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Poncelet (and Pole and Polar)

Figure 2.1 Poncelet

2.1 Poncelet reminisces

Listen to his words:

Following the example of a celebrated contemporary novelist, whose
statue stands at the entrance to the room where our academicians hold
their private meetings to glorify, without doubt, a political and religious
system from the day before yesterday and which is still fashionable to-
day, I could have entitled this work, which is purely mathematical,
Memoirs from beyond the tomb. It is, in fact, the fruit of the med-
itations of a young lieutenant of the engineers, left for dead on the
fatal battlefield of Krasnoy, not far from Smolensk, and for a long time
strewn with the bodies of the French army. There, in that terrible re-
treat from Moscow, seven thousand Frenchmen, exhausted by hunger,
cold and fatigue, under the orders of the unfortunate Marshal Ney,
came, deprived of all artillery, on the 18th of November 1812, the an-
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niversary of the Russian Saint Michael, to fight a furious, bloody and
final combat with twenty-five thousand soldiers, fresh and equipped
with forty cannons of Field-Marshal Prince Miliradowitch, who himself
would soon become the victim of a military conspiracy hatched in the
bosom of the modern capital of the Muscovite Tsars. But the adoption
of such an ostentatious title, however justifiable it might seem, would
seem with good reason to be a ridiculous plagiarism, an overweening
imitation with perhaps a permitted licence, of the avowed leader of
the romantic novel in our France, at a time of moral perturbation as
much political as literary. A similar title, besides, would suggest of this
modest book neither the serious and reserved habits of the author, still
less the character, the aptitudes, the tastes which presume a sincere
love of the truths of geometry, whose profound culture calls for a spirit
disengaged from all foreign passion and, one might say, of any earthly
interest.

Now, such is precisely, and in some way inevitably, the moral and
mathematical position of the author of this work in the distant prisons
of Russia. Much later, when he appeared to neglect the study of this
geometry in favour of teaching the mechanical and industrial sciences,
he had in reality no other purpose but to make it useful to the working
class and the youth of our schools; he wished to inspire them with
a love of the eternal truths of science, a hatred of the intrigue and
the sophisticated subtleties of a greedy charlatanism, which signals an
epoch where, among the conquests of the modern spirit, one deplores
with sorrow the aberrations, the passion for money which dishonours
our character, our customs, and even our national literature. Finally, if
in the honourable steps of Vauban and Belidor, of Bézout, of Borda and
Coulomb, of Daniel Bernoulli, of Euler and so many other illustrious
benefactors of humanity, he has attempted to make useful to the class
of artists or engineers, in writing for the general public in such a way as
to avoid the reproaches too often and rightly addressed to the members
of the profession.

The novelist referred to is Frangois-Auguste-René, Vicompte de Chateau-
briand (1768-1848), one of France’s first Romantic authors. Chateaubriand
had initially refused to side with the Royalists in the French Revolution, but
eventually did so (after the flight of Louis XVTI in June 1791) and was wounded
in action. He left for England in May 1793, where he wrote his Fssais sur les
révolutions (Essays on revolutions, 1797) [34]. In 1800 he returned to Paris, and
in 1802 to the traditional Christianity he had once disclaimed. Encyclopaedia
Britannica [63] comments that “His apologetic treatise extolling Christianity,
Le génie du christianisme (The genius of Christianity, 1802) [35], won favour
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both with the Royalists and with Napoleon Bonaparte, who was just then
concluding a concordat with the papacy and restoring Roman Catholicism as
the state religion in France.” Napoleon made him first secretary to the embassy
to Rome on the strength of it, but Chateaubriand resigned in 1804 in protest
at Napoleon’s execution of a supposed conspirator, and threw himself into the
literary life with many love affairs. The Bourbon monarchy that reigned from
1814 to 1830 favoured him with many appointments, but after then he lived
a private life. His Mémoires d’outre-tombe (Memoirs from beyond the tomb,
1849-50) [36], was written for posthumous publication. It is an account of
his emotional life, mixed up with contemporary French history, his unstinting
appreciation of women and his sensitivity to nature; it succeeds (or succeeded)
in evoking vividly the spirit of the Romantic epoch, and became his best-
remembered work.

