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Chapter 2
Stress Definition

“Stress tensor” is a tautology since the term tensor (latin tensio)
means stress. The pleonasm, however, became naturalized in
books dealing with mechanical stress (Hahn 1985, p. 20, fn. 1).
Referring to other second-rank tensors in physics like the iner-
tial tensor, this tautology disappears

This chapter presents the fundamental concept of stress as it is defined from a math-
ematical, physical and continuum mechanics point of view. The stress tensor defin-
ing the state of stress at a point is introduced using the continuum concept of a stress
vector (traction) defining the state of stress on a plane (Sect.2.1). Principal stresses
and their orientations are deduced from solving the eigenvalue problem (Sect.2.2).
The Mohr circle of stress is a way of visualizing normal and shear stress com-
ponents for traction vectors associated with all possible planes through one point
(Sect.2.3). Since elastic stress is a fictitious term, the display of stress involves
some mathematical gimmicks (Sect.2.4).

2.1 Stress Tensor

In this section, mechanical stress is quantified mathematically as a second-order
tensor and physically by its tensor invariants. In analogy to continuum mechan-
ics (Fung 1965; Timoshenko and Goodier 1970; Hahn 1985), consider a deform-
able body subjected to some arbitrary sets of loads in equilibrium (Fig.2.1). At any
given point P(x) = P(x;,x»,x3) within this body, we imagine a plane 4 slicing
through the body at an angle with respect to the Cartesian coordinate system with
unit vectors (e, 3, e3). The fictitious slicing plane (Sect. 1.1) divides the body into
volumes ¥, and V,, and has a normal 7 = (n1,n2,n3) which po_ints towards V.
The action that V| exerts on V), is denoted by a resultant force F = (F, F2, F3).
The traction vector & is defined as the ratio of the resultant force F to the surface
area A (Fig.2.1). In order to define the traction that acts over a specific point P(x)
in the body, the area 4 is now allowed to contract to a point (d4 — 0), so that the
magnitude 4 goes to zero.
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Fig. 2.1 Traction vector G ()
o acting on a hypothetical

(fictitious) slicing plane 4

with surface normal 7 within

a deformable body

X, sz o) P=P (X, X, Xy)

X, n=(n,, n,, n,)

F
o(P(x),n) = lim d— (2.1)
AA—0 dA

In general, the traction vector ¢ can vary from point to point, and is therefore a
function of the location of the point P(x). However, at any given point, the traction
will also, in general, be different on different planes that pass through the point.
Therefore, & will also be a function of n, the outward unit normal vector of the
slicing plane. In summary, ¢ is a function of two vectors, the position vector X
and the normal vector of the slicing plane n. In 1823, the French mathematician
Augustin Baron Cauchy (1789—-1857) introduced the concept of stress by eliminat-
ing the difficulty that & is a function of two vectors, o (X, z) at the price that stress
became a second-order tensor (Jaeger et al. 2007).

We have three remarks about Eq.(2.1). First, Eq.(2.1) is an empirical formula,
i.e. is confirmed by experimental findings. Second, there are obvious practical limi-
tations in reducing the size of a small area to zero, but it is important that, formally,
the stress is defined in this way as a point property. Third, the magnitude of the total
traction vector is

d
6P, = T 2.2)

To uniquely identify stress as a second-order tensor, Cauchy verified two laws.
Cauchy'’s first law is visualized in Fig.2.1 and reads

o(=n) = —o(n). (2.3)
Equation (2.3) is a version of Newton’s third law “actio = reactio” we know from

Sect. 1.1. If material to the right of the slicing plane (Fig.2.1, volume V) exerts a
traction ¢ on the material to the left (Fig.2.1, volume V), then the material to the
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left will exert a traction —o on the material to the right. The Cartesian component
of the traction vector in any given direction is considered to be positive if the inner
product (dot product) is negative. This is called the rock mechanics sign convention
(compression positive), and is inconsistent with most areas of mechanics where ten-
sion positive convention is used.

