal-
phabetic and can easily be broken. An experienced cryptanalyst will quickly
discover that the ciphertext consists of 2-digit integers where each digit is in
the interval [1,5], and that the integer 15 appears about 12% of the time.
The ciphertext may be written as a sequence of digits, such as 35343154
1224454313243523154 2, but this does not significantly strengthen
the method. A key may be added to the basic cipher, in accordance with
Kerckhoffs’s principle (Section 2). The key polybius cipher becomes, after
the removal of spaces and duplicate letters, the string polybiuscher. The
rest of the alphabet is appended to this string, and the result is the Polybius
square of Figure 3b.

Exercise 2: Suggest another way to extend the key polybius,cipher to
the complete set of 25 letters.

12345 1 23 45
1labcde 1| polyhb
2| f g hijk 2li/jus ch
3|1l mn o p 3| er adf
41qr s tu 4| g kmngq
S| vwzxy z 5|t vwxz

(a) (b)

Figure 3: The Polybius Monoalphabetic Cipher.

The monoalphabetic Polybius cipher is sometimes called the nihilistic
cipher or a knock cipher because it was used by the Russian Nihilists, the
opponents of the Czar, to communicate in prison by knocking the numbers
on the walls between cells. They naturally used the old 35-letter Cyrillic
alphabet, and so had a 6 x6 Polybius square. Each letter was transmitted
by tapping its two coordinates (each an integer in the interval [1,6]) on the
wall.

Another variant embeds the digits 6-9 in the ciphertext randomly, to
act as nulls or placebos, to confuse any would-be codebreakers or listening
jailers.

The monoalphabetic Polybius cipher arranges the one-dimensional string
of letters in a two-dimensional square. The method can therefore be extended
by increasing the number of dimensions. Since 3 = 27, it makes sense to
have a three-dimensional box of size 3 x 3 x 3 and to store 27 symbols in
it. Fach symbol can be encrypted to a triplet of digits, each in the interval
[0,2] (these are ternary digits, or trits). If the original Polybius method,
using a square, can be called bipartite, its three-dimensional extension may
be called tripartite. Similarly, since 28 = 256, it is possible to construct
an eight-dimensional structure with 256 symbols, where each symbol can be

6 Elements Of Cryptography

coded with eight bits. This may be termed octopartite encryption and it is
the basis of the EBCDIC (extended BCD Interchange code) used in IBM
mainframe computers.

Today, the monoalphabetic Polybius cipher is used mostly to convert
letter sequences to numeric sequences. Section 4 discusses a polyalphabetic
version of this ancient cipher.

4 Polybius’s Polyalphabetic Cipher

The simple Polybius monoalphabetic cipher of Section 3 can be extended to a
polyalphabetic cipher. A long key is chosen (normally text from a book) and
is encrypted by the Polybius square of Figure 3a. The result is a sequence of
two-digit numbers.

The plaintext is also encrypted by the same square, resulting in another
sequence of 2-digit numbers. The two sequences are combined by adding
corresponding numbers, but the addition is done without propagating any
carries. Assuming that the plaintext is POLYBIUS_ CIPHER, and the key is
the text happy families are all alike..., the two sequences and their
(carryless) sum are

Plaintext 350 34 31 54 12 24 45 43 13 24 35 23 15 42
Key 23 11 35 35 54 21 11 32 24 31 24 15 43 11

Ciphertext 58 45 66 89 66 45 56 75 37 55 59 38 58 53

The digits of the two numbers added are in the interval [1,5], so each digit
of the sum is in the interval [2,10], where 10 is written as a single 0.

Decrypting is done by subtracting the key from the ciphertext. In our
example, this operation is summarized by the three lines

Ciphertext 58 45 66 89 66 45 56 75 37 55 59 38 58 53
Key 23 11 35 35 54 21 11 32 24 31 24 15 43 11

Plaintext 35 34 31 54 12 24 45 43 13 24 35 23 15 42

The carryless addition simplifies the subtraction. Each digit of the ciphertext
is greater than the corresponding digit of the key, except for cipherdigits that
are zero. If a cipherdigit is zero, it should be replaced by the number 10 before
subtraction.

Exercise 3: In a 6 x6 Polybius square, each digit is in the interval [1,6].
When two digits are added, the sum is in the interval [2,12], where 10, 11,
and 12 are considered 0, 1, and 2, respectively. Is it still possible to add two
numbers without propagating carries?

Even though this cipher employs numbers, it is similar to other polyal-
phabetic ciphers because the numbers are related to letters and the letter
frequencies are reflected in the numbers. The resulting ciphertext can be
broken with methods similar to those used to break other polyalphabetic

5 The One-Time Pad 7

ciphers. The polyalphabetic Polybius cipher is similar to the one-time pad
of Section 5 and can provide absolute security if the key is as long as the
plaintext, is random, and is used only once.

Polybius had fared better than most of the leaders and intellectuals that
Rome had taken from Achaea. While a prisoner, he met the head of one
of Rome’s great families, Scipio Aemilianus. Scipio found Polybius good
company and exchanged books with him. He took Polybius with him on
military campaigns, and he introduced Polybius to Rome’s high society.
—From [Toynbee 52]

5 The One-Time Pad

The encryption methods discussed so far start with a plaintext that’s a string
of characters (letters, digits, and punctuation marks) from a certain alphabet
and produce ciphertext whose symbols are drawn from the same alphabet.
Modern cryptography is based on computers which use binary numbers, so
current encryption techniques assume the binary alphabet whose symbols are
0 and 1. We start with the one-time pad (also called the Vernam cipher), a
simple, secure, but not always practical algorithm for encrypting binary data.
The encryption key of the one-time pad is a long, random binary string that’s
used just once. The key is distributed to all the parties authorized to use the
cipher, and it employs the exclusive-OR (XOR) logical operation to encrypt
and decrypt binary data.

The rule of encryption is to perform the XOR of the next bit of the
plaintext and the next bit of the key. The result is the next bit of the
ciphertext. Similarly, decrypting the next bit of ciphertext is done by XORing
it with the next bit of the key. The result is the next bit of the plaintext.

