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Preface

Groundwater, extracted from deep geological formations (called aquifers)
through pumping wells, constitutes an important component of many wa-
ter resource systems. A spring constitutes an outlet for groundwater from an
underlying aquifer to ground surface; its discharge rate may be strongly af-
fected by pumping from the same aquifer in the vicinity of the spring. Water
can be injected through specially designed wells into an aquifer, say, for stor-
age purposes. A water table aquifer can also be artificially recharged through
infiltration ponds. These are just a few examples of factor that may affect
the management of a groundwater system. Decisions associated with such
management include, for example,

• The volume that can be safely withdrawn annually from the aquifer.
• The location of pumping and artificial recharge wells, and their rates.
• The quality of the water to be maintained in the aquifer, and/or to be

pumped from it.

In fact, in the management of water resources, the quantity and quality
problems cannot be separated from each other. In many parts of the world,
as a result of increased withdrawal of groundwater, often beyond permissi-
ble limits, the quality of groundwater has been continuously deteriorating,
causing much concern to both suppliers and users. The quality deterioration
may manifest itself in the form of an increase in the total salinity, or as in-
creased concentrations of nitrates and other undesirable chemical species, or
as increased concentrations of harmful pathogens.

Traditionally, hydrogeologist dealt with flow in aquifers, and with certain
water quality aspects, e.g., salinization. Soil physicist and agronomists, in
connection with agricultural activities, have modeled the movement of water
and chemicals (e.g., fertilizers) in the unsaturated zone. The hydrogeologist,
whose primary interest has been water in aquifers, regarded the unsaturated
zone only as the domain through which water from precipitation passes on
its way to replenish an underlying water table aquifer. The details of the
actual movement of water through the unsaturated zone have been of little
or no interest. The situation has completely changed with the rising interest
in subsurface contamination. Clearly, interdisciplinary efforts, straddling nu-

xi
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merous areas of expertise, are now required to model and solve contamination
problems of practical importance.

In recent years, in addition to the general groundwater quality aspects
mentioned above, public attention has been focused on groundwater contam-
ination by hazardous industrial wastes, on leachate from landfills and spills
of oil and other toxic liquids, on agricultural activities, such as the use of
fertilizers, pesticides, and herbicides, and on radioactive waste in repositories
located in deep geological formations, to mention some of the more acute
contamination sources. Although originating at ground surface, these con-
taminants (e.g., spilled oil, pesticides applied to an orchard, or leachate from
a landfill), soon infiltrate through ground surface, percolate through the un-
saturated zone, and find their way to groundwater in an underlying aquifer.
Once reaching the aquifer, contaminants are transported with the moving
groundwater, eventually reaching pumping wells, streams and lakes.

Sometimes, a toxic chemical may constitute a separate, nonaqueous, liq-
uid phase, e.g., oil, that occupies part of the void space. Components of such
toxic liquids may dissolve in percolating water, thus constituting a source for
groundwater contamination. The volatile contaminant components may evap-
orate to become components of the gaseous phase (air) present in the void
space. In the subsurface, while being transported with the water, the various
contaminants undergo complex physical, chemical, and biological transforma-
tions. Chemical species carried by the water often interact with each other
and with the soil, especially with the clay and organic fractions of the latter.
Phenomena such as adsorption, ion exchange, chemical reactions, dissolution,
volatilization, and biological decay, continuously affect the concentration of
the chemical constituents present in the percolating water.

Data obtained by monitoring concentrations of hazardous contaminants
in the subsurface, often call for remedial action. Regulations on quality stan-
dards may require cleanup of the contaminated aquifer and the unsaturated
zone. The latter may be visualized as a huge physical-chemical-biological re-
actor in which many processes occur simultaneously among species present
in the water, in nonaqueous fluids, and on the solid matrix. The biota present
on the soil and in the fluids may also play an important role. Because of the
way fluids behave in the unsaturated zone, cleaning that zone is often very
complicated and costly, as it often requires sophisticated in situ chemical and
biological methods.

Any plan of mitigation, cleanup operations, or control measures, once con-
tamination has been detected in the subsurface, requires the prediction of
pathways and fate of the contaminants, in response to certain planned reme-
diation activities. Similarly, any monitoring or observation network must be
based on the anticipated behavior of the system.

Management means making decisions to achieve goals, without violating
specified constraints. Therefore, good management requires information on
the response of the managed system to proposed activities. This information
enables the planner, or the decision-maker, to compare alternative actions,
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to select the best one, and to ensure that constraints are not violated. All
such predictions can be obtained, within the framework of a considered man-
agement problem, by constructing and solving mathematical models of the
investigated domain, and of the flow and solute transport phenomena that
take place in it.

Using mathematical models for making prediction requires input data.
The major role of the data is to enable model validation and calibration. The
more accurate and complete are the collected field data, the more reliable are
the values of model parameters obtained by model calibration, and, hence,
also of the model’s predictions. However, data gathering activities face the
reality of uncertainty: subsurface geological formations are far too heteroge-
nous to provide the accurate detailed information required for their complete
description. Nevertheless, since there is no other way but to use models in
order to predict the future behavior of an investigated system, using what-
ever data that are available for model calibration cannot be avoided, in spite
of the associated uncertainty. Various tools are available for coping with this
uncertainty.

For most practical problems, because of the heterogeneity of the considered
domain and the irregular shape of its boundaries, it is not possible to solve
the mathematical models analytically. Instead, the mathematical model is
transformed into a numerical one that can be solved by means of computer
programs. Indeed, excellent computer programs are available for this purpose.
Unfortunately, too often, practitioners use such available computer programs
without really grasping the theory and assumptions underlying the models
that they are solving. Our purpose in this book is to present not only the
models that describe phenomena of flow and solute transport in aquifers, but
also to emphasize the theoretical foundation and the various assumptions
that simplify the complex reality to the extent that it can be described by
rather simple and solvable models.

With this background, the major objectives of this book are:

To construct conceptual and mathematical models that can provide the
information required for making decisions associated with the manage-
ment of groundwater resources, and the remediation of contaminated
aquifers.

More specifically,

• To describe the mechanisms that govern the movement of fluids and con-
taminants in aquifers and in the unsaturated zone.

• To construct well-posed mathematical models of saturated flow in three-
dimensional porous medium domains and in aquifers, and of single and
multiphase flow in the unsaturated zone.

• To construct well-posed mathematical models of transport of single and
multiple chemical species in the unsaturated zone and in aquifers.
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Three additional topics, strongly related to use of models for predicting flow
and transport regimes in aquifers, within the framework of management, are
discussed:

• The use of numerical models and computer codes as practical tools for
solving the mathematical models.

• The issues of uncertainty associated with modeling.
• Certain mathematical tools for groundwater management.

With these objectives in mind, the book is aimed at practitioners, model-
ers, water resources managers, scientists, and researchers, who face the need
to build and solve models of flow and contaminant transport in the subsur-
face. It is also suitable for graduate and upper level undergraduate students
who are interested in such topics as groundwater, water resources, and envi-
ronmental engineering. The basic scientific background needed is the concepts
and terminologies of hydrology and hydraulics.

Finally, we wish to acknowledge the following colleagues who have provided
useful advice for various parts of the book: Yunwei Sun and Walt McNab of
Lawrence Livermore National Laboratory; Quanlin Zhou of Lawrence Berke-
ley National Laboratory; Peter Lichtner of Los Alamos National Labora-
tory; Vicky Freeman of Pacific Northwest National Laboratory; Ajit Sadana
of the University of Mississippi; Randy Gentry of the University of Ten-
nessee; Shlomo Neuman of the University of Arizona; Prabhakar Clement of
Auburn University; T.N. Narasimhan of the University of California, Berke-
ley; Shlomo Orr of MRDS, Inc.; Shaul Sorek of Ben-Gurion University, Israel;
Uri Shavit and Leonid Fel of Technion, Israel; Jacob Bensabat of Environmen-
tal and Water Resources Engineering Inc., Israel; Dalila Loudyi of Hassan II
University, Morocco; and Don Nield of University of Auckland, New Zealand.

Jacob Bear Haifa, Israel
Alexander H.-D. Cheng Oxford, Mississippi, USA

2009



Chapter 7

MODELING CONTAMINANT
TRANSPORT

The issue of contamination of water in the subsurface was introduced in
Subs. 1.1.5. In that subsection, we have also listed a number of the more
common sources of subsurface contamination.

Our objective in this chapter is to develop complete mathematical mod-
els that describe the transport in the subsurface of contaminants dissolved
in the water that occupies the void space, or part of it. These dissolved
species determine groundwater quality. We use here the term ‘transport’ as
an abbreviation for ‘movement, storage, and transformations’, with the term
‘transformations’ indicating changes in concentrations of dissolved chemical
species as consequences of chemical reactions, and interphase transfers, such
as dissolution of the solid matrix, and precipitation. Such transformations,
which appear in the mass balance equation for a chemical species as source
or sink terms, are also discussed in this chapter.

Accordingly, we shall start this chapter by discussing the flux of a chemical
species, by different modes, then construct the mass balance equation for
such species, and finally discuss the source/sink terms that describe chemical
reactions and interphase transfers.

Although we are using here the term contaminant, to emphasize that our
primary interest is groundwater contamination, the discussion, the modeling,
etc. in this chapter is applicable to any chemical species dissolved in the
water (e.g., a tracer) that travels through the void space of a porous medium
domain.

As in previous chapters, we shall consider macroscopic level models that
describe and facilitate the prediction of the transport of one or more (pos-
sibly interacting) chemical species in a single- or multi-phase system. Such
predictions are required in order to plan the management of an aquifer, or
the cleanup of the subsurface. In principle, such models are obtained by first
understanding the relevant phenomena that occur at the microscopic level,
i.e., at points within the fluid phase, and modeling these phenomena at that
level. The macroscopic models are then derived by averaging the microscopic
ones. Both modeling levels are discussed in Sec. 1.3.

In principle, the structure and content of a contaminant transport model
is the same as that of a flow model. The main difference is that in the flow

341



342 MODELING CONTAMINANT TRANSPORT

model, the transported quantity is the mass of the fluid phase, while in a
contaminant transport model, the transported quantity is the mass of the
chemical species—the contaminant—carried by that phase. In the first case,
the intensive quantity is the fluid mass density, while in the latter case, it
is the concentration of the chemical species. Furthermore, we may have to
consider, simultaneously, a number of interacting chemical species.

Note that although in this book we are interested primarily in groundwater
in aquifers, especially with respect to groundwater quality and contaminant
transport, we have also to consider the transport of contaminants through
the unsaturated zone, as many chemical and biological activities that take
place in this zone strongly affect the eventual contamination of groundwater
in an underlying aquifer.

As explained in the previous chapter (see Sec. 6.5), in addition to water
and air that together occupy the void space in the unsaturated zone (and wa-
ter alone in the saturated zone), a third fluid phase—a Non-Aqueous Phase
Liquid (NAPL)—may occupy part of the void space in both zones. In most
cases, this NAPL (e.g., benzene and other hydrocarbons, and trichloroethy-
lene) is also a contaminant. We have emphasized in the previous chapter that
although a NAPL may be almost immiscible in water, its small, often very
small, solubility is sufficient to render groundwater as being contaminated. In
this chapter, we shall not treat the movement of NAPL as a separate, third
phase, but focus only on contaminants that are dissolved in and carried by
the water.

Figure 7.0.1 shows some typical cases of subsurface contamination:

(a) The migration of a contaminant that is leached from a landfill; the
leachate travels through the vadose and then through the (saturated)
aquifer, eventually draining to a river.

(b) An LNAPL (= Light NAPL) leaks from an underground storage tank
and migrates through the vadose zone, eventually accumulating on an
underlying water table.

(c) Different routes through which a DNAPL (= Dense NAPL) and an
LNAPL can contaminate an aquifer.

In all these cases, dissolved contaminants are transported in the subsurface.
Our objective in this section is to discuss modes of transport of such con-
taminants and the laws that governs their fluxes. Unless stated otherwise,
the discussion will be at the macroscopic level. As throughout this book, the
presentation is limited to isothermal conditions, although (man-made or nat-
urally occurring) temperature changes may significantly affect the transport
of solutes.



