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Exercises 1

1. The equation
x′(t) = sin(t)− x(t) (1)

has integrating factor g(t) = e−t and, since f(t) = sin(t), the variation of constants
formula gives

x(t) = Ag(t) + g(t)

∫ t

0

f(s)

g(s)
ds

= Ae−t + e−t

∫ t

0
es sin sds.

Integrating by parts twice we find
∫ t

0
es sin sds = 1

2e
t(sin t− cos t) + 1

2

so x(t) = Ae−t + 1
2(sin t− cos t) + 1

2e
−t.

3. Dividing both sides of the differential equation by x(t)(1− x(t)) leads to
∫

1

x(1− x)
dx = t+A,

where A is an arbitrary constant of integration. Using partial fractions on the
integrand on the left hand side

∫ (
1

x
+

1

1− x

)
dx = t+A

which gives

log

∣∣∣∣
x

1− x

∣∣∣∣ = t+A

leading to ∣∣∣∣
x

1− x

∣∣∣∣ = et+A = eAet

and, therefore,
x

1− x
= et+A = Cet,

where C = ± expA is a new arbitrary constant. Applying the initial condition
x = −1/5 at t = 10, we find C = −e−10/6 then, solving for x gives

x =
Cet

1 + Cet
=

1

1 + e−t/C
=

1

1− 6e10−t
.

The denominator approaches zero as e10−t → 1/6, i.e., when t = 10 + log 6.
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5. (a) Let u(t) = θ(t) and v(t) = θ′(t) so v′(t) = θ′′(t) = −θ(t) and

u′(t) = v(t)
v′(t) = −u(t)

and
u(0) = π/10
v(0) = 0

.

This is a 2-d system x = f(t,x), x(0)= η with

x =

[
u
v

]
, f(t,x) =

[
v

−u

]
, η =

[
π/10
0

]
.

(b) With u = x(t) and v = x′(t) we obtain x′ = f(t,x), x(0)= η with

f(t,x) =

[
v

v + 2u+ 1 + 2t

]
and η =

[
1
1

]
.

Note that f(t,x) = Ax+ b, where

x =

[
u
v

]
, A =

[
0 1
2 1

]
, b =

[
0

1 + 2t

]
.

(c) With u = x(t), v = x′(t) and w = x′′(t) we find u′ = v, v′ = w and x′ =
f(t,x), x(0) = η with

f(t,x) =




v
w

2w + v − 2u+ 1− 2t


 = Ax+ b,

where

x =



u
v
w


 , A =




0 1 0
0 0 1

−2 1 2


 , b =




0
0

1− 2t


 and η =



1
1
0


 .

7. With u = t, v = x(t) and x = [u, v]T , we have

x′(t) =

[
u′

v′

]
=

[
1

sin(u)− 2v/(1 + u4)

]

with initial condition x(0) = [0, x(0)]T . Thus f(u, v) = [1, sin(u)− 2v/(1 + u4)]T .
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9. With u = x(t) and v = x′(t) we obtain x′ = f(t,x), x(0)= η with

f(t,x) =

[
v

f(t) + av(t) + bu(t)

]
= Ax+ b, where A =

[
0 1
b a

]
, b =

[
0

f(t)

]
.

and η = [ξ, η]T . The characteristic polynomial of A is given by

|A− λI| =
∣∣∣∣
−λ 1
b a− λ

∣∣∣∣ = λ2 − aλ− b.

If we suppose that this quadratic function of λ has distinct roots (eigenvalues) λ1

and λ2 then the original ODE has complementary function x(t) = Aeλ1t + Beλ2t

in which A and B are arbitrary constants.

Notice that the characteristic polynomial of A may be deduced by substituting
x(t) = eλt into the homogeneous form of the ODE.

11. Adding together the ODEs for S, C and P we find S′(t) + C ′(t) + P ′(t) = 0, i.e.,

d

dt
(S(t) + C(t) + P (t)) = 0

so, on integrating with respect to t, we find that S(t) + C(t) + P (t) = constant.

13. Differentiating u(t) = 1675
21 e−8t + 320

21 e
−t/8 + 5 gives

u′(t) = −81675
21 e−8t − 40

21e
−t/8

so
u′(t) + 8u(t) = (−40

21 + 8320
21 )e

−t/8 + 40 = 120e−t/8 + 40.

Also u(0) = 100 so the IVP (1.15) is satisfied by this function u(t).

Similarly,

u′(t) + 1
8u(t) = (−81675

21 + 1675
8×21)e

−8t + 5
8 = −5025

8 e−8t + 5
8

and (1.16) is also satisfied.

15. With x(t) = Xu(τ) and the chain rule

x′(t) =
d

dt
x(t) =

d

dt
Xu(τ) =

(
d

dτ
Xu(τ)

)
dτ

dt
= aX

d

dτ
u(τ)

and ax(t)(1 − x(t)/X) = aXu(τ)(1 − u(τ)) and so the ODE becomes

d

dτ
u(τ) = u(τ)(1 − u(τ)).
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Exercises 2

1. Euler’s method is, in this case,

xn+1 = xn + hx′n

with x′n = t2n − x2n, t0 = 0 and x0 = 1. Thus x′0 = −1 and, when h = 0.2,

n = 0 : t1 = 0.2 n = 1 : t2 = 0.4
x1 = x0 + hx′0 = 0.8 x2 = x1 + hx′1 = 0.8 − 0.2 × 0.6 = 0.68
x′1 = t21 − x21 = −0.6

With h = 0.1 we find

n tn xn x′n
0 0.0 1.000 −1.000

1 0.1 0.900 −0.800
2 0.2 0.820 −0.632
3 0.3 0.757 −0.483
4 0.4 0.708 −

3. x′(t) = 1 + t− x(t), t > 0 with x(0) = 0.

Euler’s method : xn+1 = xn + h(1 + tn − xn), n = 0, 1, 2, ... with tn = nh and
x0 = 0. We find

x1 = h, x2 = x1 + h (1 + h− x1) = 2h, x3 = x2 + h (1 + 2h − x2) = 3h

which suggests that xn = nh = tn : a result that is easily proven since, substituting
this into xn+1 = xn + h (1 + tn − xn) gives xn+1 = xn + h = (n+ 1) h = tn+1 and
the proof follows by induction.

This suggests that the exact solution of the IVP is x(t) = t (which clearly satisfies
both the ODE and the initial condition).

The second derivative of the exact solution is zero so the LTE given by (2.6) is
also zero. Theorem 2.4 is relevant with λ = −1 and g(t) = 1+ t so, with Tj = 0 in
(2.16), the global error en is zero at time tn.

5. With u = x(t) and v = x′(t) we have

[
u
v

]′
=

[
v

t2 − u(4 + v)

]
,

[
u(0)
v(0)

]
=

[
0
1

]
.
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With h = 0.1, u′0 = 1 and v′0 = 0 (from the ODEs)

n = 0 : t1 = 0.1, n = 1 : t2 = 0.2,

u1 = u0 + 0.1u′0 = 0.1, u2 = 0.2,

v1 = v0 + 0.1v′0 = 1, v2 = 0.951.

u′1 = 1.0, v′1 = −0.49,

7. (a) With u = x(t) and v = x′(t) we have
[
u
v

]′
=

[
v

t2 − 2u− 3v

]
,

[
u(0)
v(0)

]
=

[
1
0

]
.

Euler’s method for this system is
[
un+1

vn+1

]
=

[
un
vn

]
+ h

[
vn

t2n − 2un − 3vn

]
,

[
u0
v0

]
=

[
1
0

]

with tn = nh. Then un+1 ≈ x(tn+1) and vn+1 ≈ x′(tn+1)

(b) Differentiating the first equation and substituting for y′ from the second:

x′′ = y′ − 2x′ = (t2 − y)− 2x′

but, from the first ODE y = x′ + 2x, so x′′ = t2 − 3x′ + 2x, which is a
re-arrangement of equation (2.18).

y(0) = x′(0) + 2x(0) = 2 from the given initial conditions.

(c) Euler’s method for this system is
[
xn+1

yn+1

]
=

[
xn
yn

]
+ h

[
yn − 2xn
t2n − 2yn

]
,

[
x0
y0

]
=

[
1
2

]

(d) For the method in part (a):

u1 = u0 + hv0 = 1,

v1 = v0 + h(t20 − 3v0 − 2u0) = −2h,

u2 = u1 + hv1 = 1− 2h2.

For the method in part (c):

x1 = x0 + h(y0 − 2x0) = 1,

y1 = y0 − 2h = 2− 2h,

x2 = 1 + h(y1 − 2x1) = 1− 2h2

and so u2 = x2 and both are approximations of x(t2).
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9. Summing both sides of

ej
(1 + λh)j

− ej−1

(1 + λh)j−1
=

Tj

(1 + λh)j
.

from j = 1 to j = n gives the telescoping sum

(
e1

(1 + λh)
− e0

(1 + λh)0

)
+

(
e2

(1 + λh)2
− e1

(1 + λh)1

)

+ · · · +
(

en
(1 + λh)n

− en−1

(1 + λh)n−1

)
=

n∑

j=1

Tj

(1 + λh)j

in which there are multiple cancellations (which are easier to see if the terms on
the left are written in decreasing order, from j = n to j = 1), leaving

− e0
(1 + λh)0

+
en

(1 + λh)n
=

n∑

j=1

Tj

(1 + λh)j

from which (2.16) follows since e0 = 0.
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Exercises 3

1. x′(t) = 2x(1 − x) where x ≡ x(t) and so

x′′(t) =
d

dt
2x(1− x) = 2(1− 2x)x′(t) = 4x(1− 2x)(1 − x).

Hence, the TS(2) method is

xn+1 = xn + hx′n + 1
2h

2x′′n
x′n+1 = 2xn+1(1− xn)

x′′n+1 = 2x′n+1(1− 2xn)

n tn xn x′n x′′n x(tn)

0 10.0000 0.2000 0.3200 0.3840 0.2000
1 10.5000 0.4080 0.4831 0.1778 0.4046
2 11.0000 0.6718 0.4410 −0.3030 0.6488

The rightmost column gives the exact solution of the IVP. The GE with TS(2) at
t = 11 is x(11)−x2 = −0.022 while that for Euler’s method with h = 0.2 is 0.6488−
0.6295 = 0.0193 (see Table 2.2). The GEs are therefore roughly comparable—the
fact that only 2 steps were required here compared to 5 steps in Example 2.2 is
offset to a great extent by the need to compute x′′n.

3. We apply Euler’s method to the IVP’s of Exercise 1.1. For systems, Euler’s Method
(TS(1)) reads

xn+1 = xn + hf(tn,xn), n = 0, 1, ...

From Exercise 1.5a), u = θ(t) and v = θ′(t) and we have the 2–d system x =
f(t,x), x(0)= η with

x =

[
u
v

]
, f(t,x) =

[
v

−u

]
, η =

[
π/10
0

]
.

So Euler’s Method is, in terms of the components:

un+1 = un + hvn, vn+1 = vn − hun

with initial values u0 = π/10 = .31416 and v0 = 0. We use h = 0.1.

n tn un vn
0 0 0.3142 0.0000 (starting values)
1 0.1 u1 = u0 + .1v0 = 0.3142 v1 = v0 − .1u0 = −0.0314
2 0.2 u2 = u1 + .1v1 = 0.3110 v2 = v1 − .1u1 = −0.0628
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In order to define TS(2) we require the second derivatives of the exact solution.
Since u′ = v and v′ = −u we find u′′ = v′ = −u and v′′ = −u′ = −v so

un+1 = un + hvn − 1
2h

2un, vn+1 = vn − hun − 1
2h

2vn (2)

n tn un vn
0 0 0.3142 0.0000 (starting values)
1 0.1 u1 = 0.3126 v1 = −0.0314
2 0.2 u2 = 0.3079 v2 = −0.0625

Comparing the results of Euler’s method and TS(2) at t = 0.2 in one table:

Euler TS(2)

u2 =

[
0.3110

−0.0628

] [
0.3079

−0.0625

]

5. (a) The exact solution of the IVP is x(t) = eλt so λ < 0 is necessary to ensure
x(t) → 0 as t → ∞.

(b) For Euler’s method xn+1 = (1 + hλ)xn from which it follows that

xn = (1 + hλ)n

since x0 = 1. Hence |xn| → 0 as n → ∞ (which corresponds to tn → ∞ if h
is a fixed number) if, and only if |1 + hλ| < 1. This leads to

−1 < 1 + hλ < 1 ⇔ −2 < hλ < 0.

With λ = −1 this implies 0 < h < 2, while for λ = −100 we require the much
smaller value 0 < h < 0.02.

For TS(2) xn+1 = (1 + hλ+ 1
2h

2λ2)xn so

xn = (1 + hλ+ 1
2h

2λ2)n

since x0 = 1. Hence |xn| → 0 as n → ∞ if, and only if

−1 < 1 + hλ+ 1
2h

2λ2 < 1.

Completing the square, we find

1 + hλ+ 1
2h

2λ2 = 1
2(1 + hλ)2 + 1

2

so the inequalities require −3 < (1 + hλ)2 < 1. The left inequality is always
satisfied while the right inequality is equivalent to hλ(2 + hλ) < 0 which
requires −2 < hλ < 0—the same conditions as for TS(1).
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7. For TS(1) we have to calculate, for each n: tn (1 flop) x′n (3 flops—see the previous
exercise) and xn+1 = xn + hx′n (2 flops) giving a grand total of 6 flops.

For TS(2) we have the additional cost of computing x′′n (3 flops—(1 − 2t) was
evaluated for x′ and does not need to be recalculated) and adding 1

2h
2x′′n (only

2 flops since the number 1
2h

2 need only be calculated once, at the start of the
exercise, and not on each step). Thus TS(2) costs 5 flops more than TS(1).

By a similar argument, TS(3) costs 5 flops more than TS(2).

TS(1) TS(2) TS(3)

Cost 6 11 16

For the data in Table 3.1: assuming that the GE for TS(1) is proportional to h: at
h = .15 the GE is −.1148, so the constant of proportionality is −.1148/.15 ≈ 0.77.
Thus, GE≈ .77h and this will achieve the target GE of 0.01 with h = .01/.77 ≈
0.013. Thus, to integrate to t = 1.2 will require 1.2/.013 ≈ 93 steps. Each step
costs 6 flops, so the cost of this calculation is about 6× 93 = 558 flops.

The final column in Table 3.1 suggests that the GE for TS(2) ≈ 0.138h2. This will
achieve the target GE of 0.01 with h =

√
0.01/0.138 ≈ 0.27. Thus, to integrate to

t = 1.2 will require 1.2/.27 ≈ 5 steps. Each step costs 11 flops, so the cost of this
calculation is about 55 flops.

Thus TS(1) requires about 10 times as much computational effort as TS(2) in order
to achieve the required accuracy.

9. By the chain rule

x′′(t) =
d

dt
x′(t) =

d

dt
f(t, x(t)) = ft(t, x) + fx(x, t)x

′(t) = ft(t, x) + f(t, x)fx(t, x).

11. Differentiating the ODE x′(t) = λx(t)+ g(t) we find, when we evaluate the results
at t = tn,

x′(tn) = λx(tn) + g(tn)

x′′(tn) = λx′(tn) + g′(tn)

x′′′(tn) = λx′′(tn) + g′′(tn), etc.

These derivatives are approximated by

x′n = λxn + g(tn)

x′′n = λx′n + g′(tn)

x′′′n = λx′′n + g′′(tn), etc

11



and, subtracting the corresponding expressions, we have

x′(tn)− x′n = λ(x(tn)− xn)

x′′(tn)− x′′n = λ(x′(tn)− x′n)

x′′′(tn)− x′′′n = λ(x′′(tn)− x′′n), etc

from which we deduce that

x(j)(tn)− x(j)n = λj(x(tn)− xn). (3)

From (3.4) at t = tnwe have

x(tn+1) = x(tn) + hx′(tn) +
1
2!h

2x′′(tn) + · · ·+ 1
p!h

px(tn)(t) + Tn+1, (4)

where Tn+1 = O(hp+1), while the TS(p) method is (see equation (3.5))

xn+1 = xn + hx′n + 1
2h

2x′′n + · · ·+ 1
p!h

px
(p)
n .