The long quotation is from Jean-Victor Poncelet in 1862, in the preface of
a book (Applications d’analyse et de géométrie [205]), which was an annotated
set of the notes he made while a prisoner in Russia in 1813 and 1814. He fought
in the terrible battle at Krasnoy but was taken prisoner, and survived the years
that followed only by luck. In the winter of 1812 it became so cold that even the
mercury in the thermometers froze (which occurs at a temperature of —39°C).
He managed to get to the hospital at Saratov, where he remained a prisoner
until the defeat of Napoleon and the Treaty of Paris was signed on 30 May
1814; his journey home took two and a half months, and he arrived in Metz on
7 September. In prison there was nothing to restore him to health but the April
sun, and there, to distract his spirits, he resumed his study of mathematics,
even though there was not even the distant echo of the profound analytical
works of Euler, Bernoulli, Huygens, Newton and d’Alembert, not to mention
the more recent and no less admirable work of Lagrange, Legendre, Laplace,
Monge and their disciples.®

He recalled that he had graduated from the Ecole Polytechnique in Novem-
ber 1810, and left the Applied Engineering School in Metz in March 1812
to work on the fortifications of the Dutch island of Walcheren. At the Ecole
Polytechnique he had acquired a taste for the work of Monge, Carnot and
Brianchon, but, completely cut off as he was in Saratov, he knew nothing of
their recent work published before his return to France in 1814. This is why
he occupied himself summarising all he knew of the mathematical sciences in
notebooks that he then distributed to his fellow prisoners who wanted to finish
an education disrupted by the incessant military campaigns.?

! For a biography of Poncelet, see Tribout [239], who points out that much original
documentation about Poncelet was destroyed in the First World War.

2 Carnot’s study of the properties of pairs of intersecting curves had been published
in 1806 as the third of his books aimed at revising and extending the science of
geometry. Lazare Carnot (1753-1823) was another mathematician and scientist ac-
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Poncelet was struck by the observation that the elementary parts of the
differential and integral calculus and of algebra had left the most vivid im-
pression on his mind, and he could rediscover the basic results about areas
and volumes, even though he had forgotten them. It seemed that those ideas
would not be forgotten at any stage in life. But the complicated and labori-
ous methods, whatever their interest or scientific merit, the abstract and spiny
proofs which have been introduced into mathematics, and which would never
have been recommended by Lagrange, Laplace, or Monge in their admirable
lectures in the early Ecole Polytechnique and Ecole Normale — they vanished
entirely. As for mechanics, Poncelet confessed that apart from purely geometric
theorems on the composition of forces he remembered nothing. Galileo’s laws
left absolutely no trace in his mind. It was in vain that he tried to write the
differential equations of motion with respect to the coordinate axes, which is
why, when in charge of creating a course in mechanics at the Applied Engi-
neering School in Metz he became an innovator by conviction and a reformer
by necessity.

Poncelet’s purpose in publishing these notes in 1862, the 50th anniversary
of his capture, was not just to cheat death by writing a book that would sur-
vive. Poncelet, like so many old men, was fighting his old battles one more
time. These notebooks were the proof that he had had the priority for several
discoveries over others who had not been deprived of their liberty in the ser-
vice of France. He had argued his case before, when these theorems had been
published; with this book he would argue them from beyond the grave.

Poncelet had published several theorems in the years 1817 to 1832, and one
remarkable book. Not all of these results were contested by Gergonne, one of his
rivals, and most were published in Gergonne’s Annales de Mathématiques Pures
et Appliquées, the only journal at the time entirely devoted to mathematics.
(The journals of the learned societies at the time covered all of science, loosely
divided into topics in some journals but not others.) The first of these results
goes to this day by the name of Poncelet’s porism; what it is will be made clear
in due course. Another, published in 1818 (no. 2 in Poncelet’s list?), established
that the number of tangents common to two curves of degrees m and k is in
general, and at most, mk (m — 1) (k — 1).

The third was a novel solution to a problem first raised by the ancient Greek
geometer Apollonius: find a circle tangent to three given circles. Yet another
was a long article, published in 1820, covering some of the same material later

tively involved in politics. His defence of Paris, in 1794, when he was in charge of
the revolutionary army, had earned him the popular title of “Organiser of the Vic-
tory”. For a thorough account of his life and work, see Jean and Nicole Dhombres,
Lazare Carnot [52].