Contaminant fluxes 343

Capillary
fringe

Ground water flow

Saturated
zone

Impervious
bottom

Leaky
LNAPL

 tank

Impervious

Lens of
LNAPL

Diffusion of
LNAPL in gas

Industrial site

Water table

Water table

Water table

Ground water flow

Diffusion

Saturated zone

Vadose zone

Vadose zone

Vadose zone

Dissolved LNAPL

Recharge

Infiltration

Leaky DNAPL
tank Leaky LNAPL

tank

Dissolved
DNAPL Dissolved

LNAPL
DNAPL

LNAPL lens (mobile)

DNAPL
(mobile)

(a)

(b)

(c)

River

Wells

Figure 7.0.1: Examples of subsurface contamination.

7.1 Contaminant Fluxes

7.1.1 Measures of phase composition

Liquid and gas phases are comprised of many chemical species. This state-
ment is also valid for the solid matrix. However, our main interest is in the
aqueous phase that occupies the entire void space in the subsurface, or part
of it. This phase is comprised primarily of water (H2O), with minute quan-
tities of various chemical species dissolved in it. Although chemical reactions
that involve solid matrix minerals, e.g., dissolution and precipitation, may
play a significant role in changing the structure and configuration of the
solid matrix, unless otherwise specified, we shall simplify the discussion by
assuming that the numerous minerals constituting the soil’s solid matrix are
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represented by a single pseudo-species, referred to as ‘solid’. On the other
hand, each fluid phase that occupies the void space, or part of it, whether a
liquid or a gas, may be composed of more than a single species of interest. It
is, therefore, necessary to consider the composition of each individual phase.
The quantity of a given chemical species within a phase may be expressed in
a number of ways.

Concentration. The concentration of a component indicates the quantity
of the latter in a unit volume of fluid phase. It can, thus, be measured in
different ways, depending on the selected units for quantity and volume. As
everywhere in this book, we shall use a subscript to denote a phase (e.g.,
α), and a superscript to denote a component (e.g., γ). To emphasize that we
measure the concentration at a point in a porous medium domain, or in a
sample taken at such point, we shall assume that the fluid’s volume is Uoα,
i.e., the volume of the α-phase within an REV.

Sometimes, the chemical species is referred to as a ‘solvent’ if it is the
predominant species in a phase, or as a ‘solute’ if it constitutes only a small
portion of a phase.

The common units for expressing the quantity of a species are the gram,
abbreviated g (expressing the mass of the component), the mole (expressing
the number of basic entities, such as molecules or ions), and the equivalent
(expressing the number of equivalent weights). One mole of a substance con-
tains as many atoms (or molecules, etc.) as there are atoms in exactly 12 g
of carbon (12C). This number is approximately 6.0221415× 1023, also known
as the Avogadro’s number.

In the SI system of units, the kilogram (= 1000 grams) is the standard
unit for mass. The standard unit for volume in the metric system is the liter,
defined as the volume of one kilogram of water at 20◦C and pressure of one
atmosphere. Other units of volume are the milliliter (m� = 1/1000 of a liter),
equal to the cubic centimeter (cc, cm3).

Mass concentration. The mass concentration, cγα (≡ ργα), expresses the
mass of a γ-species, per unit volume of a fluid α-phase:

cγα =
mγ
α

Uoα , (7.1.1)

where mγ
α denotes the mass of γ within an REV. This is the most commonly

used measure for describing water quality. The common units are g/� (=
grams of γ per liter of fluid), or mg/� (= milligrams of γ per liter of fluid).

Molar concentration. The molar concentration, or molarity, [cγ ], ex-
presses the number of γ-moles, Nγ

α , per unit volume of the α-phase:

[cγα] =
Nγ
α

Uoα =
cγα
Mγ

, (7.1.2)
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where Mγ is the molecular mass of the γ-species. In thermodynamic rela-
tionships, moles are the only measure of concentration. The common units
are moles of γ per liter of α-phase (mol/�), or mol/m3 (≡ mmol/�).

Molar fraction. The molar fraction, or mole fraction, nγα, is useful when
dealing with modeling transport of contaminants with chemical reactions (=
reactive transport). It is defined as the ratio between the number of moles of
γ and the total number of moles in the α-phase:

nγα =
Nγ
α

Nα
, Nα =

∑
(γ)

Nγ
α ,

∑
(γ)

nγα = 1. (7.1.3)

Equivalent concentration, cγeqα , is another useful measure, defined as

cγeqα =
Nγeq
α

Uoα , (7.1.4)

where Nγeq denotes the number of equivalents of γ in α. It gives the quantity
of γ that reacts with, or equal to the combining value of, a specified quantity
of another substance with respect to a given reaction. For redox reactions (see
any text on chemistry or geochemistry, e.g., Appelo and Postma (2005)), the
mass of a substance associated with the loss or gain of one mole of electrons
is commonly referred to as the ‘equivalent weight’ of that substance with
respect to the reaction. In this case, cγeqα = cγαi

γ/Mα, with iγ denoting the
ionic charge or valence of γ.

Other often encountered definitions of concentration are the equivalents
per liter (≡ eq/�), defined as the number of moles of a solute, multiplied
by the valence of the solute species, per liter of solution, and equivalents per
million, epm, defined as the number of moles of a solute, multiplied by the
valence of the solute species, per 106 g of solution.

Mass fraction. The mass fraction, ωγα, is the mass of a γ-species per unit
mass of the α-phase:

ωγα =
mγ
α

mα
=

cγα
cα
,

∑
(γ)

ωγα = 1. (7.1.5)

This measure is applicable to a γ-species in solution in a fluid-phase, or as
part of a solid phase. The unit ppm, ‘parts per million’, defines the number
of grams of solute per million grams of solution. The mass fraction is widely
used for aqueous contaminants in the saturated zone.

Electrical conductivity, EC, measures the ability of a solution to conduct
electrical current. Although this is not a measure of concentration, it is in-
cluded here because it is related to the ions that are present in the solution.
The unit is the reciprocal of ohm-meters, or, in the SI system, siemens per
meter (S/m). Often, the EC is measured in the reciprocal of milliohms or,
microohms, known as millimhos (≡ mS), or micromhos (≡ μS), respectively.
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7.1.2 Advective flux

We consider the transport of a γ-contaminant, actually, any dissolved chemi-
cal species, within a fluid phase that occupies the entire void space, or part of
it, at a volumetric fraction θ. With V denoting the (intrinsic phase) average
(mass-weighted) velocity of the phase, and cγ denoting the (intrinsic phase)
average concentration of the contaminant (expressed as mass of contaminant
per unit phase volume), the advective flux, Jγadv, of the considered component
(= contaminant) is given by the product

Jγadv = θVcγ . (7.1.6)

This flux expresses the mass of the component passing through a unit area
of porous medium, normal to V, per unit time.

7.1.3 Diffusive flux

A. Definition of diffusive flux and Fick’s law

A fluid phase is, usually, composed of a number of chemical species (Subs.
1.3.1), each made up of a large number of identical molecules (ions, atoms,
etc.) that are in constant random motion (Brownian motion). Note that a
solvent is one of the chemical species. At the microscopic level, each intensive
quantity of a chemical species of a phase, e.g., concentration, may be regarded
as a continuum. The behavior of this continuum is obtained by averaging the
behavior of the individual molecules that comprise it. For example, each
molecule has mass, momentum, and energy. The transport of these extensive
quantities at the microscopic level is obtained by averaging their transport
by the individual molecules. Let superscript γ denote a dissolved chemical
species. We shall start by considering what happens at the microscopic level,
without using any symbol to denote this fact.

The total flux, jtE, of an extensive quantity E, and jtE
γ

of the extensive
quantity Eγ , of a γ-species, can be expressed as

jtE = eVE , jtE
γ

= eγVE
γ

, (7.1.7)

with
jtE =

∑
(γ)

jtE
γ

=
∑
(γ)

eγVE
γ

, (7.1.8)

where e (= quantity of E per unit volume of the phase) denotes the density
of E, and e =

∑
(γ) e

γ . In these equations, the velocities, VE of a particle of
an E-continuum and VE

γ

of a particle of an Eγ-continuum of a γ-species,
both of a phase, are defined as:

VE ≡ ∂xE

∂t

∣∣∣∣
ξE

=const.
, VE

γ ≡ ∂xE
γ

∂t

∣∣∣∣
ξEγ

=const.
, (7.1.9)
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where xE denotes the position vector of an E-particle with material coordi-
nates ξE. We recall that V(≡ Vm) denotes the mass weighted velocity, i.e.,
the velocity of the extensive quantity mass (i.e., E ≡ m).

Physically, eVE represents the quantity of E passing through a unit area
of the E-continuum, normal to the direction of VE , per unit time. This flux
may be expressed as the sum of two fluxes:

eVE = eV + e (VE −V) ≡ eV + jE. (7.1.10)

We have, thus, decomposed the total flux of E, jtE, into two parts:

• an advective E-flux, eV, carried by the (mass-weighted) velocity of the
phase, V, with respect to a fixed coordinate system, and

• a flux, e (VE −V), relative to the advective one. This second flux, denoted
by jE, is called the diffusive flux of E (with respect to the mass-weighted
velocity):

jE = e (VE −V) . (7.1.11)

We may now apply the above definitions to the particular case in which
Eγ is the mass of a γ-species of a fluid phase, with eγ ≡ ργ ≡ cγ , and with cγ

referred to as the concentration of the γ-species. For this case, the total mass
flux is expressed by cγVγ . When decomposed into two parts, we obtain:

cγVγ = cγV + cγ(Vγ −V) = cγV + jγ , (7.1.12)

where
N∑
γ=1

cγVγ ≡ ρV, and jγ = cγ(Vγ −V), (7.1.13)

is the diffusive mass flux of the γ-species, usually referred to as molecular
diffusion. We note that for all (N) species within a phase,

N∑
γ=1

jγ =
N∑
γ=1

cγ(Vγ −V) =
N∑
γ=1

ρ(V −V) = 0. (7.1.14)

We have thus decomposed the total mass flux of a γ-species into two parts:

• an advective mass flux, cγV, carried by the mass-weighted velocity of the
phase, with respect to a fixed coordinate system, and

• a diffusive flux, cγ(Vγ −V), relative to the advective one.

Both fluxes are in terms of mass of chemical species per unit area of fluid
phase.

Equations (7.1.12) and (7.1.13) give the total and the diffusive mass fluxes
of a considered chemical species, respectively.

Still at the microscopic level, we consider a fluid containing only two
species: γ and δ (= binary system). The mass flux of molecular diffusion of
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the γ-species, jγ , relative to the advective mass flux of the fluid phase, mov-
ing at the mass-weighted velocity, V, is expressed by Fick’s law of molecular
diffusion, in the form:

jγ = cγ(Vγ −V) = −ρDγδ∇ωγ ,
∑
(γ)

jγ = 0, (7.1.15)

ωγ = ργ/ρ denotes the mass fraction of γ, and the scalar Dγδ is the coefficient
of molecular diffusion (dims. L2/T) of the γ-component in a fluid phase that
contains only two components, γ and δ.

The diffusive flux of the other component, δ, is given by jδ = −ρDδγ∇ωδ.
Note that the condition jγ + jδ = 0 implies that for a binary system Dγδ =
Dδγ . It is assumed that Dγδ is independent of cγ . However, it is, in general,
a function of pressure and temperature.

When ∇ρ = 0, i.e., a homogeneous fluid, we may write Fick’s law, (7.1.15),
in terms of the concentration, cγ , as

jγ ≡ cγ(Vγ −V) = −Dγδ∇cγ . (7.1.16)

Fick’s law can also be written in terms of the gradient of molar concentration,
[cγ ].

Typical values of Dγδ at 25◦C, for a solute in an aqueous phase, are in
the range of 5–100×10−6 cm2/s. For example, for Ca2+, Dγδ = 7.9 × 10−6

cm2/s; for K+, Dγδ = 19.6 × 10−6 cm2/s; and for Cl−, Dγδ = 20.3 × 10−6

cm2/s. Typical values for a dilute component in an air are: for water vapor,
Dγδ = 2.2× 10−1 cm2/s; and for TCE vapor, Dγδ = 7.8 × 10−2 cm2/s. The
diffusivity of a broad range of compounds as a function of temperature and
pressure are given by Poling et al. (2000). Fick’s law, (7.1.15), also holds, as
an approximation, for the diffusive flux of a γ-component in a multicompo-
nent system, as long as the δ-component is the solvent component and all
components, except δ and γ, are at dilute concentrations. Another case where
Fick’s law holds is when all components are at dilute concentrations, except
for the δ-component. Then, jλ = −ρDλδ∇ωλ for λ �= δ, and

jδ = −
∑
γ( �=δ)

jγ =
∑
γ( �=δ)

ρDγδ∇ωγ . (7.1.17)

This last equation follows from the necessary condition:
∑

(γ) j
γ = 0.