Subtracting this from equation (4) and using (3) we obtain

en+1 = r(λh)en + Tn+1, n = 0, 1, 2, . . .

where en = x(tn)− xn and r(s) = 1 + s+ 1
2!s

2 + · · ·+ 1
p!s

p.

Now, following the derivation of (2.16), we find

en =

n∑

j=1

r(λh)n−jTj

and, since r(s) ≤ es (for s ≥ 0) by Exercise 3.10,

|r(λh)n−j | = |r(λh)|n−j ≤ r(|λ|h)n−j ≤ e(n−j)|λ|h ≤ e|λ|tf .

Consequently,

|en| ≤

∣∣∣∣∣∣

n∑

j=1

r(λh)n−jTj

∣∣∣∣∣∣
≤ e|λ|tf

n∑

j=1

|Tj |

and, since |Tj | ≤ Chp+1,

|en| ≤ e|λ|tf nChp+1 ≤ Chptfe
|λ|tf .

Hence, the method is convergent if p > 0 since |en| → 0 as h → 0 for any time
tn ∈ [0, tf ]. Moreover, the method converges at a pth order rate.
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Exercises 4

1. Explicit: Euler, 2–step Adams–Bashforth, Dahlquist. The other four methods are
implicit.

3. The backward Euler method applied to x′(t) = 1 + x2(t) leads to

xn+1 = xn + h(1 + x2n+1) ⇒ hx2n+1 − xn+1 + (h+ xn) = 0.

Employing the formula for the roots of a quadratic, we find,

xn+1 =
1±

√
1− 4hxn − 4h2

2h
.

With the + sign:

xn+1 =
1 +

√
1− 4hxn − 4h2

2h
→ 1

h
→ ∞

as h → 0.

With the − sign:

xn+1 =
1−

√
1− 4hxn − 4h2

2h

1 +
√
1− 4hxn − 4h2

1 +
√
1− 4hxn − 4h2

=
4h(h + xn)

2h(1 +
√
1− 4hxn − 4h2)

=
2(h+ xn)

1 +
√
1− 4hxn − 4h2

→ xn

as h → 0. With x0 = 0 we obtain

x1 =
2h

1 +
√
1− 4h2

.

5. For backward Euler:

Lhz(t) = z (t+ h)− z(t)− hz′ (t+ h) .

Substituting

z (t+ h) = z(t) + hz′(t) + 1
2h

2z′′(t) + O(h3)

z′ (t+ h) = z′(t) + hz′′(t) +O(h2)

13



we find

Lhz(t) =
[
z(t) + hz′ (t) + 1

2h
2z′′(t) + O(h3)

]
− z(t)− h

[
z′(t) + hz′′(t) +O(h2)

]

= −1
2h

2z′′(t) + O(h3)

So the error constant for backward Euler is C2 = −1
2 and the order is p = 1 since

Lhz(t) = O(h2) = O(hp+1).

7. (a) xn+2 − axn+1 − 2xn = hbfn so ρ (r) = r2 − ar − 2 and ρ (1) = 0 ⇔ a = −1.
σ (r) = b and ρ′ (r) = 2r − a so ρ′ (1) = σ (1) if 2− a = b, i.e., b = 3, leading
to the method xn+2 + xn+1 − 2xn = 3hfn.

(b) xn+2 + xn+1 + axn = h (fn+2 + bfn) so ρ (r) = r2 + r + a and ρ (1) = 0
⇔ a = −2. σ (r) = r2+ b and ρ′ (r) = 2r+1 so ρ′ (1) = σ (1) if 3 = 1+ b, i.e.,
b = 2, leading to the method xn+2 + xn+1 − 2xn = h (fn+2 + 2fn) .

9. For the method xn+1 = xn + 2hfn the linear difference operator is

Lhz(t) = z (t+ h)− z(t) + 2hz′(t)

= hz′(t) +O
(
h2
)

so Lhz(t) = O(h) but, for consistency we must have Lhz(t) = O(hp+1) with p > 0.
Thus the method is not consistent.

Alternatively, based on Definition 4.6, the first and second characteristic polyno-
mials are

ρ (r) = r − 1, σ (r) = 2

from which ρ (1) = 0 but ρ′ (1) = 1 6= σ (1) = 2. Hence, the method is not
consistent.

The IVP x′(t) = 1, t ∈ (0, 1], x(0) = 0, has the exact solution is x(t) = t. The
method applied to this IVP gives

xn+1 = xn + 2h

so x1 = 2h, x2 = 4h, x3 = 6h, ... xn = 2nh = 2tn while x (tn) = tn. The numerical
solution xn is therefore always twice as large as the exact solution and so conver-
gence cannot take place. The Global Error at t = 1 is x (tn) − xn = −1, which
does not tend to zero with h.

11. The associated linear difference operator is

Lhz(t) = z(t+ 2h) + α1z(t+ h)− az(t)− β2hz
′(t+ 2h)

14



and Taylor expansion gives

Lhz(t) = z(t) + 2hz′(t) + 2h2z′′(t) + 4
3h

3z′′′(t) + O(h4)

+ α1

(
z(t) + hz′(t) + 1

2h
2z′′(t) + 1

6h
3z′′′(t) + O(h4)

)

− az(t)

− β2h
(
z′ + 2hz′′(t) + 2h2z′′′(t) + O(h3)

)

= (1 + α1 − a)z(t) + (2 + α1 − β2)hz
′(t) +

(
2 + 1

2α1 − 2β2
)
h2z′′(t)

+
(
4
3 + 1

6α1 − 2β2
)
h3z′′′(t) + O(h4)

so that we can choose

α1 = a− 1, β2 = 2 + α1 = 1 + a

to give consistency (order 1) yet retain a as a free parameter. The error constant
is then

C2 = 2 + 1
2α1 − 2β2 = −1

2 (1 + 3a) .

The order increases to 2 when a = −1
3 for which we have the error constant

C3 =
4
3 +

1
6α1 − 2β2 = −2

9 (this is the BDF(2) method of the previous exercise).

13. The linear difference operator associated with Simpson’s rule

xn+2 − xn = 1
3h(fn+2 + 4fn+1 + fn)

is Lhz(t) = z(t+2h)− z(t)− 1
3h [z

′(t+ 2h) + 4z′(t+ h) + z′(t)] . When the Taylor
series

z(t+ 2h) = z(t+ h) + hz′(t+ h) + 1
2!h

2z′′(t+ h) + . . .

z(t) = z(t+ h)− hz′(t+ h) + 1
2!h

2z′′(t+ h)− . . .

are subtracted, terms with even powers of h cancel leaving

z(t+ 2h) − z(t) = 2hz′(t+ h) + 2
3!h

3z′′′(t+ h) + 2
5!h

5z(5)(t+ h) + O(h7).

When added, the odd powers of h in the corresponding series for z′ cancel leaving

z′(t+ 2h) + z′(t) = 2z′(t) + 2
2!h

2z′′′(t+ h) + 2
4!h

4z(5)(t+ h) + O(h6).

Hence

Lhz(t) =
(
2hz′(t+ h) + 2

3!h
3z′′′(t+ h) + 2

5!h
5z(5)(t+ h) + O(h7)

)

− 1
3h
(
6z′(t) + 2

2!h
2z′′′(t+ h) + 2

4!h
4z(5)(t+ h) + O(h6)

)

= 2h5
(

1
5! − 1

3×4!

)
h5z(5)(t+ h) + O(h7).
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Thus, since z(5)(t+ h) = z(5)(t) + O(h),

Lhz(t) = −h5z(5)(t+ h)/90 + O(h7) = −h5z(5)(t)/90 + O(h6)

and the method has order p = 4 with error constant C5 = −1/90.

The advantage of using the non–standard expansions is that they allow us to exploit
the symmetry of the coefficients which results in significant cancellation of terms.

15. With

Lhz(t) = z(t+ 2h) + α1z(t+ h) + α0z(t)−
h(β2z

′(t+ 2h) + β1z
′(t+ h) + β0z

′(t))

and z(t) = 1,
Lh1 = 1 + α1 + α0 = ρ(1)

and, with z(t) = t,

Lht = (t+ 2h) + α1(t+ h) + α0t− h(β2 + β1 + β0)

= t(1 + α1 + α0) + h
(
2 + α1 − (β2 + β1 + β0)

)

= tρ(1) + h(ρ′(1)− σ(1))

so Lh1 = Lht = 0 if, and only if, ρ(1) = 0 and ρ′(1) = σ(1) which, according to
Theorem 4.7, are conditions equivalent to the consistency conditions (4.15).

17. The limit

lim
h→0

xn+2 + α1xn+1 + α0xn
h

is of the form 0
0 since, for a convergent method, xn+2 → x(t∗+2h), xn+1 → x(t∗+h)

and xn → x(t∗) so the numerator converges to

xn+2 + α1xn+1 + α0xn → (1 + α1 + α0)x(t
∗) = 0

(using the 1st of the consistency conditions (4.15): 1 + α1 + α0 = 0).

It is necessary, therefore, to invoke l’Ĥopital’s rule which states that

lim
h→0

f(h)

g(h)
=

f ′(0)
g′(0)

if f(0) = g(0) = 0 and g′(0) 6= 0. With f(h) = x(t∗ + 2h) + α1x(t
∗ + h) + α0x(t

∗)
and g(h) = h, we find f ′(h) = 2x′(t∗ + 2h) + α1x

′(t∗ + h) so

lim
h→0

xn+2 + α1xn+1 + α0xn
h

= (2 + α1)x
′(t∗).

The proof given in the text is then complete.
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19. Suppose that p(t) = A+B(t− tn) +C(t− tn)
2 (It is more convenient in this case

to use 1, (t− tn), (t− tn)
2 as a basis for quadratic polynomials). The conditions

p(tn) = xn, p′(tn) = fn, p′(tn+1) = fn+1.

then lead to the algebraic equations

A = xn

B = fn

B + 2hC = fn+1

which solve to give A = xn, B = fn, hC = 1
2(fn+1 − fn) so that

p(t) = xn + (t− tn+1)fn + 1
2(t− tn+1)

2(fn+1 − fn)/h.

The prediction xn+1 = p(tn+1) then leads to xn+1 = xn + 1
2(fn+1 + fn) which is

the Trapezoidal rule.
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Exercises 5

1. a) ρ(r) = r2 − 4r + 3 = (r − 1)(r − 3) so it has roots r = 1 and r = 3. These do
not satisfy the root condition and so the method is not zero–stable.

b) ρ(r) = 3r2 − 4r + 1 = (3r − 1)(r − 1) so it has roots r = 1 and r = 1
3 which

satisfy the root condition and so the method is zero–stable.

In b) we must also have consistency: ρ(1) = 0 (which is satisfied) and also ρ′(1) =
σ(1) with σ(r) = a and ρ′(1) = 2 so that a = 2 is required for convergence (this
leads to the BDF(2) method).

3. xn+2 + 2axn+1 − (2a− 1)xn = h [(a+ 2)fn+1 + afn] has linear difference operator

Lhz(t) = z(t+ 2h) + 2az(t+ h)− (2a− 1)z(t) − h
[
(a+ 2)z′(t+ 2h) + az′(t)

]
.

We first check the order

Lhz(t) = z(t) + 2hz′(t) + 2h2z′′(t) + 4
3h

3z′′′(t) + O(h4)

+ 2a
(
z(t) + hz′(t) + 1

2h
2z′′(t) + 1

6h
3z′′′(t) + O(h4)

)

− (2a+ 1)z(t)

− h(a+ 2)
(

z′(t) + hz′′(t) + 1
2h

2z′′′(t) + O(h3)
)

− ha z′(t)

= −1
6(a− 2)h3z′′′(t) + O(h4)

so the method is, in general, of order p = 2 with error constant

C3 = −1
6 (a− 2) .

When a = 2 the method is at least 3rd order. However, the first characteristic
polynomial

ρ(r) = r2 + 2ar − (2a+ 1) = (r − 1)(r − 2a− 1)

has a root r = 2a + 1 = 5 in this case and so the resulting method is not zero–
stable. The first characteristic polynomial is the same as that for the method in
Example 4.11.

The method will be zero–stable provided −1 ≤ 2a + 1 < 1 (strict inequality at
the right endpoint to avoid a double root r = 1). Thus −1 ≤ a < 0 and then
|C3| = |a − 2|/6 there is no smallest error constant since |C3| → 1/3 as a → 0
but the resulting method will have a double root r = 1 thus violating the root
condition.

5. The most general 1–step LMM has the form

xn+1 + α0xn = h(β1fn+1 + β0fn)
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which has first characteristic polynomial ρ(r) = r + α0. Consistency requires
ρ(1) = 1 + α0 = 0. Hence α0 = −1 and all consistent 1–step LMMs have the
same first characteristic polynomial ρ(r) = r − 1 which clearly satifies the root
condition.

7. xn+3 + xn+2 − xn+1 − xn = 4hfn

(a) ρ(r) = r3 + r2 − r − 1 = (r − 1)(r + 1)2 and σ(r) = 4.

ρ(1) = 0 and ρ′(1) = 4 = σ(1) so the method is consistent.

(b) The general solution as given in the text is xn = A+(B+Cn)(−1)n. Invoking
the starting conditions x0 = 1, x1 = 1− h, x2 = 1− 2h we find

A+B = 1

A−B − C = 1− h

A+B + 2C = 1− 2h

whose solution is A = 1− h, B = h, C = −h so

xn = 1− h+ (−1)n(h− tn)

since tn = nh.

(c) ρ(r) has a double root at r = −1 and violates the root condition—it cannot
therefore be zero–stable.

9. xn+3 − xn+2 + xn+1 − xn = 1
2h(fn+3 + fn+2 + fn+1 + fn)

ρ(r) = r3 − r2 + r − 1 = (r − 1)(r2 + 1) and σ(r) = 1
2(r

3 + r2 + r + 1).

ρ(1) = 0 and ρ′(1) = 2 = σ(1) so the method is consistent.

ρ(r) = (r− 1)(r2+1) has roots r = 1,±i and these satisfy the root condition. The
method is therefore convergent.

11. For xn+2 − xn = h (β1fn+1 + β0fn),

ρ(r) = r2 − 1 = (r − 1)(r + 1) and σ(r) = β1r + β0.

ρ(r) has roots r = ±1 so satisfies the root condition. It is therefore zero–stable.

ρ(1) = 0 for all members of the family and ρ′(1) = σ(1) if 2 = β1 + β0. Setting
β1 = b, we have consistency if β0 = 2 − b. Thus, the one–parameter family of
methods

xn+2 − xn = h (bfn+1 + (2− b)fn)
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is convergent for all values of the parameter b.

Lhz(t) = z(t) + 2hz′(t) + 2h2z′′(t) + 4
3h

3z′′′(t) + O(h4)

− z(t)

− θ
(

hz′(t) + 2h2z′′(t) + 2h3z′′′(t) + O(h4)
)

− (2− θ)hz′(t)

= (2− b)h2z′′(t)− 1
6(3b− 8)h3z′′′(t) + O(h4)

so the method has order p = 1, in general, with error constant C2 = 2− b.

The method will have order p = 3 when b = 2 and the error constant is then
C3 = 1/3.

