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Exercises 1

1. The equation
2/ (t) = sin(t) — x(t) (1)
has integrating factor g(t) = e~! and, since f(t) = sin(t), the variation of constants
formula gives

2(t) = Ag(t) + g(¢) /0 g ((S)ds

s)
t
= Ae t + e_t/ e® sin sds.
0

Integrating by parts twice we find
¢
/ ®sinsds = 2’ (sint — cost) + &
0

so x(t) = Ae™! + L(sint — cost) + et

3. Dividing both sides of the differential equation by z(t)(1 — z(t)) leads to

1
——dz=t+A
/x(l—x)x +4

where A is an arbitrary constant of integration. Using partial fractions on the
integrand on the left hand side

1 1
/<——|— )dx:t—FA
r 1—=x

which gives

log ‘ =t+ A
11—z
leading to
‘ T ot A At
11—z
and, therefore,
T —ettA Ce,
11—z

where C' = +exp A is a new arbitrary constant. Applying the initial condition
r=—1/5at t =10, we find C = —e~'0/6 then, solving for x gives

Cet 1 1

TTIr0d  1+et/C T 1—6el0t

The denominator approaches zero as e~ — 1/6, i.e., when ¢t = 10 + log 6.




5. (a) Let u(t) = 0(t) and v(t) = '(t) so v'(t) = 0"(t) = —0(t) and

u/’(t): v(t) and

(t) = —u(t) v(0) =0
This is a 2-d system x = f(¢,x), x(0)= n with

R A}

(b) With u = z(t) and v = 2/(t) we obtain ' = f(t,x), (0)= n with

v 1
Ft, @) = [v+2u+1+2t} and ":M'

Note that f(¢t,x) = Ax + b, where

=[] a=f o=

(¢) With w = z(t), v = 2/(t) and w = 2”(t) we find v/ = v,v’ = w and o’ =
f(t,), 2(0) =  with

v

f(taw): w :A§E+b,
2W+v—2u+1-2¢t

]3]l

7. With u = ¢, v = 2(t) and = [u,v]T, we have

N OO
—_ O =
N = O

/(1) = m = Lin(u) _21}/(1 —l—u4)}

with initial condition =(0) = [0, z(0)]7. Thus f(u,v) = [1,sin(u) — 2v/(1 + u*)]T.




9. With u = x(t) and v = 2/(t) we obtain ' = f(t,x), (0)= n with

v

ft,z) = F() + av(t) + bu(t)

| 0 1 0
_Aa:—i—b,whereA—{b CJ, b—[f ]

and 1 = [¢,7]7. The characteristic polynomial of A is given by

—-A 1

A=A = b a—A

':AQ—aA—b.

If we suppose that this quadratic function of A has distinct roots (eigenvalues) A
and Mo then the original ODE has complementary function z(t) = Ae*? + Bet2!
in which A and B are arbitrary constants.

Notice that the characteristic polynomial of A may be deduced by substituting
z(t) = eM into the homogeneous form of the ODE.

11. Adding together the ODEs for S, C and P we find S’(t) + C'(t) + P'(t) = 0, i.e.,
d
E(S(t) +C(t)+P(t) =0

so, on integrating with respect to t, we find that S(t) + C(t) + P(t) = constant.

13. Differentiating u(t) = 1818e=8¢ 4 3206=/8 4 5 gives
u'(t) = —8%6_&5 - %e_t/S

S0

W' (t) + 8u(t) = (-5 + 832)e /8 4 40 = 120e /8 + 40.
Also u(0) = 100 so the IVP (1.15) is satisfied by this function u(t).
Similarly,

u'(t) + gu(t)

and (1.16) is also satisfied.

1675 |, 1675\.—8t , 5 _ _5025.-8t | 5
(=857 T gxar)e g =—2ge " +3

15. With z(t) = Xu(r) and the chain rule



Exercises 2
1. Euler’s method is, in this case,

Tptl = Tn + hm’n

with 2}, =2 — 22ty = 0 and x9 = 1. Thus z{, = —1 and, when h = 0.2,
n=0: ¢t =0.2 n=1: t,=04
z1 =z + hzy = 0.8 xro = x1 + ha)y =0.8 —0.2 x 0.6 = 0.68
i =12 —22=-06

With A = 0.1 we find

n| ty T x,
000 1.000 —1.000
1101 0900 —0.800
2102 0820 —0.632
3103 0.757 —0.483
4104 0.708 -

3. 2/(t) =1+t —x(t), t >0 with z(0) = 0.

Euler’s method : z,11 = x, + h(1 + t, — z,,), n = 0,1,2,... with ¢, = nh and
xg = 0. We find

x1 =h, $2=$1+h(1+h—1‘1):2h, m3:x2+h(1+2h—x2):3h

which suggests that x,, = nh = t,, : a result that is easily proven since, substituting
this into 41 = @y + A (1 +t, — ) gives 41 =2y +h = (n+ 1) h = t,41 and
the proof follows by induction.

This suggests that the exact solution of the IVP is z(t) = ¢t (which clearly satisfies
both the ODE and the initial condition).

The second derivative of the exact solution is zero so the LTE given by (2.6) is
also zero. Theorem 2.4 is relevant with A = —1 and g(t) = 1+t so, with 7; = 0 in
(2.16), the global error e, is zero at time ¢,

5. With u = z(t) and v = 2/(t) we have

S B s



With h = 0.1, uj = 1 and v = 0 (from the ODEs)

n=0: t; =0.1, n=1: t3=0.2,
up = ug + 0.1uj = 0.1, us = 0.2,
v =g+ 0.1v) = 1, vg = 0.951.

uy = 1.0, v =-0.49,

7. (a) With u = z(t) and v = 2/(t) we have

ﬂ/ - [tQ Cgu- 32}] ’ [558;] - H '

Euler’s method for this system is

unﬂ_ _un Up, up| |1
e S R PP B 3 R

with ¢, = nh. Then u, 1 ~ x(t,+1) and vy1 ~ 2/ (t41)

(b) Differentiating the first equation and substituting for ¢ from the second:
" =y =22 = (t* —y) — 22

but, from the first ODE y = 2/ + 2z, so 2" = t2 — 32’ + 2z, which is a
re-arrangement of equation (2.18).
y(0) = 2/(0) + 22(0) = 2 from the given initial conditions.

(¢) Euler’s method for this system is

o e R S P )
Yn+1 Yn ty, — 2yn Yo

(d) For the method in part (a):

:

up = ug + hvg = 1,
v = vg + h(t% — 3vg — 2ug) = —2h,
us = uy + hvy = 1 — 2h°.
For the method in part (c):
x1 =g + h(yo — 2x9) = 1,
Y1 = yo — 2h = 2 — 2h,
zy =1+ h(y; — 2z1) = 1 — 2h?

and so ug = x9 and both are approximations of z(ts).




9. Summing both sides of

6]' 6]’,1 Tj

L+ M) (L4 ML~ (14 AR

from j =1 to j = n gives the telescoping sum

((1 +€1Ah) B +€0Ah)0> + ((1 +€2>\h)2 B +61)\h)1>

€n €n—1 o - Tj
ot ((1 L) (1+)\h)"—1> - ZI TESYY

in which there are multiple cancellations (which are easier to see if the terms on
the left are written in decreasing order, from j = n to j = 1), leaving

n

_ €o en _ T}
ES RS jzl FESY)Y

from which (2.16) follows since ey = 0.



Exercises 3

1. 2/(t) = 2z(1 — x) where z = z(t) and so

2 (t) = %23:(1 —x) =2(1 —22)2'(t) = 4x(1 — 22)(1 — x).

Hence, the TS(2) method is

Tpt1 = Tn + hal, + %th;;
/

T, = 2xn41(1 — xp)
" /

2y = 201 (1 - 20,)

tn T, x ah | a(tn)
10.0000 0.2000 0.3200 0.3840 | 0.2000
10.5000 0.4080 0.4831 0.1778 | 0.4046
11.0000 0.6718 0.4410 —0.3030 | 0.6488

N = O3

The rightmost column gives the exact solution of the IVP. The GE with TS(2) at
t =111is z(11)—x9 = —0.022 while that for Euler’s method with h = 0.2 is 0.6488—
0.6295 = 0.0193 (see Table 2.2). The GEs are therefore roughly comparable—the
fact that only 2 steps were required here compared to 5 steps in Example 2.2 is
offset to a great extent by the need to compute z/.

3. We apply Euler’s method to the IVP’s of Exercise 1.1. For systems, Euler’s Method
(TS(1)) reads
Tpi1 =Ty +hf(tn,x,), n=01,..

From Exercise 1.5a), v = 0(t) and v = ¢'(t) and we have the 2-d system x =
f(t,), 2(0)=n with

R A}

So Euler’s Method is, in terms of the components:
Upt1 = Uy + hoy, Upt1 = Up — huy,

with initial values ug = w/10 = .31416 and vy = 0. We use h = 0.1.

n
‘ofo0o 03142 0.0000 (starting values)

1 0.1 U = ug + .1’00 =0.3142 V1 =V — .1u0 = —0.0314
2102 wy=wu;+.1vy =03110 v = vy —.1lu; = —0.0628



D.

In order to define T'S(2) we require the second derivatives of the exact solution.

Since v’ = v and v = —u we find v’ =v' = —u and v = —uv' = —v so
Upt1 = Up + hvp — %h2un, Upa1 = Up — Aty — %h%n (2)
n ‘ tn Up, Up,
0} 0 03142 0.0000 (starting values)
1101 wuw;=03126 v =-0.0314
2102 wuy=0.3079 wv9=-0.0625

Comparing the results of Euler’s method and TS(2) at ¢ = 0.2 in one table:

Euler TS(2)
. 0.3110 0.3079
2= —0.0628 —0.0625

(a)
(b)

The exact solution of the IVP is z(t) = e™ so A < 0 is necessary to ensure
z(t) — 0 as t — 0.

For Euler’s method 41 = (1 + hA)x, from which it follows that
Tp = (1 + hA)"

since xp = 1. Hence |z,,| = 0 as n — oo (which corresponds to ¢, — oo if h
is a fixed number) if, and only if |1 + hA| < 1. This leads to

-1<1+h A<l -2<hl<O.

With A = —1 this implies 0 < h < 2, while for A = —100 we require the much
smaller value 0 < h < 0.02.

For TS(2) zp1 = (1 + kA + $h2A?)z, so
Tn = (1+ hA + 1R7A%)"
since zg = 1. Hence |z,,| — 0 as n — oo if, and only if
—1<1+hA+3R°N <1
Completing the square, we find
L+hA+AR202 = (1 4+ hA)? + 3

so the inequalities require —3 < (1 4+ hA)? < 1. The left inequality is always
satisfied while the right inequality is equivalent to hA(2 + hA) < 0 which
requires —2 < hA < 0—the same conditions as for TS(1).

10



7. For TS(1) we have to calculate, for each n: ¢, (1 flop) 2/, (3 flops—see the previous

11.

exercise) and x,4+1 = z,, + ha), (2 flops) giving a grand total of 6 flops.

For TS(2) we have the additional cost of computing ! (3 flops—(1 — 2t) was
evaluated for 2’ and does not need to be recalculated) and adding $h?z! (only
2 flops since the number %hQ need only be calculated once, at the start of the

exercise, and not on each step). Thus TS(2) costs 5 flops more than TS(1).
By a similar argument, TS(3) costs 5 flops more than TS(2).

| TS(1) TS(2) TS(3)
Cost | 6 11 16

For the data in Table 3.1: assuming that the GE for T'S(1) is proportional to h: at
h = .15 the GE is —.1148, so the constant of proportionality is —.1148/.15 ~ 0.77.
Thus, GE~ .77h and this will achieve the target GE of 0.01 with h = .01/.77 ~
0.013. Thus, to integrate to ¢ = 1.2 will require 1.2/.013 ~ 93 steps. Each step
costs 6 flops, so the cost of this calculation is about 6 x 93 = 558 flops.

The final column in Table 3.1 suggests that the GE for TS(2) ~ 0.138h%. This will
achieve the target GE of 0.01 with h = 1/0.01/0.138 & 0.27. Thus, to integrate to
t = 1.2 will require 1.2/.27 ~ 5 steps. Each step costs 11 flops, so the cost of this
calculation is about 55 flops.

Thus TS(1) requires about 10 times as much computational effort as T'S(2) in order
to achieve the required accuracy.

. By the chain rule

d d

2" (t) = Ex/(t) =3

I () = filt @) + folw, O'(8) = filt, o) + [t ) fa(t, ).

Differentiating the ODE 2/(t) = \x(t) + ¢(t) we find, when we evaluate the results
at t =15,
2 (tn) = Ax(tn) + g(tn)
x//(tn) = )‘x/(tn) + g/(tn)
2" (t,) = M (t,) + ¢" (tn), etc.