B. Diffusion of ions and electroneutrality

The diffusion of an ion (considered as a γ-species) in an aqueous solution,
away from any charged solid surface, is affected by the electrical field gener-
ated by all ions in the solution. In a dilute solution, this diffusive mass flux
is given by

jγ = − ρF
RT

zγDγωγ∇ϕe − ρDγ∇ωγ , (7.1.18)
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where ϕe denotes the potential of the electrical field, and zγ is the electrical
charge of the ion. Here, F is Faraday’s constant, defined as the charge of one
mole of singly-charged ions (= 9.65×104 Coulombs/mole). Equation (7.1.18)
is derived from the Nernst-Planck equations (Probstein, 1994).

It is observed experimentally that in (non-organic) electrolytic solutions,
the condition of electroneutrality holds: the net charge at any given point in
a solution, away from charged surfaces, is essentially zero. That is,∑

(λ)

zλnλ = 0. (7.1.19)

Electroneutrality requires that the diffusion fluxes satisfy the condition∑
(λ)

zλjλ/Mλ = 0. (7.1.20)

The electrical field between the ions, which is proportional to the gradient,
−∇ϕe, counteracts the tendency of molecular diffusion to disturb charge
neutrality. Therefore, by substituting (7.1.18) into the condition (7.1.20) and
solving for −∇ϕe, we obtain

−∇ϕe =
RT

F

∑
(λ) z

λDλ∇ωλ/Mλ∑
(λ)(zλ)2Dλωλ/Mλ

. (7.1.21)

Substituting this expression into (7.1.18) gives

jγ = zγρDγωγ
∑

(λ) z
λDλ∇ωλ/Mλ∑

(λ)(zλ)2Dλωλ/Mλ
− ρDγ∇ωγ . (7.1.22)

This expression is the diffusive mass flux of an ionic species in an electrically
neutral dilute solution; it is used for modeling the transport of multiple ionic
species (Lichtner, 1995).

C. Macroscopic Fick’s law

Our next step is to average the microscopic level advective and diffusive
flux expressions presented above in order to obtain their macroscopic coun-
terparts. This goal can be achieved by volume averaging over an REV
(Sec. 1.3.3), or by various methods of ‘homogenization’ (Subs. 1.3.4).

In the passage from (7.1.16) to its macroscopic counterpart, the configura-
tion of the solid-fluid interface, and conditions on it, affect the transformation
of the (local) concentration gradient into a gradient of the average concentra-
tion (which is the state variable at the macroscopic level). Bear and Bachmat
(1990), who used volume (REV) averaging, presented ‘averaging rules’, which
should be employed in order to average mathematical models written at the
microscopic level. We recall that taking an average involves integration (e.g.,
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(1.3.2)), which takes into account the configuration and the conditions on the
domain over which integration is performed. Following Bear and Bachmat
(1990), and noting the various underlying assumptions, we average (7.1.15)
for a fluid of constant density and constant coefficient of molecular diffusion,
obtaining an expression for the macroscopic form of Fick’s law of molecular
diffusion. It expresses the macroscopic diffusive flux, Jγ , of a γ-species within
a fluid phase that occupies the entire void space, or part of it, in the form:

Jγ = −DγT∗(θ) · ∇cγ = −D∗γ(θ) · ∇cγ , (7.1.23)

where cγ(≡ cγ
α) is now the concentration of the γ-species at the macroscopic

level, θ denotes the volumetric fraction of the considered phase, and D∗γ

(= D∗γ(θ)) = DγT∗(θ), a second rank symmetric tensor, is the coefficient of
molecular diffusion within a phase in a porous medium. Note that Jγ denotes
the flux of γ per unit area of the fluid within a porous medium cross-section.
For brevity, we have dropped the superscript δ in Dγδ. For saturated flow,
we replace θ by the porosity, φ.

The symbol T∗, a second rank symmetric tensor, represents the tortuosity
of the porous medium (e.g., Bear and Bachmat, 1990). In an isotropic porous
medium, the components of the tortuosity tensor, T∗

ij , may be represented as
T∗δij , in which T∗(< 1) is a scalar tortuosity, and δij is the Kronecker delta,
with δij = 1 for i = j, and δij = 0 for i �= j.

In indicial notation, (7.1.23) takes the form:

Jγi = −DγT∗
ij(θ)

∂cγ

∂xj
,= −D∗γ

ij (θ)
∂cγ

∂xj
. (7.1.24)

Note that Einstein summation convention, introduced in Subs. 4.1.4, is used
in (4.1.4), as in all indicial notation equations in this book.

For a fluid of variable density, the macroscopic diffusive flux is

Jγ = −ρD∗γ(θ) · ∇ωγ , (7.1.25)

where all variables and the coefficient are at the macroscopic level. Solute
diffusion is also affected by the fact that the fluid’s viscosity near the solid
surfaces is higher than that in the interior of the fluid phase (Olsen and
Kemper, 1968). We could include this affect as a factor affecting D∗γ .

The tortuosity of a phase is a macroscopic geometrical coefficient that ex-
presses the effects of the microscopic surface that bounds that phase on the
diffusive flux. In fact, Bear and Bachmat (1990) show that the same tortuos-
ity appears when considering the diffusive flux of any extensive quantity, say
heat, that is confined to the fluid-occupied domain. As such, it depends on
the configuration of the phase within the void space. Hence, in systems with
multiple phases, each of the tortuosity components is a function of the sat-
urations. Some authors relate the tortuosity in an isotropic porous medium
to the volumetric fraction of the phase. For example, Millington (1959) gave
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the equation

T∗(θ) =
θ7/3

φ2
. (7.1.26)

Note that when used to express the flux per unit area of porous medium, the
tortuosity given by (7.1.26) takes the form θT∗(θ) = θ10/3/φ2. Because the
value of the tortuosity falls in the range zero to one, the value of the diffusivity
in a fluid that occupies the entire void space, or part of it, is smaller than
the corresponding value in an open fluid body.

D. Surface diffusion

Surface diffusion is the phenomenon of the net motion on the solid’s surface
of adsorbed atoms (often referred to as ‘adatoms’), or molecules, ions or
clusters of adatoms. When integrated over the entire surface area within a
unit volume of porous medium, it is expressed as a macroscopic flux analogous
to the diffusive flux that results from the random motion of the ions or atoms
of a chemical species within the fluid that occupies the void space, or part of
it. In fact, surface diffusion will also occur within the films that coat the solid
surface in voids occupied by air in the unsaturated zone. Surface diffusion
could be significant in fine grained porous media, e.g., clay, due to their huge
specific surface.

An important example is the compacted clay or bentonite that serves as a
barrier to radionuclides in a geological repository of high-level nuclear waste.
Due to its huge specific surface, the barrier effect is achieved by adsorbing the
escaped radionuclides; nevertheless, surface diffusion may play an important
role since very long time periods are considered. Jahnke and Radke (1987)
visualized the total (macroscopic) flux of a γ-ion as composed of two parts:
Jγdiff , which is the usual Fickian diffusion, and Jγs.diff , which describes surface
diffusion, with

Jγdiff.total = Jγdiff + Jγs.diff , (7.1.27)

in which both fluxes are described as Fickian expressions, i.e., both fluxes
are proportional to the gradients in the respective concentrations. The model
will then involve two variables: concentration in the fluid, and concentration
adsorbed on the solid. Jahnke and Radke (1987) developed an expression
for an equivalent diffusive flux that combines the two phenomena under the
assumption of an equilibrium ion-exchange isotherm.

The subject of surface diffusion will not be further considered in this book.

7.1.4 Hydrodynamic dispersion

We shall start by considering the transport of a contaminant (actually, any
solute) in a single fluid phase that occupies the entire void space. Later, we
shall extend the discussion to multiple phases.

Consider the flow of a fluid phase (f), say, water, through a porous medium
domain. At some initial time, let a portion of this fluid phase be labeled by
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Figure 7.1.1: Longitudinal and transversal spreading of a solute. (a) Longi-
tudinal spreading of an initially sharp front, (b) Spreading of a solute slug
injected at a point.

some identifiable solute, a tracer. Let us start by conducting two conceptual
field experiments.

Figure 7.1.1a shows saturated, (macroscopic) two-dimensional uniform
flow, at an average velocity V (≡ V

f
), in the x-direction, in a porous medium

domain, say, an aquifer. At an initial time, t = 0, an (assumed) abrupt
straight line front divides the domain into two parts: one, x < 0, occupied
by water with a dissolved solute at the concentration c = 1, and the other,
x ≥ 0, occupied by water at the solute concentration of c = 0. Using Darcy’s
law to calculate V (= −(K/φ) · ∇h), we may obtain the position of the (as-
sumed) abrupt front, at x = L, at any later time, t, through the expression
L = Vt. On the basis of Darcy’s law alone, the two kinds of fluids would con-
tinue to occupy distinct subdomains, separated by an abrupt moving front.
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However, in our ‘experiment’, by measuring concentrations at a number of
observation wells scattered in the domain, we observe that no such front ex-
ists. Instead, we observe the development of a transition zone across which
the solute concentration varies from c = 1 to c = 0. Experience shows that
as flow continues, the width of the transition zone increases. This spreading
of the solute-labeled fluid, and the evolution of a transition zone, instead of
a sharp front, cannot be explained by the average movement of the fluid at
a velocity calculated by Darcy’s law.

As a second (conceptual) experiment, consider the injection of a small
quantity of tracer at a point x = 0, y = 0, at some initial time, t = 0, into a
tracer-free (macroscopic) two-dimensional uniform flow in a porous medium
domain. Making use of the (averaged) velocity as calculated by Darcy’s law,
we should expect the tracer-labeled fluid slug to move as a volume of fixed
shape, reaching the point x = Vt at time t. Again, field observations (shown
in Fig. 7.1.1b) reveal a completely different picture. We observe a spreading
of the solute, not only in the direction of the (averaged) uniform flow, but
also normal to it. The area occupied by the solute-labeled fluid, which has
the shape of an ellipse in the two-dimensional flow domain considered here,
will continue to grow, both longitudinally, i.e., in the direction of the uniform
flow, and transversely, i.e., normal to it. The concentration peak appears to
move at the averaged velocity. Curves of equal concentration have the shape
of confocal ellipses. Again, this spreading cannot be explained by considering
the averaged flow alone, especially noting the spreading perpendicular to
the direction of the uniform averaged flow, and the ever-growing subdomain
occupied by solute-labeled fluid.

The spreading phenomenon in a porous medium domain as described above
is called hydrodynamic dispersion. It is an unsteady, irreversible process (in
the sense that the initial tracer distribution cannot be obtained by reversing
the direction of the uniform flow) in which the mass of a tracer continuously
‘mixes’ with the non-labeled portion of the moving fluid.

The phenomenon of dispersion may be demonstrated also by a simple
laboratory experiment. Consider steady flow of water at a constant discharge,
Q, in a column of homogeneous porous material. At t = 0, tracer-marked
water (e.g., water with NaCl at a concentration that is sufficiently low so
that the effect of density variations on the flow pattern is negligible), at
c = c1, starts to displace the indigenous unmarked water (c = co) in the
column . Let the tracer concentration, c = c(t), be measured in the effluent
leaving the column and presented in a graphical form, called a breakthrough
curve, as a relationship between the relative tracer concentration, ε (≡ (c(t)−
co)/(c1− co)) and time. In the absence of dispersion, the breakthrough curve
would take the form of the dashed line shown in Fig. 7.1.2, where Ucolumn is
the pore volume in the column. This would be indicative of the movement of
a persistent sharp front between the labeled and unlabeled fluids. In reality,
due to hydrodynamic dispersion, the breakthrough curve will take the form
of the S-shaped curve shown as a solid line in the figure.
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Figure 7.1.2: Breakthrough curve in one-dimensional flow in a column of
homogeneous porous material; ε ≡ (c(t)− co)/(c1 − co)

As stated above, we cannot explain all the above observations on the basis
of the average flow velocity. We must refer to what happens at the microscopic
level, viz., inside the REV. There, we observe (Fig. 7.1.3) velocity variations
in both magnitude and direction across any pore cross-section (even when
the averaged flow is uniform), and between flow paths. We recall that even in
a straight circular capillary tube, we have a parabolic distribution of fluid ve-
locity (see any text on fluid mechanics), with zero velocity at the (stationary)
solid surface, and a maximum velocity at the center of the tube. The void
space may be visualized as an assembly of interconnected tubes, with vary-
ing diameters. The maximum velocity itself varies according to the size and
shape of the pores. Because of the shape of the interconnected pore space, the
(microscopic) streamlines deviate from the mean direction of flow (Fig. 7.1.3a
and b). Altogether, we note that the velocity at the microscopic level varies
in magnitude and direction from point to point within the fluid present in
the void space. As a consequence, any initial cloud of closely-spaced tracer
particles will spread out, with each fluid particle traveling along its own mi-
croscopic streamline. Therefore, the shape of the initial cloud will gradually
change, and so will the fluid volume occupied by it. This phenomenon is re-
ferred to as mechanical dispersion, where the term ‘mechanical’ is used to
remind us that this part of the spreading is due to fluid mechanical phenom-
ena, and ‘dispersion’ is just another word for ‘spreading.’