This interesting and important cipher was developed by Gilbert S. Ver-
nam in 1917, and United States patent #1310719 was issued to him in 1918.

The vernam cipher is secure because the resulting ciphertext is a random
string of bits. It does not contain any patterns from the plaintext and does
not provide the codebreaker with any clues to the plaintext. However, the
key has to be long (at least as long as the plaintext) and it should be used
just once (the reason for that is explained below). Thus, the one-time pad
can be used only in applications where long keys can be distributed securely
and often.

It is easy to show that if the keystream of a Vernam cipher is a random
sequence of bits, then the ciphertext is random even if the plaintext isn’t
random. We denote the ith bits of the plaintext, the keystream, and the
ciphertext by d;, k;, and ¢; = d; ® k;, respectively. We assume that the
keystream is random, i.e., P(k; = 0) = 0.5 and P(k; = 1) = 0.5. The
plaintext isn’t random, so we assume that P(d; = 0) = p, which implies
P(d; = 1) = 1— p. Table 4 summarizes the four possible cases of d; and
k; and their probabilities. The values of ¢; and their probabilities for those
cases are also listed. It is easy to see from the table that the probability of ¢;

8 Elements Of Cryptography

being 0 is P(¢; =0) = p/2+ (1 —p)/2 = 1/2, and similarly P(¢; =1) = 1/2.
The ciphertext of the Vernam cipher is therefore random, which makes this
simple method unbreakable.

d; P(d;) ki P(k;) Ci P(ci)
0 p 0 1/2 0 p/2
0 p 1 1)/2 1 p/2
1 1-p 0 1/2 1 (1-p)/2
1 1-p 112 0 (1-p)/2

Table 4: Truth Table of a Vernam Cipher.

Exercise 4: In principle, the Vernam cipher can be broken by a brute force
approach where every key is tried. This approach is impractical because
the key tends to be long, resulting in an immense keyspace. Also, each
plaintext produced by such a search will have to be checked. Most such
plaintexts would look random and would be immediately ignored, but some
may appear meaningful and may have to be carefully examined. However, the
chance that a wrong key would produce meaningful plaintext is very small.
Advance arguments to support this claim.

In order to achieve good security, the one-time pad should be used just
once. The Venona project [NSA-venona 04] run by the United States Army’s
signal intelligence service during 1943-1980 is a good, practical example of
a case where this rule was broken, with significant results. Using the one-
time pad more than once breaks one of the cherished rules of cryptography,
namely, to avoid repetitions, and may provide enough clues to a would-be
codebreaker to reconstruct the random key and use it to decipher messages.
Here is how such deciphering can be done.

We assume that two ciphertexts are given and it is known or suspected
that they were encrypted with the same random keystream. We select a
short, common word, such as the. We can assume that the first message
contains some occurrences of this word, so we start by assuming that the
entire first message consists of copies of this word. We then figure out the
random keystream needed to encrypt a series of the into the first ciphertext,
and try to decrypt the second ciphertext with this key (a key that we can
consider the first guess). Any part of this first-guess key that corresponds to
an actual the in the first message would decrypt a small part of the second
message correctly. Applying the first-guess key to the second ciphertext may
therefore result in plaintext with some meaningful words and fragments.

The next step is to guess how to expand those fragments in the second
plaintext and use the improved plaintext to produce a second-guess key. This
key is then applied to the first ciphertext to produce a first plaintext that has
some recognizable words and fragments and is therefore a little better than
just a series of the. Using our knowledge of the language, we can expand
those fragments and use the improved plaintext to construct a third-guess
key.

6 The Key Distribution Problem 9

After a few iterations, both plaintexts may have so much recognizable
material that the rest can be guessed with more certainty, thereby leading to
complete decipherment.

Even though it offers absolute security, the one-time pad is generally
impractical, because the one-time pads have to be generated and distributed
safely to every member of an organization that may be very large (such as
an army division). This method can be used only in a limited number of
applications, such as exchanging top-secret messages between a government
and its ambassador abroad or between world leaders.

(In principle, the one-time pad can be used, or rather abused, in cases
where the sender wants to remain unaccountable. Once an encrypted message
A is decrypted to plaintext B and the one-time pad is destroyed, there is no
way to redecrypt A and thus to associate it with B. The sender may deny
sending B and may claim that decrypting A had to result in something else.)

In practice, stream ciphers are used instead of the Vernam cipher. Stream
ciphers employ keystreams that are pseudorandom bit strings. Such a bit
string is generated by repeatedly applying a recursive relation, so it is deter-
ministic and therefore not truly random. Still, if a sequence of n pseudoran-
dom bits does not repeat itself, it can be used as the keystream for a stream
cipher with relative safety.

6 The Key Distribution Problem

The problem of key distribution has already been mentioned. Kerckhoffs’
principle (Section 2) states that the security of a cryptographic method de-
pends on the encryption key, not the encryption algorithm, being kept se-
cret. In cases where a large group of users is authorized to send and receive
encrypted messages, each person in the group has to have the key and is re-
sponsible for keeping it secret. The larger the group, the greater the chance
that the key will fall into the wrong hands. Also, encryption keys have to
be changed from time to time, and distributing the new key securely to a
large group of users (especially under difficult conditions, such as a war) is a
delicate and complex task.

For many years it was strongly believed that the key distribution problem
has no satisfactory solution, but an ideal, simple solution was found in the
1970s and has since become the foundation upon which much of modern
cryptography is based.

The following narrative illustrates the nature of the solution. Suppose
that Alice wants to send Bob a secure message. She places the message in a
strong box, locks it with a padlock, and mails it to Bob. Bob receives the box
safely, but then realizes that he does not have the key to the padlock. This
is a simplified version of the key distribution problem, and it has a simple,
unexpected solution. Bob simply adds another padlock to the box and mails
it back to Alice. Alice removes her padlock and mails the box to Bob, who
removes his lock, opens the box, and reads the message.

10 Elements Of Cryptography

Exercise 5: (Easy.) When restricted to physical boxes and keys, this prob-
lem has a simpler solution. Once Bob verifies receipt of the box, Alice can
mail him the key under a separate envelope. Explain why this solution can-
not be applied to the case where the messages and keys are files sent between
computers.