These derivatives are approximated by

xln = Axn + g(tn)
zp = Az, + ¢ (tn)

"

z = x4+ ¢"(tn), etc

11



and, subtracting the corresponding expressions, we have

2 (tn) — 2, = Ma(ty) — xp)
2 (tn) — @ = A2 (tn) — 27,)
2" (tn) — 2l = X" (t,) — 2, etc
from which we deduce that
m(j)(tn) - x1(1j) = N (x(tn) = zn). (3)
From (3.4) at ¢t = t,we have
T(tns1) = x(tn) + ha'(tn) + 522" (t,) + - + I%hpx(t”)(t) + Thia, (4)
where T}, 1 = O(hPT!), while the TS(p) method is (see equation (3.5))
Tny1 = Tn + ha;, + %h%',; +-F I%hpm%p)-
Subtracting this from equation (4) and using (3) we obtain
ent1 = r(Ah)ey, + Thi1, n=20,1,2,...
1

where e, = z(t,,) — zp, and r(s) = 1_{_34_%524_...4_&810.

Now, following the derivation of (2.16), we find
en = Z r(AR) T
j=1

and, since r(s) < e® (for s > 0) by Exercise 3.10,
[P = [r(AR) "7 < r(A[)™7 < el < ol
Consequently,

n n
lenl < > r(AR)"ITy| < My Ty
Jj=1

j=1
and, since |T;| < ChPH1
len| < el nOpPHt < ChPtgel,

Hence, the method is convergent if p > 0 since |e,| — 0 as h — 0 for any time
tn € [0,t¢]. Moreover, the method converges at a pth order rate.

12



Exercises 4

1. Explicit: Euler, 2-step Adams—Bashforth, Dahlquist. The other four methods are
implicit.

3. The backward Euler method applied to 2(t) = 1 + 2%(¢) leads to
Tni1=Tn +h(1+224) = hatq — Tpp1 + (h+2,) = 0.

Employing the formula for the roots of a quadratic, we find,

1+ /1 — dhz,, — 4h2
Tn4+1 = oh .

With the + sign:

1 ++/1—4hz, — 4h? 1
Tn+l = oh —>ﬁ_>oo

as h — 0.
With the — sign:

1 — /1 — 4hx, — 402 1+ /1 — dhx,, — 412
Tnt1 =

2h 1+ /1 — 4dh, — 4h2
4h(h + )
"~ 2h(1 + /1 — 4ha,, — 4h2)
2(h + xy,)
— ITn

T 141 dhay, - 4R2
as h — 0. With xy = 0 we obtain

2h
1++V1—4h2’

r1 =

5. For backward Euler:
Lpz(t) =z (t+h) —z(t) —h' (t+h).
Substituting

z2(t+h) = z(t)+ h(t) + $h%"(t) + O(h?)
Z(t+h) = Z(t)+h(t)+Oh?)

13



we find

Loa(t) = [2(t) +ha (£) + 3h22"(t) + O(h3)] — 2(t) — h [£(t) + ha" () + O(h?)]
= —1n2(t) + O(h®)

_1

So the error constant for backward Euler is Cy = 5

Z2(t) = O(h?) = O(hPH).

and the order is p = 1 since

7. (a) Zpio — aTpy1 — 20, = hbfpso p(r) =72 —ar —2and p(1) =0 & a = —1.
o(ry=band p/(r)=2r—asop' (1) =0(1)if 2—a="b, ie., b =3, leading
to the method x40 + pt1 — 22, = 30 f,.
(b) Tpyo + Tng1 + axy = h(fare+bfn) so p(r) = r> +r+a and p(1) = 0
Sa=-2.0)=r’+band p (r)=2r+1s0p (1) =0 (1)if 3=1+b, ie.,
b = 2, leading to the method =12 + zp+1 — 22, = A (fr42 + 2fn) -

9. For the method z, 11 = z, + 2hf, the linear difference operator is

Lz(t) = z(t+h) — 2(t) + 2k (1)
= h(t)+ O (h?)

s0 .%,z(t) = O(h) but, for consistency we must have .4}, z(t) = O(hP*1) with p > 0.
Thus the method is not consistent.

Alternatively, based on Definition 4.6, the first and second characteristic polyno-
mials are
p(ry=r—1, o(r)=2

from which p(1) = 0 but p/(1) = 1 # o(1) = 2. Hence, the method is not
consistent.

The IVP 2/(t) = 1, t € (0,1], (0) = 0, has the exact solution is x(t) = t. The
method applied to this IVP gives

Tptl = Ty + 20

so 1 = 2h, x9 = 4h, x3 = 6h, ... x,, = 2nh = 2t,, while z (¢,,) = t,,. The numerical
solution z,, is therefore always twice as large as the exact solution and so conver-
gence cannot take place. The Global Error at ¢t = 1 is x (t,) — x, = —1, which
does not tend to zero with h.

11. The associated linear difference operator is

Lnz(t) = 2(t + 2h) + a1 z(t + h) — az(t) — Boh2'(t + 2h)

14



and Taylor expansion gives

L 2(t) = 2(t) + 202 (t) + 222" (t) + 31327 (t) + O(h*)
+ o (2(t) + h2/(t) + $h22"(t) + ¢h32"(t) + O(h*))
—az(t)
— Boh (2 + 2h2" (t) + 202" (t) + O(h?))
= (L4 a1 —a)z(t) + (2 + a1 — Bo)h2'(t) + (2+ a1 — 2B2) h?2"(t)
+ (3 +tan —23) K32 (t) + O(h?)

so that we can choose
ar =a—1, Bo=24+a1=1+a

to give consistency (order 1) yet retain a as a free parameter. The error constant
is then
Co=2+ 301 — 2B = —3 (14 3a).

The order increases to 2 when a = —% for which we have the error constant
C3 = 3+ tag — 2B, = —2 (this is the BDF(2) method of the previous exercise).

13. The linear difference operator associated with Simpson’s rule

Tn42 — Tpn = %h(fn—i—Z + 4fn+1 + fn)

is Z,2(t) = 2(t+2h) — 2(t) — 3h [2/(t + 2h) + 42/(t + h) + 2/(t)] . When the Taylor

series

z(t + 2h)
2(t)

are subtracted, terms with even powers of h cancel leaving

(t+h)+ha'(t+h)+ Fh2"(t+h) + ...
(t+h)—hz'(t +h) + Fh2"(t+h) — ...

z
z

2(t+2h) — 2(t) = 2h2' (t + h) + Zh32" (t + h) + Zh°20) (¢t + h) + O(R7).
When added, the odd powers of h in the corresponding series for 2z’ cancel leaving
Z(t+2h) + 2 (t) = 22/ (t) + Zh2" (t + h) + Zh*2O)(t + h) + O(h°).

Hence

z
h
= 21° <% - 3x14!) W20t + h) + O(hT).

15



15.

17.

Thus, since 2 (¢ + h) = 20)(t) + O(h),
Zz(t) = =h22O) (4 h) /90 + O(RT) = —k°2®) (£) /90 + O/(RF)

and the method has order p = 4 with error constant C5 = —1/90.

The advantage of using the non—standard expansions is that they allow us to exploit
the symmetry of the coefficients which results in significant cancellation of terms.

With

Lnz(t) = z(t+ 2h) + aqz(t + h) + apz(t) —
h(Ba?'(t + 2h) + pr2'(t + h) + Bo?' (1))
and z(t) =1,
Ll=1+a1+a9=p(1)
and, with z(t) =t,
Lt = (t+2h) + ai(t + h) + aot — k(B2 + B1 + Bo)
=t(1+ a1+ o)+ h(2+ a1 — (B2+ B+ Ho))
= tp(1) + h(p'(1) — o(1))

so 1 = Lt = 0 if, and only if, p(1) = 0 and p/(1) = o(1) which, according to
Theorem 4.7, are conditions equivalent to the consistency conditions (4.15).

The limit
I Tn+2 + 1Zp41 + 2y
im

h—0 h

is of the form J since, for a convergent method, ;2 — x(t*+2h), p41 — x(t*+h)

and x,, — z(t*) so the numerator converges to

Tnto + A1Tpi1 + oy — (14 a1 + ag)z(t*) =0
(using the 1st of the consistency conditions (4.15): 1+ a3 + ag = 0).
It is necessary, therefore, to invoke I’I:Iopital’s rule which states that

L fm) £
=0 g(h)  ¢'(0)
if £(0) =g(0 ) =0 and ¢'(0) # 0. With f(h) = z(t* + 2h) + a1 z(t* + h) + apz(t*)
and g(h) = h, we find f'(h) = 22/(t* + 2h) + aq 2’ (t* + h) so

. Tpiot+ a1Tpi1 + @oTy
lim

o 1%
lim Y = (24 a1)x'(t%).

The proof given in the text is then complete.

16



19. Suppose that p(t) = A+ B(t —t,) + C(t — t,)? (It is more convenient in this case
to use 1, (t — t,), (t — t,)? as a basis for quadratic polynomials). The conditions

p(tn) = Tn, p/(tn) = fn, p/(tn-i-l) = fat1-
then lead to the algebraic equations

A =z,
B :fn
B +2hC = foir

which solve to give A = x,,, B = f,, hC = %(fnJrl — fn) so that
p(t) =xp + (t - thrl)fn + %(t — tn+1)2(fn+1 - fn)/h

The prediction z,41 = p(tn+1) then leads to x, 11 = =, + %(fnJrl + fn) which is
the Trapezoidal rule.

17



Exercises 5

1.

D.

a) p(r) =r*—4r+3 = (r—1)(r — 3) so it has roots r = 1 and r = 3. These do
not satisfy the root condition and so the method is not zero—stable.
b) p(r) =3r* —4r +1 = (3r — 1)(r — 1) so it has roots r = 1 and r = 1 which
satisfy the root condition and so the method is zero—stable.
In b) we must also have consistency: p(1) = 0 (which is satisfied) and also p'(1) =
o(1) with o(r) = a and p'(1) = 2 so that a = 2 is required for convergence (this
leads to the BDF(2) method).

. Tpto + 2axn41 — (2a — Dy, = h[(a + 2) frt1 + afy] has linear difference operator

ZLp2(t) = 2(t +2h) + 2az(t + h) — (2a — 1)z(t) — h [(a + 2)2(t + 2h) + a2'(1)] .
We first check the order

L2(t) = 2(t) + 2h2'(t) + 2172 (t) + 2R3 (t) + O(h?)
+2a (2(t) + h2'(t) + $h22"(t) + £h32" (t) + O(hY))
— (2a+1)2(t)
—h(a+2)( Z(t) + h2"(t) + h2(t) + O(h?))
— ha 2 (t)
= —¢(a—2)n32"(t) + O(h*)

so the method is, in general, of order p = 2 with error constant

C3=—2(a—2).

[

When a = 2 the method is at least 3rd order. However, the first characteristic
polynomial
p(r) =r*+2ar — (2a+1) = (r — 1)(r —2a — 1)

has a root » = 2a + 1 = 5 in this case and so the resulting method is not zero—
stable. The first characteristic polynomial is the same as that for the method in
Example 4.11.

The method will be zero-stable provided —1 < 2a + 1 < 1 (strict inequality at
the right endpoint to avoid a double root 7 = 1). Thus —1 < a < 0 and then
|C3] = |a — 2|/6 there is no smallest error constant since |C3] — 1/3 as a — 0
but the resulting method will have a double root » = 1 thus violating the root
condition.

The most general 1-step LMM has the form

Tpy1 + 0Ty = h(B1fnr1 + Bofn)
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which has first characteristic polynomial p(r) = r 4+ «ag. Consistency requires
p(l) =1+ ap = 0. Hence ap = —1 and all consistent 1-step LMMs have the
same first characteristic polynomial p(r) = r — 1 which clearly satifies the root
condition.

7. Tp4+3 + Tpt2 — Tpyl — Tp = 4hfn
(@) p(r)=r3+r2—r—1=(r—1)(r+1)? and o(r) = 4.
p(1) =0 and p'(1) =4 = o(1) so the method is consistent.
(b) The general solution as given in the text is z, = A+ (B+Cn)(—1)". Invoking
the starting conditions zg =1, x1 =1 — h, z9 = 1 — 2h we find
A+ B =1
A-B—- C=1-h
A+B+2C=1-2h

whose solutionis A=1—h, B=h, C = —h so
Tpn=1—h+(=1)"(h—t,)

since t,, = nh.

(¢) p(r) has a double root at = —1 and violates the root condition—it cannot
therefore be zero—stable.

9. Tn+3 — Tn+2 + Tn+l — Tpn = %h(fn—i—?) + fn+2 + fn+1 + fn)
p(r) = 24y —1= (7“—1)(7“2—|—1) and o(r) = %(r3+r2+r—|—1).
p(1) =0 and p'(1) = 2 = o(1) so the method is consistent.

p(r) = (r—1)(r? 4 1) has roots r = 1, £i and these satisfy the root condition. The
method is therefore convergent.

11. For zpi0 —xp =h (51fn+1 + 50fn),
(r)=7r>=1=(r—1)(r+1) and o(r) = Bir + fo.
(r) has roots r = £1 so satisfies the root condition. It is therefore zero—stable.

p(1) = 0 for all members of the family and p/(1) = o(1) if 2 = 1 + fp. Setting
B1 = b, we have consistency if 8y = 2 — b. Thus, the one—parameter family of
methods

p(r)
p(r)

Tn+4+2 — Tpn = h (bfn+1 + (2 - b)fn)
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13.