3 This list is Poncelet’s report on his own work, the Notice analytique sur les travauz
de M. Poncelet, Paris 1834 [204].
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treated in the book of 1822 on conic sections and quadric surfaces. We shall see
that this book is his most remarkable and lasting claim to originality. In 1829
he wrote an important paper extending the theory of pole and polar to curves
of degree greater than 2.

With all this in mind, let’s go back over the long passage above that opened
this chapter. Unexpected, isn’t it, in a mathematical book? Personally, I love
these long French sentences. You can easily imagine the old man grabbing you
by the arm, telling you of the lofty mission of his life that began so near to death
so many years ago, on the field that marked the final defeat of the country’s
greatest military leader. Don’t you feel, just as certainly, the literary power of
this? Who is this strange, passionate, eccentric old man, straight out of fiction?

Listen to the text:

Memoirs from beyond the tomb ... the meditations of a young man
left for dead ... seven thousand exhausted men, ill equipped, facing
twenty-five thousand well-equipped soldiers. ... And yet, you know,
the Russian Field-Marshal dies, and I, young Poncelet survived. ...
And T (if you can believe it) am “the author of a modest book, and a
person of serious and reserved habits”.

Did Poncelet himself really believe it? Or is that his deluded self-image? Or
is it a permissible view of himself, and yet false? People are different people at
different times. What did it mean to escape death by the merest chance, when
so many you know died, and then to endure two years in limbo, from the age
of 24 to 26, not knowing for most of that time what your future would be?
Denied, in any case, the pleasures of the prime of one’s life. To find survival in
mathematics, and perhaps to dedicate oneself to it on one’s return.

A love of the eternal truths of science, a hatred of the intrigue and
the sophisticated subtleties of a greedy charlatanism.

Some things matter; some things don’t. The eternal truths of science ...
this modest book. False modesty? An honest recognition that, amid all the
desolation of the Russian prison, there came no great mark of redemption? Or
in the end did Poncelet make eternal mathematics?

Some things matter; some things don’t: to have seen mercury freeze, and to
survive even that. What does that count for, when one is old and thinks over
one’s life?

Poncelet’s antithesis was between the eternal truths of geometry and the
grubby world of intrigue and charlatanism. Real enough, perhaps. But we have
to live in it. Did Poncelet pass beyond any earthly interest? His mathematics,
shortly to be described, was not to everyone’s taste. The mathematician may
like it, the scientist may not. But Poncelet eschewed the world of recondite
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learning in favour of popular instruction. Even when he moved over to the
study of machines, this was, he now said, “to make [geometry] useful to the
working class and the youth of our schools; and to inspire them with a love
of the eternal truths of science” [202]. They go together, it seems, utility and
eternal truth.

And who will be helped? The working class, and the young in general, of
France. They will be rescued, Poncelet evidently hoped, from “the passion for
money which dishonours our character, our customs, and even our national
literature”. “Ours” here means that of France. The whole peroration at the
start is about the French defeat. It is Frenchmen who die, bravely we must
presume, and glory with it. French glory. It is France that stands in a moral
swamp in 1862. It is French dignity that Poncelet has spent his life, in his way,
trying to restore. There are some typically French notes struck, here and later.
The pantheon of great names: Lagrange, Legendre Laplace and Monge, the
great days of the Ecole Polytechnique and the Ecole Normale; Metz, where the
Applied Engineering School was.

Finally, the mathematics. The honest recognition that only the elementary
bits survived, and all that subtle stuff went clean out of his head. Poncelet, at
least, was not one of those mathematicians who only wake up when the rest of
us find it too difficult. He was one of those mathematicians who remade things,
made them new, made them according to his rules. The two years as a prisoner
in Russia made him an original, someone who did things his way. I think that
fits with the rest of the person he made himself become between 1814 and 1867,
when he died. But he also had a dislike of clever, tricky mathematics. He won’t
teach that kind of thing, if he can avoid it. He wants to be understood by the
common man, if you like. Is this part of his dislike of “sophisticated subtleties”?