13. For xn+2 + (θ − 2)xn+1 + (1− θ)xn = 1
4h ((6 + θ)fn+2 + 3(θ − 2)fn),

Lhz(t) = z(t) + 2hz′(t) + 2h2z′′(t) + O(h3)

(θ − 2)
(
z(t) + hz′(t) + 1

2h
2z′′(t)

)
+ O(h3)

+ (1− θ)z(t)

− 1
4(6 + θ)

(
hz′(t) + 2h2z′′(t) + O(h3)

)

− 3
4(θ − 2)

(
hz′(t)

)

= − 2h2z′′(t) + O(h3)

so the method has order p = 1 and error constant C2 = −2, both independent of θ.

The method has been shown to be consistent, so it will be convergent if, and
only if, it is zero–stable. For this we have to check the root condition: the first
characteristic polynomial is

ρ(r) = r2 + (θ − 2)r + (1− θ) = (r − 1)(r − 1 + θ)

and has roots r = 1 and r = 1− θ. These satisfy the root condition if, and only if,
0 < θ ≤ 2.

15. ρ(r) = 1
c

∑k
j=1

1
j r

k−j(1 − r)j and σ3 = βkr
k. Consistency requires σ(1) = ρ′(1).

Since

ρ′(r) =
1

c

k∑

j=1

1

j

(
(k − j)rk−j−1(1− r)j − jrk−j(1− r)j−1

)

so, when evaluating ρ′(1), all terms vanish except for jrk−j(1 − r)j−1 with j = 1.
Consequently βk = σ(1) = ρ′(1) = −1/c.

Check:
with k = 1, c = 1 and β1 = σ(1) = ρ′(1) = −1 (backward Euler).
with k = 2, c = 1 + 1/2 = 3/2 and β2 = σ(1) = ρ′(1) = −2/3 (BDF(2)—(4.25)).
with k = 3, c = 11/6 and β3 = σ(1) = ρ′(1) = −6/11 (BDF(3)—see Exercise 5.14).
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Exercises 6

1. With ĥ = 2X + 2iY in Example 6.9,

r1 =
1 + 1

2 ĥ

1− 1
2 ĥ

=
(1 +X) + iY

(1−X)− iY
⇒ |r1|2 =

(1 +X)2 + Y 2

(1−X)2 + Y 2

so

|r1|2 − 1 =
4X

(1−X)2 + Y 2
.

Clearly |r1| < 1 if, and only if, X < 0, i.e., ℜ(ĥ) < 0.

It follows that the interval of absolute stability (relevant when Y = 0) is (−∞, 0).

3. xn+1 − xn = h(θfn+1 + (1 − θ)fn) applied to x′(t) = λx(t) leads to the stability
polynomial p(r) = (1− θĥ)r − (1− θ)ĥ) so the strict root condition leads to

|r1| =
∣∣∣∣∣
1 + (1− θ)ĥ)

1− θĥ

∣∣∣∣∣ < 1.

The boundary of the region of absolute stability is given by |r| = 1 so, with
ĥ = x̂+ iŷ,

(1 + x̂(1− θ))2 + (1− θ)2ŷ2

(1− x̂θ)2 + θ2ŷ2
= 1

2x̂+ x̂2(1− 2θ) + ŷ2(1− 2θ) = 0
(

2

(1− 2θ)
x̂+ x̂2

)
+ ŷ2 = 0

(
1

(1− 2θ)2
+

2

(1− 2θ)
x̂+ x̂2

)
+ ŷ2 =

1

(1− 2θ)2

(
1

1− 2θ
+ x̂

)2

+ ŷ2 =
1

(1− 2θ)2

which is a circle of radius 1/|1 − 2θ| centred at x̂ = −1/(1 − 2θ), ŷ = 0.

When θ < 1
2 the boundary of this circle lies in the left half plane. At its centre,

ĥ = −1/(1 − 2θ) and

|r1| =
∣∣∣∣

θ

1− θ

∣∣∣∣ < 1

so points inside the circle correspond to points where the method is absolutely
stable.
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When θ > 1
2 a similar calculation shows that the boundary lies in the right half

plane and at its centre, |r1| > 1 so points inside the circle correspond to points
where the method is not absolutely stable. The region of absolute stability is
therefore the exterior of the circle.

When θ = 1
2 the boundary of the region of absolute stability coincides with the

imaginary axis, as discussed in Exercise 6.1.

5. The stability polynomial of the LMM xn+2 − xn = 1
2h (fn+1 + 3fn) is p(r) =

r2 − 1− 1
2 ĥ(r + 3).

We only need the interval of absolute stability which means that we can assume ĥ
to be real and therefore Lemma 6.10 may be used with

a = −1
2 ĥ, b = −1− 3

2 ĥ.

The conditions b < 1 and p(±1) > 0 lead to

b < 1 : −1− 3
2 ĥ < 1 ⇐⇒ ĥ > −4

3

1 + a+ b > 0 : −2ĥ > 0 ⇐⇒ ĥ < 0

1− a+ b > 0 : −ĥ > 0 ⇐⇒ ĥ < 0.

The interval of absolute stability is therefore (−4
3 , 0).

7. For xn+2 − 4θxn+1 − (1− 4θ)xn = h
(
(1− θ)fn+2 + (1− 3θ)fn

)

(a) the associated linear difference operator is

Lhz(t) = z(t+2h)−4θz(t+h)−(1−4θ)z(t)−h
(
(1−θ)z′(t+2h)+(1−3θ)z′(t)

)
.

Expanding in powers of h we find

Lhz(t) =
2
3h

3z′′′(t)(2θ − 1) + O(h4)

so the method has order p = 2 with error constant C3 = 2(2θ − 1)/3.

The highest order (p = 3) is achieved when θ = 1
2 and the resulting error

constant is C4 = −1/12.

(b) The method will be convergent if, and only if, it is both consistent and zero–
stable. The first of these conditions has been shown to hold in part (a) (order
p ≥ 1). For zero stability the roots of the 1st characteristic polynomial

ρ(r) = r2 − 4θr − (1− 4θ) = (r − 1)(r + 1− 4θ)

must satisfy the root condition—this requires −1 ≤ −1 + 4θ < 1, i.e., 0 ≤
θ < 1

2 .

The method of highest order is not convergent since the root condition is
violated at θ = 1

2 (ρ(r) has a double root r = 1).
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(c) For A0–stability we must show that the interval of absolute stability includes
the negative real axis: ℜ(ĥ) < 0. Applying the method to the ODE x′(t) =
λx(t) when θ = 1/4 leads to the stability polynomial

p(r) =
(
1− 3

4 ĥ
)
r2 − r − 1

4 ĥ.

We are interested only in cases where ĥ is real and negative, in which case
the coefficient of r2 is always > 0. To apply Lemma 6.10 we have to divide
by this coefficient, then b = −ĥ/(4− 3ĥ) and

b < 1 ⇐⇒ −ĥ < 4− 3ĥ, ⇐⇒ ĥ < 2

p(1) > 0 ⇐⇒ −ĥ > 0

p(−1) > 0 ⇐⇒ 2− ĥ > 0

all of which are satisfied for ĥ < 0 and so the method is A0–stable.

9. The stability polynomial of AB(2) is (see Exercise 6.)p(r) = r2 − r − 1
2 ĥ(3r − 1).

Writing r = eis, then the boundary of the region of absolute stability is given by

e2is − eis − 1
2 ĥ(3e

is − 1) = 0.

Solving for ĥ and writing in real/imaginary from

ĥ = 2eis
eis − 1

3eis − 1

= 2eis
(eis − 1)

(3eis − 1)

(3e−is − 1)

(3e−is − 1)

= −cos 2s− 4 cos s+ 3 + i(sin 2s − 4 sin s)

5− 3 cos s

= −2
(1− cos s)2 + i sin s(cos s− 2)

5− 3 cos s
.

We observe from this that ℜ(ĥ) ≤ 0 for all s (so the boundary lies entirely in the
left half complex plane) and the boundary crosses the real axis when ℑ(ĥ) = 0.
This occurs when sin s = 0, i.e., when s = 0 (where ĥ = 0) and again when s = π,
where ĥ = −1. The region of absolute stability must therefore be the one on the
left of Figure 6.12.

For completeness we find that a similar computation for AM(2) leads to

ĥ = −6
(1− cos s)2 + i sin s(cos s− 7)

25 + 16 cos s− 5 cos2 s
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revealing that ℜ(ĥ) ≤ 0 for all s and the only intersections of the boundary with
the real axis occur when sin s = 0, i.e., when s = 0 (where ĥ = 0) and again when
s = π, where ĥ = −6. This confirms that region of absolute stability of AM(2)
must therefore be the one on the right of Figure 6.12.

11. The stability polynomial of the LMM xn+2 − xn+1 = 1
4h(fn+2 + 2fn+1 + fn) is

p(r) = r2 − r − 1
4 ĥ(r

2 + 2r + 1), i.e.,

p(r) =
(
1− 1

4 ĥ
)
r2 −

(
1 + 1

2 ĥ
)
r − 1

4 ĥ = 0.

We only need the interval of absolute stability which means that we can assume ĥ
to be real and therefore Lemma 6.10 may be used with

a = −1 + 1
2 ĥ

1− 1
4 ĥ

, b = −1
4

ĥ

1− 1
4 ĥ

.

The conditions b < 1 is best tackled by computing b− 1:

b− 1 = −1
4

ĥ

1− 1
4 ĥ

− 1 =
4

ĥ− 4

so b < 1 if, and only if, ĥ < 4.

Since the coefficient of r2 in p(r) is always positive for ĥ < 0, the two remaining
conditions of Lemma 6.10 can be written as p(±1) > 0.

p(1) = 1− 1 + 1
2 ĥ

1− 1
4 ĥ

− 1
4

ĥ

1− 1
4 ĥ

=
4ĥ

ĥ− 4

so p(1) > 0 if ĥ < 0.

p(−1) = 1 +
1 + 1

2 ĥ

1− 1
4 ĥ

− 1
4

ĥ

1− 1
4 ĥ

= − 8

ĥ− 4

so p(−1) > 0 if, and only if, ĥ < 4.

The conditions of Lemma 6.10 have been shown to be satisfied for all ĥ < 0 so we
can conclude that the interval of absolute stability is (−∞, 0), proving that the
method is A–stable.

13. Applying the starting conditions x0 = 1, x1 = eĥ to the general solution xn =
Arn+ +Brn− we obtain

1 = A+B

eĥ = Ar+ +Br−.

24



Writing A = 1
2(1+a) and B = 1

2 (1−a) then the first of these equations is identically
satisfied while the second leads to

(r+ + r−) + a(r+ − r−) = 2eĥ

and, on using the expressions for r+ and r− given in Example 6.12, we find

r+ + r− = 2ĥ and r+ − r− = 2

√
1 + ĥ2

and so

a =
eĥ − ĥ√
1 + ĥ2

.

Using the Binomial expansion, we find
√

1 + ĥ2 = 1 + 1
2 ĥ

2 + O(h4) so, since

eĥ − ĥ = 1 + 1
2 ĥ

2 + 1
6 ĥ

3 + O(h4),

a− 1 =
1 + 1

2 ĥ
2 + 1

6 ĥ
3 + O(h4)

1 + 1
2 ĥ

2 + O(h4)
− 1

=
1
6 ĥ

3 + O(h4)

1 + O(h2)
= 1

6 ĥ
3 + O(h4),

as required. Hence, A = 1
2(1 + a) = 1 + 1

12 ĥ
3 + O(h4) = 1 + O(h3) and B =

1
2 (1− a) = − 1

12 ĥ
3 + O(h4) = O(h3).

15. The LMM xn+2 + (θ − 2)xn+1 + (1 − θ)xn = 1
4h ((6 + θ)fn+2 + 3(θ − 2)fn) was

shown in Exercise 5.13 to be convergent for θ ∈ (0, 2] and we shall assume that θ
is restricted to this interval.

The method has stability polynomial

p(r) =
(
1− 1

4 ĥ(θ + 6)
)
r2 + (θ − 2)r + 1− θ − 3

4(θ − 2)

to which we apply Lemma 6.10 in order to show that its roots satisfy |r| < 1 for
all ĥ < 0 and all θ ∈ (0, 2]. These conditions lead to

(a) For b < 1,

b− 1 =
1− θ − 3

4 (θ − 2)ĥ

1− 1
4 (θ + 6)ĥ

− 1

=
−θ + 1

2(6− θ)ĥ

1− 1
4 (θ + 6)ĥ

and the right hand side is easily shown to be negative.
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(b) The coefficient of r2 is positive for all relevant values of ĥ and θ so we may
use the conditions p(±1) > 0.

p(1) = −θĥ and p(−1) = (4− 2θ)− θĥ

and both are seen to be positive for all relevant values of ĥ and θ.

All convergent members of the family are absolutely stable for all ĥ < 0 and are,
therefore, A0–stable.

17. (a) ρ(r) = r2 − 2ar + (2a− 1), σ(r) = ar2 + (2− 3a)r.

(b) ρ(1) = 0 and ρ′(1) = σ(1) = 2− 2a, so the method is consistent for all a.

(c) ρ (r) = r2−2ar+2a−1 = (r − 1) (r − 2a+ 1) so the root condition is satisfied
for −1 ≤ 2a− 1 < 1, i.e., 0 ≤ a < 1.

(d) It is convergent if it is consistent and zero–stable, i.e., for 0 ≤ a < 1.

(e) Lhz (t) =
(
−5

6a+ 1
3

)
z′′′h3 +

(
1
3 − 11

12a
)
z(4)h4 +O(h5)

So the order is, in general p = 2 with error constant C3 = −5
6a+

1
3 .

When a = 2
5 , C3 = 0 and Lhz (t) = − 1

30z
(4)h4 +O(h5) and the order is p = 3

with error constant C4 = − 1
30 . This method is convergent since a is in the

zero-stable range.

(f) For A0–stability, apply the method to x′ = λx with λ real and λ < 0. This
gives the stability polynomial

p(r) = (1− aĥ)r2 − (2a+ (2− 3a)ĥ)r + 2a− 1

and we have to use Lemma 6.10 to check the conditions under which the roots
satisfy the strict root condition: this will ensure A0–stability—all solutions
xn → 0 as n → ∞. Since the coefficient of r2 in p(r) is always positive for
ĥ < 0 and a ≥ 0 these conditions give:

i. p(1) > 0
p(1) = −aĥ− (2− 3a) ĥ = 2ĥ (a− 1)

and a < 1 for zero–stability, so p(1) > 0 for all ĥ < 0.

ii. p(−1) > 0

p(−1) = −aĥ+ 4a+ (2− 3a) ĥ = 4a+ 2(1 − 2a)ĥ

so, to have p(−1) > 0 for all ĥ < 0, we must have a ≥ 1
2 .

iii. b < 1

b− 1 =
2a− 1

1− aĥ
− 1 =

aĥ− 2(1 − a)

1− aĥ

so b− 1 < 0 since 1− a > 0 by zero–stability, aĥ ≤ 0 since a ≥ 0 & ĥ < 0
and the denominator is > 0.
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All conditions for the strict root condition are satisfied provided 1
2 ≤ a < 1.

This condition identifies all A0–stable convergent members of the family.

(g) The BDF(2) method has a = 2
3 so it is convergent (0 ≤ a < 1) and A0–stable

(12 ≤ a < 1); it has order p = 2 with error constant C3 =
[
−5

6a+
1
3

]
a=2/3

= −2
9 .

(h) When a = 0 the method is explicit but not A0–stable—in accord with part 1
of Dahlquist’s Second Barrier Theorem (Theorem 6.15).

To have 3rd order, a = 2
5 , but this is outside the range of A0–stable methods.

So the maximum order of A0–stable methods is p = 2—in accord of part 2 of
the theorem.

For part 3 we note that the modulus of the scaled error constant is
∣∣∣∣
C3

σ(1)

∣∣∣∣ = 1
12

5a− 2

1− a

which is a strictly increasing function of a—it achieves its smallest value
consistent with A0–stability when a = 1

2 , in which case the method becomes
the Trapezoidal rule.