As flow continues, the tracer particles, which originate from any small
subdomain in the fluid within the void space, will occupy an ever growing
volume of the flow domain. The two basic factors that produce mechanical
dispersion are, therefore, flow and the presence of a pore system through
which the flow takes place.

Although this spreading is in both the longitudinal direction, viz., that
of the (local) average flow, and in the direction transverse to the latter, it
is primarily in the former direction. Very little spreading in the direction
perpendicular to the average flow is produced by velocity variations alone.
Also, such velocity variations alone cannot explain the ever-growing width
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Figure 7.1.3: Dispersion due to mechanical spreading (a,b), and molecular
diffusion (c).

(normal to the direction of flow) of a plume of tracer-labeled fluid particles
originating at a point source.

In order to explain the observed spreading, especially transverse to the
flow direction, we must refer to an additional phenomenon that takes place
in the void space, viz., molecular diffusion, discussed in Subs. 7.1.3.

As shown in Subs. 7.1.3, molecular diffusion of a component in a fluid,
caused by the random motion of the molecules (Brownian motion), produces
an additional flux of the component’s particles (at the microscopic level) from
regions of higher concentrations to those of lower ones. This flux is relative to
the advective one, produced by the velocity of the fluid phase. This means, for
example, that as component particles spread along each microscopic stream-
tube, as a result of mechanical dispersion, a concentration gradient is pro-
duced, which, in turn, produces an additional flux of the component by the
mechanism of molecular diffusion. The latter phenomenon tends to equalize
the concentration along every microscopic stream-tube. At the same time, a
concentration gradient is also produced between adjacent stream-tubes, caus-
ing lateral molecular diffusion, across streamlines (Fig. 7.1.3c), which tends
to equalize the concentration across pores. It is this phenomenon, combined
with the randomness of the streamlines, that explains the observed ever-
growing extent of transverse dispersion.

Thus, the deviations in solute concentration within a fluid phase, from the
concentrations obtained by assuming advection only (at the average veloc-
ity), are due to two simultaneous phenomena: variations in the microscopic
velocity of the phase, with respect to the averaged velocity, and molecular
diffusion. In this way, molecular diffusion contributes to the dispersive flux.
This contribution is in addition to the diffusive flux at the macroscopic level ,
as described by (the averaged) Fick’s law. The latter is the only flux that
takes place when the averaged velocity is zero. It may thus be concluded,
that even when the macroscopic effect of diffusion is relatively small, it is
only the combination of microscopic velocity variations and molecular diffu-
sion that produces mechanical dispersion.
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Molecular diffusion makes dispersion, even in purely laminar flow, an irre-
versible phenomenon. Irreversibility is exhibited, for example, by the growing
width of a transition zone around an initially sharp tracer front in uniform
flow, as the direction of the flow is reversed. A second source of irreversibility
arises from the procedure used for averaging microscopic velocities, for ex-
ample, averaging over an REV. There is an inevitable continual and growing
loss of information at the microscopic level as one solves the governing equa-
tions at the macroscopic level forward in time. This fact exhibits itself in the
smearing of an initially sharp macroscopic concentration front. This loss of
information is irretrievable and, hence, the solutions to the equations are also
not reversible. Thus, it is possible for macroscopic theories to be irreversible
even without considering molecular diffusion. Whereas the first type of irre-
versibility, i.e., that caused by molecular diffusion, predicts the irreversibility
of physical observable values (i.e., actual concentrations), the second type
of irreversibility is manifested in the mathematical equations describing the
dispersion phenomena.

We refer to the flux that causes mechanical dispersion (of a component)
as dispersive flux . It is a macroscopic flux that takes into account the effect
of the variations in the microscopic velocity in the vicinity of a point. We
note that the decomposition of the average of the total (local) advective
flux into an advective flux at the average velocity and a dispersive flux, is a
consequence of the averaging process that we have chosen to employ.

We use the term hydrodynamic dispersion to denote the spreading (at the
macroscopic level) that results from both mechanical dispersion and molec-
ular diffusion. Actually, the separation between the two processes is rather
artificial, as they are inseparable. An exception is in the absence of motion,
when only molecular diffusion takes place. Because molecular diffusion is a
relatively slow process, its overall effect on dispersion is more significant at
low velocities.

In general, variations in tracer concentration cause changes in the fluid’s
density and viscosity. These, in turn, affect the flow regime (i.e., velocity
distribution) that depends on these properties. We use the term ideal tracer
when the concentration of the latter does not affect the fluid’s density and
viscosity. At relatively low concentrations, the ideal tracer approximation is
sufficient for most practical purposes. However, in certain cases, for example,
in the case of seawater intrusion into a region of freshwater, the density may
vary appreciably, and the ideal tracer approximation should not be used; we
have to take into account the effect of concentration changes on the fluid’s
density and viscosity.

7.1.5 Dispersive flux

From the discussion in previous subsection, it follows that the dispersive
flux, as a macroscopic flux of a component relative to the flux carried by
the average velocity (≡ advective flux), is a consequence of the fact that
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both the velocity and the concentration vary from point to point within a
fluid phase that occupies the entire void space, or part of it. Let us relate
this flux to measurable quantities such as (average) velocity and (average)
concentration. For the sake of simplicity, we shall make use of the volume
averaging approach.

The advective flux of a component (per unit area of fluid) at a (micro-
scopic) point, x′, within a fluid phase (f) that occupies part of the void
space within an REV centered at a point x, is given by cV. The intrinsic
phase average of this flux is cV

f
. In order to express this flux in terms of

the average values, cf and V
f
, the velocity, V(x′, t;x), and the component

concentration, c(x′, t;x), are decomposed into two parts: an intrinsic phase
average value and a deviation from that value, in the form:

V(x′, t;x) = V
f
(x, t) + V̊(x′, t;x),

c(x′, t;x) = cf (x, t) + c̊(x′, t;x). (7.1.28)

Because an average value is constant over the REV, we have (..)
f
f

= (..)
f
.

As a consequence,

V̊
f

= 0, and c̊
f

= 0. (7.1.29)

To obtain the average flux (still per unit area of fluid), we write:

cV
f

= (cf + c̊)(V
f

+ V̊)
f

= cfV
f
f

+ cfV̊
f

+ c̊V
f
f

+ c̊V̊
f

. (7.1.30)

Because the average of the deviations vanishes, the second and third terms
on the right-hand side of (7.1.30) vanish, leaving the relationship:

cV
f

= cfV
f

+ c̊V̊
f

. (7.1.31)

From this equation, it follows that the average (= macroscopic) flux of a
component at a point in a porous medium domain (= centroid of an REV)
is equal to the sum of two macroscopic fluxes:

• an advective flux, cfV
f
, expressing the mass of the component carried

by the fluid at the latter’s average velocity, V
f
. The (microscopic) mass

averaged velocity, V was introduced in Subs. 7.1.3, and

• a flux, J∗γ ≡ c̊V̊
f

, that results from the variation of c and V within the
REV for which the point, x, serves as a centroid. Recalling the discussion
in the previous subsection, this is the flux that produces the mechani-
cal spreading (≡ the dispersion) of the component. We refer to it as the
dispersive flux. It is a macroscopic flux caused by the variations in the
microscopic fluid velocity and in fluid concentration in the vicinity of a
(macroscopic) point in a porous medium domain. This flux is introduced
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to circumvent the lack of information concerning the detailed velocity vari-
ations at the microscopic level. This lack of information is the consequence
of our ignorance as to the detailed geometry of the surfaces that bound
the fluid phase.

7.1.6 Dispersion coefficient and dispersivity

Our next objective is to express the dispersive flux in terms of averaged (and
measurable) quantities, such as averaged velocity and averaged concentration.
Investigations over a period of about three decades, starting around the mid-
50’s (e.g., de Josselin de Jong, 1958; Saffman, 1959; Bear, 1961a; Scheidegger,
1961; Bear, 1972; and Bear and Bachmat, 1990, p. 401), have led to the
conclusion that the dispersive flux of a component (per unit area of fluid)
in a porous medium can be expressed as a Fickian-type law (i.e., a law that
resembles Fick’s (linear) law of molecular diffusion) in the form:

J∗ ≡ c̊V̊
f

= −D · ∇cf , (7.1.32)

or, in indicial notation:

J∗
i ≡ c̊V̊i

f

= −Dij
∂cf

∂xj
, (7.1.33)

where the Dij ’s (dims. L2/T) are components of a coefficient, D, called the co-
efficient of mechanical (or advective) dispersion, or the dispersion coefficient.
This coefficient is a second rank tensor that relates the flux vector J∗ to the
driving force vector −∇cf . Equation (7.1.33) is valid for the general case of
an anisotropic porous medium. The dispersion coefficient is characterized by:

• The Dij–matrix is non-negative definite (or positive definite). This is a con-
sequence of thermodynamics: the rate of entropy production, Ṡ, is related
to the thermodynamic driving force, X, and the thermodynamic flux, Y,
(referred to by De Groot and Mazur (1962) as conjugated flux and force,
respectively) by Ṡ = YiXi. Here, the driving force X is proportional to the
negative concentration gradient, −∇cf . In this case, the rate of entropy
production can be expressed by

Ṡ = χ

(
−Dij

∂cf

∂xj

)
× χ

(
−∂c

f

∂xi

)
≥ 0, or χ2Dij

∂cf

∂xj

∂cf

∂xi
≥ 0, (7.1.34)

in which, Y = χJ∗ = −χD · ∇cf and X = −χ∇cf . In the above, χ is
a parameter that depends on the extensive quantity considered; for each
such quantity, it transforms the flux and the driving force, in the form of
a gradient of an appropriate scalar considered (here ∇cf ), into conjugated
thermodynamic flux and force (De Groot and Mazur, 1962).

• The Dij–matrix is symmetric, i.e.,
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Dij = Dji. (7.1.35)

This is a consequence of the conjugated force and flux relation (De Groot
and Mazur, 1962), i.e., they satisfy

∂Yi
∂Xj

=
∂Yj
∂Xi

. (7.1.36)

Because we have circumvented the need to know the details (of velocity and
concentration) at the microscopic level by ‘escaping’ to the macroscopic level,
we are left with the need to determine a set of coefficients, in this case, Dij .
This situation is always the case whenever we try to overcome the lack of
information about details at the microscopic level by moving to the macro-
scopic level.

It is interesting to note that although Darcy’s law, (4.1.27), and the Fick’s
type law that governs the dispersive flux, (7.1.33), look similar, there is a
basic difference between the coefficients Kij and Dij : the former is a function
of the microscopic geometry of the void space (and of fluid properties), while
the latter depends also on the macroscopic velocity field.

Several authors (e.g., Nikolaevskii, 1959; Bear, 1961a; Scheidegger, 1961;
Bear and Bachmat, 1967, 1990) have derived the following expression for the
components Dij :

Dij = aijk�
Vk

f
V�
f

V
f

f(Pe, r), (7.1.37)

where V
f
(
≡ |Vf |

)
is the magnitude of the average velocity, r represents the

ratio between characteristic lengths, in the direction of the flow and normal
to it, within a pore, and Pe is a Peclet number defined by:

Pe ≡ V
f
Δf

Df , (7.1.38)

which expresses the ratio between the rates of transport of the considered
component, respectively, by advection and by diffusion (see a detailed dis-
cussion on dimensionless numbers in Subs. 7.7). In this definition, Δf is the
hydraulic radius of the fluid occupied portion of the void space, serving as
a characteristic length of the void space, and Df denotes the coefficient of
molecular diffusion in the fluid phase. Bear and Bachmat (1990) suggested an
expression for f(Pe, r). However, as is common in practice, we shall assume
f(Pe, r) ≈ 1, so that the coefficient of dispersion is expressed in the form

Dij = aijk�
VkV�
V

, (7.1.39)

in which Vk ≡ Vk
f
. Henceforth, for simplicity, we shall continue to drop the

notation for intrinsic phase averaging.
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The coefficients aijk� (dims. L) appearing in (7.1.39) are components of
a fourth rank tensor, a, called the dispersivity of the porous medium. It ex-
presses the effect, on the flow, of the microscopic configuration of the interface
between the considered fluid phase and all other phases within the REV. In
a saturated system, this interface is that between the fluid and the solid.
When a fluid occupies only part of the void space, each of the dispersivity
components, aijk�, is a function of the volumetric fraction of the fluid.