2.2 Poncelet’s mathematics

What, then, was Poncelet’s original mathematics? I shan’t take us into his
study of machines. Poncelet’s porism will be discussed briefly below; a porism
— the term is Greek — is a striking thing: a problem that either cannot be solved,
or has infinitely many solutions. The paper of 1818 (no. 2 in Poncelet’s list) is
on the number of tangents common to two curves, and the study of curves other
than conics was very little understood at that time. Since conic sections were
Greek in origin, it’s clear that any exploration of this topic was like entering
a new continent. Then we go back to a problem posed by the ancient Greek
geometer Apollonius: find a circle tangent to three given circles. This won’t
detain us. Suffice it to say that the classical solutions are long and difficult.
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I have already said that the long article, published in 1820, and the book of
1822 on conic sections and quadric surfaces are his most remarkable. The paper
of 1829 on the theory of pole and polars for curves of degree greater than 2 is,
it turns out, another major paper opening up the study of curves other than
conics.

Let us open the book of 1822 [202]. It too has an account of the circum-
stances in which he was led to his discovery of projective geometry, during
the months following his capture by enemy troops during Napoleon’s ill-fated
invasion of Russia.

This book is the result of researches which I undertook in the spring
of 1813 in the prisons of Russia: deprived of every kind of book and help,
and the proper facilities, above all distracted by the misfortunes of my
country, I was unable to give it all the perfection desirable. However, 1
had at the time found the fundamental theorems in my work: that is to
say the principles of central projection of figures in general and conic
sections in particular, the principles of secants and tangents common
to those curves, those of polygons which are circumscribed or inscribed
to them.

And he gave this account of the aim of his work:

The point of this book, voluminous as it may appear, is less to
increase the number of properties [of figures] than to indicate the route
by which they are found. In a word, I have sought above all to perfect
the method of proof and discovery in elementary geometry.

In his Treatise on the projective properties of figures [202] (see the extract
below), Poncelet contrasted what he called the geometry of particulars with
analytic geometry, which he also called algebraic analysis. He found algebraic
analysis to be well developed, but the geometry of particulars (“individual
curves and surfaces”) to be lacking in some respects. He regretted that the
arguments used in synthetic geometry lacked generality. By contrast with al-
gebra, which can handle negatives and even imaginary magnitudes, synthetic
geometry “is more timid or more severe”. For instance, if three points A, B, C'
lie on a line and C' is between A and B then we write AC + CB = AB, but if
it lies outside it we write AC — CB = AB or even CB — CA = AB. So if in
the course of a proof a perpendicular DC' from D to AB falls inside or outside
AB the whole argument must be carried on in two variant forms.

Poncelet gave examples of what he thought was an acceptable general rule
for applying the same argument to different figures. If one figure could be
obtained from another by changing it by insensible degrees, say by an arbitrary
continuous movement, then he considered it obvious that some properties of



18 2. Poncelet (and Pole and Polar)

the first figure would persist through these changes to the final figure, provided,
of course, that one took note of the fact that some quantities (which could be
specified in advance) change in size, vanish, or become negative. He called this
proposal the principle or law of continuity. It is, to be frank, somewhat vague.
It was never made rigorous by Poncelet, and it was strongly attacked as soon as
it was published, as we shall see. He admitted it led to paradoxes; for example,
where are the common points — which he called ideal points — to two seemingly
non-intersecting circles? According to his principle of continuity, these points
should be obtained by a continuous movement of a pair of intersecting circles.
But, he said, the paradoxes do not go away if you use algebraic, rather than
geometric, analysis. So the problem was to explain them directly and not to let
them halt progress.

It is possible to feel here that Poncelet has worked something long and
difficult out for himself, building on the insights obtained in Saratov. He is in
possession of not just a theorem, but a theory — a whole way of thinking about
projective geometry. Naturally he believes that it speaks clearly, directly and
accessibly to everyone. It is not the spiny stuff that does not stay in the mind,
but clear basic principles. Nothing sophisticated, only limpid truth. If we find
it obscure, well, give it time seems to have been his view.