15.

is convergent for all values of the parameter b.
Sa(t) = z(t) + 2k (t) + 2072 (t) + 332" (t) + O(h?)
— 2(t)
—0( hZ' () + 2h22" (t) + 202" (t) + O(h?))
— (2-0)hd(t)
= (2= b)R%Z"(t) — L(3b — 8)h32"(t) + O(h*)
so the method has order p = 1, in general, with error constant Cy = 2 — b.

The method will have order p = 3 when b = 2 and the error constant is then
Cs3=1/3.

For @42 + (0 — 2)zn41 4+ (1 — 0)2y, = 3h ((6 + 0) fria + 3(0 — 2) ),
Lhz(t) = 2(t) + 202 (t) + 222" (t) + O(h?)
(0 = 2)(=(t) + he/(t) + 5h*2" (1)) + O(h°)
+ (1 —0)z(t)
— —(6 +0)( hZ(t)+ 2h%2" (t) + ﬁ(hg))
10 -2)( h(1)
= — 2h2z”( t)+ Oo(h?)
so the method has order p = 1 and error constant Co = —2, both independent of 6.

The method has been shown to be consistent, so it will be convergent if, and
only if, it is zero—stable. For this we have to check the root condition: the first
characteristic polynomial is

p(r)=r*4+ 0 -2)r+1—-0)=(r—-1)(r—1+86)

and has roots = 1 and r = 1 — #. These satisfy the root condition if, and only if,
0<f<2.

p(r) =1 ZJ 1j1 r*=J(1 —r)7 and o3 = Byr*. Consistency requires o(1) = p'(1).
Since

rk—i- 1(1—7“) —jT’ (1—r)j_1)

nl>—‘

k
7j=1
so, when evaluating p/(1), all terms vanish except for j~*=7(1 — r)7~! with j = 1.
Consequently 8 = o(1) = p/(1) = —1/c.

Check:
with k =1, ¢c=1and 5 =o(1) = p/(1) = —1 (backward Euler).

with k=2, c=1+1/2=23/2 and B = o(1) = p/(1) = —2/3 (BDF(2)—(4.25)).
with k =3, c=11/6 and 3 = (1) = p/(1) = —6/11 (BDF(3)—see Exercise 5.14).

b|y—t
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Exercises 6

1. With h = 2X + 2iY in Example 6.9,

. 1+ih 1+ X)+iY WQ_(JFX)?JFY?
T -X) -y TN T - X)P Y2
SO
P -1=
! T =X +y?

Clearly |r1| < 1 if, and only if, X < 0, i.e., R(h) < 0.
It follows that the interval of absolute stability (relevant when Y = 0) is (—o0,0).

3. Tpg1 — xn = MO fny1 + (1 — 0)fn) applied to 2'(t) = Az(t) leads to the stability
polynomial p(r) = (1 — 6h)r — (1 — 0)h) so the strict root condition leads to

1+ (1—6)h)

= <L
1—-06h

1] =

The boundary of the region of absolute stability is given by |r] = 1 so, with
h =7+ 1y,
(1+2(1—0)%+ (1 -0)%?
(1—206)% + 6232
27 + 2%(1 — 20) + (1 — 20) = 0

L’x‘_{_fﬁ +72=0
(1—26)

( L2 §+£2>+A2—71
(1—267  (1-20) YT 2y

=1

(ge7) 72

- x _ @@

1-20 YT 20y

which is a circle of radius 1/|1 — 26| centred at T = —1/(1 — 20), y = 0.

When 6 < % the boundary of this circle lies in the left half plane. At its centre,
h=—1/(1-26) and

<1

L

so points inside the circle correspond to points where the method is absolutely
stable.
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When 6 > % a similar calculation shows that the boundary lies in the right half
plane and at its centre, |r1| > 1 so points inside the circle correspond to points
where the method is not absolutely stable. The region of absolute stability is
therefore the exterior of the circle.

When 6 = % the boundary of the region of absolute stability coincides with the
imaginary axis, as discussed in Exercise 6.1.

5. The stability polynomial of the LMM 49 — 2 = 3h(foy1 +3fs) is p(r) =
r2—1—2h(r+3).
We only need the interval of absolute stability which means that we can assume h
to be real and therefore Lemma 6.10 may be used with

wm—1h  b——1-%0
The conditions b < 1 and p(£1) > 0 lead to
b<1: -1-3h<1 = h>-4
1+a+b>0: —2h>0 < h<O0
l-a+b6>0: —h>0 <~ h<O0.

The interval of absolute stability is therefore (—%, 0).

7. For pp9 — 402511 — (1 — 40)zy, = h((1 — 0) fasa + (1 — 30) fs)
(a) the associated linear difference operator is
Zp2(t) = 2(t4+2h) —402(t+h)— (1—-40)z(t)—h((1—0)2' (t+2h)+(1-30)2'(t)).
Expanding in powers of h we find
Lya(t) = 232" (t)(20 — 1) + O(h?)

so the method has order p = 2 with error constant C3 = 2(20 — 1)/3.
The highest order (p = 3) is achieved when 6 = % and the resulting error
constant is Cy = —1/12.

(b) The method will be convergent if, and only if, it is both consistent and zero—
stable. The first of these conditions has been shown to hold in part (a) (order
p > 1). For zero stability the roots of the 1st characteristic polynomial

p(r) =r? —40r — (1 —40) = (r — 1)(r + 1 — 49)

must satisfy the root condition—this requires —1 < —1 440 < 1, i.e., 0 <
< 1.

The method of highest order is not convergent since the root condition is
violated at § = % (p(r) has a double root r = 1).
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(c) For Ag-stability we must show that the interval of absolute stability includes
the negative real axis: R(h) < 0. Applying the method to the ODE 2/(t) =
Az(t) when 6 = 1/4 leads to the stability polynomial

plr) = (1= 30y =7 — 4

We are interested only in cases where h is real and negative, in which case
the coefficient of 72 is always > 0. To apply Lemma 6.10 we have to divide
by this coefficient, then b = —h/(4 — 3h) and

~

b<1<:>—ﬁ<4—3ﬁ, <~ h<2
p(1)>0<:>—ﬁ>0
p(=1)>0<=2-h>0

all of which are satisfied for & < 0 and so the method is Ag-stable.

9. The stability polynomial of AB(2) is (see Exercise 6.)p(r) = 72 — r — %ﬁ(?ﬂ“ —1).
Writing » = e'®, then the boundary of the region of absolute stability is given by

Bt ot _ 136 1) = 0,
Solving for % and writing in real /imaginary from

S~ eis -1

3els — 1

(e —1) (3e7'* —1)

(3els — 1) (3e1s — 1)

cos2s —4cos s + 3 +i(sin2s — 4sin s)
5—3coss

— 2eis

B 2(1 — cos 5)? +isin s(cos s — 2)

5—3coss

We observe from this that %(ﬁ) < 0 for all s (so the boundary lies entirely in the
left half complex plane) and the boundary crosses the real axis when (h) = 0.
This occurs when sins = 0, i.e., when s =0 (where h= 0) and again when s = m,
where h = —1. The region of absolute stability must therefore be the one on the
left of Figure 6.12.

For completeness we find that a similar computation for AM(2) leads to

(1 — cos s)? +isins(coss — 7)

h=—
25+ 16coss — Hcos? s
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11.

13.

revealing that §R(/f\b) < 0 for all s and the only intersections of the boundary with
the real axis occur when sins = 0, i.e., when s = 0 (where h = 0) and again when
s = m, where h = —6. This confirms that region of absolute stability of AM(2)
must therefore be the one on the right of Figure 6.12.

The stability polynomial of the LMM 42 — Zpi1 = Th(fat2 + 2fnt1 + fo) is
p('r') = 7’2 - Tr — ih(""Q + 2r + 1)5 i'e"

p@p:@—i@rﬁ—@+§@r—iﬁ:0

We only need the interval of absolute stability which means that we can assume h
to be real and therefore Lemma 6.10 may be used with

1+ 1h h
a=— 2 bp=-1 =.
1—1h —1h

The conditions b < 1 is best tackled by computing b — 1:

so b < 1 if, and only if, h < 4.

Since the coefficient of r? in p(r) is always positive for h < 0, the two remaining
conditions of Lemma 6.10 can be written as p(+1) > 0.

1+ 1h - 4h
p(l) =1—- —= - j—= = =
1-1n *1i-ih -4
so p(1) > 0 if h < 0.
1+ 1h - 8
p(-1) =14 = = f—m = ==
1-1n Yol g

so p(—1) > 0 if, and only if, h < 4.

The conditions of Lemma 6.10 have been shown to be satisfied for all h < 0 so we
can conclude that the interval of absolute stability is (—o0,0), proving that the
method is A-stable.

Applying the starting conditions 2o = 1, #; = e” to the general solution z, =
Ar" + Br™ we obtain

1=A+B
eB:ArJr—FBT,.
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15.

Writing A = $(1+a) and B = J(1—a) then the first of these equations is identically
satisfied while the second leads to

(ry+r-)+alry —r_) = 2¢h

and, on using the expressions for r and r_ given in Example 6.12, we find

re+r_=2h and ry—r_ =2\/1+h?

and so

h—h

V1 + h?

Using the Binomial expansion, we find V1 +h2 =1+ %EQ + O(h*) so, since
et —h=1+41n%+ 1h? + o(h?),

a =

1+ 1p2 4+ 133 4 go(n*
a—1= t 3 ;:6 * ( )—1
1+ 3h% + O(h)
3+ o(h*)

=6 T 13 ot
1T o o o,

(1+a) =1+ 503+ 0(hY) =1+ 6(h%) and B =
O(h3).

N

as required. Hence, A =

11 —a) = —Lh? + O(h*)

The LMM 2yt + (0 — 2)zng1 + (1 — 0)zn, = 2h((6 +0) faio + 3(0 — 2) f) was
shown in Exercise 5.13 to be convergent for 6 € (0,2] and we shall assume that 6
is restricted to this interval.

The method has stability polynomial
p(r) = (1= 2h(6+6))r2+ (0 —2)r+1—6—3(0-2)

to which we apply Lemma 6.10 in order to show that its roots satisfy |r| < 1 for
all h < 0 and all # € (0,2]. These conditions lead to

(a) For b < 1,

1—0—3(6—2)h
b—1= 14( ) -1

1-1(0+6)

—0+3(6—10)

1-16+6)h

> >

and the right hand side is easily shown to be negative.
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17.

(b) The coefficient of r? is positive for all relevant values of h and 6 so we may
use the conditions p(+1) > 0.

p(1) = —6h and p(—1) = (4 —26) — 6h
and both are seen to be positive for all relevant values of h and 6.

All convergent members of the family are absolutely stable for all h < 0 and are,
therefore, Ag—stable.

(a) p(r) =r%—2ar+ (2a — 1), o(r) = ar?> + (2 — 3a)r.
(b) p(1) =0 and p'(1) = o(1) = 2 — 2a, so the method is consistent for all a.

(c) p(r) =72 —2ar+2a—1= (r — 1) (r — 2a + 1) so the root condition is satisfied
for —1<2a—1<1,ie,0<a<1.

(d) It is convergent if it is consistent and zero—stable, i.e., for 0 < a < 1.
() Lz (t) = (—2a+ 1) 2"n® + (3 — Ha) zWh* + O(KD)

So the order is, in general p = 2 with error constant Cs = —%a + %
When a = 2, C3 =0 and %,z (t) = —3—102(4)h4 + O(h®) and the order is p = 3
with error constant Cy = —%. This method is convergent since a is in the

zero-stable range.

(f) For Ag-stability, apply the method to 2/ = Az with A real and A < 0. This
gives the stability polynomial

p(r) = (1 — ah)r?® — (2a+ (2 — 3a)h)r + 2a — 1

and we have to use Lemma 6.10 to check the conditions under which the roots
satisfy the strict root condition: this will ensure Ag—stability—all solutions
Zn — 0 as n — oo. Since the coefficient of r? in p(r) is always positive for
h < 0 and a > 0 these conditions give:

i p(1)>0 R L

p(1) = —ah —(2—3a)h=2h(a—1)
and a < 1 for zero-stability, so p(1) > 0 for all h < 0.
ii. p(—1) >0

p(—=1) = —ah+4a + (2 — 3a) h = 4a + 2(1 — 2a)h

so, to have p(—1) > 0 for all h< 0, we must have a > %
iii. b<1 R
h_1— 2a—/1\ - ah—2(1:a)
1—ah 1—ah
so b—1 < 0 since 1 —a > 0 by zero—stability, ah <0Osincea>0& h<0
and the denominator is > 0.
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All conditions for the strict root condition are satisfied provided % <a<l
This condition identifies all Ag—stable convergent members of the family.
(g) The BDF(2) method has a = % so it is convergent (0 < a < 1) and Ap—stable

(% < a < 1); it has order p = 2 with error constant C = [—%a + %]a:Z/B = —%.