The cryptographic equivalent is similar. We start with a similar, albeit
unsatisfactory, approach. Imagine a group of users of a particular encryption
algorithm, where each user has a private key that is unknown to anyone
else. Also imagine a user, Alice, who wants to send an encrypted message
to another user, Bob. Alice encrypts the message with her private key (a
key unknown to Bob) and sends it. Bob receives the encrypted message,
encrypts it again, with his key, and sends the doubly-encrypted message
back to Alice. Alice now decrypts the message with her key, but the message
is still encrypted with Bob’s key. Alice sends the message again to Bob, who
decrypts it with his key and can read it.

The trouble with this simple scenario is that most ciphers must obey
the LIFO (last in first out) rule. The last cipher used to encrypt a doubly-
encrypted message must be the first one used to decipher it. This is easy to
see in the case of a monoalphabetic cipher. Suppose that Alice’s key replaces
D with P and L with X and Bob’s key replaces P with L. After encrypting a
message twice, first with Alice’s key and then with Bob’s key, any D in the
message becomes an L. However, when Alice’s key is used to decipher the L,
it replaces it with X. When Bob’s key is used to decipher the X, it replaces it
with something different from the original D. The same LIFO rule applies to
most polyalphabetic cipher.

7 Diffie-Hellman—Merkle Keys

However, there is a way out, a discovery made in 1976 by Whitfield Diffie,
Martin Hellman, and Ralph Merkle. Their revolutionary Diffie-Hellman—
Merkle key exchange method makes it possible to securely exchange a cryp-
tographic key (or any piece of data) over an unsecured channel. It involves
the concept of a one-way function, a function that either does not have an
inverse or whose inverse is not unique. Most functions have simple inverses.
The inverse of the exponential function y = e*, for example, is the natural
logarithm x = log,y. However, modular arithmetic provides an example
of a simple and useful one-way function. The value of the modulo function
f(z) = x mod p is the remainder of the integer division z + p and is an
integer in the interval [0,p — 1]. Table 5 illustrates the one-way nature of
modular arithmetic by listing values of 3* mod 7 for 10 values of x. It is easy
to see, for example, that the number 3 is the value of 3 mod 7 for z = 1
and & = 7. The point is that the same number is the value of this function
for infinitely more values of z, effectively making it impossible to reverse this
simple function.

7 Diffie—Hellman—Merkle Keys 11

x 1 2 3 4) 6 7 8 9 10
37 39 27 81 243 729 2187 6561 19683 59049
3% mod 7 3 2 6 4 5 1 3 2 6 4

Table 5: Ten Values of 3% mod 7.

Exercise 6: Find some real-world processes that are one-way either in prin-
ciple or in practice.

Based on this interesting property of modular arithmetic, the three re-
searchers came up with an original and unusual scheme for distributing keys.
The process is summarized in Figure 6. The process requires the modular
function L* mod P, whose two parameters P (a large prime, about 512 bits)
and L should satisfy L < P. The two parties have to select values for L and
P, but these values don’t have to be secret.

Alice Bob
1 Selects a secret Selects a secret
number a, say, 4 number b, say, 7
2 Computes Computes
a=5"mod13=624mod13=1 [=5"mod 13 = 78125 mod 13 =8
and sends o to Bob and sends (8 to Alice
3 Computes the key by Computes the key by
6% mod 13 = 4096 mod 13 =1 a®mod 13=1mod 13 =1

Notice that knowledge of «, §, and the function is not enough to com-
pute the key. Either a or b is needed, but these are kept secret.

Figure 6: Three Steps to Compute the Same Key.

Careful study of Figure 6 shows that even if the messages exchanged
between Alice and Bob are intercepted, and even if the values L = 5 and
P = 13 that they use are known, the key still cannot be derived, since the
values of either a or b are also needed, but both are kept secret by the two
parties.

This breakthrough has proved that cryptographic keys can be securely
exchanged through unsecured channels, and users no longer have to meet
personally to agree on keys or to trust couriers to deliver them. However,
the Diffie-Hellman—Merkle key exchange method described in Figure 6 is
inefficient. In the ideal case, where both users are online at the same time,
they can go through the process of Figure 6 (select the secret numbers a and
b, compute and exchange the values of o and (3, and calculate the key) in
just a few minutes. If they cannot be online at the same time (for example,

12 Elements Of Cryptography

if they live in very different time zones), then the process of determining the
key may take a day or longer.

Exercise 7: Show why the steps of Figure 6 produce the same key for Alice
and for Bob.

Exercise 8: Why should P be large and why should L be less than P?

The following analogy may explain why a one-way function is needed
to solve the key distribution problem. Imagine that Bob and Alice want to
agree on a certain paint color and keep it secret. Each starts with a container
that has one liter of paint of a certain color, say, R. Each adds one liter of
paint of a secret color. Bob may add a liter of paint of color G and Alice
may add a liter of color B. Neither knows what color was added by the other
one. They then exchange the containers (which may be intercepted and
examined). When each gets the other’s container, each adds another liter of
his or her secret paint. A little thinking shows that the two containers end
up with paint of the same color. Intercepting and examining the containers
on their ways is fruitless, because one cannot unmix paints. Mixing paints is
a one-way operation.

8 Public-Key Cryptography

In 1975, a little after the Diffie-Hellman—Merkle key exchange was published,
Whitfield Diffie came up with the concept of an asymmetric key. Tradition-
ally, ciphers use symmetric keys. The same key is used to encrypt and decrypt
a message. Decrypting is the exact reverse of encrypting. Cryptography with
an asymmetric key requires two keys, one for encrypting and the other for
decrypting. This seems a trivial concept but is in fact revolutionary. In an
asymmetric cipher, there is no need to distribute keys or to compute them
by exchanging data as in the Diffie-Hellman—Merkle key exchange scheme.
Alice could decide on two keys for her secret messages, make the encryption
key public, and keep the decryption key secret (this is her private key). Bob
could then use Alice’s public key to encrypt messages and send them to Alice.
Anyone intercepting such a message would not be able to decipher it because
this requires the secret decryption key that only Alice knows.

Whitfield Diffie took cryptography out of the hands of the spooks and made
privacy possible in the digital age—by inventing the most revolutionary
concept in encryption since the Renaissance.