The terms Poncelet applied to geometry (“analytic”, “synthetic”, “alge-
braic”) are not entirely easy to use; they shift their meanings a little from user
to user and date to date. The principal distinction being made is between ana-
lytic or algebraic geometry, which can even be called coordinate geometry, on
the one hand, and synthetic geometry on the other. Synthetic geometry then
means geometry (loosely) in the style of Euclid’s Elements in which what is
discussed are curves, lines, angles and areas, and algebra is avoided.

2.3 Poncelet, Traité des propriétés projectives
des figures, 1822 [202, pp. xix—xxVii]

In ordinary geometry, which one often calls synthetic, the principles
are quite otherwise, the development is more timid or more severe. The
figure is described, one never loses sight of it, one always reasons with
quantities and forms that are real and existing, and one never draws
consequences which cannot be depicted in the imagination or before
one’s eyes by sensible objects. One stops when those objects cease to
have a positive, absolute existence, a physical existence. Rigour is even
pushed to the point of not admitting the consequences of an argument,
established for a certain general disposition of the objects of a figure,
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for another equally general disposition of those objects which has every
possible analogy with the first. In a word, in this restrained geometry
one is forced to reproduce the entire series of primitive arguments from
the moment where a line and a point have passed from the right to the
left of one another, etc.

Now here precisely is in fact the weakness; here is what so strongly
puts it below the new geometry, especially analytic geometry. If it
was possible to apply implicit reasoning having abstracted from the
figure, if only it was possible to apply the consequences of that kind of
reasoning, this state of things would not exist, and ordinary geometry,
without needing to employ the calculus and the signs of algebra, would
rise to become in all respects the rival of analytic geometry, even if, as
we have said already, it was not possible to conserve the explicit form
of the reasoning.

Let us consider an arbitrary figure in a general position and in-
determinate in some way, taken from all those that one can consider
without breaking the laws, the conditions, the relationships which exist
between the diverse parts of the system. Let us suppose, having been
given this, that one finds one or more relations or properties, be they
metric or descriptive, belong to the figure by drawing on ordinary ex-
plicit reasoning, that is to say by the development of an argument that
in certain cases is the only one regards as rigorous. Is it not evident
that if, keeping the same given things, one can vary the primitive figure
by insensible degrees by imposing on certain parts of the figure a con-
tinuous but otherwise arbitrary movement, is it not evident that the
properties and relations found for the first system, remain applicable
to successive states of the system, provided always that one has regard
for certain particular modifications that may intervene, as when cer-
tain quantities vanish or change their sense or sign, etc., modifications
which it will always be easy to recognise a priori and by infallible rules?

Now this principle, regarded as an axiom by the wisest mathemati-
cians, one can call the principle or law of continuity for mathematical
relationships involving abstract and depicted magnitudes.

In the last analysis the principle of continuity has been admitted
in its full extent and without any restriction by different geometers,
who have employed it either overtly or tacitly, because without it they
would be plunged into all the metaphysical considerations of imagi-
naries which have always been driven back from the narrow sanctuary
of rational geometry. Its explicit use in this science is almost always
limited to real states of a system which is transformed by insensible
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degrees. And even there it gives rise to the infinitely little and the in-
finitely great which geometers still seek, in our day, to banish from the
domain of the exact sciences.

However, it will still not be difficult to establish this principle in
an entirely direct and rigorous manner, with the aid of a calculus just
like algebra the certainty of which is not the least to be doubted in our
time, thanks to two centuries of efforts and success!

In any case will it be necessary, and will one not immediately admit
the principle of continuity in its full extent into rational geometry, as
one does at once in algebraic calculus and then in the application of
calculus to geometry, if it is not a means of proof but rather as a means
of discovery or invention? Is it not at least as necessary to point out the
resources employed at various times by men of genius for discovering
the truth, as the feeble efforts they have then been obliged to use to
prove them according to intellectual taste, either timid or less capable
of bringing them home?

Finally, what harm can result, above all if one is restrained in one’s
conclusions, if one never uses half-truths, if one never admits analogy
or induction, which are often deceptive, and which it is not necessary
to confound with the principle of continuity? In fact, analogy and in-
duction conclude from the particular to the general, from a series of
isolated facts not necessarily related, in a word discontinuous, to a gen-
eral and constant fact. The law of continuity, on the contrary, starts
from a general state and some sort of indeterminacy of the system (that
is to say that the conditions which govern it are never replaced by still
more general ones) and they remain in a series of similar states going
from one to the other by insensible gradations. One insists, besides,
that the objects to which it is applied are by their nature continuous
or submit to laws which can be regarded as such. Certain objects can
even change their position by a series of variations undergone in the
system, others can move away to infinity or approach to insensible dis-
tances, etc.; the general relations survive all the modifications without
ceasing to apply to the system.