Cauchy’s second law states that all possible traction vectors at a point (infinite
number) corresponding to all possible slicing planes passing through that point
(infinite number), can be found from the knowledge of traction vector on three
mutually orthogonal planes in 3D. To derive this relationship for the traction on an
arbitrary plane, Cauchy introduced an infinitesimal tetrahedron (Fig.2.2). In the
Cauchy tetrahedron, the arbitrary slicing plane d4 is chosen as a small inclined
triangle close to the point P(x) = P(0,0,0) at which the state of stress needs to
be known. Cauchy’s second law can be derived from balancing forces at the tetra-
hedron (Fig.2.2). Three faces of the tetrahedron have outward unit normal vectors
that coincide with the negative Cartesian coordinate directions (—e; = (—1,0,0),
—e; =(0,—1,0), —e3 =(0,0,—1)). The inclined face of the tetrahedron has an
outward unit normal vector of

it = (1, ma, n3) = cos (i1, &;). 2.4)

The components of the vector # are given by the direction cosines that the outward
unit normal vector of the fourth face makes with the three Cartesian coordinate
axes. As the length of any unit vector is unity, n? +n3 +n3 = 1 applies. The area
of the face with unit vector 7 is taken to be dA. The areas of the three other faces
with outward unit normal vectors # = —e; equal

dA; = ndA. .5)

X3

Fig. 2.2 Cauchy tetrahedron
with traction vector balance
on three Cartesian planes
and the inclined slicing plane
close to the origin of the
infinitesimal tetrahedron
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The traction vectors on these faces are denoted by (Fig.2.2)
o =0(—e) (2.6)
and so the total force acting on these face are
dA;o; = nidAc (—e;). 2.7

Balancing forces on the inclined face of the tetrahedron leads to

& ()dA + mdAG (—&,) + nydA5 (—&,) + n3dAG(—e3) = 0. 2.8)

Cancelling out the common area dA4, and utilizing Cauchy’s first law, for example
o(—e;) = —o(ey), leads to Cauchy’s second law:

& (n) = nio(er) + na(ex) + n3d(es)
oi(n) = al'n; : (2.9)

It is written both in vector notation ((2.9), upper half) and index notation ((2.9),
lower half). The components of the three traction vectors that act on planes whose
outward unit normals are in the three coordinate directions are denoted by

&(e1) = (o11,012,013)"
5(22) = (021,022,023)", (2.10)

- T
o(e3) = (031,032,033)

where T stands for the transpose of a row vector since traction vector components
appear as columns in Eq. (2.9). The components of each traction vector are denoted
by two indices. The first refers to the direction of the outward unit normal vector e;
and the second refers to the component of the traction vector &. Substituting (2.10)
into (2.9) leads to

o1(h) = o11ny + 0211y + 03173
02(n) = o12n1 + 022y + O3213. (2.11)
03(n) = oy3n) + op3ny + 03313

If one uses the standard matrix algebraic convention that the first subscript of the
matrix components denotes the row and the second subscript denotes the column,
it follows that
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o1(n) o111 021 03] ni
o(n) | =| o on oxn n | (2.12)
o3(n) 013 023 033 n3

The matrix appearing in (2.12) is the transpose of the stress matrix. The stress ten-
sor mathematically given by the stress matrix unequivocally defines the state of
stress at an arbitrary point within a deformable body.

011 012 013
oj=| o2 on ox (2.13)
031 032 033

In 3D the stress tensor has nine components. The rows of the stress tensor are the
traction vectors along the coordinate axes. Equation (2.12) is usually written with the
transpose matrix defined in Eq.(2.13), because the stress matrix is always symmetric

- - T_
0 =o0yn=0;h
e (2.14)

0i = 0N = )il

Again, the equation is written in both vector notation ((2.14), upper half)) and index
notation ((2.14), lower half). The symmetry of the stress tensor can be proven by
applying the mechanical law of conservation of angular momentum. The symmetry
of the stress tensor reduces the components from nine to six in Eq.(2.13). Based
on this property of the stress tensor, the first subscript i in (2.13), can be specified
as normal to the actual slicing surface, while the second subscript j in (2.13), can
be identified with the direction of the force. Depending upon the orientation of the
slicing surface being normal and the force we can distinguish normal stress (i=j,
force perpendicular slicing plane) with components (o, 0,,, 7,,) pointing towards
Cartesian axes and shear stress (i#j], force parallel slicing plane) with components
(0,,=0,,0,=0,,, 0,,=0,,) effective within Cartesian planes.