— Wired, November 1994

9 RSA Cryptography 13

9 RSA Cryptography

It was clear to Diffie that a cipher based on an asymmetric key would be
the ideal solution to the troublesome problem of key distribution and would
completely revolutionize cryptography. Unfortunately, he was unable to ac-
tually come up with such a cipher. The first, simple, practical, and secure
public-key cipher, known today as RSA cryptography, was finally developed
in 1977 by Ronald Rivest, Adi Shamir, and Leonard Adleman. RSA was
a triumphal achievement, an achievement based on the properties of prime
numbers.

A prime number, as most know, is a number with no divisors. More
accurately, it is a positive integer N whose only divisors are 1 and itself.
(Nonprime integers are called composites.) For generations, prime numbers
and their properties (the mathematical discipline of number theory) were of
interest to mathematicians only and had no practical applications whatso-
ever. RSA cryptography found an interesting, original, and very practical
application for these numbers. This application relies on the most impor-
tant property of prime numbers, the property that justifies the name prime.
Any positive integer can be represented as the product of prime numbers (its
prime factors) in one way only. In other words, any integer has a unique
prime factorization. For example, the number 65,535 can be represented as
the product of integers in many ways, but there is only one set of primes,
namely 3, 5, 17, and 257, whose product equals 65,535.

The main idea behind RSA is to choose two large primes p and ¢ that
together constitute the private key. The public key N is their product N =
pXgq (naturally, it is a composite). The important (and surprising) point is
that multiplying large integers is a one-way function! It is relatively easy to
multiply integers, even very large ones, but it is practically impossible, or at
least extremely time consuming, to find the prime factors of a large integer,
with hundreds of digits. Today, after millennia of research (primes have been
known to the ancients), no efficient method for factoring numbers has been
discovered. All existing factoring algorithms are slow and may take years to
factor an integer consisting of a few hundred decimal digits. The factoring
challenge that used to be offered (with prizes) by RSA laboratories until 2007
[RSA 10] testifies to the accuracy of this statement.

To summarize, we know that the public key N has a unique prime fac-
torization and that its prime factors constitute the private key. However,
if N is large enough, we will not be able to factor it, even with the fastest
computers, which makes RSA a secure cipher. Having said that, no one has
proved that a fast factorization method does not exist. It is not inconceiv-
able that someone will come up with such an algorithm that would render
RSA (impregnable for more than two decades) useless and would stimulate
researchers to discover a different public-key cipher.

(Recent declassifying of secret British documents suggests that a cipher
very similar to RSA had been developed by James Ellis and his colleagues
starting in 1969. They worked for the British government communications
headquarters, GCHQ, and so had to keep their work secret. See [Singh 99].

14 Elements Of Cryptography

James Ellis, a mathematician and computer scientist, joined GCHQ (then
at Eastcote, West London) in 1952, having previously worked for the Ad-
miralty.

—From http://www.gchq.gov.uk/history/heroes.html#ellis

The following is a comment made by an anonymous reviewer: “Another
reason why the GCHQ work was never applied was because no one there
believed it to be useful. It took private industry to recognize its worth.
In other words, it wasn’t just secrecy that prevented its use until it was
reinvented in the open literature.”)

And now, to the details of RSA. These are deceptively simple, but the
use of large numbers requires special arithmetic routines to be implemented
and carefully debugged. We assume that Alice has selected two large primes
p and q as her private key. She has to compute and publish two more numbers
as her public key. They are N = p- g and e. The latter can be any integer,
but it should be relatively prime to (p — 1)(¢ — 1), a number denoted by ¢.
Notice that N must be unique (if Joe has selected the same N as his public
key, then he knows the values of p and ¢), but e does not have to be. To
encrypt a message M (an integer) intended for Alice, Bob gets her public
key (N and e), computes C = M mod N, and sends C to Alice through
an open communications channel. To decrypt the message, Alice starts by
computing the decryption key d from exd = 1 mod ¢, then uses d to compute
M = C?%mod N.

The security of the encrypted message depends on the one-way nature
of the modulo function. Since the encrypted message C' is M© mod N, and
since both N and e are public, the message can be decrypted by inverting the
modulo function. However, as mentioned earlier, this function is impossible
to invert (or, rather has too many inverses) for large values of N. It is im-
portant to understand that polyalphabetic ciphers, block ciphers, and stream
ciphers can be as secure as RSA, are easier to implement, and are faster to
execute, but they are symmetric and therefore suffer from the problem of key
distribution.

The use of large numbers requires special routines for the arithmetic
operations. Specifically, the operation M€ may be problematic, since M may
be a large number. One way to simplify this operation is to break the message
M up into small segments. Another option is to break up e into a sum of
terms and use each term separately. For example, if e =7 =14 2 + 4, then
the computation becomes

M¢mod N = [(M* mod N)x (M? mod N)x (M* mod N)] mod N.

Here is an example of RSA encryption and decryption using small pa-
rameters. We select the two small primes p = 137 and ¢ = 191 as our private
key and compute N = p-q¢ = 26,167 and ¢ = (p — 1)(¢ — 1) = 25,840.
We also select e = 3 and, using the extended Euclidean algorithm, find a
value d = 17,227 such that e-d = 1 mod ¢. The public key is the pair
(N,e) = (26167,3), and the decryption key is d = 17,227. For the plain-
text M, we select the 4-character string abcd whose ASCII codes are 97,

9 RSA Cryptography 15
98, 99, and 100, or in binary 01100001, 01100010, 01100011, and 01100100.
These are grouped into the two 16-bit blocks 0110000101100010, = 24,930
and 0110001101100100¢ = 25,444. Encrypting the blocks is done by

C = M*® mod N = 24,930° mod 26,167 = 23,226,
C = M° mod N = 25,444 mod 26,167 = 23,081.

Decrypting the two blocks C' of ciphertext is done by

C% mod N = 23,226'72" mod 26,167 = 24,930,
C?%mod N = 23,08117%27 mod 26,167 = 25,444.