(h) When a = 0 the method is explicit but not Ap—stable—in accord with part 1
of Dahlquist’s Second Barrier Theorem (Theorem 6.15).

To have 3rd order, a = %, but this is outside the range of Ay—stable methods.
So the maximum order of Ag—stable methods is p = 2—in accord of part 2 of
the theorem.

For part 3 we note that the modulus of the scaled error constant is

O
o(1)

1 5a—2

121_4

which is a strictly increasing function of a—it achieves its smallest value
consistent with Ag—stability when a = %, in which case the method becomes
the Trapezoidal rule.

Figure 1: Boundary of the region of absolute stability
for Exercise 6.18.

19. Since all points (a,b) inside the triangle in Figure 6.8 correspond to roots that
satisfy the strict root condition (|r| < 1), they must also correspond to roots that
satisfy the root condition (|r| < 1).

For coefficients (a,b) on the edges of the triangle at least one root of the polynomial
has modulus equal to 1. However, it can only have a double root of unit modulus
if there are coincident roots (b = a?/4) and these occur only at (+2,1).

Hence the root condition is satisfied if |a| — 1 < b < 1, except for the case when
b =1 and a = £2 (which lead to double roots r = +1).

21. Applying the composite Euler method to z'(t) = Az(t) leads to

Tomt1 = (1 + hoX)xom and  zopmi2 = (1 + AiA)Z2mt1,
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80 Tam42 = (1 4+ h1A)(1 + hoX)z2m,. Thus, with hg = (1 —y)h and h; = (1 +v)h,
Tamiz = (1+ (L4 DAL+ (1 = NhN@gm = (1 +7)* = 7*h2))zom,

where i = hA. Thus Tom+42/Tom = R(ﬁ), where R(ﬁ) =(1 +ﬁ)2 — 2h2.

To determine the conditions under which R(h) < 1, we consider
R(h) —1=(1+h)2=~*h2 =1 =h(2+ (1 —4*)h).

Thus, since h< 0, we have R(/f;) < 1 if, and only if (recall that 0 <y < 1)

~

<h<0. (5)

g
To determine the conditions under which R(h) > —1, we find the minimum of
R(h) for h < 0 and then require this minimum to exceed —1. R has stationary
points where R'(h) = 2((1 4 h) —¥*h) =0, that is, at

h=-1/(1—7%.

Since R”(h) = 2(1 — ~2) > 0 the stationary point is a minimum. The value of R
at this point is
Rin = _72/(1 - '72)

and ) )
_ ol _ 1—2y
Rmin+1——1_72+1——1_72

and so Ryin > —1 for v2 < % When 72 = % the inequalities (5) become —4 < h<0
which is the interval of absolute stability!. The region of absolute stability is shown
in Figure 2.

Figure 2: The region of absolute stability for the
composite Euler method for Exercise 16.21 when

~ ~ L v =1/V2.

1Strictly speaking, we have to weaken the conditions for absolute stability to |R(ﬁ) < 1 in order to

allow the value 72? = % In practice, we need only choose a value of v that is marginally smaller than

1/V2 28



Exercises 7

1. From (7.8)
w| _qp |10 o [10] _on
o| T |1 |¢ T
SO
u o |10] 9 [10] _on
[v’]_ 001 2o | 4
and

as required.

3. The system u'(t) = v(t), v'(t) = —200u(t) — 20v(¢t) has coefficient matrix

0 1
A= {—200 —20] '

Its eigenvalues are the roots of the equation

- 1

— )2 _ 2
000 90— x| = A2+ 20X 4200 = (A + 10)° + 100

det(A — \I) = ‘

which gives A = —10 4 10i. For absolute stability of Euler’s method we require
h+1] <1,

where h = hA, for every eigenvalue A of A. To determine the allowable range of
stepsizes h, consider

h+ 1 —1= (=10 £ 100)h + 1> — 1
= |(1 — 10R) £ 10ih)* — 1
= (1 —10R)* 4+ 100R% — 1
= —20h 4 200h? = —20h(1 — 10h).

Hence |ﬁ + 1| < 1 and we have absolute stability if, and only if, 0 < h < 1/10.

5. The coefficient matrix is
A -8 8
| 0 -1/8
whose eigenvalues are?> A\ = —8 and —1/8. These are real so the condition for
absolute stability of Euler’s method is

—1<1+4+h <1

2The eigenvalues of an upper triangular matrix are simply its diagonal entries.
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for each eigenvalue of A. With A = —8 we find h < 1/4 and for A = —1/8 we find
h < 16. Both have to be satisfied so we must have h < 1/4.

1

Un+1 = 4+ h2 ((4 - h2)un - 4hvn)a (6)
1 2

Untl = 77 (4hun + (4 — h*)hvy,),

so, squaring both sides of the two equations and adding gives

1
ui_H + v,%_,_l = m (((4 — W), — 4hvn)2 + (4hun + (4 - hZ)hvn)Q)

1

e (=122 36072+ (4= 1277 4 160°)17)

4+ h?)%ul + (4+h%)*02) = ul + v2.

1
(4 + h2)? (
This implies that u2 + v2 = u + v3.

With u, = Rcos(f,) and v, = Rsin(6,), clearly u2 +v2 = R?, where R? = u3+v3.
Substituting into the right of (6), we find

cos(Op41) = 1 —i—1h2 ((4- h?) cos(6,,) — 4h sin(6y,)),
sin(f,11) = Flhz(llh cos(0,) + (4 — B*)hsin(6,,)),

so that, dividing the 2nd by the 1st,

(4 — h?)tan(6,,) + 4h
(4 — h?) — 4htan(6,,)

tan(fp4+1) =

We use the standard identity

~ tan(fnq1) — tan(6y,)
1 +tan(f,11) tan(6,)

tan(0p+1 — On)

and calculate the numerator and denominator separately.

— h?) tan(6,
tan(fp,41) — tan(6,) = Ej — 22;‘5_ 4(h€tzzn—i(_9i}; — tan(6,) =

4hsec?(0,,)
(4 — h?) —4htan(6,)’

where we have used 1 + tan?(6,,) = sec?(6,,). Also,

B tan(6,41) — tan(6,) (4 — h*)sec?(6,)
L+ tan(n) tan(6n) = 1+ tan(6n) 1 +tan(f,11)tan(6,) (4 — h2) — 4htan(6,)
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and so

4h h

tan(fp41 — On) = A I

Since 9%
1 —tan“ e
we see that tan 3 (6,41 —0,) = $h. Using the expansion tan~!(z) = 2 — 2%+ 0/(2)
we have
Opn+1—0p = 2tan~! %h

=2(3h = §(31)° + 00))
=h— $h3+ O(h5)

as required.

. Applying the mid-point rule z,,19 — z, = 2hf,+1 to the ODE 2/(t) = iz(¢) leads
to
Tpyo — 2ihany1 —xn =0,

a difference equation with auxiliary equation (stability polynomial with A = i)
p(r) =r% — 2ihr — 1

whose roots are
Ti:ihi\/l—hQ.
When h <1 the argument of the square root is positive and so |ry| = 1.

However, when h > 1, the roots become r4 = ih + iv/h2 — 1 the modulus of the
larger root is |r1|?> = h +v/h? — 1 > 1 so that solutions become unstable.
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Exercises 8
1. Let u = x4 then 411 = 5 + 2hxy41(1 — 2541) becomes

2hu?® 4 (1 = 2h)u —x,, =0

whose solutions are

uy = ﬁ (—(1 —9h) £ /(1 — 212 + thn) .

Then

1 1
— — (—(1- _ —9h)2 L
U_ m ( (1 —2h) \/(1 2h) +8hxn) — o — —00

as h — 04. In contrast, by a process known as rationalization, we find

uy = ﬁ (\/(1 —2h)? + 8ha, — (1— 2h)>
((1 = 2h)? + 8hay,) — (1 — 2h)?
V(1 —2h)2 + 8hay, + (1 — 2h)
2z,

= — T
V(1 =2h)2 + 8hay, + (1 — 2h)

V(1 —2h)2 + 8hxy, + (1 — 2h)
V(1 —2h)2 + 8hxy, + (1 — 2h)

as h — 0. Since z,, and x, 1 are meant to be approximations to x(¢,) and (t,1),
respectively, and x(¢,4+1) — z(t,) as h — 0, it is appropriate to choose z, 1 = u4.

3. Including additional rows in Table 8.1 to accommodate E¥(= ul¥ — 1) and
EW1 /B Jeads to the results shown in the following table.

¢ 0 1 2 3 4
ulf] 0.2 0.232 0.2356 0.2360 0.2360
wlfrtl — gl 0.032 0.0036 0.0004 0.0000
El —3.61190—2 | —4.07T10—3 —4.33;0—4 —4.57T10—5 —4.83,0—6
Bl gl 0.113 0.106 0.106 0.106

(3.610—2 = 3.61 x 1072, etc.) The results indicate that E) — 0 and that
EH/EE 5 0.106 (approximately). The Jacobian at x is

B =2(1 — 2z5) ~ 1.056

so the calculations confirm that EUH1/ENl — hB as shown in equation (8.6).
Because hB ~ 0.1, Bt ~ 0.1 x EW gets smaller by a factor of about 0.1 per

iteration, that is, ulY gains about one decimal place per iteration.

32



5. Using the ODEs z/(t) = —2y(¢)® and y/(t) = 2x(t) — y(t)® and the chain rule,

(et + bu(0)") = 26(0)2/ (1) + 200"/ (1)

= 2x(t)(=2y(t)%) + 2y(1)*(22(t) — y(t)*) = —2y(t)°.

7. For 2/(t) = Az(t), a typical step in the forward/backward Euler PECE method is

P: :ULOL =z, + hfn =(1 +?L)$n,
0 0

E: [ = f(tnsr,x LL) = Aol

Cizprr =+ hfnJrl =Tp + hxfﬁrl,

E: for1 = f(tn41,Tnt1) = Apt

and $0 Tpi1 = &n + h(1 + R)an = (1 + b+ h2)zy,

For absolute stability, we require |z,+1/x,| < 1, i.e.,
—1<1+h+hr%<1.

The right hand inequality requires h( +ﬁ) <0, ie, he (=1,0). The left hand
mequahty requlres 2+ h + h% > 0 which is true for all real T since 2 + h + h? =
(h + 2+Iso.

The interval of absolute stability is, therefore, —1 < h < 0.

9. The backward Euler method applied to 2/(t) = f(x(t)) leads to Ty 11 = Tn + frt1-
Suppose that this equation has two solutions u and v, so

u=x,+hf(u) and v=uwxz,+hf(v).

Subtracting these gives u — v = h(f(u) — f(v)) Multiplying both sides by (u — v)
and assuming that f satisfies a one—sided Lipschitz condition, we find

(u—v)* = h(u—v)(f(u) = f(v)) < hy(u—wv)*

from which we deduce that (1 — hy)(u — v)?> < 0. The left hand side of this
inequality is non—negative when hy < 1 and consequently both sides must vanish,
from which we deduce that v = v. The equation must therefore have a unique
solution.
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11. With f(u) =u —0.2 = 0.2u(1 — u), f'(u) =1 —0.2(1 — 2u), the Newton-Raphson

method for equation (8.8) is

with ug = 0.2. The results are shown below

SO \um — um] < 0.001 and two iterations are sufficient to meet the convergence

criterion.

[€]
S\ R f(u!)
S (ult)
¢ 0 2
ulf] 0.2000  0.2364 0.2361
A — 8| 0.0364 —0.0003

13. We extend Table 8.2 by adding two further rows which show that (pl)2/pli+1 ~

4.75 and (¢!™)?2 /¢l ~ 3.36.

‘ 0 1 2 3
ulf 1.00 0.774647887 0.773901924 0.773901807
1.00 1.042253521  1.041731347  1.041731265
£l 2.253510—1  7.459610—4  1.171130—7  2.913139—15
—4.225410—2 5.221710—4  8.19750—8  1.9628,0—15
Bl 2.2610;0—1 7.4608;0—4 1.171139—7  2.886619—15
—4.173119—2  5.222610—4  8.19750—8  1.9984;0—15
(pt™)2 /plt+1 | 68.5186 4.7532 4.7510
(g2 /g1 | 3.3346 3.3272 3.3627

15. When applied to z’(t) = A\z(t), the PECE method of Exercise 8.12

0
P QUHFQ

= i1+ 203 1 — fn)
E: f}ﬂ_g = f(

[0] )

bnt2, o

=\

n+2»

=1+ %ﬁ)xnﬂ — %ﬁxn,

C: Tpgo = any1 + %h(fn—i-l + fr[ﬂ—Z) = Tpy1 + %E(xn—i-l + x[no—}i-Q)v
E: fn+2 = f(tn+2axn+2)

== )\Zﬂn+2.

Combining these gives the difference equation

Tn+2 = (1 "‘/H + %/ﬁz)wn+1 — %ﬁzl'n

whose auxiliary equation is

p(r) = r? — (1 —i—ﬁ + %EQ)T — iﬁQ.
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To find the interval of absolute stability we may use Lemma 6.10 with
a=—(1+h+3n%, b=-1p2
The conditions b < 1 and p(£1) > 0 lead to

b<1: 1h? <1 — -2<h<2
l+a+b>0: —1h2+h) >0 <= -2<h<0
l1—a+b>0: 2—|—/ﬁ—i—ﬁ2>0 which is true for all real h.