0 1
−1

0

1

ℜ(ĥ)

ℑ(ĥ)

Figure 1: Boundary of the region of absolute stability
for Exercise 6.18.

19. Since all points (a, b) inside the triangle in Figure 6.8 correspond to roots that
satisfy the strict root condition (|r| < 1), they must also correspond to roots that
satisfy the root condition (|r| ≤ 1).

For coefficients (a, b) on the edges of the triangle at least one root of the polynomial
has modulus equal to 1. However, it can only have a double root of unit modulus
if there are coincident roots (b = a2/4) and these occur only at (±2, 1).

Hence the root condition is satisfied if |a| − 1 ≤ b ≤ 1, except for the case when
b = 1 and a = ±2 (which lead to double roots r = ±1).

21. Applying the composite Euler method to x′(t) = λx(t) leads to

x2m+1 = (1 + h0λ)x2m and x2m+2 = (1 + h1λ)x2m+1,
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so x2m+2 = (1 + h1λ)(1 + h0λ)x2m. Thus, with h0 = (1− γ)h and h1 = (1 + γ)h,

x2m+2 = (1 + (1 + γ)hλ)(1 + (1− γ)hλ)x2m =
(
(1 + ĥ)2 − γ2ĥ2

)
)x2m,

where ĥ = hλ. Thus x2m+2/x2m = R(ĥ), where R(ĥ) = (1 + ĥ)2 − γ2ĥ2.

To determine the conditions under which R(ĥ) < 1, we consider

R(ĥ)− 1 = (1 + ĥ)2 − γ2ĥ2 − 1 = ĥ
(
2 + (1− γ2)ĥ

)
.

Thus, since ĥ < 0, we have R(ĥ) < 1 if, and only if (recall that 0 ≤ γ < 1)

− 2

1− γ2
< ĥ < 0. (5)

To determine the conditions under which R(ĥ) > −1, we find the minimum of
R(ĥ) for ĥ < 0 and then require this minimum to exceed −1. R has stationary
points where R′(ĥ) = 2

(
(1 + ĥ)− γ2ĥ

)
= 0, that is, at

ĥ = −1/(1 − γ2).

Since R′′(ĥ) = 2(1 − γ2) > 0 the stationary point is a minimum. The value of R
at this point is

Rmin = −γ2/(1− γ2)

and

Rmin + 1 = − γ2

1− γ2
+ 1 = −1− 2γ2

1− γ2

and soRmin > −1 for γ2 < 1
2 . When γ2 = 1

2 the inequalities (5) become−4 < ĥ < 0
which is the interval of absolute stability1. The region of absolute stability is shown
in Figure 2.

−4 −2 0

−1

0

1

γ = 1/
√

2

ℜ(ĥ)

ℑ(ĥ)

O

h =
1/

2

h =
3/

8

h =
1/

4

h =
1/

8

Figure 2: The region of absolute stability for the
composite Euler method for Exercise 16.21 when
γ = 1/

√
2.

1Strictly speaking, we have to weaken the conditions for absolute stability to |R(ĥ) ≤ 1 in order to
allow the value γ2 = 1

2
. In practice, we need only choose a value of γ that is marginally smaller than

1/
√
2.
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Exercises 7

1. From (7.8) [
u
v

]
= 11

20

[
10
1

]
e−t − 9

20

[
10
−1

]
e−21t.

so [
u′

v′

]
= −11

20

[
10
1

]
e−t + 21 9

20

[
10
−1

]
e−21t.

and [
u′

v′

]
+ 11

[
u
v

]
= 11

2

[
10
1

]
e−t + 9

[
10
−1

]
e−21t =

[
100v
u

]

as required.

3. The system u′(t) = v(t), v′(t) = −200u(t)− 20v(t) has coefficient matrix

A =

[
0 1

−200 −20

]
.

Its eigenvalues are the roots of the equation

det(A− λI) =

∣∣∣∣
−λ 1
−200 −20− λ

∣∣∣∣ = λ2 + 20λ+ 200 = (λ+ 10)2 + 100

which gives λ = −10± 10i. For absolute stability of Euler’s method we require

|ĥ+ 1| < 1,

where ĥ = hλ, for every eigenvalue λ of A. To determine the allowable range of
stepsizes h, consider

|ĥ+ 1|2 − 1 = |h(−10 ± 10i)h + 1|2 − 1

= |(1− 10h) ± 10ih|2 − 1

= (1− 10h)2 + 100h2 − 1

= −20h+ 200h2 = −20h(1 − 10h).

Hence |ĥ+ 1| < 1 and we have absolute stability if, and only if, 0 < h < 1/10.

5. The coefficient matrix is

A =

[
−8 8
0 −1/8

]

whose eigenvalues are2 λ = −8 and −1/8. These are real so the condition for
absolute stability of Euler’s method is

−1 < 1 + hλ < 1

2The eigenvalues of an upper triangular matrix are simply its diagonal entries.
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for each eigenvalue of A. With λ = −8 we find h < 1/4 and for λ = −1/8 we find
h < 16. Both have to be satisfied so we must have h < 1/4.

7.

un+1 =
1

4 + h2
(
(4− h2)un − 4hvn

)
,

vn+1 =
1

4 + h2
(
4hun + (4− h2)hvn

)
,

(6)

so, squaring both sides of the two equations and adding gives

u2n+1 + v2n+1 =
1

(4 + h2)2

((
(4− h2)un − 4hvn

)2
+
(
4hun + (4− h2)hvn

)2)

=
1

(4 + h2)2
((
(4− h2)2 + 16h2

)
u2n +

(
(4− h2)2 + 16h2

)
v2n
)

=
1

(4 + h2)2
(
(4 + h2)2u2n + (4 + h2)2v2n

)
= u2n + v2n.

This implies that u2n + v2n = u20 + v20 .

With un = R cos(θn) and vn = R sin(θn), clearly u2n+v2n = R2, where R2 = u20+v20.
Substituting into the right of (6), we find

cos(θn+1) =
1

4 + h2
(
(4− h2) cos(θn)− 4h sin(θn)

)
,

sin(θn+1) =
1

4 + h2
(
4h cos(θn) + (4− h2)h sin(θn)

)
,

so that, dividing the 2nd by the 1st,

tan(θn+1) =
(4− h2) tan(θn) + 4h

(4− h2)− 4h tan(θn)
.

We use the standard identity

tan(θn+1 − θn) =
tan(θn+1)− tan(θn)

1 + tan(θn+1) tan(θn)

and calculate the numerator and denominator separately.

tan(θn+1)− tan(θn) =
(4− h2) tan(θn) + 4h

(4− h2)− 4h tan(θn)
− tan(θn) =

4h sec2(θn)

(4− h2)− 4h tan(θn)
,

where we have used 1 + tan2(θn) = sec2(θn). Also,

1 + tan(θn+1) tan(θn) = 1+ tan(θn)
tan(θn+1)− tan(θn)

1 + tan(θn+1) tan(θn)
=

(4− h2) sec2(θn)

(4− h2)− 4h tan(θn)
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and so

tan(θn+1 − θn) =
4h

4− h2
=

h

1− h2/4
.

Since

tan 2ϕ =
2 tanϕ

1− tan2 ϕ

we see that tan 1
2 (θn+1−θn) =

1
2h. Using the expansion tan−1(x) = x− 1

3x
3+O(x5)

we have

θn+1 − θn = 2 tan−1 1
2h

= 2
(
1
2h− 1

3

(
1
2h
)3

+ O(h5)
)

= h− 1
12h

3 + O(h5)

as required.

9. Applying the mid–point rule xn+2 − xn = 2hfn+1 to the ODE x′(t) = ix(t) leads
to

xn+2 − 2ihxn+1 − xn = 0,

a difference equation with auxiliary equation (stability polynomial with λ = i)

p(r) = r2 − 2ihr − 1

whose roots are
r± = ih±

√
1− h2.

When h ≤ 1 the argument of the square root is positive and so |r±| = 1.

However, when h > 1, the roots become r± = ih ± i
√
h2 − 1 the modulus of the

larger root is |r+|2 = h+
√
h2 − 1 > 1 so that solutions become unstable.
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Exercises 8

1. Let u = xn+1 then xn+1 = xn + 2hxn+1(1− xn+1) becomes

2hu2 + (1− 2h)u − xn = 0

whose solutions are

u± =
1

4h

(
−(1− 2h)±

√
(1− 2h)2 + 8hxn

)
.

Then

u− =
1

4h

(
−(1− 2h)−

√
(1− 2h)2 + 8hxn

)
→ − 1

2h
→ −∞

as h → 0+. In contrast, by a process known as rationalization, we find

u+ =
1

4h

(√
(1− 2h)2 + 8hxn − (1− 2h)

) √(1− 2h)2 + 8hxn + (1− 2h)√
(1− 2h)2 + 8hxn + (1− 2h)

=

(
(1− 2h)2 + 8hxn

)
− (1− 2h)2√

(1− 2h)2 + 8hxn + (1− 2h)

=
2xn√

(1− 2h)2 + 8hxn + (1− 2h)
→ xn

as h → 0. Since xn and xn+1 are meant to be approximations to x(tn) and x(tn+1),
respectively, and x(tn+1) → x(tn) as h → 0, it is appropriate to choose xn+1 = u+.

3. Including additional rows in Table 8.1 to accommodate E[ℓ](= u[ℓ] − x1) and
E[ℓ+1]/E[ℓ] leads to the results shown in the following table.

ℓ 0 1 2 3 4

u[ℓ] 0.2 0.232 0.2356 0.2360 0.2360

u[ℓ+1] − u[ℓ] 0.032 0.0036 0.0004 0.0000

E[ℓ] −3.6110−2 −4.0710−3 −4.3310−4 −4.5710−5 −4.8310−6

E[ℓ+1]/E[ℓ] 0.113 0.106 0.106 0.106

(3.6110−2 ≡ 3.61 × 10−2, etc.) The results indicate that E[ℓ] → 0 and that
E[ℓ+1]/E[ℓ] → 0.106 (approximately). The Jacobian at x2 is

B = 2(1 − 2x2) ≈ 1.056

so the calculations confirm that E[ℓ+1]/E[ℓ] → hB as shown in equation (8.6).
Because hB ≈ 0.1, E[ℓ+1] ≈ 0.1 × E[ℓ] gets smaller by a factor of about 0.1 per
iteration, that is, u[ℓ] gains about one decimal place per iteration.
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5. Using the ODEs x′(t) = −2y(t)3 and y′(t) = 2x(t)− y(t)3 and the chain rule,

d

dt

(
x(t)2 + 1

2y(t)
4
)
= 2x(t)x′(t) + 2y(t)3y′(t)

= 2x(t)(−2y(t)3) + 2y(t)3(2x(t) − y(t)3) = −2y(t)6.

7. For x′(t) = λx(t), a typical step in the forward/backward Euler PECE method is

P: x
[0]
n+1 = xn + hfn = (1 + ĥ)xn,

E: f
[0]
n+1 = f(tn+1, x

[0]
n+1) = λx

[0]
n+1,

C: xn+1 = xn + hf
[0]
n+1 = xn + ĥx

[0]
n+1,

E: fn+1 = f(tn+1, xn+1) = λxn+1

and so xn+1 = xn + ĥ(1 + ĥ)xn = (1 + ĥ+ ĥ2)xn.

For absolute stability, we require |xn+1/xn| < 1, i.e.,

−1 < 1 + ĥ+ ĥ2 < 1.

The right hand inequality requires ĥ(1 + ĥ) < 0, i.e., ĥ ∈ (−1, 0). The left hand
inequality requires 2 + ĥ + ĥ2 > 0 which is true for all real ĥ since 2 + ĥ + ĥ2 =
(ĥ+ 1

2)
2 + 7

4 > 0.

The interval of absolute stability is, therefore, −1 < ĥ < 0.

9. The backward Euler method applied to x′(t) = f(x(t)) leads to xn+1 = xn+ fn+1.
Suppose that this equation has two solutions u and v, so

u = xn + hf(u) and v = xn + hf(v).

Subtracting these gives u− v = h
(
f(u)− f(v)

)
. Multiplying both sides by (u− v)

and assuming that f satisfies a one–sided Lipschitz condition, we find

(u− v)2 = h(u− v)
(
f(u)− f(v)

)
≤ hγ(u− v)2

from which we deduce that (1 − hγ)(u − v)2 ≤ 0. The left hand side of this
inequality is non–negative when hγ < 1 and consequently both sides must vanish,
from which we deduce that u = v. The equation must therefore have a unique
solution.
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11. With f(u) = u− 0.2− 0.2u(1− u), f ′(u) = 1− 0.2(1 − 2u), the Newton–Raphson
method for equation (8.8) is

u[ℓ+1] = u[ℓ] − f(u[ℓ])

f ′(u[ℓ])

with u0 = 0.2. The results are shown below

ℓ 0 1 2

u[ℓ] 0.2000 0.2364 0.2361

u[ℓ+1] − u[ℓ] 0.0364 −0.0003

so |u[2] − u[1]| < 0.001 and two iterations are sufficient to meet the convergence
criterion.

13. We extend Table 8.2 by adding two further rows which show that (p[ℓ])2/p[ℓ+1] ≈
4.75 and (q[ℓ])2/q[ℓ+1] ≈ 3.36.

ℓ 0 1 2 3

u[ℓ] 1.00 0.774647887 0.773901924 0.773901807
1.00 1.042253521 1.041731347 1.041731265

Ê[ℓ] 2.253510−1 7.459610−4 1.171110−7 2.913110−15
−4.225410−2 5.221710−4 8.197510−8 1.962810−15

E[ℓ] 2.261010−1 7.460810−4 1.171110−7 2.886610−15
−4.173110−2 5.222610−4 8.197510−8 1.998410−15

(p[ℓ])2/p[ℓ+1] 68.5186 4.7532 4.7510

(q[ℓ])2/q[ℓ+1] 3.3346 3.3272 3.3627

15. When applied to x′(t) = λx(t), the PECE method of Exercise 8.12

P: x
[0]
n+2 = xn+1 +

1
2h(3fn+1 − fn) = (1 + 3

2 ĥ)xn+1 − 1
2 ĥxn,

E: f
[0]
n+2 = f(tn+2, x

[0]
n+2) = λx

[0]
n+2,

C: xn+2 = xn+1 +
1
2h(fn+1 + f

[0]
n+2) = xn+1 +

1
2 ĥ(xn+1 + x

[0]
n+2),

E: fn+2 = f(tn+2, xn+2) = λxn+2.

Combining these gives the difference equation

xn+2 = (1 + ĥ+ 3
4 ĥ

2)xn+1 − 1
4 ĥ

2xn

whose auxiliary equation is

p(r) = r2 − (1 + ĥ+ 3
4 ĥ

2)r − 1
4 ĥ

2.
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To find the interval of absolute stability we may use Lemma 6.10 with

a = −(1 + ĥ+ 3
4 ĥ

2), b = −1
4 ĥ

2.

The conditions b < 1 and p(±1) > 0 lead to

b < 1 : 1
4 ĥ

2 < 1 ⇐⇒ −2 < ĥ < 2

1 + a+ b > 0 : −1
2 ĥ(2 + ĥ) > 0 ⇐⇒ −2 < ĥ < 0

1− a+ b > 0 : 2 + ĥ+ ĥ2 > 0 which is true for all real ĥ.

The interval of absolute stability is therefore (−2, 0).

17. We extend the table shown in the solution to Exercise 3 to include a row to show
the values of |E[ℓ+1] − E[ℓ]|/(1 − r), where r = hB ≈ 0.106.