In a three-dimensional space, the dispersivity tensor, aijk�, has 34 = 81
components. However, because of various symmetry considerations, the num-
ber of independent coefficients is smaller. Specifically,

(a) From the expression for the rate of entropy production, Ṡ, and following
the discussion leading to (7.1.34), we have

Ṡ = χ

(
−Dij

∂cf

∂xi

)
× χ

(
−∂c

f

∂xj

)
= χ2aijk�

∂cf

∂xi

∂cf

∂xj

VkVl
V
≥ 0. (7.1.40)

It follows that aijk� is positive definite. This means that all principal
minors of aijk� are positive.

(b) The values of the aijk� are invariant under the permutation of indices,

aijk� = aij�k, aijk� = ajik�. (7.1.41)

Hence, only 36 of the 81 components are independent of each other. It is
interesting to note that the 36 components are constrained by 26 − 1 = 63
constraints. As the material has more symmetry properties, the number of
independent coefficients decreases, until, when the material is isotropic, this
number is reduced to two (Bear et al., 2009).

A. Isotropic porous medium

In an isotropic porous medium, it has been demonstrated (Bear and Bach-
mat, 1990; see also Sirotine and Chaskolskaya, 1984, p. 651–2) that the 36
independent components reduce to two. This can be shown by considering
fourth rank tensors that satisfy the relationships (7.1.41) and are invariant
under the action of full rotational (orthogonal) symmetry. The two coeffi-
cients are designated as aL and aT , and are called the longitudinal and the
transverse dispersivities of the porous medium, respectively. The parameter
aL is a length that characterizes the microscopic configuration of the phase
within the REV. Thus, for a phase that completely fills the void space in
a porous medium, aL should be of the order of magnitude of the size of a
typical pore. Furthermore, by the positive definiteness of aijk�, it follows that

aL ≥ 0, aL ≥ 0. (7.1.42)

De Josselin de Jong (1958) and laboratory column experiments (e.g., Bear,
1961b) have shown that aT is 8 to 24 times smaller than aL.
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In terms of aL and aT , components of the dispersivity tensor for an isotropic
porous medium can be expressed in the form:

aikj� = aT δijδk� +
aL − aT

2
(δikδj� + δi�δjk), (7.1.43)

where δij is the Kronecker delta. The coefficient of dispersion, with f(Pe, r)
� 1, can then be expressed as

Dij =
[
aT δij + (aL − aT )

ViVj
V 2

]
V, V = |V|, (7.1.44)

in which Vi denotes the ith component of the average velocity vector V.
In Cartesian coordinates, with Vx, Vy , and Vz denoting average velocity

components in the x, y, and z directions, respectively, we obtain from (7.1.44):

Dxx =
[
aT + (aL − aT )

V 2
x

V 2

]
V =

1
V

(
aLV

2
x + aTV

2
y + aTV

2
z

)
,

Dyy =

[
aT + (aL − aT )

V 2
y

V 2

]
V =

1
V

(
aTV

2
x + aLV

2
y + aTV

2
z

)
,

Dzz =
[
aT + (aL − aT )

V 2
z

V 2

]
V =

1
V

(
aTV

2
x + aTV

2
y + aLV

2
z

)
,

Dxy =
[
(aL − aT )

VxVy
V 2

]
V = Dyx,

Dxz =
[
(aL − aT )

VxVz
V 2

]
V = Dzx,

Dyz =
[
(aL − aT )

VyVz
V 2

]
V = Dzy. (7.1.45)

Like any second rank tensor, D also has three principal directions. Using these
principal directions as Cartesian coordinate axes, x1, x2, x3, we may write D,
in the matrix form:

D =

⎡⎣Dx1x1 0 0
0 Dx2x2 0
0 0 Dx3x3

⎤⎦ . (7.1.46)

In the special case of uniform flow, say Vx = V , Vy = Vz = 0, equation (7.1.45)
reduces to Dxx = aLV , Dyy = aTV , Dzz = aTV , Dxy = Dxz = Dyz = 0; or, in
matrix form:

D =

⎡⎣ aL 0 0
0 aT 0
0 0 aT

⎤⎦V =

⎡⎣DL 0 0
0 DT 0
0 0 DT

⎤⎦ , (7.1.47)
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Figure 7.1.4: Principal directions of dispersion coefficient in an isotropic
porous medium.

where DL and DT are, respectively, the longitudinal and transversal dispersion
coefficients of an isotropic porous medium.

We have already mentioned that the tensor D (and its principal directions)
depends also on the (macroscopic) velocity field. Specifically, if we consider a
point on a macroscopic (instantaneous) streamline in a flow domain, we may
construct at that point:

• a unit vector, τ , in the direction of the tangent to the streamline, (i.e., in
the direction of the flow),

• a unit vector, ν, called the principal normal to the streamline (defined by
κν = dτ/ds, where s is the distance measured along the streamline, and
κ is the curvature of the streamline at the point), and

• a unit vector, β (= τ × ν), normal to both τ and ν (Fig. 7.1.4).

In an isotropic porous medium, the principal directions of the tensor D coin-
cide with the directions of these three unit vectors. As such, as the velocity
varies, these directions may vary from point to point and in time.

If, locally, we select τ , ν and β, as basis vectors of the coordinate system,
x1, x2, x3, then D takes the form (7.1.46). In such a case, Dx1x1 is called coef-
ficient of longitudinal dispersion, while Dx2x2 and Dx3x3 are called coefficients
of transverse dispersion.

B. Transverse isotropy (axial symmetry)

In an anisotropic porous medium, the number of independent dispersivity
coefficients is larger, depending on the kind of symmetry exhibited by the
anisotropic medium. As an example, we may consider a porous medium with
transverse isotropy, i.e., a porous medium with one axis of rotational sym-
metry. This means that in any plane perpendicular to that axis, the material
is isotropic, i.e., it does not exhibit property changes with direction, while
medium properties in the direction parallel to this axis are different (see
Sec. 2.5).
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For an axially symmetrical porous medium, with the vector e (compo-
nents ei) indicating the axis of symmetry, there exist six independent aijk�-
coefficients. The dispersivity components can then be expressed by (Bear
et al., 2009)

aijk� = a1δijδk� +
a2

2
(δikδj� + δi�δjk) + a3eiejδk� + a4eke�δij

+
a5

2
(eiekδj� + ejekδi� + eie�δjk + eje�δik) + a6eiejeke�, (7.1.48)

with a1 through a6 indicating the six independent dispersivity coefficients.
Fel and Bear (2009) determined the constraints that the six ai’s have to
satisfy as a consequence of the positive definiteness of the entropy production,
expressed by (7.1.34). We note that by dropping terms associated with ei in
(7.1.48), we obtain the isotropic case, described by (7.1.43), i.e., with a1 = aT ,
and a2 = aL − aT , and a3 = a4 = a5 = a6 = 0. These six dispersivity
coefficients, a1–a6, are properties of the porous medium only, meaning that
they are independent of the flow taking place in the porous medium, and the
chosen coordinate system.

Based on (7.1.39), the corresponding expression for the dispersion coeffi-
cients Dij is

Dij =
[
a1δij + a2

ViVj
V 2

+ a3eiej + a4δij
(Vkek)2

V 2

+a5
Vkek
V

Viej + Vjei
V 2

+ a6eiej
(Vkek)2

V 2

]
V. (7.1.49)

We note that the dispersion coefficient, which is used for determining the
dispersive flux by means of (7.1.32), depends not only on the porous medium
(through the dispersivity coefficients), but also on the velocity vector. As
velocity may vary in space and time, so does the dispersion coefficients.

In order to model solute transport in a transversely isotropic porous
medium under general flow conditions, we need to determine the six inde-
pendent dispersivities, or dispersivity coefficients. These ai coefficients can
be determined by conducting tracer tests in the field, and comparing tracer
concentrations within a plume with available analytical or numerical solu-
tions. Generally, this parameter determination is conducted as an inverse
solution procedure in which the optimal solution is obtained by minimizing
the sum of square errors between the observed and theoretically predicted
concentrations (Sec. 11.3).

As the expression for dispersive flux, (7.1.32), and the solute transport
equation (7.2.23) introduced in Sub. 7.2.2, involve six dispersion coefficients
Dij (six, instead of nine, because of the symmetry Dij = Dji), the first step
in a parameter estimation procedure is to determine these six components of
the dispersion coefficient. Given a transversely isotropic aquifer with known
axis of symmetry (i.e, known vector components ei), and known flow (i.e.,
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known Vi), in principle, it is possible to determine the dispersion coefficients
from information on observed concentrations during a controlled experiment.

Once the six dispersion components Dij have been determined for a given
location through such experiments, the next step is to solve the following
linear system of equations, based on (7.1.49), for the six coefficients, a1–a6,

[EV]

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a1

a2

a3

a4

a5

a6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

D11

D22

D33

D12

D13

D23

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, (7.1.50)

in which [EV] is a 6 × 6 matrix containing the expressions of ei and Vi, as
defined in (7.1.49). However, a matrix analysis shows that the matrix [EV]
is of rank four, meaning that of the six equations defined in (7.1.50) (or
(7.1.49)), only four are linearly independent, and the other two are linearly
dependent on the rest. This means that (7.1.50) can yield at most four ai
values.

While the above conclusion has been proven for the general case of any
orientation of coordinate system, it is of interest to examine some special
cases. In the case of a horizontally layered material, selecting the z-axis to
coincide with the axis of material symmetry, i.e., e3 = 1 and e1 = e2 = 0, we
express (7.1.49) as

Dxx =
(

a1 + a2
V 2
x

V 2
+ a4

V 2
z

V 2

)
V,

Dyy =

(
a1 + a2

V 2
y

V 2
+ a4

V 2
z

V 2

)
V,

Dzz =
[
a1 + a3 + (a2 + a4 + 2a5 + a6)

V 2
z

V 2

]
V,

Dxy = Dyx = a2
VxVy
V 2

V,

Dxz = Dzx = (a2 + a5)
VxVz
V 2

V,

Dyz = Dzy = (a2 + a5)
VyVz
V 2

V. (7.1.51)

By eliminating the factor (a2 + a5) between the fifth and sixth equations
in (7.1.51), we can clearly see that Dxz and Dyz are related to each other.
Further analysis shows that the matrix is of rank four, and the following
constraints must be satisfied in order for the system of equations to have a
solution:
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Dyz =
Vy
Vx

Dxz,

Dxx = Dyy +
V 2
x − V 2

y

VxVy
Dxy. (7.1.52)

Hence, only four of the six dispersion coefficients are independent.
Often, it is convenient to use a local coordinate system that coincides with

the flow direction at the considered location. For example, in the case of
uniform flow in the direction of the x1-axis (see Fig. 7.1.4), such that V1 =
V and V2 = V3 = 0, we can show the following interdependence among
dispersion coefficients:

Dxy =
ey
ez

Dxz,

Dyy = Dzz +
e2y − e2z
eyez

Dyz. (7.1.53)

This is the same conclusion as the above, that is, only four of the dispersion
coefficients are independent.

The important conclusions of the above analysis are:

(a) In a single field experiment, in which the flow conditions remain un-
changed, it is possible to determine only four dispersion coefficients at
any one location, due to the required interdependency given either by
(7.1.52) or by (7.1.53).

(b) Given these four independent dispersion coefficients, it is not possible to
resolve the six dispersivity coefficients, a1–a6, from (7.1.50), due to the
rank deficiency of the matrix.

(c) However, as demonstrated below (see also Fel and Bear, 2009), it is pos-
sible to determine the six dispersivity coefficients if two experiments are
conducted.

(d) In a forward modeling problem, in which values of six dispersion coef-
ficients are required as input, one needs to check the consistency of the
assigned dispersion values. These values need to be either determined
from (7.1.49), based on the six dispersivity coefficients, or satisfy the
relations as shown in (7.1.52) or (7.1.53).