The interval of absolute stability is therefore (—2,0).

17. We extend the table shown in the solution to Exercise 3 to include a row to show
the values of |E+Y — EW| /(1 — ), where r = hB ~ 0.106.

¢ 0 i 1 2 3 4
wldl 0.2 | 0.232 0.2356 0.2360 0.2360
wlH1] — 1 0.032 |  0.0036 0.0004 0.0000
Ell —3.6110—2 |, —4.07190—3 —4.3310—4 —4.5710—5 —4.8319—6
Bl gl 0113 ' 0.106 0.106 0.106
|E[f+1} _ EW| i
— 3.5810-2 1 4.06810—3  43310—4 457105

(3.6110—2 = 3.61 x 1072, etc.) Close agreement is seen between |E| and the
values in the last row.
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Exercises 9

1. With @ = £ in the general 2nd order RK(2) method (Table 9.5) gives the improved
Euler method:

kl — f(tnaxn)
ko = f (tn, + ah,z, + ahky) = f (tn, + h,x, + hkp)
Tni1 = Tp + b (brky + boka) = 2y + $h (k1 + k2)

so, for 2/(t) = (1 — 2t)x(t), h = 0.2,

k‘l = (1 — 2tn)£ﬂn
ko = (1 —2(t, + h)) (zy, + hk1)
Tpnt+l1l = Tn + %h (k‘l + k‘Q) =x,+0.1 (k‘l + k‘Q) .
n=0: o = 1, t() == 0, k‘l == 1, kﬁz == .72, T = 1.172
n=1: x=1172,¢t, =0.2, k3 =(1—-2x0.2)1.172 = .7032
ko =(1-2(0.24+0.2)) (1.172 + 0.2 x .7032) = .2625
To = X1 + 0.1(/{?1 + /{?2) = 1.2686
The value xo = 1.2686 is close to that obtained by the modified Euler method
(1.2757) in Example 9.1.
The exact solution is z(t) = exp((3 — (¢t — 1)?) and so z(t2) = 2(0.4) = 1.2712.
The global error at ¢t = 0.4 is therefore e = 1.2712 — 1.2686 = 0.0026.

3. The general s—stage RK method applied to the IVP u/(t) = f(u(t)), where

wo =[] (2] =)

and u(0) = 0, v(0) = n leads to

k;, = f(un—l—hZai,jkj), Up41 :un—i—thiki
=1 i=1
with wg = [0,7]7
and k;, we find

fl' B s s
J=1 j=1

. Then, supposing that the components of k; are denoted by ¢;

1

i.e., /; =1 and so
k; = f(tn + hZai,j,xn + hz CLZ'J'k‘j).
j=1 =1
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This will be in agreement with (9.6) if equation (9.7) holds, i.e., ¢; = > a;;.

Then
_ tn+1 _ tn ¢ ) éz
wn =] =[] o3z i)

and so

s s
th+1 = tn+hzbi7 Tptl = Tp, —l—thlkl
=1 =1

The update z,+1 agrees with (9.5) and, in order to have t,,41 — t, = h, we clearly
require » 7, b = 1.

5. Using the Taylor expansion for a function of two variables,
ko = f(tn + h,xn + hk1) = f(tn,zn) + O(h)
we find
k1 + k2)
f(tnzn) + [f(tn, 20) + O(h)])

Tptl = Ty + %h
=z, + %h
= 2 + hf(tn, zn) + O(R?).
For the exact solution of the ODE 2/(t) = f (¢, z(t)),
z(ty +h) = x(ty) + ha'(t,) + O(h?)
= 2(ty) + hf(tn, 2(tn)) + O(h?).
Under the localizing assumption x,, = z(t,), the difference is easily shown to be
2(tnt1) — Tap1 = O(h?)

s0, in view of Definition 9.3, the method is of order p = 1—it is therefore consistent
with the given ODE.

(
(

7. In all methods tg =0, o = 1, k1 = f(0,z9) = 1, where f(¢t,z) = (1 — 2t)z.

ko k3 k4 1

Improved Euler

0.880000 o + hko=1.094000
Modified Euler

0.945000 zo + %h(/ﬁ + k2)=1.094500

Heun

0.964444 0.922390 o + %h(/ﬁ + 3k3)=1.094179
Kutta 3rd order

0.945000 0.871200 zo + %h(k:l + 4ko + k3)=1.094187

4th order

0.945000 0.942525 0.875402 =z + %h(k‘l + 2ko + 2k3 + k4)=1.094174
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13.

The value given by the 4th order method agrees with the exact solution z(0.1) to
6 decimal places.

. Applying the general 2nd order, 2-stage RK method from Table 9.5 to the ODE

2/ (t) = Az(t) we obtain k1 = Azp,
ko = Ny + ahky) = (1+ ah)z,, (b= \h)
Tpi1 = Tp + h((l —0)k + Hk:g)
= (1+h+ abh®)z, = (1 +h+ 30z,

since af = % for a 2nd order method. The exact solution has the property x(t,+1) =

ez (ty,), so its Taylor expansion is

2(tnp1) = (1+h+ 2h% + Lh3)z(t,) + O(hY)
and therefore the LTE is given by

Tpi1 = (tnt1) — Tni1 = sh3z(t,) + O(hY),

where we have used the localizing assumption x,, = x(t,). Thus, the method can
be of order at most two.

Using the given tableau we find
kl - f(tru xn)
ko = f(tn + h,xn + Shiky + ko)
In view of the last equation and t,,.1 = t, + h, ko can be re—written as
ke = f(tnt1, Tny1)

and therefore, x, 11 = x, + %h(f(tn, Zn) + f(tn+1, Tnt1), which is the Trapezoidal
rule.

The required conditions are obtained by setting b3 = 0 which gives the 2-stage
version of a 3-stage RK method with tableau (with ¢ = a2 1)

010 0 0
_ ala 0 : cg | a1 0
2-stage version: , 3-stage version: ’
- - - - c3 | az1 azz O

by by O ‘ b1 by b3

Suppose that the parameters of the 3-stage method satisfy the order conditions of
Table 9.6. Then, choosing a = as1 and by = %a, b1 = 1—bg in the 2—-stage method,
the parameters of the 2-stage method satisfy the order conditions of Table 9.4.
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15. To show that Heun’s method is of order three, we follow a similar pattern to
Exercises 9.5 and 9.6 except that the Taylor expansions for the numerical and
exact solutions need to be computed with remainder ¢(h*). This means that the
k’s need to be expanded up to h? terms. So

ko = f(tn + $h, T + $hk1)
= [+ 3h(fi+ kife) + 550 (fu + 2k foo + K2 fuw) + O(R?)
= [+ 3h(fut+ [fo) + 5 (fu+ 20 for + [P fa) + O(0°),

where f and its partial derivatives are all evaluated at (¢, x,). Similarly,

ks = f(tn + 3h, 2y + Shky)
=f+ %h(ft + k1 fz) + %(%h)Q(ftt + 2ko for + /g%fm) + O(hd)
= f+ 2h(fo+ fFa) + 202 (fir + ko for + K3 fua) + O(B),

and we delay substituting for ko in order to simplify the calculations. Then

Tng1 = Ty + $h(ks + 3ks3)
=T +hf+ %hz(ft + ko fe) + %hs (fit + 2ka for + k3 f2z) + O(hY).
For the exact solution of the ODE 2/(t) = f(t,x(t)), using the result of the previous
exercise,
x(tn, + h) = z(t,
= xz(ty
_l’_

+ ha'(tn) + h*a" (tn) + §h%a" (tn) O (h)
+hf+ 50 (fe + ffa)
hs(ftt + foa:t + f2farar + f(ft + ffx)) + ﬁ(h4)'

o= — —

So, under the localizing assumption x,, = z(t,,) we find

Thi1 = x(thrl) — Tn+1

= W2 (f — ko) fa) + §h° (2(f = k) far + (2 = k3) fuw + [ (fr + [ f2))
and substituting ko = f + %h(ft + ffz) + O(h?), this gives Ty,11 = O(h*) which,

in view of Definition 9.3, verifies that the method of consistent of order three.

39



Exercises 10

1. When Heun’s method is applied to 2’(t) = Az(t), we find
ki = f(tn,zn) = Az,

= f(tn + 2h,zn + 2hk1) = Mz, + $hky)
A1+ Th)z,
fltn + 2h, 2y + 2hks) = N(@y, + 2hks)

= A1+ 2h+ 20z,
Tni1 = Tn + 1h(ks + 3k3)

= 2o+ $0(143(1+ 30+ 30%) ) = (L+ R+ 332 + 10,

ko
k3

Similarly, for Kutta’s 3rd order rule,
k1 = f(tn,xn) = Ay
= f(tn + sh,xn + 2hk1) = Mz, + Shk1)
A1+ %ﬁ)xn
f(tn + hy @y — hky + 2hks) = Axy, — hk1 + 2hks)
= A1+ + b,
Tni1 = Ty + gh(ky + 4ks + k3)
= 2+ %ﬁ(l +A(1+ 3R+ (1 +7 +ﬁ2))xn — (1+h+ 102+ 103)a,.

ko
k3

The stability function R(h) = @pi1/an = 1+ h + %/EQ + %/f}g is the same for both
methods.

3. When the 4-stage method from Table 9.8 is applied to z/(t) = Az (t), we find
ki1 = f(tn,xn) = Az,
= f(tn + Sh,zp + $hk1) = A + Shk:)
A1+ %ﬁ)mn
ftn + $h,xn + $hka) = Aan + $hks)
(
(

A1+ b+ %)z,
F(tn + hyy, + hks) = Az, + hks)
A1+ h+ 38+ 1%z,
Tni1 = Tn + gh(ky + 2ka + 2ks + ky)
= (1+h+ 3h* + $8% + 52z,

ko
k3
ky

Thus, R(/f;) — ¢l + O(h%), appropriate for a 4th order method. Expanding the

o~

right hand side, reveals that we can write R(h) = % + %(ﬁ +3)2 + 2—14};2@ +2)2.
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This is the sum of positive terms and consequently R(ﬁ) > 0 for all real h. This
means that the equation R(h) = —1 can have no real roots.

The equation R(h) = 1 leads to
R+ 4h + 102 + 5h%) =

which has a real root i = 0 together with the roots of the cubic F(ﬁ) = 0, where

The derivative

is always strictly positive so we may conclude that F' (ﬁ) is a monotonic increasing
function with F'(h) — +o00 as h — +oo. The function F'(h) therefore has precisely
one real root.

Since F(—2) = £ >0 and F(—3) = —% < 0, this root lies between —2 and —3.

The interval of absolute stability requires —1 < R(ﬁ) < 1 and, since |R(—1)| =
% — % + ﬁ < 1, we conclude that the required interval is (h*,0), where h* lies
between —2 and —3.

. The Newton—Raphson method to solve the equation F(h) = R(h) — (—1)* = 0 is
defined by (see Section 8.4)

plert] —plag - Z V" )

So, when s = 3, we have

M“H:hw_2+hw+%mwf+%ymﬁ
)

and, when s = 4,

ple+1] — gl 6 2
1+hm+%mH) + L (nlfy3
Starting each iteration with hl%) = —2.5, we obtain the values shown below.
‘ Llo] Bl B2l hl3] B4l

s=3 | —25 —=2.5128 —2.5127 —2.5127 —2.5127
s=4|-25 -—2.8590 —2.7889 —2.7853 —2.7853
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These lead to the estimates h* ~ —2.5127 for s = 3 and h* ~ —2.7853 for s = 4,
in accordance with Table 10.1.

7. The stage values (9.6) for the general s—stage RK method applied to z'(t) = Axz(t)
lead to

S
ki:)\(xn+hzai,jkj)7 1=1:s
j=1
which, in matrix—vector from become

k= \r,e+ hak

and so R
k= \I-ho) tex,.

Then, using (9.5),
Tnsr = @+ Tk = (14067 (1 = het) e ),

so the stability function is R(ﬁ) =1+ /ﬁbT(I - /ﬁd)_le.

9. With h = p + ig,

it 12 =4 (14 p+30% - ) + 4621+ p?)

‘2
2
=(2+2p+p°—¢*)) +4¢*(1 +p%)
2
=(1+01+p)?—¢%)) +4¢°(1 +p*)
=1+ (1+p)*+¢* +2(1+p)* —2¢* +2(1 + p)*¢?

=(1+(1+p)?+ (12))2 — 4q”.
Hence the boundary |1 + h+ %ﬁ2|2 = 1 then leads to
(L4 (P +%)" =401 + 4. *)

Taking the square root of both sides (only the positive root is possible) gives

1+ (1+p’+¢=2V1+¢
A+p)2+0+)-2V1+¢2+1=1
2
(1+p)2+ (\/1+q2 - 1) —1,
as required. This equation may be parameterized by writing

1+ p = cos o, V1+g¢2—1=sing
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13.

so that p= —14cos¢ and ¢ = :I:\/(2 + sin ¢) sin ¢ and the square root is real for
0 < ¢ < m. The locus of these points defines the boundary of the region of absolute
stability of second order RK(2) methods shown in the top right of Figure 10.1.
[Expanding both sides of equation (%) and setting p = ah, ¢ = bh leads to equation
(10.3).]