ℓ 0 1 2 3 4

u[ℓ] 0.2 0.232 0.2356 0.2360 0.2360

u[ℓ+1] − u[ℓ] 0.032 0.0036 0.0004 0.0000

E[ℓ] −3.6110−2 −4.0710−3 −4.3310−4 −4.5710−5 −4.8310−6

E[ℓ+1]/E[ℓ] 0.113 0.106 0.106 0.106

|E[ℓ+1] − E[ℓ]|
1− r

3.5810−2 4.06810−3 4.3310−4 4.5710−5

(3.6110−2 ≡ 3.61 × 10−2, etc.) Close agreement is seen between |E[ℓ]| and the
values in the last row.
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Exercises 9

1. With θ = 1
2 in the general 2nd order RK(2) method (Table 9.5) gives the improved

Euler method:

k1 = f (tn, xn)

k2 = f (tn + ah, xn + ahk1) = f (tn + h, xn + hk1)

xn+1 = xn + h (b1k1 + b2k2) = xn + 1
2h (k1 + k2)

so, for x′(t) = (1− 2t)x(t), h = 0.2,

k1 = (1− 2tn)xn

k2 = (1− 2(tn + h)) (xn + hk1)

xn+1 = xn + 1
2h (k1 + k2) = xn + 0.1 (k1 + k2) .

n = 0 : x0 = 1, t0 = 0, k1 = 1, k2 = .72, x1 = 1.172
n = 1 : x1 = 1.172, t1 = 0.2, k1 = (1− 2× 0.2)1.172 = .7032

k2 = (1− 2(0.2 + 0.2)) (1.172 + 0.2× .7032) = .2625
x2 = x1 + 0.1(k1 + k2) = 1.2686

The value x2 = 1.2686 is close to that obtained by the modified Euler method
(1.2757) in Example 9.1.

The exact solution is x(t) = exp((14 − (t − 1
2)

2) and so x(t2) = x(0.4) = 1.2712.
The global error at t = 0.4 is therefore e2 = 1.2712 − 1.2686 = 0.0026.

3. The general s–stage RK method applied to the IVP u′(t) = f(u(t)), where

u(t) =

[
u(t)
v(t)

]
, f

([
u
v

])
=

[
1

f(u, v)

]
,

and u(0) = 0, v(0) = η leads to

ki = f(un + h

s∑

j=1

ai,jkj), un+1 = un + h

s∑

i=1

biki

with u0 = [0, η]T . Then, supposing that the components of ki are denoted by ℓi
and ki, we find

ki =

[
ℓi
ki

]
=




1

f(tn + h

s∑

j=1

ai,jℓj, xn + h

s∑

j=1

ai,jkj)


 ,

i.e., ℓi = 1 and so

ki = f(tn + h
s∑

j=1

ai,j, xn + h
s∑

j=1

ai,jkj).
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This will be in agreement with (9.6) if equation (9.7) holds, i.e., ci =
∑s

j=1 ai,j.
Then

un+1 =

[
tn+1

xn+1

]
=

[
tn
xn

]
+ h

s∑

i=1

bi

[
ℓi
ki

]
,

and so

tn+1 = tn + h

s∑

i=1

bi, xn+1 = xn + h

s∑

i=1

biki.

The update xn+1 agrees with (9.5) and, in order to have tn+1 − tn = h, we clearly
require

∑s
i=1 bi = 1.

5. Using the Taylor expansion for a function of two variables,

k2 = f(tn + h, xn + hk1) = f(tn, xn) + O(h)

we find

xn+1 = xn + 1
2h(k1 + k2)

= xn + 1
2h(f(tn, xn) +

[
f(tn, xn) + O(h)

]
)

= xn + hf(tn, xn) + O(h2).

For the exact solution of the ODE x′(t) = f(t, x(t)),

x(tn + h) = x(tn) + hx′(tn) + O(h2)

= x(tn) + hf(tn, x(tn)) + O(h2).

Under the localizing assumption xn = x(tn), the difference is easily shown to be

x(tn+1)− xn+1 = O(h2)

so, in view of Definition 9.3, the method is of order p = 1—it is therefore consistent
with the given ODE.

7. In all methods t0 = 0, x0 = 1, k1 = f(0, x0) = 1, where f(t, x) = (1− 2t)x.

k2 k3 k4 x1
Improved Euler

0.880000 x0 + hk2=1.094000
Modified Euler

0.945000 x0 +
1
2h(k1 + k2)=1.094500

Heun
0.964444 0.922390 x0 +

1
4h(k1 + 3k3)=1.094179

Kutta 3rd order
0.945000 0.871200 x0 +

1
6h(k1 + 4k2 + k3)=1.094187

4th order
0.945000 0.942525 0.875402 x0 +

1
6h(k1 + 2k2 + 2k3 + k4)=1.094174
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The value given by the 4th order method agrees with the exact solution x(0.1) to
6 decimal places.

9. Applying the general 2nd order, 2–stage RK method from Table 9.5 to the ODE
x′(t) = λx(t) we obtain k1 = λxn,

k2 = λ(xn + ahk1) = (1 + aĥ)xn, (ĥ = λh)

xn+1 = xn + h
(
(1− θ)k1 + θk2

)

= (1 + ĥ+ aθĥ2)xn = (1 + ĥ+ 1
2 ĥ

2)xn

since aθ = 1
2 for a 2nd order method. The exact solution has the property x(tn+1) =

eĥx(tn), so its Taylor expansion is

x(tn+1) = (1 + ĥ+ 1
2 ĥ

2 + 1
6 ĥ

3)x(tn) + O(h4)

and therefore the LTE is given by

Tn+1 = x(tn+1)− xn+1 =
1
6 ĥ

3x(tn) + O(h4),

where we have used the localizing assumption xn = x(tn). Thus, the method can
be of order at most two.

11. Using the given tableau we find

k1 = f(tn, xn)

k2 = f(tn + h, xn + 1
2h(k1 + k2)

xn+1 = xn + 1
2h(k1 + k2).

In view of the last equation and tn+1 = tn + h, k2 can be re–written as

k2 = f(tn+1, xn+1)

and therefore, xn+1 = xn + 1
2h(f(tn, xn) + f(tn+1, xn+1), which is the Trapezoidal

rule.

13. The required conditions are obtained by setting b3 = 0 which gives the 2–stage
version of a 3–stage RK method with tableau (with c2 = a2,1)

2-stage version:

0 0
a a 0
− − − −

b̃1 b̃2 0

, 3-stage version:

0 0
c2 a2,1 0
c3 a3,1 a3,2 0

b1 b2 b3

Suppose that the parameters of the 3–stage method satisfy the order conditions of
Table 9.6. Then, choosing a = a2,1 and b̃2 =

1
2a, b̃1 = 1− b̃2 in the 2–stage method,

the parameters of the 2–stage method satisfy the order conditions of Table 9.4.
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15. To show that Heun’s method is of order three, we follow a similar pattern to
Exercises 9.5 and 9.6 except that the Taylor expansions for the numerical and
exact solutions need to be computed with remainder O(h4). This means that the
k’s need to be expanded up to h2 terms. So

k2 = f(tn + 1
3h, xn + 1

3hk1)

= f + 1
3h(ft + k1fx) +

1
2(

1
3h)

2
(
ftt + 2k1fxt + k21fxx

)
+ O(h3)

= f + 1
3h(ft + ffx) +

1
18h

2
(
ftt + 2ffxt + f2fxx

)
+ O(h3),

where f and its partial derivatives are all evaluated at (tn, xn). Similarly,

k3 = f(tn + 2
3h, xn + 2

3hk2)

= f + 2
3h(ft + k1fx) +

1
2(

2
3h)

2
(
ftt + 2k2fxt + k22fxx

)
+ O(h3)

= f + 2
3h(ft + ffx) +

2
9h

2
(
ftt + 2k2fxt + k22fxx

)
+ O(h3),

and we delay substituting for k2 in order to simplify the calculations. Then

xn+1 = xn + 1
4h(k1 + 3k3)

= xn + hf + 1
2h

2(ft + k2fx) +
1
6h

3
(
ftt + 2k2fxt + k22fxx

)
+ O(h4).

For the exact solution of the ODE x′(t) = f(t, x(t)), using the result of the previous
exercise,

x(tn + h) = x(tn) + hx′(tn) +
1
2h

2x′′(tn) +
1
6h

3x′′′(tn)O(h4)

= x(tn) + hf + 1
2h

2
(
ft + ffx)

+ 1
6h

3
(
ftt + 2ffxt + f2fxx + f(ft + ffx)

)
+ O(h4).

So, under the localizing assumption xn = x(tn) we find

Tn+1 = x(tn+1)− xn+1

= 1
2h

2
(
f − k2)fx) +

1
6h

3
(
2(f − k2)fxt + (f2 − k22)fxx + f(ft + ffx)

)

and substituting k2 = f + 1
3h(ft + ffx) + O(h2), this gives Tn+1 = O(h4) which,

in view of Definition 9.3, verifies that the method of consistent of order three.
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Exercises 10

1. When Heun’s method is applied to x′(t) = λx(t), we find

k1 = f(tn, xn) = λxn

k2 = f(tn + 1
3h, xn + 1

3hk1) = λ(xn + 1
3hk1)

= λ(1 + 1
3 ĥ)xn

k3 = f(tn + 2
3h, xn + 2

3hk2) = λ(xn + 2
3hk2)

= λ(1 + 2
3 ĥ+ 2

9 ĥ
2)xn

xn+1 = xn + 1
4h(k1 + 3k3)

= xn + 1
4 ĥ
(
1 + 3(1 + 2

3 ĥ+ 2
9 ĥ

2)
)
xn = (1 + ĥ+ 1

2 ĥ
2 + 1

6 ĥ
3)xn.

Similarly, for Kutta’s 3rd order rule,

k1 = f(tn, xn) = λxn

k2 = f(tn + 1
2h, xn + 1

2hk1) = λ(xn + 1
2hk1)

= λ(1 + 1
2 ĥ)xn

k3 = f(tn + h, xn − hk1 + 2hk2) = λ(xn − hk1 + 2hk2)

= λ(1 + ĥ+ ĥ2)xn

xn+1 = xn + 1
6h(k1 + 4k2 + k3)

= xn + 1
6 ĥ
(
1 + 4(1 + 1

2 ĥ) + (1 + ĥ+ ĥ2)
)
xn = (1 + ĥ+ 1

2 ĥ
2 + 1

6 ĥ
3)xn.

The stability function R(ĥ) = xn+1/xn = 1 + ĥ + 1
2 ĥ

2 + 1
6 ĥ

3 is the same for both
methods.

3. When the 4–stage method from Table 9.8 is applied to x′(t) = λx(t), we find

k1 = f(tn, xn) = λxn

k2 = f(tn + 1
2h, xn + 1

2hk1) = λ(xn + 1
2hk1)

= λ(1 + 1
2 ĥ)xn

k3 = f(tn + 1
2h, xn + 1

2hk2) = λ(xn + 1
2hk2)

= λ(1 + 1
2 ĥ+ 1

4 ĥ
2)xn

k4 = f(tn + h, xn + hk3) = λ(xn + hk3)

= λ(1 + ĥ+ 1
2 ĥ

2 + 1
4 ĥ

3)xn

xn+1 = xn + 1
6h(k1 + 2k2 + 2k3 + k4)

= (1 + ĥ+ 1
2 ĥ

2 + 1
3! ĥ

3 + 1
4! ĥ

4)xn.

Thus, R(ĥ) = eĥ + O(h5), appropriate for a 4th order method. Expanding the
right hand side, reveals that we can write R(ĥ) = 1

4 + 1
3(ĥ + 3

2 )
2 + 1

24 ĥ
2(ĥ + 2)2.
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This is the sum of positive terms and consequently R(ĥ) > 0 for all real ĥ. This
means that the equation R(ĥ) = −1 can have no real roots.

The equation R(ĥ) = 1 leads to

ĥ(1 + 1
2 ĥ + 1

6 ĥ
2 + 1

12 ĥ
3) = 0

which has a real root ĥ = 0 together with the roots of the cubic F (ĥ) = 0, where

F (ĥ) ≡ 1 + 1
2 ĥ+ 1

6 ĥ
2 + 1

24 ĥ
3.

The derivative

F ′(ĥ) = 1
2 + 1

3 ĥ+ 1
8 ĥ

2 = 1
8(ĥ+ 4

3)
2 + 5

18 > 0

is always strictly positive so we may conclude that F (ĥ) is a monotonic increasing
function with F (ĥ) → ±∞ as ĥ → ±∞. The function F (ĥ) therefore has precisely
one real root.

Since F (−2) = 1
3 > 0 and F (−3) = −1

8 < 0, this root lies between −2 and −3.

The interval of absolute stability requires −1 < R(ĥ) < 1 and, since |R(−1)| =
1
2 − 1

6 + 1
24 < 1, we conclude that the required interval is (h∗, 0), where h∗ lies

between −2 and −3.

5. The Newton–Raphson method to solve the equation F (ĥ) ≡ R(ĥ) − (−1)s = 0 is
defined by (see Section 8.4)

h[ℓ+1] = h[ℓ] − F (h[ℓ])

F ′(h[ℓ])
= h[ℓ] − R(h[ℓ])− (−1)s

R′(h[ℓ])
.

So, when s = 3, we have

h[ℓ+1] = h[ℓ] − 2 + h[ℓ] + 1
2 (h

[ℓ])2 + 1
6 (h

[ℓ])3

1 + h[ℓ] + 1
2(h

[ℓ])2

and, when s = 4,

h[ℓ+1] = h[ℓ] − h[ℓ] + 1
2 (h

[ℓ])2 + 1
6 (h

[ℓ])3 + 1
24 (h

[ℓ])4

1 + h[ℓ] + 1
2(h

[ℓ])2 + 1
6(h

[ℓ])3
.

Starting each iteration with h[0] = −2.5, we obtain the values shown below.

h[0] h[1] h[2] h[3] h[4]

s = 3 −2.5 −2.5128 −2.5127 −2.5127 −2.5127
s = 4 −2.5 −2.8590 −2.7889 −2.7853 −2.7853
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These lead to the estimates h∗ ≈ −2.5127 for s = 3 and h∗ ≈ −2.7853 for s = 4,
in accordance with Table 10.1.

7. The stage values (9.6) for the general s–stage RK method applied to x′(t) = λx(t)
lead to

ki = λ
(
xn + h

s∑

j=1

ai,jkj
)
, i = 1 : s

which, in matrix–vector from become

k = λxne+ ĥA k

and so
k = λ(I − ĥA )−1exn.

Then, using (9.5),

xn+1 = xn + hbTk =
(
1 + ĥbT (I − ĥA )−1e

)
xn.

so the stability function is R(ĥ) = 1 + ĥbT (I − ĥA )−1e.

9. With ĥ = p+ iq,

4
∣∣∣1 + ĥ+ 1

2 ĥ
2
∣∣∣
2
= 4

(
1 + p+ 1

2(p
2 − q2)

)2
+ 4q2(1 + p2)

=
(
2 + 2p + p2 − q2)

)2
+ 4q2(1 + p2)

=
(
1 + (1 + p)2 − q2)

)2
+ 4q2(1 + p2)

= 1 + (1 + p)4 + q4 + 2(1 + p)2 − 2q2 + 2(1 + p)2q2

=
(
1 + (1 + p)2 + q2)

)2 − 4q2.

Hence the boundary |1 + ĥ+ 1
2 ĥ

2|2 = 1 then leads to

(
1 + (1 + p)2 + q2)

)2
= 4(1 + q2). (*)

Taking the square root of both sides (only the positive root is possible) gives

1 + (1 + p)2 + q2 = 2
√

1 + q2

(1 + p)2 + (1 + q2)− 2
√

1 + q2 + 1 = 1

(1 + p)2 +
(√

1 + q2 − 1
)2

= 1,

as required. This equation may be parameterized by writing

1 + p = cosφ,
√

1 + q2 − 1 = sinφ
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so that p = −1 + cosφ and q = ±
√
(2 + sinφ) sin φ and the square root is real for

0 ≤ φ ≤ π. The locus of these points defines the boundary of the region of absolute
stability of second order RK(2) methods shown in the top right of Figure 10.1.