The only difficulty consists, as we have seen, in understanding fully
what one wants to convey with the word general or indeterminate or
particular state of a system. Now in each case the distinction is easy.
For example, a line which meets another in a plane, is in a general
state by comparison with the case where it becomes perpendicular or
parallel to that line. Similarly a line (straight or curved) which meets
another in a plane, is in a general or indeterminate state with regard to
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that other and the same thing takes place even when it ceases to meet
it, provided that the two states do not suppose any particular relation
of size or position between these lines. The contrary will evidently hold
when they become tangents, or asymptotic, or parallel etc.; they will
then be in a particular state with regard to the primitive state.

2.3.1 Commentary

Poncelet’s account of these mysterious points of intersection was obscure. It
was not equivalent to what a geometer relying on algebraic methods would
say — namely, that such circles meet in complex points — we note only that in
this respect Poncelet’s presentation of his ideas, however “geometric”, was not
likely to replace the algebraic formulations of the previous hundred years. Nor
indeed did it. One interpretation of what it means is given below.

So far in this account, Poncelet could appear as something of a crank, an
oddball who did well in the French academic system of the early 19th century.
It is time to begin to explain why he merits the attention of historians of
mathematics, and the attention of mathematicians in his day and subsequently.

Let us start with the idea of the polar line of a point with respect to a conic.
This is a topic worth following in more detail, and Poncelet made considerable
use of it. It is not original to him, indeed the idea goes back to Apollonius, and
was taken up in an original way by Brianchon before Poncelet, as he happily
admitted. If a line £ meets a conic at ;1 and Q)5 then the tangents to the conic
at Q1 and @2 meet at point P, say, called the pole of ¢, which lies, of course,
outside the conic. He deduced that to each line ¢ one can associate a point P,
and the converse is also true; given a point P outside the conic, one can draw
through P two tangents to the conic. Label the points where they touch the
conic ()1 and @)o; then to P one can associate the line Q1Q)2, the polar of P.

What happens if you start with a line that does not meet the conic? Well,
the line is made up of points. Let P be one of them, and construct the po-
lar line @1Q2. Let P’ be another, and construct its polar line Q]Q%. Let P”
be a third, and construct the polar line Q7@%. Then rather wonderfully, it
turns out that these three polar lines meet in a point, let us call it @ (from
which it follows that the polar line of each point on the line £ passes through
the point Q). So we have a natural candidate for the pole of the line: the
point Q.

This is the occasion to state my policy on old proofs in this book on the
history of mathematics. In principle, every fragment we have of the past is part
of the evidence. In practice, for the 19th century, there’s too much evidence,
and a selection has to be made. Sometimes I shall select a proof as evidence.
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I shall then make it clear what I take it to be evidence of. Sometimes, and this
business of poles and polars is a case in point, I just want you to know what
the words mean and that the statements are true. Generally then I shall give
a modern proof, which may be quite different from the ones used at the time.
Such proofs are presented in order to make the story easier to understand. In
this case, the proof displays a profound insight into the geometry, which is part
of our historical case for the importance of Poncelet.

2.4 Pole, polar and duality

Result 1

With respect to the unit circle, 22 + y? = 1, the point P = (u,v), the pole,
has the polar line ¢ : ux + vy = 1.

Suppose that the point lies outside the circle, and the two tangents, call
them ¢ and ¢/, from it to the circle meet the circle at the points T' = (a,b)
and T" = (a/, V') respectively. The equations of these tangents are ax + by = 1
and o’z + b’y = 1. Now, (u,v) lies on ¢ and ¢’ if and only if au + bv = 1 and
a'u+ bv =1, and (u,v) is the unique point satisfying those two equations.
However, (a,b), (a’,b’) lie on the line px 4+ qy = 1 if and only if (p, ¢) satisfies
ap+bg =1 and a'p+ b q = 1, so, by uniqueness, (p,q) = (u,v) and the line
through T and T” has the equation ux + vy = 1. This line is called the polar
line (or polar) of the point (u,v), and that point is called the pole of the line.