RSA in Two Lines of Perl

Adam Back (adam@cypherspace.org) has created an implementation of
RSA in just two lines of Perl. It uses dc, an arbitrary-precision arithmetic
package that ships with most UNIX systems. Here’s the Perl code:
print pack"Cx",split/\D+/, ‘echo "16iII*o\U@{$/=$z;

[(pop,pop,unpack"Hx*" <>
)1}\EsMsKsNO [1N*11K [d2%Sa2/d0<X+d*1MLa"~*1N%0] dsX
x++1M1N/dsM0<J]dsJxp"|dc®

The security of RSA depends on the infeasibility of factoring large num-
bers, and this paragraph shows that this problem is equivalent to keeping the
private quantity d secret. It turns out that knowledge of d can lead to an
efficient factoring of N in the following way. We know that e-d = 1 mod ¢,
which implies that there is an integer k such that e-d — 1 = k¢. From this it
follows (by one of the many theorems proved by the great Leonhard Euler)
that a®®~! = 1 mod ¢ for all integers a in the interval [0,n — 1]. If we now
use the notation ed — 1 = 2°¢, where ¢ is odd, then it can be shown that there
is an integer b € [1, s] such that a2’ 't # +1 mod N and a2"* = 1 mod N for
at least half of the integers a. We therefore conclude that if such a and b are
known, then the greatest common divisor of a2 't — 1 and N is a factor of
N. Factoring N may therefore be done by selecting a random integer a in the
proper range and looking for an integer b € [1, s] that satisfies the property
above. With the computing power currently available, this can be achieved
quickly and easily.

The value of parameter e is also important. Encryption requires the
computation of M€, so small e implies faster encryption. However, small
values of e may also lead to a weaker ciphertext, as the following example
illustrates. Suppose that Alice wants to encrypt a message M and send it to
three recipients whose public keys are N1, No, and N3. Suppose also that all
three recipients use the same small e, say, e = 3 as in our example. Alice can
then compute C; = M? mod N; for i = 1,2, 3 and send the three ciphertexts
C; to their recipients. If Eve intercepts the ciphertexts, however, she may

16 Elements Of Cryptography

have an easy way to decrypt them. She may use Gauss’s algorithm to solve
the three modular equations x = C; mod N; for ¢ = 1,2,3. The solution x
will be in the interval [0, Ny NoN3). We know that M3 < N; Ny N3, so from
the Chinese remainder theorem we conclude that z must equal M?3. Hence,
Eve can decrypt the message by computing ¢/z. This vulnerability can be
avoided by using large values for e or, in cases where the same message is
sent to several recipients, by appending a random string to each message in
order to make the plaintexts different.

The Chinese remainder theorem states that if the integers n; through
ny are pairwise relatively prime, then the system of equations

r=a; modny, x=aymodns,..., x=amodng,

has a unique solution modulo the quantity n = nins ... ng.

Gauss’s theorem states that the solution to the system of equations in
the Chinese remainder theorem can be expressed as x = Zle a; N; M; mod n,
where N; = n/n; and M; = Nif1 mod n;.

Another potential vulnerability of RSA is its multiplicative property. We
denote by Zy the set of integers modulo N, i.e., {0,1,...,N — 1}. We
similarly denote by Z% the set of integers {a € Z,|gcd(a, N) = 1}. In the
special case where N is prime, Z5 = {1,2,..., N —1}. It can be shown that
Zn is closed under multiplication and constitutes a multiplicative group.

Assume that C; = Mf mod N for i = 1,2 (i.e., two messages use the
same N). This implies that (M;Ms)¢ = C;C; mod N. The RSA multiplica-
tive property can now be stated as follows. The ciphertext C' that corresponds
to the plaintext M = M;Ms mod N is C = C1C5 mod N. An attack by Eve
on messages decrypted by Alice is possible if Alice has a certain amount of
trust in Eve and is willing to encrypt certain messages for her. Suppose that
Eve wants to decrypt a message C = M*° mod N that she has intercepted
on its way to Alice. Eve can select a random integer x € Z3;, compute
C' = C-X°®mod N, and ask Alice to encrypt C’. If Alice complies, she will
compute M’ = (C")¥ mod N and send M’ to Eve, who can then use the
relation

M' = (C")¥mod N = C4X¢)% = M-X mod N

to compute M = M’ X! mod N.

The cycling attack poses another threat to RSA security. Given a plain-
text M in the interval [0, N — 1], it is encrypted to C = M° mod N. The
ciphertext C' is therefore also an integer in the same interval. Thus, M and
C are permutations of each other. Because of this, there must be a positive
integer k such that C®" mod N = C and C¢ ' mod N = M. The cycling
attack uses the public key (IV,e) and an intercepted ciphertext C' to com-
pute the sequence C¢ mod N, €< mod n, €<’ mod N, and so on, until one
of those numbers, <" mod n, equals C. This reveals the value of k and
makes it possible to decrypt C' by computing M = C<" ™" mod N. Special
software has to be used in these calculations, since the quantities ce* grow
very quickly.

10 SSL: Secure Socket Layer 17

Regardless of the key used, some plaintexts are encrypted by RSA to
themselves. Thus, M°¢ mod N may sometimes equal M. Such messages are
referred to as unconcealed and are rare. Nevertheless, RSA encryption soft-
ware should compare every ciphertext C' to its plaintext M and alert the user
when an unconcealed message is detected.

The various problems mentioned here are eliminated by the Public-Key
Cryptography Standards (PKCS) developed by RSA Security. The interested
reader should consult especially PKCS #1 [PKCS 04].

‘ RSA stands for “resists serious attack.” ‘

10 SSL: Secure Socket Layer

The following is a dramatization. Alice is hunched over her computer, brows-
ing the Internet. Her wedding to Bob is in a week, and she is still looking for
a wedding dress. She has just found a beautiful cream-colored layered chiffon
dress that is exactly her size (36-24-36) and is within her price range. It is
sold online by ChiffonDresses.com. Alice takes out her credit card, ready
to send her number and order the dress, but her hand suddenly freezes in
midair. She has just remembered that important transactions on the Internet
require special security. She checks the bottom-left corner of her screen and
yes, there is a small lock, similar to the one shown here, that assures

her that the transaction she is about to perform is secure (the URL i
also changes to https instead of http). She can order her dress with .
confidence, being reasonably certain that no one can intercept and

steal her credit card number.