The physical significance of the stress tensor is illustrated by a 2D square ele-
ment of an elastic body in Fig. 2.3. The rock mechanics sign convention is illustrated
in Fig.2.3a. The traction vector that acts on the face whose outward unit normal
vector is in the x, direction, has components (o,,, 7,,). As the traction components
are considered positive if they are oriented in the directions opposite to the outward
unit normal vector (Fig.2.3a), we see that the traction o, is a positive number if it
is compressive (Fig.2.3a). In Fig.2.3b, the engineering mechanics sign convention
is illustrated with tensile normal stresses treated as positive. The direction of posi-
tive shear stresses is as shown in both sign conventions. Since compressive stresses
are much more common for rocks in the Earth’s crust, the rock mechanics sign
convention (compression positive) is more appropriate in order to avoid frequent
occurrence of negative signs in calculations involving stresses.
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Fig. 2.3 Visualization of a b

stress components in 2D. 022 OG22
Sign convention in a rock 621 ¢ T (521
mechanics or geosciences E— EEE—
(compression positive), and (D)
b engineering mechanics or
material sciences (tension R g 1 R 31
positive) 2

T_, 1 G2

We have three final remarks about the stress tensor. Firstly, the stress tensor can
be calculated from the inner product (dot product) of the traction vectors with the
unit vectors of the Cartesian reference frame (see (2.13) and (2.14), o;; =g, - 0;).
Secondly, the stress tensor can be written as a matrix, but a tensor has specific phys-
ical properties that are more important compared to that of a regular matrix. These
properties relate to the manner in which the components of a tensor transform when
the coordinate system is changed (Sect. 2.2). Thirdly, the fact that the state of stress
at a point in 3D is completely specified by six independent components is important
for the stress measuring techniques discussed in Part II of the book (Chaps. 6-8).

The unit of stress is pascal Pa=Nm™2. The stress magnitude 1 Pa is produced by
the force 1 N which acts normal or parallel to a square metre large surface. As 1 N is
a small force and 1 m? a large surface, 1Pa is a very small stress (= force/area). The
“old” unit atmospheric pressure (1 bar) corresponds to 100kPa. Crustal stresses in
the Earth are usually measured in mega pascal whereby 1 MPa (“new unit”) equals
10bars (“old unit”). The stress magnitude 1 MPa is equal to the pressure p at a depth
z of about 100 m in water, or about 37 m in rock using the relationship p=pgz, where
p is the density of material (1000 kgm™ for water, 2700 kg m™ for rock) and g is the
acceleration due to gravity, 9.81 ms™2. Note that stress is not the same as pressure.
Pressure is reserved for a specific stress state in which there are no shear compo-
nents and all normal components are equal (e.g., in a fluid).

Note-Box A specific stress component acting on a specific slicing plane
inside a deformable body can be described by a stress vector (traction). Three
traction vectors are needed to unequivocally define the state of stress at a
point inside the body resulting in nine components of the physical quantity
stress tensor. Mathematically, the stress tensor can be written as stress matrix
representing all stress components acting on three orthogonal slicing planes
through a single, arbitrarily chosen body point. Due to the symmetry, only
six stress components remain independent in the stress tensor (three normal
and three shear stresses). The stress unit is force per area Nm™ = Pa (pascal),
whereby 1 MPa equals 10 bar.
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2.2 Principal Stresses

The principal stresses and principal directions can be found by asking whether or not
there are planes on which the traction vector is purely normal, with no shear compo-
nent. On such planes, the traction vector is aligned parallel to the outward unit vec-
tor, and can therefore be expressed using Cauchy’s second law (see Eq.(2.14)) as

o =o0n

(2.15)

b
0 = o;n; =o0n;

where o is a yet unknown scalar quantity. With help of Kroneckers delta ((5,,].: 1 for
i=jand (5[].:0 for i#j) it follows that

(05 — 08;)m; = 0. (2.16)

This is the fundamental equation for determining eigenvalues (principal stress mag-
nitudes) and eigenvectors (principal stress directions) of the stress matrix. Splitting
it into components results in the following set of equations

(o11 —o)ny + oy + o3z =0
oyny + (022 — o)ny + ox3n3 = 0. 2.17)

03111 +0o3hp + (033 — o)z =0

Admissible solutions of this linear, homogeneous set of equations can be found only
if the determinant of the matrix coefficients equals zero, i.e.

011 —0 012 013 \
021 O — 0 023 =0. (218)
031 032 033 — 0O

When the determinant is expanded out, it takes the form of a cubic equation in o

o> —Lo*+ Lo —1=0, (2.19)

where (1, 1,, 1) are called tensor invariants. Values of stress invariants are inde-
pendent of the coordinate system used. The physical content of a stress tensor is
reflected exclusively in the stress invariants. For example, pressure in all directions,
as is the case in the hydrostatic state of stress, results from /. The three invariants
of the stress tensor are given by
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11 = 05 = 011 + 0 + 033 = trace(oy)

o111 012
021 022

11 013
031 033

022 023

1
= > (0io;; — 0y0)
o 03 P R

(2.20)
011 012 O13 1
Li=|o0y o0n op|= g(OiiijUkk + 20j;0,0k — 303030%)
031 03 033