Now consider the line zu + yv = 1. A typical point on it has coordinates
(1, 1=2)

The polar line of this point is zt + y (1_%) =1.

Consider the points for which ¢ = 0 and ¢t = 1: (07 %) and (1, 1_7“) re-
spectively. The corresponding polar lines are y (%) =1land x+y (1_7“) =1
respectively, which clearly meet at (u,v) — solve for y, to obtain y = v, and
substitute that in the equation for x.

This implies that the polar lines of points on the line zu + yv = 1 all pass
through the point (u,v), as you can check directly.

Result 2

The polar lines of points on the line zu + yv = 1 all pass through the point
(u,v).

So (by Result 1) we can start with a point P outside the circle and obtain
its polar line. We can then take points on that line (most of which, after all,
lie outside the circle) and take their polar lines: they all meet at P.

This is what is called a duality: from a point obtain a line, from a line obtain
a point. Do it twice and the original point is returned.
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We extend this to points inside the circle entirely formally, so to each point
we have a line, and to each line we have a point, and duality applies. We can
even start with the line, pass to its pole, and obtain the polar line of that point:
it will be the line we began with.

Some consequences of, and observations about, this result: for example, if
the point (u,v) lies on the circle, its polar line is the tangent to the circle at
that point. You can see by drawing a diagram that as the point P gets closer
to the circle, the corresponding points @ and @Q’, also get closer to P, and the
line joining them gets closer to being a tangent.

On the other hand, not every line has an equation of the form zu + yv = 1.
Those that don’t are those of the form zu+yv = 0, the lines through the origin.
And indeed, what is the polar line of the origin? The point (0,0) would seem
to have the line Ox 4+ 0y = 1, which is 0 = 1, as its polar, but that’s nonsense.
So there’s a problem with such lines.

Can you prove both these results without algebra? Yes. Much of it goes back
to Apollonius, and everything that was needed was in place in the 17th century.
Poncelet knew that much of it was in a fine book by La Hire, his Sectiones
conicae of 1685 [144], and Brianchon had published some ideas about poles
and polars before his journey to Russia. He knew of Desargues, however, only
from secondary accounts, because at that time no copy of Desargues’ major
work had apparently survived, and he praised him handsomely.*

Does this just work for circles? Indeed not. It certainly works for any conic
section. You can see that from the algebra. It would become more complicated,
but the main result, the passage from pole to polar and back, all of duality,
would survive. If you don’t believe that, you have three options:

1. slog through the algebra for a general conic;

2. find algebraically a transformation that maps the circle to the conic, and
use it to find the formulae for pole and polar;

3. work out a way of seeing it. That is for the next chapter.

One final remark, why the names pole and polar? They are faintly reminiscent of
geography — and so they should be. Their origins are in spherical trigonometry,

4 Desargues’ main work on geometry, his Brouillon Projet was published in an edition
of 50 copies in 1639 which were as good as lost by Poncelet’s time. Desargues’
theorem was described in a work by Abraham Bosse in 1648, Pascal and La Hire
also mentioned Desargues by name in their work on what we would call projective
geometry, and in these tenuous ways his reputation was kept alive. But it was
only in the mid-19th century that Michel Chasles found a copy of the Brouillon
Projet made by La Hire in 1679, and this was published by Poudra in his edition
of Desargues’ works in 1864 [51]. The only surviving original copy of the Brouillon
Projet was found by P. Moisy and communicated to R. Taton in 1951; it forms the
basis of the edition of 1951 [234]. For an English translation, see [75].
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as Chemla has described [37]. To each point on a sphere there is a natural great
circle that comes with it: join the point to its diametrically opposite point, there
is exactly one great circle perpendicular to that diameter. In the case of the
north pole, that great circle is the equator. Conversely, to every great circle
there are two points naturally associated with it, and they are antipodal —
at opposite ends of a diameter of the sphere. That is where the word “pole”
comes from in “pole and polar”. “Polar” is a natural word to choose, given that
“equator” is too strong.
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