This scenario is common. Most of us perform sensitive transactions
over the Internet, and we expect them to be private. Online purchasing is
one example. Online banking, where a bank account can be reviewed by a
customer after a PIN is sent, is another.

This section describes the SSL (secure socket layer) protocol employed
by all major Web browsers, as well as by other software, to secure messages
sent over the Internet. First, a disclaimer. SSL provides secure communi-
cations but cannot guarantee total security. A credit card number or other
sensitive information sent over the Internet by the SSL protocol is encrypted
and cannot be compromised while in transit. When it arrives at its destina-
tion, however, the security provided by SSL ceases and the information may
become vulnerable. A dishonest employee may steal it. An insecure data
base may be taken over by a hacker and its content copied and misused. The
conclusion is simple. Don’t trust SSL all the way. Trust it only for commu-
nicating your sensitive data. If there is any reason to doubt the integrity of
the receiver, don’t send the data. The Better Business Bureau [bbbseal 05]
is one source that can be employed to evaluate the integrity of a commercial
organization.

SSL was developed at Netscape Communications, Inc. in 1994 in re-
sponse to users’ demands for secure Internet communications. It has since

18 Elements Of Cryptography

evolved and been strengthened considerably by several organizations. Today,
the most-common SSL protocol is TLS (transport layer security), and there
are other versions of SSL, such as an open version (openssl) and a version for
wireless communications (WTLS).

Two recommended references are [Rescorla 00] and [Thomas 00].

As before, we assume two protagonists, Alice and Bob. Alice plays the
part of a consumer trying to purchase an item online. Bob is the seller. The
SSL protocol proceeds in the following steps:

1. An authentication protocol is executed by Alice to make sure that
Bob is really who he claims to be. Bob’s public key is sent to Alice as part of
this protocol. The protocol is based on the public-key concept and employs
RSA encryption and also a trusted third party.

2. Alice selects a random key for encrypting her sensitive information.
This key is encrypted with Bob’s public key and is sent to Bob.

3. Alice uses this key to encrypt her sensitive data with a fast, strong
encryption algorithm such as DES or AES. Bob uses the same key and al-
gorithm to decrypt the data. Several messages can be exchanged this way
between the two parties in complete privacy.

It is obvious that step 1 is the most important part of SSL. It pro-
vides secure communications over an insecure channel. This step is complex
and slow, which is why it is used only for communicating a short (normally
128-bit) key. The sensitive data itself is encrypted with a fast cipher. This
step depends on a basic property of the RSA encryption algorithm. Data
encrypted with a public key can be decrypted only with the corresponding
private key, but data can also be encrypted with the private key and de-
crypted only with the corresponding public key. With this in mind, we start
with a simple authentication protocol. (We use the notation “<message>
key” to indicate a message encrypted with a certain key.) If Alice wants to
authenticate Bob, she can send him a short message and have Bob encrypt
it with his private key and return the result.

Alice — Bob: Authenticate this.
Bob — Alice: <Authenticate this> Bob’s private key.

Alice now decrypts this result with Bob’s public key. If the result
matches her original message, she has authenticated Bob. This simple pro-
tocol has two drawbacks, as follows:

1. Alice must know Bob’s public key. If Alice and Bob are members of a
group—say, both are scientists and have been communicating by email for a
while—then their public keys are known to all the group’s members because
they are included in each email message. However, if Bob is an organization,
such as a new online store, Alice may not have its public key. Even if Bob
sends his public key to Alice, she cannot be sure that it really came from
Bob’s store; it could have been sent by Eve pretending to be Bob and trying
to steal Alice’s card number.

2. Encrypting a message with your private key and sending it to Alice
leads to weak security. Remember that Alice has the original message. If she
also has its private-key encryption, she may use both to pretend to be Bob.

CUp e

10 SSL: Secure Socket Layer 19

Our simple protocol needs improvements. The first one eliminates the
need to encrypt Alice’s message with Bob’s private key. Instead, Bob selects
a new message, computes its message digest, encrypts the digest with his
private key, and sends the (plain) message and the encrypted digest to Alice.

Alice — Bob: Looking for Bob.
Bob — Alice: I’m Bob, <Digest[I’m Bobl> Bob’s private key.

The digest of a message is a function of the message with the following
useful properties: (1) it is practically infeasible to compute the original mes-
sage from its digest and (2) the chance of finding another message that will
produce the same digest is extremely small. In practice, a digest is a hash
function that hashes text of any length to a small (typically 128-bit) number.
The SHA-1 hash function is currently popular as a digest generator. It has
replaced the (older and somewhat similar) MD5 function, which is described
below.

With this protocol, Bob still has to send a message (I’m Bob) and the
encrypted version of its digest (this is known as a digital signature), but
now he can select the message, which gives him more protection from an
unscrupulous Alice. The protocol constitutes authentication because Alice
has a plain message and the private-key encryption of its digest. She can
decrypt the digest, digest the message, and compare the two digests. There
is still the problem of having Bob’s public key and being certain that it is
Bob’s, and no one else’s public key. Here is what may happen if Eve pretends
to be Bob.

Alice — Bob: I’m looking for Bob.

Eve — Alice: I'm Bob, Eve’s-public-key.

Alice — Bob: Are you?

Eve — Alice: 0f course I am, <Digest[0f course I am]> Eve’s pri-
vate key.

The solution to this dilemma involves a third, trusted party, an escrow,
that issues certificates. When Bob opens his store, he applies for a certificate
from an escrow. The escrow company sends an inspector to check Bob and
his facilities and to look at their operations and verify their identification. If
all is satisfactory, a certificate is issued, but it has an expiration date and
has to be renewed periodically. Admittedly, this solution is not elegant. In
principle, we would like a protocol that involves just the two communicating
parties, but in practice a third party is needed. A certificate contains the
following fields Figure 7:

The name of the certificate issuer (the escrow)

A digital signature of the certificate issuer

The name of the subject, Bob (the entity for which the certificate is issued)
The subject’s public key

The certificate’s expiration date

Figure 8 is a detailed listing of the fields of a typical certificate. The
issuer part and the subject part have the fields C (two-letter international

20 Elements Of Cryptography

Certificate Viewer

— Certificate Properties

|ssuer: First Data Digital Certificates Inc. Certification Autharity First Data
Digital Certificates Inc. US

Expiration: “Wed, Jul 3, 2019

Fingerprint: CEAD:ZV:EC: 746544201 465906024 36:49:69:00

e

Figure 7: A Certificate.

country code), ST (state or province), L (locality), 0 (organization name),
and QU (organizational unit).