[Expanding both sides of equation (∗) and setting p = ah, q = bh leads to equation
(10.3).]

11. The matrix

A =

[
−5 2
2 −5

]
,

has characteristic polynomial (λ+5)2 +4 and, therefore, eigenvalues λ = −5± 2i.
With a = −5, b = ±2 in (10.3) we obtain

P (h) ≡ 841h3 − 580h2 + 200h− 40 = 0.

This polynomial has a single real root since P ′(h) > 0 for all h. Calculating
P (0.393) ≈ 0.067 > 0 and P (0.392) = −0.067 < 0 shows that the root lies between
0.392 and 0.393 and the method is absolutely stable for 0 < h < 0.392.

For the matrix

A =

[
−50 −20
20 −50

]

the corresponding range of stable stepsizes is 0 < h < 0.0392.

13. By (9.4) the method has stability function

R(ĥ) =
1 + 1

2 ĥ+ 1
12 ĥ

2

1− 1
2 ĥ+ 1

12 ĥ
2

and we have to prove that |R(ĥ)| < 1 when ℜ(ĥ) < 0. Let z̄ denote the complex
conjugate of the complex number z. We recall that zz̄ = |z|2 and z + z̄ = 2ℜz.
Let D = 1− 1

2 ĥ+ 1
12 ĥ

2 denote the denominator of R(ĥ), then

R(ĥ) = 1 +
ĥ

D

and so

|R(ĥ)|2 − 1 =

(
1 +

ĥ

D

)(
1 +

¯̂
h

D̄

)
− 1 = 2ℜ

(
ĥ

D

)
+

|ĥ|2
|D|2 .
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Multiplying both numerator and denominator of the first term on the right hand
side by D gives

|R(ĥ)|2 − 1 = 2ℜ
(

ĥD

|D|2

)
+

|ĥ|2
|D|2

= ℜ
(
2ĥD + |ĥ|2

|D|2

)
=

2 + 1
6 |ĥ|2

|D|2 ℜ(ĥ)

since
2ĥD = 2ĥ− |ĥ|2 + 1

6
¯̂
h|ĥ|2

and ℜ(ĥ) = ℜ(¯̂h). Thus |R(ĥ)|2 − 1 < 0 when ℜ(ĥ) < 0.

15. When the given method is applied to x′(t) = λx(t), we find

k1 = f(tn, xn) = λxn

k2 = f(tn + 1
2h, xn + 5

24hk1 +
1
3hk2 − 1

24hk3) = λ(xn + 5
24hk1 +

1
3hk2 − 1

24hk3)

k3 = f(tn + h, xn + hk2) = λ(xn + hk2).

These give three linear equations which may be solved to give

k1 = λxn, k2 = λ
1 + 1

6 ĥ

1− 1
3 ĥ+ 1

24 ĥ
2
xn, k3 = λ

1 + 2
3 ĥ+ 5

24 ĥ
2

1− 1
3 ĥ+ 1

24 ĥ
2
xn.

Substituting these into

xn+1 = xn + 1
6h(k1 + 4k2 + k3)

we find

xn+1 =
1 + 2

3 ĥ+ 5
24 ĥ

2 + 1
24 ĥ

3

1− 1
3 ĥ+ 1

24 ĥ
2

xn.

The stability function is

R(ĥ) =
1 + 2

3 ĥ+ 5
24 ĥ

2 + 1
24 ĥ

3

1− 1
3 ĥ+ 1

24 ĥ
2

,

a rational function whose numerator has a higher degree than its denominator. It
therefore follows that |R(ĥ)| → ∞ as ĥ → −∞ so the method cannot be A0 stable
since this would require |R(ĥ)| < 1 for all ℜ(ĥ) < 0. Consequently, it cannot be
A–stable.

We note that the Maclaurin expansion of R(ĥ) gives

R(ĥ) = 1 + ĥ+ 1
2 ĥ

2 + 1
6 ĥ

3 + 5
144 ĥ

4 + O(h5) = eĥ + O(h4)

and so the method is of order at most p = 3.

44



Exercises 11

1. As in Example 11.1, x1 = 0, t1 = h0 and the GE at the end of the first step
x(t1)− x1 is equal to tol when h20 = tol, that is, h0 = tol

1/2.

For the second step,
x2 = x1 + 2h1t1,

where t1 = tol
1/2, so x2 = 2tol1/2h1 while x(t2) = (tol1/2 + h1)

2. The GE is

x(t1)− x1 = tol+ h21

and can equal tol only if h1 = 0. It is not possible to obtain a GE of tol after two
steps unless the GE after one step is less than this amount.

3. In this case x′′(t) = λx′(t) = λ2x(t) and so the TS(1) algorithm (11.10) and (11.12)
becomes

xn+1 = (1 + hnλ)xn, hnew =

∣∣∣∣
2 tol

λ2xn

∣∣∣∣
1/2

, x0 = 1.

5. From (11.13) and (11.11) in Example 11.2 we find

xn+1 =
(
1 + hn(1− 2tn) +

1
2h

2
n((1− 2tn)

2 − 2)
)
xn, x0 = 1

and |xn+1/xn| < 1 if, and only if,

−1 < 1 + hn(1− 2tn) +
1
2h

2
n((1− 2tn)

2 − 2) < 1.

The left hand inequality can be shown to hold for all real hn when (2tn−1)2 > 8/3.
In this case (1− 2tn)

2 − 2 > 0 and the right hand inequality leads to

hn <
2(2tn − 1)

(2tn − 1)2 − 2
.

When tn = 3 this gives the bound hn < 0.435 in agreement with Figure 11.2
(Right). More generally, this inequality is violated for points (tn, hn) in the shaded
region in Figure 3 (Right).

7. Using (11.5) and (11.7) with p = 3, we obtain

xn+1 = xn + hnx
′
n + 1

2h
2
nx

′′
n + 1

6h
3
nx

′′′
n , tn+1 = tn + hn,

hnew =

∣∣∣∣∣
4! tol

x
(4)
n

∣∣∣∣∣

1/4

.
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Figure 3: We reproduce parts of Figures 11.1 and 11.2 from the text showing the be-
haviour of hn with tn. The shaded regions indicate the bounds on hn derived in Exer-
cises 11.4 and 11.5.

Although expressions for x′n and x′′n are available from Example 11.2 and for x′′′n
from the previous exercise, it is more efficient to follow the procedure described in
Exercise 3.6:

x′n+1 = (1− 2tn+1)xn+1

x′′n+1 = (1− 2tn+1)x
′
n+1 − 2xn+1

x′′′n+1 = (1− 2tn+1)x
′′
n+1 − 4x′n+1

and differentiating x′′′(t) = (1− 2t)x′′(t)− 4x′(t) leads to

x(4)n = (1− 2tn+1)x
′′′
n+1 − 6x′′n+1

which enables the formula for hnew to be evaluated. This completes the specifica-
tion of the algorithm.

9. The backward Euler method gives

xn+1 = xn + hnx
′
n+1, tn+1 = tn + hn,

for which the LTE at the end of the current step is (see Example 4.9 with θ = 1)

Tn+1 = − 1
2!h

2
nx

′′(tn) + O(h2n).

Using the same argument as in Example 11.4, this can be approximated by the
negative of the expression given in (11.16).

If forward and backward Euler methods are used as a predictor–corrector pair
as described in Section 8.3, then (8.11) provides an estimate of the LTE of the

46



corrector (backward Euler). From Example 4.9 we find that the error constants
are C∗

2 = 1
2 and C2 = −1

2 so (8.11) gives, with k = p = 1,

T̂n+1 = −1
2(xn+1 − x

[0]
n+1)

which, because x
[0]
n+1 = xn + hnx

′
n and xn+1 = xn + hnx

′
n+1 gives

T̂n+1 = −1
2hn(x

′
n+1 − x′n).

This is the negative of the expression given in (11.16).

11. For the Trapezoidal rule we follow Example 11.5. Because the estimate T̂n of the
LTE involves three time levels, we have to initiate the process by computing two
steps before we can calculate a new stepsize. So with h0 = h1 = tol = 0.01,
t1 = h0 = 0.01, t2 = h0 + h1 = 0.02.

x1 = x0 +
1
2h0(x

′
0 + x′1), x1 =

1 + 1
2h0

1− 1
2h0(1− 2h0)

= 1.0099

x2 = x1 +
1
2h1(x

′
1 + x′2), x2 =

1 + 1
2h1(1− 2t1)

1− 1
2h1(1− 2t2

x1

= 1.0198.

Since x′(t) = (1 − 2t)x(t), we can compute x′0 = 1, x′1 = 0.9897, x′2 = 0.9790 so

(11.20) gives T̂2 = 4.156 × 10−7. This is certainly smaller than tol so the step is
accepted. Finally, (11.19) gives hnew = 0.2887. (Notice from the dashed curve in
Figure 11.5 (Right) that subsequent time steps are of roughly the same size as this.
This suggests that it is a reasonable strategy to choose very small values for initial
time steps.)

13. We follow the structure in Exercise 8.18. Under the localizing assumption, the
LTEs of AB(2) and Trapezoidal rule are given by, respectively,

T ∗
n+1 = x(tn+1)− x

[0]
n+1 =

1
12

(
2 + 3hn−1

hn

)
h3nx

′′′(tn) + O(h4)

Tn+1 = x(tn+1)− xn+1 = − 1
12h

3
nx

′′′(tn) + O(h4),

where x
[0]
n+1 is the result of using AB(2) as a predictor and the LTE of the Trape-

zoidal rule is derived in Example 4.9.

From T ∗
n+1 − Tn+1 we find

xn+1 − x
[0]
n+1 =

1
4h

2
n(hn + hn−1)x

′′′(tn) + O(h4),

h2nx
′′′(tn) = 4

xn+1 − x
[0]
n+1

hn + hn−1
+ O(h2).
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The estimate T̂n+1 of the LTE is then based on the leading term in Tn+1:

T̂n+1 = − 1
12h

3
nx

′′′(tn) = −1
3

hn
hn + hn−1

(xn+1 − x
[0]
n+1) + O(h4).

This reduces to the expression in the solution to Exercise 8.12 when hn−1 = hn = h.

From equation (11.23) (see previous solution)

x
[0]
n+1 = xn + hnx

′
n + 1

2h
2
n

x′n − x′n−1

hn−1

and xn+1 = xn + 1
2hn(x

′
n + x′n+1) so

xn+1 − x
[0]
n+1 =

1
2hn(x

′
n + x′n+1)− hnx

′
n − 1

2h
2
n

x′n − x′n−1

hn−1

= 1
2h

2
n

(
x′n+1 − x′n

hn
− x′n − x′n−1

hn−1

)

which, when substituted into the earlier expression for T̂n+1 leads to (11.20).

15. The modified Euler method is given by Table 9.5 with θ = 1:

k1 = f(tn, xn)

k2 = f(tn + 1
2h, xn + 1

2hk1)

x
〈2〉
n+1 = xn + hk2,

while Kutta’s 3rd order rule is

k1 = f(tn, xn)

k2 = f(tn + 1
2h, xn + 1

2hk1)

k3 = f(tn + h, xn − hk1 + 2hk2)

x
〈3〉
n+1 = xn + 1

6h(k1 + 4k2 + k3).

The definitions of k1 and k2 are clearly the same in both methods. An estimate
T̂n+1 of the LTEof the modified Euler method is then

T̂n+1 = x
〈3〉
n+1 − x

〈2〉
n+1 =

1
6h(k1 − 2k2 + k3).

With x0 = 1, t0 = 0, h0 = tol = 0.01, when applied to (11.9),

Step 1.

k1 = (1− 2t0)x0 = 1.0000

k2 = (1− 2(t0 +
1
2h0))(x0 +

1
2h0k1) = 0.9949

k3 = (1− 2(t0 + h0))(x0 − h0(k1 − 2k2)) = 0.9897

x1 = x0 + hk2 = 1.0099

T̂1 =
1
6h(k1 − 2k2 + k3) = 3.3163 × 10−7.
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Since |T̂1| < tol the step is accepted so t1 = h0 = 0.01 and (see Example 11.7)

hnew = h0

∣∣∣∣
tol

T̂1

∣∣∣∣
1/3

= 0.3112.

Step 2.

k1 = (1− 2t1)x1 = 0.9898

k2 = (1− 2(t1 +
1
2h1))(x1 +

1
2h1k1) = 0.7784

k3 = (1− 2(t1 + h1))(x1 − h1(k1 − 2k2)) = 0.4242

x2 = x1 + hk2 = 1.2522

T̂2 =
1
6h(k1 − 2k2 + k3) = 7.4140 × 10−3.

Since |T̂2| < tol the step is accepted and t2 = t1 + h1 = 0.3213,

hnew = h1

∣∣∣∣
tol

T̂2

∣∣∣∣
1/3

= 0.3439.
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Exercises 12

1. The fixed points of the system

x′(t) = y(t)− y2(t)

y′(t) = x(t)− x2(t)

occur when x′(t) = y′(t) = 0. These equations give the four points (0, 0), (1, 0),
(0, 1), (1, 1).

x =

[
x
y

]
, f(x) =

[
y(t)− y2(t)
x(t)− x2(t)

]
,

∂f

∂x
(x) =

[
0 1− 2y

1− 2x 0

]
.

Fixed
Point

Jacobian Eigenvalues Stability

(0, 0)

[
0 1
1 0

]
±1 Unstable

(1, 0)

[
0 1

−1 0

]
±i Undecided

(0, 1)

[
0 −1
1 0

]
±i Undecided

(1, 1)

[
0 −1

−1 0

]
±1 Unstable

3. Suppose that A has an eigenvalue λA with corresponding eigenvector v, then

Av = λAv

and so
Bv = (I + hA)v = v + h(Av) = v + h(λAv) = (1 + hλA)v.

Hence v is also an eigenvector of B corresponding to an eigenvalue λB = 1+ hλA.

The converse is also true: Suppose that B has an eigenvalue λB with corresponding
eigenvector v, then

λBv = Bv

and so
λBv = Bv = (I + hA)v = v + hAv.

Rearranging, we find

Av =
1

h
(λB − 1)v.
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Hence v is also an eigenvector of A corresponding to an eigenvalue

λA =
1

h
(λB − 1) ⇒ λB = 1 + hλA.

5. When f(x) = 2x(1− x)

x+ 1
2hf(x) = x+ hx(1− x) = x(1 + h− hx)

and so

x+ 1
2hf(x) = 0 ⇒ x = 0, x = 1 + 1/h

x+ 1
2hf(x) = 1 ⇒ hx(1− x) = 1− x, ⇒ x = 1, 1/h.

Hence (12.11) has the four fixed points

x∗1 = 0, x∗2 = 1, x∗3 = 1/h and x∗4 = 1 + 1/h.

The iteration is given by xn+1 = F (xn), where

F (x) = x+ hf
(
x+ 1

2hf(x)
)
.

Hence, by the chain rule,

F ′(x) = 1 + h
d

dx
f
(
x+ 1

2hf(x)
)

= 1 + hf ′(x+ 1
2hf(x)

) d
dx

(
x+ 1

2hf(x)
)
= 1 + hf ′(x+ 1

2hf(x)
)
(1 + 1

2hf
′(x)).

7. Applying AB(2) to x′(t) = f(x(t)) gives

xn+2 = xn+1 +
1
2h(3f(xn+1)− f(xn)).

With yn = xn+1, zn = xn we have zn+1 = yn and

yn+1 = yn + 1
2h(3f(yn)− f(zn))

so

xn+1 =

[
yn+1

zn+1

]
=

[
yn + 1

2h(3f(yn)− f(zn))
yn

]
.