The matrix

has characteristic polynomial (A 4 5)% + 4 and, therefore, eigenvalues A = —5 4 2i.
With a = —5, b = £2 in (10.3) we obtain

P(h) = 841h% — 580h? + 200h — 40 = 0.

This polynomial has a single real root since P'(h) > 0 for all h. Calculating
P(0.393) =~ 0.067 > 0 and P(0.392) = —0.067 < 0 shows that the root lies between
0.392 and 0.393 and the method is absolutely stable for 0 < h < 0.392.

For the matrix
—-50 —-20
A= [ 20 —50]

the corresponding range of stable stepsizes is 0 < h < 0.0392.

By (9.4) the method has stability function

~ 14 3h+ k2

R(h) = - H - 112A2
1—35h+35h

~ ~

and we have to prove that |R(h)| < 1 when R(h) < 0. Let Z denote the complex
conjugate of the complex number z. We recall that zz = |z|2 and z + z = 2R=2.
Let D =1 — 2h + 4 h? denote the denominator of R(h), then
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15.

Multiplying both numerator and denominator of the first term on the right hand
side by D gives

- hD ()2

2

_1=9n( = 10

R(DE 1= 20 <‘D,2> 5P

ohD + |2\ 2+ 1P~

2hD + A = LH%(;I)

| DJ? | DJ?

since R L o
2hD = 2h — |h|*> + Lh|h|?

and R(h) = R(h). Thus |R(h)|? — 1 < 0 when R(h) < 0.

When the given method is applied to 2/(t) = Az(t), we find
ki = f(tn,xn) = Az,
ke = f(tn + Lh, @y + S hky + Shky — L hks) = M@, + 2 hki + $hky — 5 hks)
ks = f(tn + h,xy + hke) = Az, + hko).

These give three linear equations which may be solved to give

1+ Lh

27 . 572
1+ 2h+ Zh

17, 1727
1—ih+ Lh

— Ty

ki = Aen, ko =\ —3 2
1—1h+ 402

ny k3:>‘

Substituting these into
Tpil = Tp + %h(ka + 4ko + k3)

we find

Tn+1 =

The stability function is
27, 572, 173
1+ 2h+ Zh2 + 4h

R(h) = 24
— h+ 5h?

)

a rational function whose numerator has a higher degree than its denominator. It
therefore follows that |R(h)| — oo as h — —oo so the method cannot be Ay stable

since this would require |R(h)| < 1 for all R(h) < 0. Consequently, it cannot be
A-stable.

We note that the Maclaurin expansion of R(h) gives

~

R() = 141+ 302 + 103 + 204 + 0(h7) = & + 0(h*)

and so the method is of order at most p = 3.
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Exercises 11
1. As in Example 11.1, 1 = 0, t; = hg and the GE at the end of the first step
z(t1) — 21 is equal to tol when h2 = tol, that is, ho = tol!/2.

For the second step,
Ty = w1 + 2hy 1y,

where t; = tol'/2, so x5 = 2tol'/2h; while x(te) = (toll/2 + h1)?. The GE is
x(tl) —x1 = tol + h%

and can equal tol only if hy = 0. It is not possible to obtain a GE of tol after two
steps unless the GE after one step is less than this amount.

3. In this case 2 (t) = Az’ (t) = A%z(t) and so the TS(1) algorithm (11.10) and (11.12)

becomes
1/2

Tn+1 = (1 + hn)\)xna hnew = |39

5. From (11.13) and (11.11) in Example 11.2 we find
Tnpr = (14 hp(1 = 2t,) + 2R2((1 = 2t,)° = 2)) 2, 20 =1
and |zp41/2,| < 1 if, and only if,
—1 <1+ hy(1—2t,) + 2R2((1 = 2t,)* — 2) < 1.

The left hand inequality can be shown to hold for all real h,, when (2t,, —1)? > 8/3.
In this case (1 — 2t,)? — 2 > 0 and the right hand inequality leads to

2(2t, — 1)

hy < —2m = 2)
S @ 122

When t, = 3 this gives the bound h,, < 0.435 in agreement with Figure 11.2
(Right). More generally, this inequality is violated for points (¢, h,) in the shaded
region in Figure 3 (Right).

7. Using (11.5) and (11.7) with p = 3, we obtain

2
Tn+l = Tp + hnx/n + %hn.%';; + %hgx;;/7 tn+1 = tn + hn’
1/4
4!tol

new
4
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Figure 3: We reproduce parts of Figures 11.1 and 11.2 from the text showing the be-
haviour of h,, with ¢,,. The shaded regions indicate the bounds on h,, derived in Exer-
cises 11.4 and 11.5.

"
n

from the previous exercise, it is more efficient to follow the procedure described in
Exercise 3.6:

Although expressions for x], and z!/ are available from Example 11.2 and for z

Tpi1 = (1= 2tn41)Tnt

Thor = (1= 2tp11)%0 41 — 22041

Tt = (1= 2tpq1) 21 — 42744
and differentiating ="/ (t) = (1 — 2t)x” (t) — 42'(t) leads to

o) = (1= 2t )2y — 62y

which enables the formula for h,ey to be evaluated. This completes the specifica-
tion of the algorithm.

9. The backward Euler method gives
Tyl = Tp + hpa) tni1 =t + hp,
for which the LTE at the end of the current step is (see Example 4.9 with § = 1)
Toi1 = —gh22" (t,) + O(h2).

Using the same argument as in Example 11.4, this can be approximated by the
negative of the expression given in (11.16).

If forward and backward Euler methods are used as a predictor—corrector pair
as described in Section 8.3, then (8.11) provides an estimate of the LTE of the
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corrector (backward Euler) From Example 4.9 we find that the error constants
are C3 = 1 and Cy = so (8.11) gives, with k =p =1,
e 0
s = o — %)
[0]

which, because z,, | = z,, + hp2), and 2,11 = x5, + hp2), | gives

Thi1 = —%hn(ﬂ?/nﬂ - CUIn)

This is the negative of the expression given in (11.16).

For the Trapezoidal rule we follow Example 11.5. Because the estimate fn of the
LTE involves three time levels, we have to initiate the process by computing two
steps before we can calculate a new stepsize. So with hg = h; = tol = 0.01,
t1 = hog = 0.01, to = hg + hq = 0.02.

1+ 2hg
Tr1 =X —|—lh .%',‘i‘x/a 1= :
1 0 + 3ho(g 1) 1 1_%h0(1—2h0)
= 1.0099
1+ 1h1(1 —2ty)
To = I —l—lh .%'/‘i‘x/a T2 =
2 1+ 5hi () 5) 2 — 2hi(1— 2ty o
= 1.0198.

Since 2/(t) = (1 — 2t)z(t), we can compute z{, = 1, 2} = 0.9897, z, = 0.9790 so
(11.20) gives Ty = 4.156 x 10~7. This is certainly smaller than tol so the step is
accepted. Finally, (11.19) gives hpew = 0.2887. (Notice from the dashed curve in
Figure 11.5 (Right) that subsequent time steps are of roughly the same size as this.
This suggests that it is a reasonable strategy to choose very small values for initial
time steps.)

We follow the structure in Exercise 8.18. Under the localizing assumption, the
LTEs of AB(2) and Trapezoidal rule are given by, respectively,

* 0 n—
Ti = altar) —ahey = (24352 ) hda(t,) + 6(h")
1

Lo = T(tnt1) — Ty = — 12h§1x///( n) + ﬁ(h4)7

where HULOL is the result of using AB(2) as a predictor and the LTE of the Trape-

zoidal rule is derived in Example 4.9.

From T, — Tp41 we find

Tp+1 — xgrl = %h%(hn + hnfl)xm(tn) + ﬁ(h4),
[0]

" (b) = A= 4 O(12),
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The estimate T\n+1 of the LTE is then based on the leading term in 7}, 1:

~ h
n n—

This reduces to the expression in the solution to Exercise 8.12 when h,_1 = h,, = h.

(@ns1 — 2l ) + O(h).

From equation (11.23) (see previous solution)

[0} x/ _ x/ 1
_ / 112N n—
Tpyq = Tn + hnz,, + §h”7h 5

e

and T, 11 = T, + %hn(:ﬂ’n +27,,1) so

[0]

/ / / 1,2
Tp+1 —Tpiq = hn(xn + anrl) - hnmn - ihn

/ / / /
h2 <xn+1 — Iy _ Ly — xnl)
n
hn hn—l

which, when substituted into the earlier expression for fn+1 leads to (11.20).

N[

N[

15. The modified Euler method is given by Table 9.5 with 6§ = 1:

ki = f(tna xn)
ko = f(tn + 3h, @y + Shk)

xiiil =Tn+ hk2a

while Kutta’s 3rd order rule is

k= f(tna xn)

ko = f(tn + %h,:ﬂn + %hkl)

ks = f(tn + h,xp, — hky + 2hk32)

2= x4 Ehky + 4k + k).

The definitions of k1 and ko are clearly the same in both methods. An estimate
T,41 of the LTEof the modified Euler method is then

T\n+1 = xfﬁil - xfﬁl = %h(kﬁl — 2k9 + kﬁg)
With zy = 1, tg = 0, hg = tol = 0.01, when applied to (11.9),

Step 1.
ki = (1 — 2to)zo = 1.0000
ko = (1 —2(to + 5ho))(zo + Lhokr) = 0.9949
ks = (1 —2(to + ho))(zo — ho(ky — 2k2)) — 0.9897
r1 = x9 + hks = 1.0099
Ty = th(ky — 2ks + k) = 3.3163 x 107",
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Since |T| < tol the step is accepted so ¢; = hg = 0.01 and (sec Example 11.7)

tol 1/3
hmew = ho | —| = 0.3112.
Ty
Step 2.
kl = (1 — 2t1)1‘1 = 0.9898
ko = (1 —2(t1 + $h1))(z1 + Lhiky) = 0.7784
ks = (1 — 2(t1 + hl))(xl — hl(kl — 2](52)) = 0.4242
T = X1 + hks = 1.2522
Ty = th(ky — 2kg + k) — 7.4140 x 1073,

Since |T\2| < tol the step is accepted and t9 = t1 + hy = 0.3213,

1/3

tol
O = 0.3439.

~

T

hnew = hl
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Exercises 12

1. The fixed points of the system

2'(t) = y(t) — (1)
y'(t) = x(t) — 2°(t)
occur when z/(t) = y/(t) = 0. These equations give the four points (0,0), (1,0),
(0,1), (1,1).
Ik _ [v®) =y of _[ 0 1-2
= [y} ’ (@) = [m(t) —22(t)|’ ox (@) = 1—2x 0 |
Fixed . . -
Point Jacobian  Eigenvalues  Stability
0 1]
(0,0) +1 Unstable
L 1 0_
(1,0) _? (1) +i Undecided
(0,1) (1) _(1) +i Undecided
(1,1) _(1) _(1) +1 Unstable

3. Suppose that A has an eigenvalue A4 with corresponding eigenvector v, then
Av = M gqv

and so
Bv=(I+hA)v =v+ h(Av) = v+ h(Aav) = (1 + hAa)v.

Hence v is also an eigenvector of B corresponding to an eigenvalue Ap = 1+ hA4.

The converse is also true: Suppose that B has an eigenvalue Ap with corresponding
eigenvector v, then
Agv = Bv

and so
Apv = Bv = (I + hA)v = v + hAwv.

Rearranging, we find

1

Av:h

(A — 1)w.
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Hence v is also an eigenvector of A corresponding to an eigenvalue

1
)\A:E(AB_U = A =14+ hA4.