Next, let us consider two special flow cases in the layered medium consid-
ered above. In the following discussion, we shall choose the z-axis to coincide
with the material axis of symmetry, i.e., e3 = 1 and e1 = e2 = 0.

In the first case, we consider uniform flow normal to the layers, that is, in
the z-direction, such that V3 = V and V1 = V2 = 0. Using this condition in
(7.1.49), we obtain

DV =

⎡⎣ aV
T H 0 0
0 aV

T H
0

0 0 aV
LV

⎤⎦V, aV
TH

= a1 + a4,
aV

LV
= a1 + a2 + a3 + a4 + 2a5 + a6,

(7.1.54)
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where the superscript (.)V is used to emphasize that the flow direction is ver-
tical, aV

T H is the transverse dispersivity in the horizontal direction (only one
value because of the isotropy in the horizontal plane), and aV

LV is the longitu-
dinal dispersivity in the vertical direction. Altogether, to describe dispersion
in a layered horizontal porous medium, when the flow is uniform and normal
to the layers, we need only one longitudinal and one transversal dispersivities.

As a second case, we consider uniform flow parallel to the layers, say, in
the +x-axis direction, such that V1 = V and V2 = V3 = 0. Equation (7.1.49)
becomes:

DH =

⎡⎣ aH
LH

0 0
0 aH

T H 0
0 0 aH

T V

⎤⎦V, aH
LH

= a1 + a2,
aH

TH = a1,
aH

TV = a1 + a3,
(7.1.55)

where aH
T H

and aH
T V

are, respectively, the transverse dispersivities in the hori-
zontal and in the vertical directions, and aH

LH is the longitudinal dispersivity
in the horizontal direction. Thus, to describe dispersion in a layered horizon-
tal porous medium, when flow is uniform and parallel to the layers, we need
one longitudinal and two transversal dispersivities.

As observed in the cases discussed above, under uniform flow conditions,
we can only determine two, three, or four independent dispersion coefficients
in a single experiment, depending on whether the flow is perpendicular, par-
allel, or at an angle, to the material symmetry axis. This implies that at least
two flow tests in different flow directions are needed, and one of the two direc-
tions must be inclined with respect to the direction of the material symmetry
axis. For example, if we conduct a horizontal flow test, and obtain result as
in (7.1.55), we can determine three dispersivity coefficients, a1, a2 and a3.
For the second test, the flow should be neither in the vertical, nor in the
horizontal, direction, as there will not be sufficient information to determine
the remaining three coefficients. The flow of the second test must be in an
inclined direction with the horizontal plane and the vertical axis, which will
provide four additional equations. The remaining three coefficients can then
be determined under overdeterminancy condition. Similar statement was pre-
sented by Fel and Bear (2009) for the special case of flow in the horizontal
direction, and making a 45◦ angle with the axis of symmetry.

In the above, we have assumed that the direction of the axis of symmetry
is known a priori, i.e., we know the three values: e1, e2 and e3 that appear
in (7.1.49). If this direction is not known, we have to use the experimental
data to solve the inverse problem also for two of these three components of e
(because e21 + e22 + e23 = 1), for a total of 8 unknown values. In this case, two
flow tests in two different inclined directions (with respect to the materials
axis of symmetry) are sufficient for the determination of these 8 unknowns.

C. Anisotropy with tetragonal symmetry

As an example of such porous medium material, we may consider one that is
made up of orderly packed solid boxes a× a× c, with equal spacing between
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the boxes in all directions (or cubes with 3 different spaces). For this case,
the 36 independent aijk�-components can be expressed by 7 independent,
parameters, which are subject to certain constraints (Bear et al., 2009). It
is interesting to note that this case is not identical to the case with axial
symmetry (such as a stratified aquifer), considered above. Here, we also need
information on the directions in which the boxes, a× a× c, are positioned in
space, e.g., in the form of two of the three ei’s. This case is analyzed in detail
by Bear et al. (2009).

D. Anisotropy with orthorhombic symmetry

An example is a porous medium material made up of orderly packed solid
boxes a×b×c with equal spacing between the boxes in all directions (or cubes
with three different spaces). For this case, the 36 independent dispersivity
components can be expressed by twelve independent parameters. We also
need information on the directions in which the boxes, a× b× c, are oriented
in space (and this, as indicated earlier, requires information on two ei’s).

It is possible to analyze three special cases of flow, each one with uniform
flow parallel to one of the three axes. To describe dispersion in each of these
three cases we need only three coefficients: a longitudinal dispersivity and
two transversal ones.

In each of the material symmetry cases discussed above, the number of in-
dependent coefficients is accompanied by a number of constraints that these
coefficients have to satisfy. The information concerning the number of inde-
pendent coefficients and the constraints among them (Bear et al., 2009) is
important when experiments are conducted aimed at determining the values
of these coefficients for a specific porous medium, by using an inverse method.

Similar to the discussion presented with respect to the experimental pro-
cedure for determining the dispersivity coefficients in the case of transverse
isotropy, here also, a number of independent experiments will be required.
Also, in practice, because of the inaccuracy and uncertainty in the measured
values during experiments, (say of concentrations and piezometric heads) an
optimization procedure that minimizes the overall error may be called for.

E. Other models for dispersion in anisotropic domains

Some authors, on the basis of field observations, have suggested that for flow
parallel to the horizontal stratification in a stratified (= layered) aquifer,
transverse dispersion is much smaller in the vertical direction than in the
horizontal one, i.e., aH

T H � aH
T V in (7.1.55) (Robson, 1974, 1978; Garabedian

et al., 1991; Gelhar et al., 1992). Based on the above observation, Burnett
and Frind (1987) (see also Jensen et al., 1993; Zheng and Bennett, 1995)
suggested a ‘working model’ for transversely isotropic porous medium, in
which the dispersion tensor is defined by three dispersivities only (rather
than six, see Subs. 7.1.6B): a longitudinal dispersivity, aL, and two transversal
dispersivities, a horizontal one, aT H , and a vertical one, aT V . The components



368 MODELING CONTAMINANT TRANSPORT

of the dispersion tensor in three dimensions, with the z-axis as the axis of
material symmetry, are presented as:

Dxx =
1
V

(
aLV

2
x + aT HV

2
y + aT V V

2
z

)
,

Dyy =
1
V

(
aT HV

2
x + aLV

2
y + aT V V

2
z

)
,

Dzz =
1
V

(
aT V V

2
x + aT V V

2
y + aLV

2
z

)
,

Dxy = Dyx =
1
V

(aL − aT H) VxVy,

Dxz = Dzx =
1
V

(aL − aT V )VxVz,

Dyz = Dzy =
1
V

(aL − aT V )VyVz. (7.1.56)

These expressions can be compared with those for the isotropic case, (7.1.45).
Burnett and Frind (1987) further assumed that aT H � aT V . Most solute
transport codes (Sec. 8.8), such as MT3D (Zheng, 1990), MOC3D (Konikow
et al., 1996), and PHAST (Parkhurst et al., 2004), use this formulation. The
relations presented in (7.1.56), however, are not consistent with (7.1.49). In
fact, Lichtner et al. (2002, 2008) have demonstrated that (7.1.56) does not
conform with tensor transformation rules, suggesting that it is not an accept-
able model.

Based on a turbulence model investigated by Batchelor (1959), using a
method introduced by Robertson (1940), Poreh (1965) suggested a model
that is based on four dispersivity coefficients,

Dij =
[
α1δij + α2

ViVj
V 2

+ α3eiej +
α4

2
eiVj + ejVi

V

]
V. (7.1.57)

Comparing the above with (7.1.49), we observe that Poreh’s (1965) model is
equivalent to setting Vkek/V to zero for terms associated with a4 and a6, and
to 1 for the term associated with a5. Here we notice that

Vkek
V

=
V · e
V

= cos θ, (7.1.58)

where θ is the angle between the material axis and the flow direction. A
reason for the absence of such terms might be that the turbulence model
lacks the material anisotropy aspect, because fluid as a material is isotropic;
while in a porous medium we have the additional effect of material anisotropy,
represented by the cos θ term.

Lichtner et al. (2002) examined the Poreh (1965) model and discussed
the need for introducing cos θ as a factor in the constitutive model. As a
result, a three parameter model (called a ‘four parameter model’ in Lichtner
et al. (2002)) was proposed. By selecting z as the material axis of symmetry
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(e3 = 1, e1 = e2 = 0), the components of the dispersion coefficient in Lichtner
et al. (2002) model are

Dxx =

[
aL

V 2
x

V 2
+ aT H

V 2
y

V 2
x + V 2

y

+ aT

V 2
x V

2
z

V 2(V 2
x + V 2

y )

]
V,

Dyy =

[
aL

V 2
y

V 2
+ aT H

V 2
x

V 2
x + V 2

y

+ aT

V 2
y V

2
z

V 2(V 2
x + V 2

y )

]
V,

Dzz =

[
aL

V 2
z

V 2
+ aT

V 2
x + V 2

y

V 2

]
V,

Dxy = Dyx =
[
aL

VxVy
V 2

+ aTH

VxVy
V 2
x + V 2

y

+ aT

VxVyV
2
z

V 2(V 2
x + V 2

y )

]
V,

Dxz = Dzx =
[
(aL − aT )

VxVz
V 2

]
V,

Dyz = Dzy =
[
(aL − aT )

VyVz
V 2

]
V, (7.1.59)

where

aL = α1 + α2 − α3 cos2 θ,
aT = α1 + α3(1− cos2 θ),

aT H = α1, (7.1.60)

with α1, α2, and α3 as the three material coefficients (which are different
from those defined in (7.1.57)). The relation (7.1.59) also shows that at any
location in the flow field, only three of the dispersivity coefficients can be
independent.

For vertical flow (θ = 0), (7.1.59) reduces to

DV

ij =

⎡⎣α1 0 0
0 α1 0
0 0 α1 + α2 − α3

⎤⎦V =

⎡⎣ aV
TH 0 0
0 aV

TH
0

0 0 aV
LV

⎤⎦V, (7.1.61)

and for horizontal flow (θ = 90◦),

DH

ij =

⎡⎣α1 + α2 0 0
0 α1 0
0 0 α1 + α3

⎤⎦V =

⎡⎣ aH
LH

0 0
0 aH

T H 0
0 0 aH

T V

⎤⎦V. (7.1.62)

In the above, we observe

aV

LV
= α1 + α2 + α3, aH

LH
= α1 + α2,

aH

T V = α1 + α3, aH

T H = aV

T H = α1. (7.1.63)
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We note that the dispersivities, aV
LV

, aH
LH

, etc., defined above, are not the
same as those in (7.1.54) and (7.1.55). From (7.1.61) and (7.1.62), we note
the important consequence that DH

T H = DV

T H , i.e., the horizontal transverse
dispersion coefficient of the horizontal flow is equal to the transverse disper-
sion coefficient of the vertical flow. We also note that DH

TV = DV

LV−DH

LH+DH

TH .
In other words, if we conduct a horizontal and a vertical uniform flow tests,
the dispersion coefficients obtained are related to each other.

F. Additional comments on dispersion

Before leaving the discussion on the flux of a dissolved chemical species, let
us mention a number of phenomena, which may further affect the spreading
and travel time of solutes in porous media:

Multiphase flow In multiphase flow, a dispersivity is associated with
each fluid phase. Thus, each of the dispersivity components, e.g., the lon-
gitudinal and transversal dispersivities, depends on the phase configuration
within the void space. Hence, each of these components is a function of the
phase saturation. However, very little information on these functions is avail-
able to date. Probably because of this reason, the dependence on saturation
is usually overlooked in practice.

Non-Fickian dispersion model In recent years, several researchers (e.g.,
Berkowitz et al., 2000, 2002; Berkowitz and Scher, 2001) have demonstrated
that even in a relatively homogeneous porous medium, the dispersive flux
cannot be expressed as a Fickian-type law.

Consider a solute slug injected into an aquifer with uniform flow. After
waiting some initial short period, so that the use of the continuum approach
will be justified, the tracer spreads out such that, in a Fickian model, con-
tours of constant solute concentration can be described as confocal ellipsoids
(in 3-D), indicating a binormal distribution. Such an experiment is shown,
conceptually, in Fig. 7.1.1b. The size of the contaminant cloud, estimated by
its longitudinal and transverse standard deviations, σL, and σT , respectively,
grows with the square root of time

σL =
√

2DLt =
√

2DLL/V , and σT =
√

2DT t =
√

2DTL/V , (7.1.64)

where L(= V t) is the distance that the center of mass has traveled during
time t, at the mean velocity V .