Many organizations apply for certificates, so there must be many certifi-
cate issuers. Alice doesn’t know all of them. She can be expected to know
only a few. There is therefore a need for root certificate issuers. Every lead-
ing Web browser comes with a list of root certificates preinstalled. A root
certificate (also known as a CA or certificate authority) belongs to a trusted
authority that can issue certificates to other, smaller certificate issuers after
checking each to make sure it can be trusted. The encryption preferences (or
security preferences) menu of the browser can display the list of CA certifi-
cates it knows. If the certificate has expired, the browser displays a dialog
box similar to Figure 9 that gives the user a choice to continue the sensitive
web session or terminate it.

e Unable to establish a secure connection to
(Fg' ‘www.fortify.net'. There is a problem with the security
certificate from that site (The identity certificate has
expired.)

The information you view and send will be readable to
others while in transit, and it may not go to the intended
party.

Continue loading this page?

Figure 9: An Expired Certificate.

With certificates, the SSL protocol proceeds as follows:

10 SSL: Secure Socket Layer

Certificate:
Data:
Version: 1 (0x0)
Serial Number: 0 (0x0)
Signature Algorithm: md5WithRSAEncryption
Issuer:
Cc=Us,
ST=NC,
L=Cary,
0=My New QOutfit, Inc.,
0U=Sales,
CN=ntbox.somewhere.com/Email=me@somewhere.com

Validity
Not Before: Oct 7 04:19:24 1999 GMT
Not After : Oct 6 04:19:24 2000 GMT

Subject:
Cc=Us,
ST=NC,
L=Cary,
0=My New Outfit, Inc.,
0U=Sales,
CN=ntbox.somewhere.com/Email=me@somewhere.com

Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):

00:c9:dd:68:31:ca:1c:ab:74:7c:21:a8:de:71:22:
25:ec:48:dd:54:34:b5:b8:be:ad:96:cf:56:ad:a2:
7d:9£:81:d5:62:3a:£1:¢c2:03:4d:8d:73:a3:cb:ac:
£8:f4:d7:95:0d:3f:9e:2¢c:8f:5£:d3:40:91:09:79:
21:c4:8b:£6:0a:3b:2c:c7:42:3d:2c:c3:5b:17:68:
58:2e:47:42:1e:24:41:1d:59:ba:57:0c:26:63:2e:
46:55:72:eb:1e:61:6c:6e:c2:73:ad:e0:68:ed:70:
29:43:73:69:05:¢3:9f:64:54:d6:12:11:£3:10:38:
42:8:54:82:23:£7:20:26:03

Exponent: 65537 (0x10001)

Signature Algorithm: md5WithRSAEncryption

4f:27:7b:c5:£1:52:33:bc:£8:50:19:09:98:e6:3b:08:9b:
Tb:24:£8:80:10:18:24:25:6a:39:b1:75:35:05:64:54:ec:
e4:c1:88:fb:7£:72:d1:32:f4:8c:0d4:08:28:7e:7e:ab:5f:
9c:cc:b4:5¢c:13:f0:71:a8:d0:56:58:11:e6:b8:35:0a:01:
72:7f:e8:a7:06:82:2a:52:5d:05:29:d8:48:ba:26:8e:ed:
38:86:b8:62:2e:9a:f1:0e:99:3c:20:76:57:0£:70:4b:ab:
82:2a:90:0c:1£:18:05:¢3:98:b8:20:9e:e5:64:02:0d4:01:

c4d:4de

Figure 8: A Detailed Certificate.

21

22 Elements Of Cryptography

Alice — Bob: I’m looking for Bob.

Bob — Alice: I’m Bob, Bob’s certificate.

Alice — Bob: Are you really?

Bob — Alice: Definitely, <Digest[Definitely]> Bob’s private key.

It is the certificate that provides Alice (or, in practice, her Web browser)
with Bob’s public key. To verify that this is really Bob’s certificate, Alice’s
browser reads the certificate’s issuer name (say, Y) and signature from the
certificate. The digital signature contains the issuer’s own certificate, which
has been issued by one of the root issuers (call it X). The browser has a list of
the root certificate issuers, and it communicates with root issuer X to verify
the certificate of issuer Y. This is a slow, tedious process, so it is used as little
as possible.

Eve may try to impersonate Bob in this protocol, so we have to keep her
in mind. She can execute step 2 in the protocol, because she may have Bob’s
certificate from a past transaction with him, but she cannot execute step 4
because she doesn’t have Bob’s private key.

The protocol above is the first and most important step in the complete,
three-step SSL protocol. Once it has been executed, Alice is confident that
she is dealing with Bob and that she has his public key. In the second step,
Alice (or rather her browser) selects a random number to serve as a secret
key and sends it to Bob, encrypted with his public key, as a short message.
Only Bob can decrypt this message, but again we have to place ourselves in
Eve’s shoes. What can she do? She cannot decrypt this short message, but
she can damage it on its way to Bob. This may be useful to Eve, so the SSL
protocol must have a way for Bob to identify damaged messages. One way of
verifying a message is to append to it a message authentication code (MAC)
that consists of a digest of the message and of the secret key. Eve doesn’t
know the secret key, so she cannot generate the MAC. Here is the revised
protocol

Alice — Bob: Is this Bob?

Bob — Alice: I’m Bob, Bob’s certificate.

Alice — Bob: Are you really?

Bob — Alice: Definitely, <Digest[Definitely]> Bob’s private key.
Alice — Bob: You have been authenticated.

Alice — Bob: Here is our new key <secret-key> Bob’s public key.
Alice computes: MAC=Digest[My CC # is 12345, secret-key].
Alice — Bob: <My CC # is 12345, MAC> secret-key.