. When f(z) =2z(1 —x)
z+ shf(z) =2+ ha(l —2) =z(1+ h — ha)
and so

r4+3hf(z)=0 = =z=0x=1+1/h
z+hf(z)=1 = hx(l—-2)=1-2, = 2=11/h

Hence (12.11) has the four fixed points
x1=0, z3=1, a5=1/h and z}=1+1/h.
The iteration is given by x,+1 = F(z,), where
F(z) =2+ hf(z+ 10f(z)).
Hence, by the chain rule,
Fl(z) =1+ hj—xf(x + hf(z))

= L hf (o S0 () T+ 3hA(@) = 1 hf (o4 S0 f () (14 50 (@),

x

. Applying AB(2) to 2/(t) = f(x(t)) gives
Tnto = Tng1 + h3f(Tns1) — f(zn)).
With y, = xp41, 2n = x, we have 2,11 = y, and
Yn+1 = Yn + %h(3f(yn) — f(zn))

ynﬂ _ [yn 1) - f(Zn))] |

Hence the two—step method AB(2) applied to a scalar ODE may be written as a
one-step vector system x,, 11 = F(x,), where

Fla,) - [yn + 3h(3f (yn) — f(zn))} g, = {yn] _

Yn Zn
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The fixed points of this system are defined by

v = Flz), - [y+ sh(3f(y) —f(Z))} _ [y]

Yy z

soy =z and f(y) = 0. Hence, when f(x) = 2z(1 — ), there are two fixed points
(y,z) = (0,0) and (1,1). When F( ) = [F(y,2),G(y,2)]T, then its Jacobian is
OF F,(y, 1+ 3hf (y) —3hf'(2)
e B il
When f(z) = 2z(1 — ),
OF 1+3h(1—2y) —h(l-—2z2)
8:(3( z) = [ 1 0 }

and we find

*

@} = (0,0): The Jacobian [ 3" 7] has characteristic polynomial
p(A) =X = (1+3A+h

and, by Lemma 6.10 (Jury Conditions), this has roots inside the unit circle
(the strict root condition) if p(0) < 1 and p(£1) > 0. Since p(1) = —2h < 0,
this fixed point is unstable.

x5 = (1,1): The Jacobian [173" 1] has characteristic polynomial p(A\) = A2 —(1—3h)A—h
for which p(0) = h < 1, p(1) = 2h > 0 and p(—1) = 2 —4h > 0 for h <
%. Hence, the fixed point is stable for 0 < h < % in agreement with the

bifurcation diagram shown in Figure 12.3.

9. The Trapezoidal rule applied to z'(t) = z(t)(X — z(t)) leads to
Tpi1 =Ty + %h[mnH(X — Tpt1) + (X — xn)]
(a) Rearranging and “completing the squares” gives

Tp+l = Tp + %h [anrl(X - anrl) + xn(X - xn)]
ShaZ 4 1ha? + (1= 1hX)zp1 — (14 $hX)z, =0

2 2
xiﬂ—l—xi—l—(ﬁ—X)an—(E%—X):cn:O (*)
2 X2+ 2X2_2X2+2+X2
Tl T T TR T2) T\h 2 B2
_2+X2
R2 2
which is the equation of a circle centred at xn:%+§,xn+1:—%+§ and

passing through the origin.
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(b) Fixed points are defined by by the property x,4+1 = x, = z* which, in the

TnTn+1 Phase plane, corresponds to the intersection of the line x,+1 = z,
with the circle of part (a). There are two intersections given by x] = (0,0)
and =3 = (X, X).

Differentiating both sides of the equation labelled (%) with respect to x,, gives

dozpyr 7+ X — 21,

dz, % - X+ 2z,
SO
d$n+1 _ 2 + hX > 1
dx . 2—hX
n r=x]
d$n+1 _ 2—hX
dz,, _ 24+ hX

and the fixed point 7 = (0,0) is unstable while 3 = (X, X)) is stable.
Clearly dzj,4+1/dx, > 0 at both fixed points when hX < 2.

(d) At each step x,+1 has to be found by solving a quadratic equation. Using the

Figure 4:
(Right).

quadratic formula, the roots of the equation labelled (x) are

X 1 1 ox\2\"?
il ==+ (R (2, - - = :
T T ( (m h 2>>

We use the positive square root so that z,+1 — x, as h — 0 (see, for example,
Exercises 4.2-4.4 and 8.1). This can then be used to calculate z; in the two
cases.

Cobweb diagrams for hX =5 and hX =1 are shown in Figure 4.

15

10

15 -5 0 5 T, 10 15

Cobweb diagrams for Exercise 12.9 with X = 10, hX =5 (Left) and hX =1
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Exercises 13

1. The argument used to progress from (2.15) to (2.16) may be used to deduce that
(13.7) leads to
n
én = (1+hN)"T;.
j=1
It was shown in Example 13.1 that |f}| < Ch? so, following the proof of Theo-
rem 2.4,

|én] < (CH?)D 1+ BA™
j=1

< (Ch3)ePtin < Ch2tgelltr

(since nh = t,, < t¢) and consequently the global error for the modified equation
is second order.

3. Suppose that y(t) is a solution of the alternative modified equation y/(t) = py(t),
where p = A(1 — %)\h + %)\QhQ). Using equation (k) from the solution to the pre-
vious exercise we find, using u? = A2(1 — Ah) + O(h?),

Toir = (1+ ph+ 3p2h?)y(ta) + O(h%) — (14 Ah)y(tn)
= (L4 A(1 — IAh+ IX202) + 2X2R% (1 — AR) — (14 AR)y(t,) + O(R?)
= —gA3h3 + O(h?)

and Euler’s method is consistent of order p = 2 with the modified equation.

5. The backward Euler method z,+1 = z, + hf,+1 implies that z,+1 = x, + on,
where 0,, = hf,+1 (so that §,, = O(h)). However,

fnt1 = f(@nt1) = f(zn + 6n)
= f(zn) + 0nf'(zn) + ﬁ(hz)

which, together with §,, = hf,1, gives

(1= hf (2))0n = hfn + O(h)
6n = (1 — hf'(zn)) " thfn + O(h3)
= (L + hf'(xzp))hfn + OR),

where we have used the binomial expansion (1 — 2z)~! =1 + z + €(2?). Therefore

Tntl = Tp + (1 + hf/(xn))hfn + ﬁ(h3)
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Using (13.4) with the localizing assumption x,, = y(t,), we find

~

Tot1 = y(tnt1) — Tn+1
= (y(tn) +hf(y(ta)) + 12 (g(y(tn)) + 3. (y(ta)) f(y(tn))) + O(h?))
_(y(tn) + (1 + hf/(y(tn)))hf(y(tn)) + ﬁ(h3))
= h*(g(y(tn)) — 5 (y(ta)) (Y (tn)) + O(h7)

and we shall have consistency of order two (fn_i_l = 0(h?)) by choosing g(y) —
1 f'(y)f(y). The modified equation (13.2) then becomes

y'(t) = fly®) + shf ().

7. Suppose that v is an eigenvector of A with corresponding eigenvalue A : Av = Av.
Then v is also an eigenvector of A with corresponding eigenvalue A = \(1 — %h)\)
(see Exercise 10.12 and (13.6)). The respective solutions of the IVPs &/(t) = Axz(t),
x(0) = v and y/(t) = Ay(t), y(0) = v are

We now consider three possibilities.

(a) A is positive definite: Then A > 0 and so X < A and the solution of Euler’s
method, because it is closer to the solution of the modified IVPthan it is to
the original ivp, grows more slowly than the exact solution.

(b) A is negative definite: Then 0 > A\ > X and the solution of Euler’s method
decays more rapidly than the exact solution.

(c) A is skew-symmetric: AT = —A. Then \ is imaginary. Suppose that A = iy,
where p € R, then A= %h,u2 + ip. Thus, while each component of the exact
solution is constant in time: |x;(t)| = |v;|, all components of the modified
equation grow in time: |y;(t)| = eh“2/2\vj\.

9. Following the process described in Example 13.3, We suppose that the modified
equation is a system of two ODEs with dependent variables z(t) and y(t). The
LTE of the given method is, therefore,

=~ |z(t+h)—x(t) + hy(t)

n+l = , t= h,
LTyt 4+ h) — y(t) — ha(t + h) "
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11.

which differs from (13.13) in that x(¢) in the second component is replaced by
x(t + h). Taylor expansion gives

N / 1p,.0
Ty = h x/(t) + sha"(t) + y(t)

3
Y0+ Shy(t) — 2(t) — ha' ()] T )

We now suppose that the modified equations take the form

2'(t) = —y(t) + ha(z,y),
y'(t) = x(t) + hb(z,y),

where the functions a(x,y) and b(x,y) are to be determined. Differentiating these
with respect to t gives

2'(t) ==y () + O(h) = —x(t) + O(h),  y'(t) =2'(t) + O(h) = —y(t) + O ()

and substituting the results into the above expression for fnJrl leads to

5 a(w,y) + 52" (t) _ o [alz,y) = 5(t)
Tos = b b(z,y) + %y”%t) + y(t)} +OW) =H [b(%y) + gy ] +O0).

Therefore T, 11 = €(h3) on choosing a(xz,y) = Lz and b(z,y) = —1y. Our modi-

2
fied system of equations is, therefore,

2(t) = —y(t) + Lha(t),
'(t) = a(t) — 3hy(t)
in agreement with (13.19). Using these we find

% (%(8) — ha(D)y(t) + (1)) = 22()2'(2) + 2y(8)y/ (1) — h( (B)y(t) + 2(t)y (1))

= 2(x(t) — hy(t))a'(t) + (2y(t) — ha(t))y'(t)) =0

and so x2(t) — hx(t)y(t) + y?(t) = constant, as required.

From (13.30)
(1) = Tl (t) = —/(t) = —F(u(t))

and so u satisfies u”(¢) + f(u(t)) = 0.

Conversely, suppose that v () + f(u(t)) = 0. If v is defined by v(t) = —u(t), then
flu®)) = —u"(t) = ——u'(t) = '(t)

and so u(t), v(t) satisfy the given system.

This proves that the second order ODE and the first order system are equivalent.
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Then, since F'(u) = f(u),
% (2F(u(t)) + v2(8)) = 2F" (u(t) (1) + 20()0' (8)
= 2f (u(t))(~v(t)) + 20(t) (f(u(t)) =0

as required.

The next stage of the solution follows Exercise 13.9. We suppose that the modified
equation is a system of two ODEs with dependent variables z(t) and y(t). The
LTE of the given method is, therefore,

-~ [x(t + h) —x(t) + hy(t)

Tott = 1yt + h) — y(t) — hf(z(t + b))

], t = nh.

Taylor expansion of the first component around ¢ and the second® around ¢ + h

gives
T x 1 2:6” =
oo\ = (t) + ha' (1) + Lh (t)1> > (t) + hy(t) o
ylt+h) = (y(t+h) = hy/(L+ ) + 302y (L + 1)) = hf(w(t + )
() + Sha(t) + y(t)
=h [y’(t + hg _ %hy/l(t + h) _ f($(t n h)):| + ﬁ(h?’)

We now suppose that the modified equations take the form

' (t) —y(t) + ha(z,y),
y'(t) = f(z(t) + hb(z,y),

where the functions a(x,y) and b(z,y) are to be determined. Differentiating these
with respect to t gives

x/l(t)
y"(t)

and substituting the results into the above expression for fnJrl leads to

—y'(t) + O(h) = —a(t) + O(h),
fl@@®)a'(t) + 0(h) = —y(t)f'(x(t)) + O(h)

TnJrl = h2

= h? + 0(h?)

B
ST
+

— h2

=
8

&
+

3This avoids having to expand f(x(t + h)) and the calculations are consequently much simpler.
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where ¢t 4+ h has been replaced by t without affecting the order. Therefore fnJrl =

0(h3) on choosing a(z,y) = 3z and b(z,y) = —3yf'(z). Our modified system of

equations is, therefore,

as required. Then

P (1) — A O)y(r) + (1)

= 2F(2(1))2/ () = b (' (@(®)a’ (Oy(t) + [ ()Y (1)) + 2y(0)y' ()
= (2/(x) = hf (2)y)a' + (2y — hf (@)Y’
=2(f(2) — 3hf'(2)y) (~y + 5ha) +2(y — 5hf(2)) (f(z) - 5hf (x)y) =0

and so 2F (z(t)) — hf(z(t))y(t) + y?(t) = constant.

When f(u) = u it follows that F(u) = 3u? and the results given here simplify to
those in Example 13.4.
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Exercises 14
1. Differentiating the given expressions we find that
W(t) = — (—k1 A+ kyB) e” k2t
V' (t) = — (k1A — ko B) e~ F1tk2)t,
Substituting the expressions for u and v into the RHS of the ODE system we find

—kiu+ kov = — (—kﬁlA + kiQB) 6_(k1+k2)t,
kiu+ kv = — (k1A — ko B) e~ (F1th2)t,
Also, the expressions have u(0) = A and v(0) = B. Hence, the ODE system and
initial conditions are satisfied.
Adding the two expressions gives

k1A — koB + koB — k1A
k1 + k2

u+v:A+B+< >e(k1+k2>t:A+B.

Ast — o

kQ kl
A+ B d t
k1+/€2( +B), an U()%kl-i-/@

u(t) — (A+ B).

This shows that, at steady state, the concentration of each species is directly
proportional to its production rate constant. This makes sense, e.g., if ko > k;
then we would expect to have more molecules of X; than X5 at steady state.

3. Since
-1 =k ke
A= e =[]
this is the required coefficient matrix. The result A7 = (—k1 - kg)j 1A (j =
1,2,3,...) may be established by induction. It is trivially true when j = 1 and,

when j = 2
[ O e
= (—ky — k) A

and the result is true. We suppose now that it holds for j = 1,2,...,¢, that is,
Al = (—k — kg)g_lA. Multiplying both sides by A gives

A = (e — k) TTA% = (k= k) T (ks — ko) A= =k — ko) A
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(where we have used the fact that the result holds for j = 2). The result now
follows by induction.