It is well known from the dispersion phenomena observed in pipe flow (Tay-
lor, 1953, 1954), natural streams (Liu and Cheng, 1980), and groundwater
flow, that at small times, the dispersion coefficient is not a constant; rather it
grows with time and reaches a constant only after a sufficiently long time (or
large distance traveled). Also, the concentration cloud is skewed toward the
source, and becomes Gaussian only after a certain distance traveled. Other
models based on laboratory observation and random walk models (Berkowitz
et al., 2000, 2002; Berkowitz and Scher, 2001) have indicated that the center
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of mass of the cloud does not travel with the flow velocity, and L ∼ tβ, σ ∼ tβ ,
where 0 < β < 1. It is of interest to observe that for a Fickian model, L ∼ t,
σ ∼ t1/2, and L/σ ∼ t1/2; while for this non-Fickian model, L/σ ∼ constant.

Ion exclusion Because of the electrical charge on certain solid surfaces,
a chemical species that is an ion may be repelled from the solid wall of the
void space, where the water velocity is small (recalling that we assume that
water is adsorbed to the solid wall), and move mainly in the regions of higher
velocity inside the void space. The average velocity of the water carrying and
dispersing the species is, thus, higher than for non-ionic contaminants. As a
consequence, the advective flux of the contaminant will be higher, and so will
the coefficient of dispersion, which is proportional to the average velocity. This
phenomenon has also been called charge exclusion (Gvirtzman and Magaritz,
1989; Gvirtzman and Gorelick, 1991).

Size exclusion Some molecules, or ions, are so large that their travel is re-
stricted to the larger pores. As a consequence, they are carried (by advection)
at a higher average water velocity. The higher average velocity also results
in a higher coefficient of dispersion. This phenomenon is more prevalent in
fine-grained soils and for large molecules, like organic macromolecules.

Although this section deals with a dissolved component, we would like also
to point out that the magnitude of exclusion is particularly important when
considering the transport of microorganisms and of colloidal particles that
may carry contaminants, because of their relatively large size.

7.1.7 Total flux

We may now combine the three modes of transport of a chemical species—
advection, dispersion, and diffusion, and write the total macroscopic flux (per
unit area of a fluid f -phase), Jγtotal, in the form:

Jγtotal = cfV
f

+ Jγ + J∗γ

= cfV
f −Dγ

h · ∇cf , (7.1.65)

where
Dγ
h ≡ D + D∗γ (7.1.66)

denotes the coefficient of hydrodynamic dispersion of the chemical species.
Note that the average in cf is an intrinsic phase averages. Henceforth, we
shall omit the symbol that denotes the intrinsic phase average.

7.1.8 Field-scale heterogeneity

In Subs. 7.1.4, the phenomenon of solute dispersion was shown to be a con-
sequence of the heterogeneity of the porous medium at the microscopic scale,
i.e., due to the presence of a solid matrix and a void space within the REV.
A grain or pore diameter, or the hydraulic radius of the pore space, was
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suggested as the scale of this heterogeneity. This heterogeneity produces the
velocity variations that take place inside the void space. The dispersive flux,
a macroscopic level concept obtained by averaging over an REV, was in-
troduced as a means for circumventing the need to know the details of the
velocity distribution and of other transport features at the microscopic level.

As emphasized in Subs. 1.3.4, subsurface domains, which are the porous
medium domains of interest in this book, are highly heterogeneous with re-
spect to their macroscopic coefficients, e.g., porosity and permeability. We
have introduced the term ‘megascopic level’, obtained by smoothing out vari-
ations at the macroscopic level, and introduced the concept of ‘scale of het-
erogeneity’, indicating that at the macroscopic level, variations, say in perme-
ability, may occur at different scales. In fact, this multiple scale heterogeneity
is a dominant factor in the subsurface. Because pressure propagates very fast,
the effect of this inherent heterogeneity is less noticeable when considering
fluid flow. However, its effect on the transfer of the mass of a dissolved chem-
ical species is significant.

In principle, it should be possible to solve a transport problem at the
macroscopic level in any heterogeneous domain in which the spatial variations
of the permeability and the other relevant coefficients are known. Indeed, in
small scale field problems, e.g., in the vicinity of an injection well, or for a
small distance downstream of a pollution source, the formation properties
(porosity, permeability, dispersivity) may be known (or estimated), and the
problem of predicting the concentration distribution of the injected solute, or
of the advancing pollution plume, can be solved by making use of the (macro-
scopic level deterministic) model described in this chapter. However, usually,
especially if we are interested in a pollution plume that advances a large dis-
tance, sometimes measured in kilometers, we face a situation similar to that
which is encountered at the microscopic level, viz., that the detailed infor-
mation about the spatial variation of the relevant parameters is not known,
due to the heterogeneity inherent in such domains. The way we overcome
the lack of information about the heterogeneity at the microscopic level (re-
sulting from pore scale heterogeneity) is to use homogenization, or averaging
over an REV, as discussed in Sec. 1.3. One may visualize this averaging as
a smoothing operation. As a consequence of the averaging process, the phe-
nomenon of dispersion was introduced. The same averaging, or smoothing
approach, may also be applied to heterogeneities that are encountered at the
macroscopic level, to obtain a continuum at the megascopic level. Such an
averaging volume was referred to as the representative macroscopic volume
(RMV) (Subs. 1.3.4B). As indicated in (1.3.14), the characteristic size of this
volume, �∗, is constrained by

d∗ � �∗ � L,

where d∗ is a length characterizing the macroscopic heterogeneity that we
wish to smooth out, and L is a length characterizing the porous medium do-
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main. Similar to what happens during microscopic-to-macroscopic smooth-
ing, here, the information about the heterogeneity at the macroscopic level
appears at the megascopic level in the form of various coefficients.

Denoting the volume of an RMV by Uo, and the macroscopic value of e
by e, we define the megascopic value of e by:

e(x, t) ≡ 1
Uo

∫
Uo

e(x′, t;x) dUo(x′), (7.1.67)

where x and x′ denote the centroid of the RMV and of a point (of the porous
medium regarded as a continuum) inside it, respectively. With this definition,
we may now derive the total flux of a γ-component at the megascopic level,
by averaging (7.1.65) over an RMV. For saturated flow, we obtain:

θJtγ = cfq + φ (Jγ + J∗γ)

= cfq + ĉf q̂ + φ (Jγ + J∗γ)

≈ cfq + ĉf q̂, (7.1.68)

where a double bar over a macroscopic value indicates a megascopic value
obtained by averaging over an RMV, with c = θcf , and ˆ(..), defined by:

ˆ
(..)

f
= (..)

f − (..)
f
,

is the deviation of a macroscopic value at any point within an RMV, from its
average over the RMV. We note that the flux on the left-hand side of (7.1.68)
(and hence all other terms) is per unit area of porous medium.

As could have been expected, the megascopic total flux contains two new
additional dispersive fluxes, which result from the variability of the relevant

macroscopic quantities. One is ĉf q̂, which will be referred to as the macrodis-
persive flux of the chemical species. The other is the average over the RMV of
the sum of the dispersive and diffusive fluxes at the macroscopic level. Note
that on the last line of (7.1.68) we have neglected the second dispersive flux
as being much smaller than the first.

Altogether, the total flux is again the sum of an advective flux and a
dispersive one. There is no analogy here to the diffusive flux, as we have
neglected it. At very low velocities, we may not neglect the average of the
macroscopic diffusive flux.

We have to express the dispersive flux at the megascopic level in terms of
megascopic quantities, in the same manner as is done for describing transport
at the macroscopic level. We usually assume that a Fickian-type dispersion
law, e.g., (7.1.32), is also valid for describing the macrodispersive flux. A
macrodispersivity, aijkm, can be defined in the same way as the dispersivity
was defined earlier in (7.1.39). Bear (1979), while developing the vertically
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integrated mass balance equation for a component of a phase, suggested for
the general case of an anisotropic porous medium, an expression for macrodis-
persivity in the form:

aijkm =
K̂inK̂j�

Kkn Km�
L̃, (7.1.69)

where Kij denotes the ij-th component of the hydraulic conductivity tensor,
and L̃ is a length that characterizes the inhomogeneity of the aquifer, re-
sulting from stratification. It is a fourth rank tensor, which is analogous to
the dispersivity at the macroscopic level (i.e., with aL and aT , etc.). In an
isotropic porous medium, the macrodispersivity reduces to a scalar. Gelhar
(1976) and Gelhar et al. (1979) analyzed the dependence of macrodisper-
sion on permeability variations. For horizontal flow in an isotropic confined
aquifer, they suggested that

aL =
1
3

L2
1σ

2
lnk

aT

, (7.1.70)

in which L1 is a correlation distance (= distance along which permeabilities
are still correlated), σlnk is the standard deviation of ln k, and aT is the
transverse dispersivity.

Altogether, we may summarize this topic by suggesting that dispersion and
macrodispersion are analogous phenomena, in that both are consequences of
velocity variations that are due to heterogeneity, but at different scales. Dis-
persion arises from velocity variations within the void space (i.e., at the mi-
croscopic level), caused by the presence of the solid surfaces. Macrodispersion
is produced by macroscopic velocity variations, caused by variations in the
permeability and porosity. In both cases, the flux is the sum of an advective
flux and a (hydrodynamic) dispersive one, written at the respective levels.
The structure of the coefficient of dispersion is the same in both cases, and
so is the relationship between the coefficient of dispersion, the dispersivity,
and the average velocity. In practice, we use exactly the same mathematical
model (except that in the case of field scale, we usually neglect the flux due to
molecular diffusion), but select the magnitude of the dispersivity according
to the scale of heterogeneity.

In laboratory column experiments, the porous medium is more or less
homogeneous, say with respect to permeability and porosity. The scale of
heterogeneity is that of the size of a grain or a pore. Indeed, the magnitude
of longitudinal dispersivity found in numerous column experiments is approx-
imately equal to a pore- or grain-size. However, under field conditions, the
scale of heterogeneity, due to variability in permeability and porosity, is much
larger. In fact this scale grows with the size of the domain. Gelhar et al. (1992)
compiled a large number of field experiments and presented the observed lon-
gitudinal dispersivities, aL, as a function of the travel distance, Ls, as shown
in Fig. 7.1.5. It is clear that macrodispersivity is proportional to the size of
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Figure 7.1.5: Longitudinal dispersivity versus plume travel distance for var-
ious types of observations and media (Gelhar et al., 1992). Line marked as
(1): equation (7.1.71); and (2): equation (7.1.72).

the field, although the data shows a wide range of scatter. Lallemand-Barrés
and Peaudecerf (1978) analyzed published values of dispersivity and showed
that, on the average, the dispersivity increases with the distance (between a
few meters and 10 km), between the source and the point of observation. As
a ‘rule of thumb’, they concluded that the dispersivity can be approximated
as 1/10 of the distance traveled. This is often referred to as a ‘scale effect’.

Based on the argument of self-similar (fractal) hierarchy of logarithmic
hydraulic conductivity, Neuman (1990) suggested a universal scaling law and
presented the following equations based on the least square fit of the data:

aL = 0.017L1.5
s ; Ls ≤ 100 m; (7.1.71)

aL = 0.32L0.83
s ; Ls > 100 m. (7.1.72)

These two empirical formulas are plotted in Fig. 7.1.5. Gelhar et al. (1992,
1993), however, cautioned the use of these power laws by pointing out the
large scatter in data (2–3 orders of magnitude) in Fig. 7.1.5.
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Gelhar and Axness (1983) and Dagan (1984) (see also (7.1.70)) showed
that the longitudinal dispersivity is also proportional to the product of the
variance of the logarithm of the hydraulic conductivity, and the correlation
length scale, i.e.,

aL ∼ L1 σ
2
lnk. (7.1.73)

This can explain the range of scatter observed in Fig. 7.1.5.
In practice, often, the first estimate of the longitudinal dispersivity, prior

to actual calibration, is taken as 1/10 of the size of the domain of interest.
Thus, for example, for a domain of interest which is 10 m long, we estimate
aL = 1 m. For a domain that is hundreds of meters in size, we estimate
aL in the range of tens of meters. The horizontal transverse dispersivity is
estimated as approximately equal to about 1/10 of the longitudinal one. The
vertical transverse dispersivity, in a layered horizontal aquifer, is 1–2 orders
of magnitude smaller than the horizontal one (Gelhar et al., 1992). Obviously,
these are merely orders of magnitude and may be used as initial or preliminary
estimates only. In each particular case, the actual value should be determined
by some model calibration procedure.