Hence the two–step method AB(2) applied to a scalar ODE may be written as a
one–step vector system xn+1 = F (xn), where

F (xn) =

[
yn + 1

2h(3f(yn)− f(zn))
yn

]
, xn =

[
yn
zn

]
.
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The fixed points of this system are defined by

x = F (x), ⇒
[
y + 1

2h(3f(y)− f(z))
y

]
=

[
y
z

]

so y = z and f(y) = 0. Hence, when f(x) = 2x(1 − x), there are two fixed points
(y, z) = (0, 0) and (1, 1). When F (x) = [F (y, z), G(y, z)]T , then its Jacobian is

∂F

∂x
(x) =

[
Fy(y, z) Fz(y, z)
Gy(y, z) Gz(y, z)

]
=

[
1 + 3

2hf
′(y) −1

2hf
′(z)

1 0

]
.

When f(x) = 2x(1− x),

∂F

∂x
(x) =

[
1 + 3h(1− 2y) −h(1− 2z)

1 0

]

and we find

x∗
1 = (0, 0): The Jacobian

[
1+3h −h
1 0

]
has characteristic polynomial

p(λ) = λ2 − (1 + 3h)λ + h

and, by Lemma 6.10 (Jury Conditions), this has roots inside the unit circle
(the strict root condition) if p(0) < 1 and p(±1) > 0. Since p(1) = −2h < 0,
this fixed point is unstable.

x∗
2 = (1, 1): The Jacobian

[
1−3h h
1 0

]
has characteristic polynomial p(λ) = λ2−(1−3h)λ−h

for which p(0) = h < 1, p(1) = 2h > 0 and p(−1) = 2 − 4h > 0 for h <
1
2 . Hence, the fixed point is stable for 0 < h < 1

2 in agreement with the
bifurcation diagram shown in Figure 12.3.

9. The Trapezoidal rule applied to x′(t) = x(t)(X − x(t)) leads to

xn+1 = xn + 1
2h
[
xn+1(X − xn+1) + xn(X − xn)

]
.

(a) Rearranging and “completing the squares” gives

xn+1 = xn + 1
2h
[
xn+1(X − xn+1) + xn(X − xn)

]

1
2hx

2
n+1 +

1
2hx

2
n + (1− 1

2hX)xn+1 − (1 + 1
2hX)xn = 0

x2n+1 + x2n + (
2

h
−X)xn+1 − (

2

h
+X)xn = 0 (*)

(
xn+1 +

2

h
− X

2

)2

+

(
xn − 2

h
− X

2

)2

=

(
2

h
− X

2

)2

+

(
2

h
+

X

2

)2

=
2

h2
+

X2

2

which is the equation of a circle centred at xn = 2
h + X

2 , xn+1 = − 2
h + X

2 and
passing through the origin.
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(b) Fixed points are defined by by the property xn+1 = xn = x∗ which, in the
xnxn+1 phase plane, corresponds to the intersection of the line xn+1 = xn
with the circle of part (a). There are two intersections given by x∗

1 = (0, 0)
and x∗

2 = (X,X).

(c) Differentiating both sides of the equation labelled (∗) with respect to xn gives

dxn+1

dxn
=

2
h +X − 2xn

2
h −X + 2xn+1

so
∣∣∣∣
dxn+1

dxn

∣∣∣∣
x=x

∗

1

=

∣∣∣∣
2 + hX

2− hX

∣∣∣∣ > 1

∣∣∣∣
dxn+1

dxn

∣∣∣∣
x=x

∗

2

=

∣∣∣∣
2− hX

2 + hX

∣∣∣∣ < 1

and the fixed point x∗
1 = (0, 0) is unstable while x∗

2 = (X,X) is stable.

Clearly dxn+1/dxn > 0 at both fixed points when hX < 2.

(d) At each step xn+1 has to be found by solving a quadratic equation. Using the
quadratic formula, the roots of the equation labelled (∗) are

xn+1 =
X

2
− 1

h
±
(
R2 −

(
xn − 1

h
− X

2

)2
)1/2

.

We use the positive square root so that xn+1 → xn as h → 0 (see, for example,
Exercises 4.2–4.4 and 8.1). This can then be used to calculate x1 in the two
cases.

Cobweb diagrams for hX = 5 and hX = 1 are shown in Figure 4.

−5 0 5 10 15

−2

0

2

4

6

8

10

12

xn

x
n

+
1

−5 0 5 10 15
−5

0

5

10

15

xn

x
n

+
1

Figure 4: Cobweb diagrams for Exercise 12.9 with X = 10, hX = 5 (Left) and hX = 1
(Right).
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Exercises 13

1. The argument used to progress from (2.15) to (2.16) may be used to deduce that
(13.7) leads to

ên =
n∑

j=1

(1 + hλ)n−j T̂j .

It was shown in Example 13.1 that |T̂j | ≤ Ch3 so, following the proof of Theo-
rem 2.4,

|ên| ≤ (Ch3)

n∑

j=1

|1 + hλ|n−j

≤ (Ch3)e|λ|tfn ≤ Ch2tfe
|λ|tf

(since nh = tn ≤ tf) and consequently the global error for the modified equation
is second order.

3. Suppose that y(t) is a solution of the alternative modified equation y′(t) = µy(t),
where µ = λ(1− 1

2λh+ 1
3λ

2h2). Using equation (∗) from the solution to the pre-
vious exercise we find, using µ2 = λ2(1− λh) + O(h2),

T̂n+1 = (1 + µh+ 1
2µ

2h2)y(tn) + O(h3)− (1 + λh)y(tn)

= (1 + λh(1 − 1
2λh+ 1

3λ
2h2) + 1

2λ
2h2(1− λh)− (1 + λh))y(tn) + O(h3)

= −1
6λ

3h3 + O(h3)

and Euler’s method is consistent of order p = 2 with the modified equation.

5. The backward Euler method xn+1 = xn + hfn+1 implies that xn+1 = xn + δn,
where δn = hfn+1 (so that δn = O(h)). However,

fn+1 = f(xn+1) = f(xn + δn)

= f(xn) + δnf
′(xn) + O(h2)

which, together with δn = hfn+1, gives

(1− hf ′(xn))δn = hfn + O(h3)

δn = (1− hf ′(xn))
−1hfn + O(h3)

= (1 + hf ′(xn))hfn + O(h3),

where we have used the binomial expansion (1− z)−1 = 1 + z + O(z2). Therefore

xn+1 = xn + (1 + hf ′(xn))hfn + O(h3).
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Using (13.4) with the localizing assumption xn = y(tn), we find

T̂n+1 = y(tn+1)− xn+1

=
(
y(tn) + hf(y(tn)) + h2

(
g(y(tn)) +

1
2f

′(y(tn))f(y(tn))
)
+ O(h3)

)

−
(
y(tn) + (1 + hf ′(y(tn)))hf(y(tn)) + O(h3)

)

= h2
(
g(y(tn))− 1

2f
′(y(tn))f(y(tn))

)
+ O(h3)

and we shall have consistency of order two (T̂n+1 = O(h3)) by choosing g(y) −
1
2f

′(y)f(y). The modified equation (13.2) then becomes

y′(t) = f(y(t)) + 1
2hf

′(y(t)).

7. Suppose that v is an eigenvector of A with corresponding eigenvalue λ : Av = λv.
Then v is also an eigenvector of Â with corresponding eigenvalue λ̂ = λ(1− 1

2hλ)
(see Exercise 10.12 and (13.6)). The respective solutions of the IVPs x′(t) = Ax(t),
x(0) = v and y′(t) = Ây(t), y(0) = v are

x(t) = eλtv, y(t) = eλ̂tv.

We now consider three possibilities.

(a) A is positive definite: Then λ > 0 and so λ̂ < λ and the solution of Euler’s
method, because it is closer to the solution of the modified IVPthan it is to
the original ivp, grows more slowly than the exact solution.

(b) A is negative definite: Then 0 > λ > λ̂ and the solution of Euler’s method
decays more rapidly than the exact solution.

(c) A is skew–symmetric: AT = −A. Then λ is imaginary. Suppose that λ = iµ,
where µ ∈ ℜ, then λ̂ = 1

2hµ
2 + iµ. Thus, while each component of the exact

solution is constant in time: |xj(t)| = |vj |, all components of the modified

equation grow in time: |yj(t)| = ehµ
2/2|vj |.

9. Following the process described in Example 13.3, We suppose that the modified
equation is a system of two ODEs with dependent variables x(t) and y(t). The
LTE of the given method is, therefore,

T̂n+1 =

[
x(t+ h)− x(t) + hy(t)
y(t+ h)− y(t)− hx(t+ h)

]
, t = nh,
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which differs from (13.13) in that x(t) in the second component is replaced by
x(t+ h). Taylor expansion gives

T̂n+1 = h

[
x′(t) + 1

2hx
′′(t) + y(t)

y′(t) + 1
2hy

′′(t)− x(t)− hx′(t)

]
+ O(h3)

We now suppose that the modified equations take the form

x′(t) = −y(t) + ha(x, y),

y′(t) = x(t) + hb(x, y),

where the functions a(x, y) and b(x, y) are to be determined. Differentiating these
with respect to t gives

x′′(t) = −y′(t) + O(h) = −x(t) + O(h), y′′(t) = x′(t) + O(h) = −y(t) + O(h)

and substituting the results into the above expression for T̂n+1 leads to

T̂n+1 = h2
[

a(x, y) + 1
2x

′′(t)
b(x, y) + 1

2y
′′(t) + y(t)

]
+ O(h3) = h2

[
a(x, y)− 1

2x(t)
b(x, y) + 1

2y(t)

]
+ O(h3).

Therefore T̂n+1 = O(h3) on choosing a(x, y) = 1
2x and b(x, y) = −1

2y. Our modi-
fied system of equations is, therefore,

x′(t) = −y(t) + 1
2hx(t),

y′(t) = x(t)− 1
2hy(t)

in agreement with (13.19). Using these we find

d

dt

(
x2(t)− hx(t)y(t) + y2(t)

)
= 2x(t)x′(t) + 2y(t)y′(t)− h

(
x′(t)y(t) + x(t)y′(t)

)

= 2(x(t)− hy(t))x′(t) + (2y(t) − hx(t))y′(t)) = 0

and so x2(t)− hx(t)y(t) + y2(t) = constant, as required.

11. From (13.30)

u′′(t) =
d

dt
u′(t) = −v′(t) = −f(u(t))

and so u satisfies u′′(t) + f(u(t)) = 0.

Conversely, suppose that u′′(t) + f(u(t)) = 0. If v is defined by v(t) = −u(t), then

f(u(t)) = −u′′(t) = −d

dt
u′(t) = v′(t)

and so u(t), v(t) satisfy the given system.

This proves that the second order ODE and the first order system are equivalent.
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Then, since F ′(u) = f(u),

d

dt

(
2F (u(t)) + v2(t)

)
= 2F ′(u(t))u′(t) + 2v(t)v′(t)

= 2f(u(t))
(
−v(t)

)
+ 2v(t)

(
f(u(t))

)
= 0

as required.

The next stage of the solution follows Exercise 13.9. We suppose that the modified
equation is a system of two ODEs with dependent variables x(t) and y(t). The
LTE of the given method is, therefore,

T̂n+1 =

[
x(t+ h)− x(t) + hy(t)
y(t+ h)− y(t)− hf(x(t+ h))

]
, t = nh.

Taylor expansion of the first component around t and the second3 around t + h
gives

T̂n+1 =




(
x(t) + hx′(t) + 1

2h
2x′′(t)

)
− x(t) + hy(t)

y(t+ h)−
(
y(t+ h)− hy′(t+ h) + 1

2h
2y′′(t+ h)

)
− hf(x(t+ h))


+ O(h3)

= h

[
x′(t) + 1

2hx
′′(t) + y(t)

y′(t+ h)− 1
2hy

′′(t+ h)− f(x(t+ h))

]
+ O(h3)

We now suppose that the modified equations take the form

x′(t) = − y(t) + ha(x, y),

y′(t) = f(x(t)) + hb(x, y),

where the functions a(x, y) and b(x, y) are to be determined. Differentiating these
with respect to t gives

x′′(t) = −y′(t) + O(h) = −x(t) + O(h),

y′′(t) = f ′(x(t))x′(t) + O(h) = −y(t)f ′(x(t)) + O(h)

and substituting the results into the above expression for T̂n+1 leads to

T̂n+1 = h2

[
a(x, y) + 1

2x
′′(t)

b(x, y) + 1
2y

′′(t+ h)

]
+ O(h3)

= h2

[
a(x, y)− 1

2x(t)

b(x, y) + 1
2y(t+ h)f ′(x(t+ h))

]
+ O(h3)

= h2

[
a(x, y)− 1

2x(t)

b(x, y) + 1
2y(t)f

′(x(t))

]
+ O(h3)

3This avoids having to expand f(x(t+ h)) and the calculations are consequently much simpler.
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where t+ h has been replaced by t without affecting the order. Therefore T̂n+1 =
O(h3) on choosing a(x, y) = 1

2x and b(x, y) = −1
2yf

′(x). Our modified system of
equations is, therefore,

x′(t) = −y(t) + 1
2hx(t),

y′(t) = f(x(t))− 1
2hy(t)f

′(x(t))

as required. Then

d

dt

(
2F (x(t))− hf(x(t))y(t) + y2(t)

)

= 2F ′(x(t))x′(t)− h
(
f ′(x(t))x′(t)y(t) + f(x(t))y′(t)

)
+ 2y(t)y′(t)

=
(
2f(x)− hf ′(x)y

)
x′ +

(
2y − hf(x)

)
y′

= 2
(
f(x)− 1

2hf
′(x)y

)(
−y + 1

2hx
)
+ 2
(
y − 1

2hf(x)
)(
f(x)− 1

2hf
′(x)y

)
= 0

and so 2F (x(t)) − hf(x(t))y(t) + y2(t) = constant.

When f(u) = u it follows that F (u) = 1
2u

2 and the results given here simplify to
those in Example 13.4.
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Exercises 14

1. Differentiating the given expressions we find that

u′(t) = − (−k1A+ k2B) e−(k1+k2)t,

v′(t) = − (k1A− k2B) e−(k1+k2)t.

Substituting the expressions for u and v into the RHS of the ODE system we find

−k1u+ k2v = − (−k1A+ k2B) e−(k1+k2)t,

k1u+ k2v = − (k1A− k2B) e−(k1+k2)t.

Also, the expressions have u(0) = A and v(0) = B. Hence, the ODE system and
initial conditions are satisfied.

Adding the two expressions gives

u+ v = A+B +

(
k1A− k2B + k2B − k1A

k1 + k2

)
e−(k1+k2)t = A+B.

As t → ∞

u(t) → k2
k1 + k2

(A+B), and v(t) → k1
k1 + k2

(A+B).

This shows that, at steady state, the concentration of each species is directly
proportional to its production rate constant. This makes sense, e.g., if k2 > k1
then we would expect to have more molecules of X1 than X2 at steady state.

3. Since

A =

[
−1
1

] [
k1,−k2

]
=

[
−k1 k2
k1 −k2

]

this is the required coefficient matrix. The result Aj =
(
−k1 − k2

)j−1
A (j =

1, 2, 3, . . . ) may be established by induction. It is trivially true when j = 1 and,
when j = 2

A2 =

[
−1
1

] [
k1,−k2

] [−1
1

] [
k1,−k2

]
=

[
−1
1

]([
k1,−k2

] [−1
1

]) [
k1,−k2

]

= (−k1 − k2)A

and the result is true. We suppose now that it holds for j = 1, 2, . . . , ℓ, that is,

Aℓ =
(
−k1 − k2

)ℓ−1
A. Multiplying both sides by A gives

Aℓ+1 =
(
−k1 − k2

)ℓ−1
A2 =

(
−k1 − k2

)ℓ−1
(−k1 − k2

)
A =

(
−k1 − k2

)ℓ
A
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(where we have used the fact that the result holds for j = 2). The result now
follows by induction.