Bob knows to expect two-part messages, where the second part consists
of the MAC of the first part. Any corrupted message can easily be identified
by Bob. Once Bob has received the new secret key (normally, 40, 56, or
128 bits) from Alice, the two can exchange messages with confidence. The
messages are encrypted with this key by a secure, fast algorithm, such as
DES or RCA4.

As noted earlier, SSL. was developed at Netscape Communications in
1994. Just a year later, several hackers discovered a weakness in the Netscape
implementation of the first SSL version. It turned out that the secret key

10 SSL: Secure Socket Layer 23

was selected by a pseudorandom number generator (PRNG) whose seed was
a combination of the current time (just the seconds and microseconds) and
the process id. Netscape programmers believed that such a combination was
sufficiently random and would lead to pseudorandom numbers that could be
used as secure keys. However, someone intercepting information packets sent
by a browser can have a good idea of the time (in seconds) when the packets
were generated. Also, someone with access to any account on the operating
system where the Netscape browser is running can find the id of any process.
The microseconds part of the seed can then be found by trying the million
values between 0 and 999,999. It seems that Netscape has since improved
the way the seed of the PRNG is computed.

To understand the rest, you ought to have a notion
of two areas in computer science: digital libraries
(databases) and digital magic (cryptography).

—Dmitri Asonov

(G

Answers to Exercises

1: The number of 64-bit keys is 264 = 18,446,744,073,709,551,620 or ap-
proximately 1.8 x 10'°. The following examples illustrate the magnitude of
this key space.

1. 2% seconds equal 584,942,417,355 years.

2. The unit of electrical current is the Ampere. One Ampere is defined
as 6.24 x 108 electrons per second. Even this huge number is smaller than
204,

3. Even light, traveling at 299,792,458 m /s, takes 61,531,714,963 seconds
(about 1,951 years) to cover 264 meters. This distance is therefore about 1,951
light years.

4. In afast, 5 GHz computer, the clock ticks five billion times per second.
In one year, the clock ticks 5-10°-(3-107) = 1.5-10'7 times.

5. The mass of the sun is roughly 2-103! kg and the mass of a single
proton is approximately 1.67-10727 kg. There are therefore approximately
10°8 protons in the sun. This number is about 2193, so searching a keyspace
of 193 bits is equivalent to trying to find a single proton in the sun (ignoring
the fact that all protons are identical and that the sun is hot). The proverbial
“needle in a haystack” problem pales in comparison.

6. The term femto, derived from the Danish femten, meaning fifteen,
stands for 10~1°. Thus, a femtometer is 1071 m, and a cubic femtometer is
10~%5 cubic meters, an incredibly small unit of volume. A light year is 106
meters, so assuming that the universe is a sphere of radius 15 billion light
years, its volume is (4/3)m(15x10% x 1016)3 = 1.41372x 10 cubic meters or
about 10'2* cubic femtometers. This is roughly 24!, so searching a keyspace
of 411 bits is like trying to locate a particular cubic femtometer in the entire
universe.

These examples illustrate the power of large numbers and should con-
vince any rational person that breaking a code by searching the entire keyspace
is a delusion. As for the claim that “there is a chance that the first key tried
will be the right one,” for a 64-bit keyspace this chance is 27%4. To get a

26 Answers to Exercises

feeling for how small this number is, consider that light travels 1.6 x 107!
meters (about the size of 10 atoms laid side by side) in 27% seconds.

2: Follow each letter in the key polybiuscher with its first successor that
is still not included in the key. Thus, p should be followed by q and o should
be followed by p, but because p is already included in the key (as are q,
r, and s), the o is followed by t. This process produces first the 22-letter
string pqotlmyzbcikuvswhnefrx which is then extended in the same way to
become the 25-letter string pagdogtlmyzbcikuvswhnefrx.

3: Yes, as is easy to see by examining the following examples (notice the two
occurrences of 22 in the ciphertext and how they produce different plaintexts):

Plaintext n 66 05 66 11 61 Ciphertext 22 61 88 22 27

Key 66 66 22 11 66 Key 66 66 22 11 66
Ciphertext 22 61 88 22 27 Plaintext 66 05 66 11 61

4: The average word size in English is 4-5 letters. We therefore start by
examining 4-letter words. There are 26 letters, so the number of combinations
of four letters is 26% = 456,976. A good English-language dictionary contains
about 100,000 words. Assuming that half these words have 4 letters, the
percentage of valid 4-letter words is 50000/26* ~ 0.11. The percentage of
5-letter words is obtained similarly as 50000/26° ~ 0.004. Random text may
therefore have some short (24 letters) words, and very few 56 letter words,
but longer words would be very rare.

5: When an encrypted message is sent by Alice to Bob, it can be intercepted
by Eve and copied. When the key is later sent, Eve may intercept it and use
it to decrypt the message.

6: Mixing salt and pepper is a one-way operation in practice (in principle,
they can be separated). Heat flow from high to low temperature in a closed
system is a one-way process in principle. Giving birth is one-way in principle,
while squeezing glue out of a tube is one-way in practice.

7: This is a direct result of the properties of the modulo function. In step 3,
Alice computes

£ mod 13 = (5* mod 13)® mod 13 = 5" mod 13,
and Bob computes the identical expression

a® mod 13 = (5% mod 13)® mod 13 = 5% mod 13.

Answers to Exercises 27

8: The final key is computed, in step 3, as L%® mod P (or, identically, as
L% mod P), so it is an integer in the range [0, P — 1]. Thus, there are only
P possible values for the key, which is why P should be large. If we allow
values L greater than P, then a user may accidentally select an L that is a
multiple of P, which results in a key of 0, thereby providing an eavesdropper
with useful information. If P is a prime and if L < P, then P is not a prime
factor of L*, so L* mod P cannot be zero.

We learn more by looking for the answer to a question and
not finding it than we do from learning the answer itself.

—Lloyd Chudley Alexander (1924—2007)

e

2 Springer
http://www.springer.com/978-0-85729-005-2

Elements of Computer Security
Salomon, D.

2010, XX 375 p., Softcover
ISBEN: @78-0-85729-005-2