Apart from the different magnitude of the dispersivity to be employed, the
expressions for advective and dispersive fluxes presented in Subs. 7.1.2 and
7.1.5 may be assumed to remain valid when modeling field conditions.

7.2 Balance Equation for Single Species

As in the case of fluid flow, the flux equation, (7.1.65), contains two variables:
the total flux and the concentration. This means that we need one more
equation; this is the mass balance equation for the γ-species. We have not
counted the velocity as a variable as we can obtain it by writing and solving
the relevant flow model.

We have already introduced the concept of the balance of an extensive
quantity in Chap. 5, where we considered the balance of fluid mass. In this
section, we are interested in the balance of the mass of a chemical species, or
a component dissolved in a fluid phase. We shall introduce this topic through
a very simple model. In spite of its simplicity, this model may provide useful
insight in practice, especially during the initial stage of an investigation, by
indicating whether or not a more sophisticated model is required.

7.2.1 Single cell model

As explained in Subs. 5.1.1, a balance is written for an extensive quantity
within a specified spatial domain, for a specified period of time. Let us de-
note the time interval by Δt, and the volume of the porous medium domain
for which the balance is written by Uo. A balance of this kind describes the
integrated behavior within the domain, usually referred to as a cell, or com-
partment, during the balance period. Sometimes, we consider a number of
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Figure 7.2.1: (a) A single cell model. (b) c = c(t) in the cell.

adjacent cells, in a one-, two-, or three-dimensional configuration. To obtain
the integrated behavior in the cell at a point in time, we divide both sides
of the balance equation by Δt, and let Δt shrink to zero. When both the
finite volume around a point in space and the time interval around a point
in time are shrunk to the limiting value of zero, we obtain the description
of the behavior at a point in space and in time in the form of a partial dif-
ferential equation. This is of interest whenever state variables and fluid- and
solid-phase properties vary spatially within a domain.

We start by considering a cell (Fig. 7.2.1) of finite volume and a finite
time interval. In writing a balance for a cell, it is assumed that all fluid and
porous medium properties (e.g., porosity, φ, and partitioning coefficient, Kd)
and all state variables, (e.g., fluid density, component concentration, and fluid
pressure) are uniform within Uo. This assumption means that the quantity
the considered chemical species present in the cell is continuously mixed to
form a uniform mixture.

Let us express the verbal statement of balance presented in (5.1.1) in a
mathematical form for the mass of a γ-species (concentration c) within a fluid
phase that occupies the void space at a saturation S. We assume that the solid
matrix is nondeformable, i.e., ∂φ/∂t = 0, and that the fluid is incompressible,
i.e., ∂ρ/∂p = 0.

The quantity of the γ-species within the cell is expressed by φSUocγ , so
that the balance of γ within Uo, during a time interval Δt, takes the form:

(φSUocγ)
∣∣
t+Δt

− (φSUocγ)
∣∣
t
= Δt (Qinc

γ
in −Qoutc

γ + fγUo + φSUoρΓ γ) .
(7.2.1)

Here, cγin is the γ-concentration in the incoming fluid. The total rates of fluid
inflow and outflow are given by Qin and Qout, respectively. The symbol fγ

denotes the rate (= mass per unit time) at which the γ-species moves from
the solid and from all other fluid phases into the considered fluid phase across
their common microscopic boundaries, per unit volume of porous medium,
and Γ γ denotes the rate of production of γ within the fluid phase (e.g., by
chemical reactions), per unit mass of fluid (of mass density ρ).



378 MODELING CONTAMINANT TRANSPORT

In order to write the balance for a point in time, we divide (7.2.1) by Δt
and let Δt→ 0, obtaining

lim
Δt→0

(φSUocγ)
∣∣
t+Δt

− (φSUocγ)
∣∣
t

Δt
= Qinc

γ
in −Qoutc

γ + fγUo + φSUoρΓ γ ,
(7.2.2)

or, according to the definition of a derivative

d

dt
(φSUocγ) = Qinc

γ
in −Qoutc

γ + fγUo + φSUoρΓ γ . (7.2.3)

Dividing this equation by Uo, we obtain a balance per unit volume of porous
medium. Recalling that we have assumed uniformity within the cell, the bal-
ance equation that describes the behavior within the cell becomes

d

dt
(φScγ) =

1
Uo (Qinc

γ
in −Qoutc

γ) + fγ + φSρΓ γ . (7.2.4)

In a similar way, we can derive a mass balance equation for a γ-species that
adsorbs on the solid. We obtain

d

dt
(ρbF γ) = −fγ + ρbΓ

γ
s , (7.2.5)

where F γ denotes the mass of γ per unit mass of solid, ρb(≡ (1 − φ)ρs)
denotes the bulk density of the solid, and Γ γs denotes the rate of production
of γ adsorbed on the solid, per unit mass of solid.

We shall consider the following four cases:

CASE A. Let the fluid phase be a liquid that completely saturates the porous
medium domain. Suppose that Qin = Qout, and that the γ-species does not
adsorb, decay, or undergo any chemical transformation. Then, (7.2.4) reduces
to

dcγ

dt
=

Qin

φUo (cγin − cγ). (7.2.6)

For the conditions, cγ = cγo at t = 0 and cγin = 0 for t ≥ 0, the solution of this
equation is

cγ(t) = cγo exp
[
−
(
Qin

φUo

)
t

]
. (7.2.7)

The lower curve in Fig. 7.2.1b presents (7.2.7) in graphical form. The product
φUo that expresses the volume of void space within Uo is usually referred
to as ‘one pore volume’. The quotient φUo/Qin gives the time required to
flush the fluid through the cell once, assuming complete flushing. We refer
to this time interval as residence time, because it is the average time that a
liquid particle stays in the cell while undergoing continuous, but incomplete
flushing. Because of the continuous mixing that we have assumed to take place
in the cell, its concentration, as indicated by (7.2.7), is gradually reduced. It
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may require the flushing of a number of pore volumes in order to reduce the
initial concentration in the cell to a desired level, e.g., down to the MCL
(maximum contaminant level), in the case of a contaminant.

CASE B. We shall continue under the same assumptions as in Case A, except
that the γ-species may adsorb onto the solid under equilibrium conditions,
obeying the linear isotherm, F γ = Kdc

γ . A detailed discussion on adsorption
under equilibrium conditions is presented in Subs. 7.3.3. The mass of γ in
the liquid, per unit volume of porous medium, is given by φcγ , while, e.g.
according to the linear isotherm (7.3.66), the mass of γ adsorbed on the
solid, per unit volume of porous medium, is given by (1 − φ)ρsF γ = ρbF

γ

= ρbKdc
γ . The total mass of γ per unit volume of porous medium, ργpm, is,

therefore,

ργpm = φcγ + ρbKd c
γ = φ

(
1 +

ρbKd

φ

)
cγ = φRd c

γ , (7.2.8)

where
Rd ≡ 1 +

ρbKd

φ
≥ 1 (7.2.9)

is a coefficient that expresses the partitioning of γ within a unit volume of
porous medium: for one unit of mass of γ in the liquid, we have ρbKd/φ mass
units on the solid. For a nonlinear isotherm, say, F = Kd (cγ)n, the coefficient
Rd takes the form:

Rd = Rd(cγ) = 1 +
ρbKd (cγ)n−1

φ
. (7.2.10)

For the linear isotherm, the balance equation is

dcγ

dt
= −

(
Qin

RdφUo

)
cγ , (7.2.11)

with its solution

cγ(t) = cγo exp
[
−
(

Qin

RdφUo

)
t

]
. (7.2.12)

Note that (1) the same mass balance equation can be obtained by summing
(7.2.4) and (7.2.5), since the terms expressing the exchange between the fluid
and the solid cancel each other, and (2) the solutions (7.2.7) and (7.2.12) are
similar, except for the role played by Rd.

The upper curve in Fig. 7.2.1b presents (7.2.12) in graphical form. Since
Rd > 1 (under the assumption of Kd > 0), we note that the time required
for reducing the concentration in the cell to a desired level is longer with
adsorption than without it. The flushing of the γ-contaminant is slower than
that of the host liquid. We say that the movement of the contaminant is
retarded , relative to the liquid. The coefficient Rd is, therefore, referred to
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as retardation coefficient (or factor). This coefficient is further discussed in
Subs. 7.4.2. We may now define an effective residence time equal to the
quotient RdφUo/Qin; it indicates the average time that the γ-contaminant
stays in the cell that undergoes continuous, but incomplete flushing.

CASE C. The conditions are similar to those of Case B, except that the
contaminant undergoes a first order (e.g., radioactive) decay described by

ρΓ γ = −λcγ , Γ γs = −λF γ , (7.2.13)

following from (7.3.53). The balance equation is

dcγ

dt
= −

(
Qin

RdφUo + λ

)
cγ , (7.2.14)

with its solution

cγ(t) = cγo exp
[
−
(

Qin

RdφUo + λ

)
t

]
. (7.2.15)

Note that if the liquid occupies only part of the void space, at saturation S�,
assumed to remain constant during the flushing, we must replace φ by φS� in
(7.2.8) through (7.2.15). The effective residence time is, then, S�φUoRd/Qin.

CASE D. Here, the void space is occupied by a liquid water phase at a
constant saturation Sw and a gas phase at saturation Sg. The gas phase
pressure is assumed to stay at approximately a constant value so that its
density does not change appreciably. The γ-contaminant is a volatile one,
partitioned between the liquid, the solid, and the gas (at constant pressure).
The partitioning of a volatile species between a liquid and a gas, through a
common interface, under equilibrium conditions, is assumed to obey Henry’s
law (presented and discussed in Subs. 7.3.5), written here in the form

cγg = Hcγw. (7.2.16)

Inflow and outflow are only of the gaseous phase (as in ‘Vapor Extraction’;
Subs. 7.10.4). The evaporation and condensation of water is not considered.

The mass of γ per unit volume of porous medium in the liquid (w), in the
gas (g), and on the solid, are now

φSwc
γ
w, φSgc

γ
g , and ρbF

γ ,

respectively. Let us choose cg as the unknown variable of the problem. We
wish to predict future cγg -concentrations. Obviously, once cγg (t) is known, we
can calculate cγ� (t), and F γ(t).

Thus, the total mass of γ per unit volume of porous medium can be written
as
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φSgc
γ
g + φSwc

γ
w + ρbF

γ = Sgφ

(
1 +

Sw
SgH +

ρbKd

SgφH
)
cγg = SgφRvc

γ
g

= Swφ

(
SgH
Sw

+Rd

)
cγw = Sgφ

(
1 +

SwRd
SgH

)
cγg , (7.2.17)

where

Rd ≡ 1 +
ρbKd

Swφ
, and Rv ≡ 1 +

Sw
SgH +

ρbKd

SgφH . (7.2.18)

Here, Rv is another kind of retardation coefficient, this time for the concen-
tration of a volatile species in a gas phase. Without volatilization, H = 0, cγg
= 0, and the total mass of the species per unit volume of porous medium is
expressed by SwφRdc

γ
w. The solution, under the same conditions on cγg (t) as

those for cγ(t) in Case B above, is

cγg (t) = cγgo exp
[
−
(

Qin

RvφUo

)
t

]
, (7.2.19)

where we recall that the inflow of the gas has been assumed to be equal to
the outflow (that removes the mass of γ from the cell).

The single cell models described in this subsection may be employed to
obtain preliminary estimates of clean-up times required in order to reduce
concentrations to below permissible levels. In the following subsection, we
shall extend our analysis to balance equations that describe transport in
porous medium domains visualized as continua that involve spatial variations
in material properties, fluxes, and state variables.

7.2.2 Fundamental balance equation

Our objective here is to develop the differential balance equation for the
mass of a chemical species in a fluid phase that fully or partly occupies the
void space. We shall follow the same methodology as used for developing
the balance equation for the mass of a fluid phase in both saturated and
unsaturated flow.

We consider the case of a γ-species (e.g., a contaminant) in a fluid α-phase
(liquid, or gas) that occupies the entire void space, or part of it, at a fluid
content θα (= φSα) that is allowed to vary in space. Since we are considering
here only a single fluid phase, and only a single chemical species, the subscript
α and the superscript γ will be omitted wherever possible.

The starting point may be the microscopic balance equation (5.1.1) for
any extensive quantity E, in which E is replaced by ‘mass of a γ-species’,
and the resulting differential E-balance equation (5.1.4), at the microscopic
level, in which e is replaced by the concentration c ≡ cγ .

The macroscopic differential mass balance equation for a component in
a fluid phase may be obtained either by writing the microscopic balance
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