Since u(j)(t) = Aju(t), the TS(p) method

[
un+1

vn+1

]
=

[
un
vn

]
+ h

[
u′n
v′n

]
+ · · ·+ 1

p!h
p

[
u
(p)
n

v
(p)
n

]

becomes

[
un+1

vn+1

]
=

[
un
vn

]
+ h

(
1− 1

2h(k1 + k2) + · · ·+ 1
p!h

p−1(−k1 − k2)
p−1
)
A

[
un
vn

]
.

Since [1, 1]TA = [0, 0] it follows that un+1+vn+1 = un+vn and we have conservation
of the linear invariant.

5. For

C =



1 0 0
0 1 0
0 0 1




we have
xTCf(x) = xTf(x) = (a1 + a2 + a3)x1x2x3 = 0.

For

C =



1/I1 0 0
0 1/I2 0
0 0 1/I3




we have

xTCf(x) = (a1/I1 + a2/I2 + a3/I3)x1x2x3 =
I2 − I3 + I3 − I1 + I1 − I2

I1I2I3
= 0.

7. From the general definition of an RK method in Section 9.2, for this two-step,
two-stage case we have xn+1 = xn + 1

2hk1 +
1
2hk2, where

k1 = f(xn + ha11k1 + ha12k2),

k2 = f(xn + ha21k1 + ha22k2).

So, for these particular coefficients,

k1 = f (xn + a11(2xn+1 − 2xn − hk2) + ha12k2)

= f
(
xn + 1

2xn+1 − 1
2xn − 1

4hk2 + h(14 −
√
3
6 )k2

)

= f
(
xmid − h

√
3
6 k2

)
.
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Similarly,

k2 = f
(
xmid + h

√
3
6 k1

)
.

We wish to show that xT
n+1Cxn+1 = xT

nCxn. We will show the equivalent condi-
tion (xn + xn+1)

TC(xn − xn+1) = 0.

We have

(xn + xn+1)
TC(xn − xn+1) = (xn + xn+1)

TCh(k1 + k2).

Now, since zTCf(z) = 0 for all z, we have

xT
midCk2 =

(
xmid + h

√
3
6 k1 − h

√
3
6 k1

)T
Ck2 = −h

√
3
6 kT

1 Ck2.

Similarly,

xT
midCk1 =

(
xmid − h

√
3
6 k2 + h

√
3
6 k2

)T
Ck1 = h

√
3
6 kT

2 Ck1.

Adding, we find that (xn +xn+1)
TCh(k1 +k2) = 0, which establishes the result.

9. This follows with

C = 1
2




0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0


 .

11. We have
d

dt
F (x(t)) = x(t)3x′(t) = −x(t)6 = −(f(x(t))2.

So, along any solution, F (x(t)) strictly decreases until it becomes stationary at
x(t) = 0.

For the given modified equation, we have

y′′(t) =
(
−3y(t)2 + 3

2h× 5y(t)4
)
y′(t)

=
(
−3y(t)2 +O(h)

) (
−y(t)3 +O(h)

)

= 3y(t)5 +O(h).

So

y(t+ h) = y(t) + hy′(t) + 1
2h

2y′′(t) +O(h2)

= y(t) + h
(
−y(t)3 + 3

2hy(t)
5
)
+ 1

2h
2
(
3y(t)5 +O(h)

)

= y(t)− hy(t)3 + 3h2y(t)5 +O(h3).
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For the backward Euler method, xn+1 = xn − hx3n+1, let us find an and bn in the
expansion xn+1 = xn + han + h2bn +O(h3). We have

xn + han + h2bn +O(h3) = xn − h
(
xn + han + h2bn +O(h3)

)3

= xn − h
(
x3n + 3x2nhan +O(h2)

)

= xn − hx3n − 3h2x2nan +O(h3).

Equating powers of h gives an = −x3n and bn = −3x2nan = 3x5n. So

xn+1 = xn − hx3n + 3h2x5n +O(h3),

confirming that the given modified equation is valid.

Now y′(t) > 0 when 3hy(t)5/2 > y(t)3, that is

y(t)2 >
2

3h
.

So for

y(0) >

√
2

3h

we have y′(0) > 0, and we see that y′(t) increases with t. So y(t) increases mono-
tonically without bound.
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Exercises 15

1. Referring to Figure 5, let u and v be represented by the vectors
−→
OA and

−→
OC,

respectively. Then Jv is represented by
−→
OQ and makes an angle 1

2π− θ with
−→
OA.

Using the formula for scalar product

−→
OA · −→OQ = ‖−→OA‖ ‖−→OQ‖ cosQOA,

so
uTJv = ‖u‖ ‖v‖ cos(12π − θ) = ‖u‖ ‖v‖ sin θ.

O

A

B

C

θ
P

Q

v

u

Figure 5: The area of the parallelogram OABC
is, by the “base length times vertical height”,
OA×CP, where P is the foot of the perpendic-
ular from C onto OA. The base length is ‖u‖
and the height ‖v‖ sin θ and their product is
equal to the expression uTJv given above.

3. We have

areao(x+ z,y) = (x1 + z1)y2 − (x2 + z2)y1

= x1y2 − x2y1 + z1y2 − z2y1

= areao(x,y) + areao(z,y).

y

x

z
y

x

z

Figure 6: The two shaded regions have the same area.
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5. We have

ATJA =

[
a11 a21
a12 a22

] [
0 1

−1 0

] [
a11 a11
a21 a22

]

=

[
−a21a11 + a11a21 −a21a12 + a11a22
−a22a11 + a12a21 −a22a12 + a12a22

]

=

[
0 det(A)

−det(A) 0

]
.

7. We have

∂pn+1

∂pn
= 1− h cos qn+1

∂qn+1

∂pn
,

∂pn+1

∂qn
= −h cos qn+1

∂qn+1

∂qn
,

∂qn+1

∂pn
= h

∂pn+1

∂pn
,

∂qn+1

∂qn
= 1 + h

∂pn+1

∂qn
.

This agrees with the matrix version given.

Taking determinants in the matrix version, using det(AB) = det(A)det(B), we
find that

(
1 + h2 cos qn+1

)
det

([
∂pn+1

∂pn

∂pn+1

∂qn
∂qn+1

∂pn

∂qn+1

∂qn

])
= 1,

which gives the required expression.

9. We first compute partial derivatives to obtain

∂pn+1

∂pn
= 1− hHqp(pn, qn+1)− hHqq(pn, qn+1)

∂qn+1

∂pn
,

∂pn+1

∂qn
= −hHqq(pn, qn+1)

∂qn+1

∂qn
,

∂qn+1

∂pn
= hHpp(pn, qn+1) + hHpq(pn, qn+1)

∂qn+1

∂pn
,

∂qn+1

∂qn
= 1 + hHpq(pn, qn+1)

∂qn+1

∂qn
.

Collecting these together, we have

[
1 hHqq(pn, qn+1)
0 1− hHpq(pn, qn+1)

] [ ∂pn+1

∂pn

∂pn+1

∂qn
∂qn+1

∂pn

∂qn+1

∂qn

]
=

[
1− hHqp(pn, qn+1) 0
hHpp(pn, qn+1) 1

]
.
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Taking determinants, we find that

(1− hHpq(pn, qn+1)) det

([
∂pn+1

∂pn

∂pn+1

∂qn
∂qn+1

∂pn

∂qn+1

∂qn

])
= 1− hHqp(pn, qn+1).

So, since Hpq ≡ Hqp, the map has determinant equal to one, as required.

In the separable case where H(p, q) = T (p) + V (q), this adjoint method takes the
form

pn+1 = pn − hV ′(qn+1),

qn+1 = qn + hT ′(pn).

This is an explicit method—given (pn, qn), we may first compute qn+1 and then
compute pn+1.

11. In this case, symplectic Euler becomes

pn+1 = pn − hqn,

qn+1 = qn + hpn+1,

which matches Example 13.4 if we take un ≡ pn and vn = qn. The ellipse in
Example 13.4 then becomes p2 + q2 − hpq, or 2(T (p) + V (q) − 1

2hT
′(p)V ′(q)), as

required.

13. On a separable problem with H(p, q) = T (p)+V (q), the adjoint method takes the
form

pn+1 = pn − hV ′(qn+1),

qn+1 = qn + hT ′(pn).

We need to expand in the expression for pn+1:

pn+1 = pn − hV ′ (qn + hT ′(pn)
)

= pn − h
(
V ′(qn) + V ′′(qn)hT

′(pn) + O(h2)
)

= pn − hV ′(qn)− h2V ′′(qn)T
′(pn) + O(h3).

Matching the expansions for the true solution in Section 15.4, we require

h2
(
A(p, q)− 1

2V
′′(q)T ′(p)

)
= −h2V ′′(q)T ′(p),

so
A(p, q) = −1

2V
′′(q)T ′(p),
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and
h2
(
B(p, q)− 1

2T
′′(p)V ′(q)

)
= 0,

so
B(p, q) = 1

2T
′′(p)V ′(q).

Hence, the required modified equation is

u′(t) = −V ′(u)− 1
2hT

′(u)V ′′(v),

v′(t) = T ′(u) + 1
2hT

′′(u)V ′(v).

This is of Hamiltonian form with

H(p, q) = T (p) + V (q) + 1
2T

′(p)V ′(q).
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Exercises 16

1. We have

E[X] =
1√
2σ2π

∫ ∞

−∞
y exp

(−(y − µ)2

2σ2

)
dy

=
−σ2

√
2σ2π

∫ ∞

−∞

−2(y − µ)

2σ2
exp

(−(y − µ)2

2σ2

)
dy

+
1√
2σ2π

∫ ∞

−∞
µ exp

(−(y − µ)2

2σ2

)
dy

=
−σ2

√
2σ2π

[
exp

(−(y − µ)2

2σ2

)]∞

−∞
+ µ× 1

= µ.

3. Using integration by parts,

E[X2] =
1√
2σ2π

∫ ∞

−∞
y2 exp

(−(y − µ)2

2σ2

)
dy

=
−σ2

√
2σ2π

∫ ∞

−∞
y
−2(y − µ)

2σ2
exp

(−(y − µ)2

2σ2

)
dy

+
1√
2σ2π

∫ ∞

−∞
µy exp

(−(y − µ)2

2σ2

)
dy

=
σ2

√
2σ2π

∫ ∞

−∞
exp

(−(y − µ)2

2σ2

)
dy −

[
y exp

(−(y − µ)2

2σ2

)]∞

−∞
+ µE[X]

= σ2 + µ2.

Then
var[X] = E[X2]− (E[X])2 = σ2 + µ2 − µ2 = σ2.

5. We have about two significant digits on the bottom row, with M = 107 samples.
Because the interval width scales like 1/

√
M , we need about a factor of 106 as

many samples to get three more digits; that is, six more rows.
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7. For nh = tf ,

lim
n→∞

E[xn] = lim
n→∞

(1 + ha)n x0

= lim
n→∞

(
1 +

atf
n

)n

x0

= eatfx0.

Also, since x0 is deterministic we have E[x20] = x20, so

E[x2n] =
(
1 + 2ha+ hb2 + h2a2

)n
x20.

Then, using log(1 + x) = 1 + x+O(x2) as x → 0, we may write

logE[x2n] = n log
(
1 + 2ha+ hb2 + h2a2

)
+ log x20

= n
(
2ha + hb2 + O(h2)

)
+ log x20

= tf (2a+ b2) + log x20 + O(h),

where we also used nh2 = htf = O(h). So

lim
n→∞

logE[x2n]− tf (2a+ b2)− log x20 = 0.

Hence
lim
n→∞

exp
(
logE[x2n]− tf (2a+ b2)− log x20

)
= 1,

that is,
lim
n→∞

E[x2n]e
−tf (2a+b2)/x20 = 1,

which implies that
lim
n→∞

E[x2n] = etf (2a+b2)x20.

Finally,

var[xn] = E[x2n]− (E[xn])
2 = etf (2a+b2)x20 − e2atfx20 = etf 2ax20

(
eb

2tf − 1
)
.

9. In this case we have xk+1 = xk − haxk + aµh+
√
hb

√
xkZk, so

E[xk+1] = E[xk](1 − ha) + aµh.

Let yk = E[xk], r = (1− ha) and s = aµh, so

yk+1 = ryk + s.
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Then, as in the previous exercise,

yn = rny0 + s
rn − 1

r − 1
.

So

yn = rn
(
y0 +

s

r − 1

)
− s

r − 1

= rn
(
y0 +

aµh

−ha

)
− aµh

−ha

→ e−atf (y0 − µ) + µ.
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Exercises B

1.

g(x) = xe1−x2

g(1) = 1

g′(x) = e1−x2 − 2x2e1−x2

g′(1) = 1

g′′(x) = −6xe1−x2

+ 4x3e1−x2

g′′(1) = −4

g′′′(x) = −6e1−x2

+ 24x2e1−x2 − 8x2e1−x2

g′′′(1) = 10

so, using (B.5) with a = 1,

g(x) ≈ 1− (x− 1)− (x− 1)2 + 5
3(x− 1)3.
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Exercises D

1. (a) 2xn+1 − xn = 3.

CF: xn = A(12)
n, PS: try xn = C and substitute into the left hand side of the

△E:
2xn+1 − xn = 2C −C = C = 3

so the PS is xn = 3 and the GS(general solution) is xn = A(12 )
n+3. This will

satisfy x0 = 5 if x0 = A(12 )
0 + 3 = 5, that is A = 2. The required solution is

xn = 2(12 )
n + 3 and xn → 3 as n → ∞.

(b) xn+1 − 2xn = 3.

CF: xn = A2n, PS: try xn = C and substitute into the left hand side of the
△E:

xn+1 − 2xn = C − 2C = −C = 3

so the PS is xn = −3 and the GS(general solution) is xn = A2n− 3. This will
satisfy x0 = 5 if x0 = A20 − 3 = 5, that is A = 8. The required solution is
xn = 8× 2n − 3 = 2n+3 − 3 and xn → ∞ as n → ∞.

(c) xn+1 − xn = 3.

CF: xn = A1n = A, PS: we could try xn = C but a constant term is already
in the CFso we increase the degree of the PS to xn = Cn. We substitute into
the left hand side of the △E:

xn+1 − xn = C(n+ 1)− Cn = C = 3

so the PS is xn = 3n and the GS(general solution) is xn = A + 3n. This
will satisfy x0 = 5 if x0 = A = 5. The required solution is xn = 5 + 3n and
xn → ∞ as n → ∞.

3. CFs for these problems have been given in the solution to Exercise D.1 so we need
only find PSs.

(a) 2xn+1 = xn + 3× 2n. Try xn = C 2n:

2xn+1 − xn = 2C2n+1 − C 2n = 3C 2n = 3× 2n

when C = 1. Hence, the GS is xn = A(12 )
n + 2n.

(b) xn+1 = 2xn + 3 × 2n has CFxn = A 2n which already contains a term
constant×2n so, for a PSwe try xn = C n2n:

xn+1 − 2xn = C 2n(2(n + 1)− 2n) = 2C 2n = 3× 2n

when C = 3/2. The GSis xn = A 2n + 3
22

n.
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(c) Try xn = C 2n:

xn+1 − xn = C 2n+1 − C 2n = C 2n = 3× 2n

when C = 3. Hence, the GS is xn = A+ 3× 2n.

5. The AE is
p(r) = r5 − 8r4 + 25r3 − 38r2 + 28r − 8.

A straightforward calculation gives p(1) = p′(1) = 0 while p′′(1) = −2 6= 0. p(r)
therefore has a double root at r = 1.

p(2) = p′(2) = p′′(1) = 0 while p′′′(1) = 6 6= 0. p(r) therefore has a triple root at
r = 2.

Since p(r) is of degree five and the coefficient of r5 is one, it follows that p(r) =
(r − 2)3(r − 1)2. The △E therefore has GS

xn = A+Bn+ (B + Cn+Dn2)2n.
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