Since u)(t) = AJu(t), the TS(p) method

(p)
Unt1]|  |un ul, 1 Uy
ion] =[] i)« 1)
becomes

] - [ ]

Up+1 Up, Un

Since [1,1]7 A = [0, 0] it follows that u, 1+, 41 = U, +v, and we have conservation
of the linear invariant.

. For
1 00
C=1(010
0 01
we have
$T0f($) = $Tf($) = (a1 + as + CL3)£C1562563 = 0.
For
1/5 0 0
C = 0 1/1, 0
0 0 1/1I5
we have
Iy —Is+13—11 +1; — I
alCf(®) = (a1/1 + a2/ Iz + a3/ I3) 1 x003 = = st arh—h_,

Lo];

. From the general definition of an RK method in Section 9.2, for this two-step,
two-stage case we have ;11 =, + %hkl + %hkg, where

ki = f(xn + haiiki + haizks),
ko = f(:lin + haos1 k1 + haggkg).

So, for these particular coefficients,
k:l = f ($n + a11(2mn+1 — 2x,, — th) + halzkg)
=f (a’fn + 3 Tnt1 — 5T, — thky + h(} — %)k&)

—f (wmid - h@l@) .
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11.

Similarly,
ky=f (wmid + h?h) .

We wish to show that a:z; 10Ty = a:ZCa:n. We will show the equivalent condi-
tion (2, + n1)T C(xy — Tpy1) = 0.
We have

(@ + Ty 1)L C(xn — Tpi1) = (2 + Tpg1) Ch(ky + ko).
Now, since 2T C'f(z) = 0 for all 2z, we have
T
xl Oy = ($mid +h 3k — h%kl) Cky = —h BT Chy.
Similarly,
T
2hiaChy = (@mia = W32 ks + 1 5Eks) - Chi = hYZR] Cly.

Adding, we find that (2, + @, 1)T Ch(ky + k2) = 0, which establishes the result.

. This follows with

[N
— o O O
O = O O

o O = O

We have q

57 @) = 2(t)’a’(t) = —a(t)® = —(f(z(1)).
So, along any solution, #(x(t)) strictly decreases until it becomes stationary at
z(t) = 0.

For the given modified equation, we have

y"(t) = (=3y(t)” + 3 x By (t)*) ¥/ (t)
= (=3y(t)* + O(n)) (—y(t)* + O(h))
= 3y(t)° + O(h).
So

y(t+h) = y(t) + hy'(t) + 5h°Y" () + O(h?)
y(t) + h (—y(®)® + 3hy()°) + $h* (3y(t)° + O(h))
= y(t) — hy(t)® + 3h%y(t)® + O(h®).
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For the backward Euler method, x,11 = x, — hfo_l, let us find a,, and b,, in the
expansion 11 = o, + ha, + h2b, + O(h?®). We have

o + han + Wb, + O(h?) = & — h (2 + hay, + h%b, + O(h?))°
=z, —h (x‘:’L + 3x2hay, + O(h?))
=z, — ha? — 3h*22a, + O(h®).

Equating powers of h gives a, = —z3 and b, = —3z2a, = 32>. So
Tpi1 = Tp — had + 3%z + O(h?),

confirming that the given modified equation is valid.

Now y/(t) > 0 when 3hy(t)®/2 > y(t)3, that is

2
> —.
y(t)" > 55
So for
4 3h

we have 3/(0) > 0, and we see that y/(t) increases with ¢. So y(t) increases mono-
tonically without bound.
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Exercises 15

—

1. Referring to Figure 5, let w and v be represented by the vectors OA and (ﬁ,
respectively. Then Jv is represented by Cﬁ and makes an angle %71 — 6 with OA.
Using the formula for scalar product

OX - 0G = |0& | [|0G| cos QOA,

SO

u' Jv = |luf| o] cos(3m — 0) = ||u] |[v] sin 6.

Figure 5: The area of the parallelogram OABC
is, by the “base length times vertical height”,
OA xCP, where P is the foot of the perpendic-
ular from C onto OA. The base length is ||ul|
and the height ||v||sin @ and their product is
equal to the expression u” Jv given above.

3. We have

areao(x + 2z,y) = (z1 + 21)y2 — (z2 + 22)11
= X1Y2 — T2y1 + 21Y2 — 221

= areao(x, y) + areay(z,y).

Figure 6: The two shaded regions have the same area.
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5. We have

a1
a12

a21
a22

)

—ag1a11 + a11a21
—ag20a1] + @12a21

1 a1 a1l

0 a1 a9
—a21a12 + a11a22
—a220a12 + @12a22

_ 0 det(A)
o I —det(A) 0 )
7. We have

apn-l—l 8Qn+1
——— =1—hcosqg, ,
Opn, o Opn,
Opns1 9Gn+1
Ba, = —hcos qn+18qn ,
a(ZnJrl _ haanrl
8pn 8pn ’
n1 _ 14 hapn-l—l‘
8Qn 8Qn

This agrees with the matrix version given.

Taking determinants in the matrix version, using det(AB) = det(A)det(B),

find that
8pn+1 apn«kl
(1 + h?cos qn+1) det g§Z+1 ggzﬂ =1,
Opn Oqn

which gives the required expression.

9. We first compute partial derivatives to obtain

aanrl 8qn+1
— 1~ hHyp(pas Gus1) — hHyg(pr, ,
apn QP(pn QH—H) qq(pn Qn-i—l)apn
ap 1 aq 1
aanr = —thq(pn, QTLJrl) aanr 5
n n
aq”"’l aQn—I—l
= hH hH
Opn, pp(pm Qn+1) + pq(pm Qn-i-l)apn y
OGn+1 Oqni1
=1+ hH ) .
Oqn pq(Pn In+1) Da0n
Collecting these together, we have
Opn, Opn,
1 thq(pn’ QTLJrl) :| 82—71‘“ Bgn-H _ |: 1— thp(pna anrl)
0 1- hHPQ(pna Qn—I—l) % % thp(pn, qn_H)
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11.

13.

Taking determinants, we find that

OPnt1  OPnt1

(1 - hHPQ(pm QnJrl)) det ([ gZZ-H ggz-ﬂ ]) =1- thp(pna QnJrl)'
Opn Oqn

So, since Hy,q, = Hyp, the map has determinant equal to one, as required.

In the separable case where H(p,q) = T'(p) + V(q), this adjoint method takes the
form

Pn+1 = Pn — hV/(QnJrl)a
dn+1 = Q4n + hT/(pn)-

This is an explicit method—given (p,,,¢,), we may first compute ¢,4+1 and then
compute pp41.

In this case, symplectic Euler becomes

Pnt1 = Pn — hqn,
Gn+1 = qn + hppia,

which matches Example 13.4 if we take u,, = p, and v, = ¢,. The ellipse in
Example 13.4 then becomes p? + ¢? — hpq, or 2(T(p) + V(q) — %hT’(p)V’(q)), as
required.

On a separable problem with H(p,q) = T'(p) + V(q), the adjoint method takes the
form

Pn+1 = Pn — hvl(Qn-l—l)a
dn+1 = Q4n + hT,(pn)-

We need to expand in the expression for p,y1:

Pn+1 = DPn — hV’ (Qn + hT/(pn))
=pn —h (V'(g) + V" (qn) T (pn) + O(h?))
= pn — V' (qn) — B*V"(qn) T’ (pn) + O(h?).

Matching the expansions for the true solution in Section 15.4, we require

h? (A(p,q) — V" ()T (p)) = —h*V" ()T (p),

SO

A(p,q) = —3V" ()T (p),

65



and
h* (B(p.q) — 37" (p)V'(q)) =0,
B(p.q) = 51" (p)V'(q).

Hence, the required modified equation is

u'(t) = V' (u) — %hT/(u)V"(v),
V(t) = T'(u)+ $hT" (u)V'(v).

This is of Hamiltonian form with

H(p,q) =T(p) + V(g) + 5T (p)V'(q).
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Exercises 16

1. We have

e [ e () o
b [ (525

—o? —(y =\~
A EE

3. Using integration by parts,

E[X?] = JQZ_%/_Z ¥ exp (%) a
_ % /Z y—2<2y02—u> exp<—<yz;2u>2>dy
+ Jarme [ (S )
B J;ﬁ—% /_Z o (%) W [y or (%ﬂ: + HE[X]

202+,LL2.

Then
var[X] = E[X?] — (E[X])? = 0 + u? — p® = 0.

5. We have about two significant digits on the bottom row, with M = 107 samples.
Because the interval width scales like 1/v/M, we need about a factor of 10° as
many samples to get three more digits; that is, six more rows.
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7. For nh =ty,

lim E[z,] = lim (1+ ha)" xq

n—oo n—oo
aty\"
n—00 n
= e xy.

Also, since g is deterministic we have E[z3] = 22, so
Efz2] = (1 + 2ha + hb? + h*a?)" 3.
Then, using log(1 + ) = 1 + 2 + O(2?) as * — 0, we may write
log E[22] = nlog (1 + 2ha + hb? + h2a2) + log 22
= n (2ha + hb* + O(h?)) + log 2§
=t;(2a + b?) + log 23 + O(h),
where we also used nh? = hty = O(h). So

nlLH;O log E[z2] — t¢(2a + b*) — log 2§ = 0.
Hence
JLH;O exp (log E[z2] — tf(2a + b%) — log z3) = 1,

that is,

. — b2
nILHéOE[x%]e by (2a4b%) /2 — 1,

which implies that
lim E[z2] = els (20+0%) 2
n—o0 n 0

Finally,

var[z,] = E[z?] — (E[z,])? = etf(2“+b2)x% — e2alr g2 = olr2ay2 <eb2tf - 1) .

9. In this case we have xy 1 = xx — hazxy + aph + \/Eb\/ﬁZk, SO
Elzgs1] = Elxg)(1 — ha) + aph.
Let yx = E[zg], r = (1 — ha) and s = aph, so

Yk+1 = TYk + S.
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Then, as in the previous exercise,

Yn =71"Y0 + 8
So

r*—1
r—1
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Exercises B

1.

glx

(
g'(z
9" (x
I//(

g (T

) =
) =
) =
) =

xre

1—x

2

—x2 )
el T —25[?261 T

.2 2
—6xe' ™ + 437

el + 24526l

so, using (B.5) with a =1,

_ 8@426171«2

g(1)= 1
Jg= 1
g'(1) =4
g"(1) =10

g(x)zl—(m—l)—(m—l)z—l—g(x—l)g.
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Exercises D

1.

(a)

2Tp41 — Ty = 3.
CF: z,, = A(})", PS: try z,, = C and substitute into the left hand side of the
AE:

20p1 — 2, =20 -C=C=3

so the PS is z,, = 3 and the GS(general solution) is x,, = A(3)"+3. This will
satisfy xg =5 if ¢ = A(%)O + 3 =5, that is A = 2. The required solution is
T, =2(3)" + 3 and z, — 3 as n — occ.
Tpt1 — 2z, = 3.
CF: x, = A2", PS: try x, = C and substitute into the left hand side of the
AE:

Tpt1 — 22, =C —2C =-C =3

so the PS is z,, = —3 and the GS(general solution) is z,, = A2" — 3. This will
satisfy xg = 5 if zg = A2° — 3 = 5, that is A = 8. The required solution is
Ty =8x2"—3=2" _3 and z, — 00 as n — .

Tptl — Ty = 3.

CF: z, = A1"™ = A, PS: we could try x,, = C but a constant term is already

in the CFso we increase the degree of the PS to z,, = Cn. We substitute into
the left hand side of the AE:

Tpy1 — T =C(n+1)—Cn=C=3
so the PS is z,, = 3n and the GS(general solution) is x,, = A + 3n. This

will satisfy zg = 5 if xo = A = 5. The required solution is x,, = 5+ 3n and
Ty —> 00 S N — 00.

3. CF's for these problems have been given in the solution to Exercise D.1 so we need

(a)

(b)

only find PSs.

2Cp11 = xp + 3 x 2™, Try x, = C 2™
Qpy1 — xp = 202" —C 2" =30 2" =3 x 2"

when C = 1. Hence, the GS is z, = A(3)" + 2.

Tpt1 = 2z, + 3 x 2" has CFx, = A2" which already contains a term
constant x2" so, for a PSwe try z,, = C'n2™:

Tpgl — 2T, =C2"(2(n+1) —2n) =202" =3 x 2"

when C = 3/2. The GSis z,, = A2" + 327
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(c) Try z, = C2™
Tl —xp =C2"TL —C2"=C2" =3 x 2"

when C' = 3. Hence, the GS is x,, = A+ 3 x 2".

5. The AE is
p(r) = r® — 8t + 2573 — 3812 + 28y — 8.

A straightforward calculation gives p(1) = p/(1) = 0 while p”(1) = =2 # 0. p(r)
therefore has a double root at r = 1.

p(2) = p'(2) = p”(1) = 0 while p”’(1) = 6 # 0. p(r) therefore has a triple root at
r=2.

Since p(r) is of degree five and the coefficient of 7° is one, it follows that p(r) =
(r —2)3(r — 1)2. The AE therefore has GS

x, = A+ Bn+ (B + Cn + Dn?)2".
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