1, is called the trace of the stress tensor and 7, , can be computed from the coefficient
determinants. The three solutions of the characteristic Eq.(2.19) are called princi-
pal normal stresses (o, 0,, 0,). The double subscripts of the normal stress compo-
nents can be reduced to single suffixes, since the shear components per definition
become zero. With the help of the fundamental theorem of algebra, Eq.(2.19) can
be written as

(0 —o1)(o —or)(o —o3)=0. (2.21)

Then the tensor invariants follow from principal normal stresses

Ly =014+0+03
]2 = 010, + 0,03 + 030]. (222)

I3 = 010,03

After the transformation, the stress matrix has the following (diagonal) form:

[on] 0 0
oy = 0 oo 0 |, (2.23)
0 0 03

whereby the principal axes are chosen in a way that magnitudes o, 20, >0, apply for
the principal stress. Using the principal stress magnitudes, the direction cosines of
the principal axes can be deduced from Eq.(2.4).

The principal normal stress components can be visualized in 3D using a rotated
cube (Fig.2.4). Principal stress directions (x', ', z') are rotated with respect to the
global (space-fixed) coordinate system (x, y, z). While six components of stress (tak-
ing into account the symmetry of stress tensor) are necessary to define the state of
stress in an arbitrary oriented cube (Fig.2.4a), only three components of stress (o,
0,, 0,) are required in the rotated cube of principal stresses (Fig.2.4b). Due to the
fact that besides the magnitudes of the three principal stresses (Fig. 2.4b, eigenvalues
o,, 0,, 0,) also the directions of the three principal stresses (Fig.2.4b, eigenvectors
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Fig. 2.4 Visualization of stress components in 3D on a cube a before and b after solving the eigen-
value problem of the stress matrix; engineering mechanics notation (tension positive convention)

a, B, y) are necessary, six pieces of information are required for full determination of
the state of stress at any point in any coordinate system. Principal normal stresses act
perpendicular to the faces of the cube, the surfaces of which are free of shear stresses.
An additional exercise for the reader is to redraw Fig. 2.4 so that it describes the situ-
ation when using rock mechanics (compression positive convention).

It is useful to have a way of presenting the stress tensor that clearly shows
whether or not there are any shear stresses acting at the point in question. To do so,
the stress tensor is decomposed into an isotropic (= hydrostatic) and a deviatoric
part. The isotropic part of the stress tensor is defined as

o 1
of’ = shi = owl

(2.24)

>

1
O = 5(011 + o2 + 033)

where 7 is the identity tensor (Ia = a) and ¢ is the mean normal stress. The devia-
toric stress is obtained by subtracting the isotropic part of the stress tensor from the
full stress tensor.

011 — Onm 012 013
dev iso
Gij = 0jj — Gij( = 021 022 — Oy, 023 . (225)
031 032 033 — Op

The usefulness of this decomposition arises from the fact that, in the elastic range of
deformation, the isotropic stress controls the volumetric change of a body, whereas
the deviatoric stress controls the distortion. Even at very high levels of stress, no
plastic flow is caused by a hydrostatic stress, because there are no shear stresses
on any plane, since all planes are principal planes. The deviatoric stress, however,
produces shear stress and can therefore lead to plastic flow if the elastic limit of
material is exceeded. A deviatoric stress causes no dilatation because the sum of
its components is always zero. Rock failure criteria (Chap. 3) are concerned prima-
rily with distortion, in which case these criteria are most conveniently expressed in
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terms of the invariants of the stress deviation. J, is the invariant of the stress devia-
tor that appears most often in rock failure criteria.
1, 2 2 2 2 2
Jr = 5(011 + 03 +033) + oy + 033 + 043
1
Jry = 3 [(61 — 02)* + (02 — 03)* + (03 — 01)*]. (2.26)
2 3,
J, = 30'm +5L = ETOCT
Apart from principal normal stresses, it should be mentioned that also principal
shear stresses exist which act in planes which are parallel to one principal axis and

form an angle of 45° with the two other principal axes. To the magnitudes of prin-
cipal shear stresses applies

0O) — O o3 — O o1 — O
ntntn= 22 >+ 32 L4 12 2 =0. (2.27)

With 6, 20,20, where o, is the maximum and o, is the minimum (least) principal
normal stress component, the maximum shear stress results in

0] — 03

2

= |n. (2.28)

Tmax —

The maximum shear stress acts in a plane which cuts the angle between maximum
and minimum principal normal stress into half. The planes in which the principal
shear stresses act are not perpendicular to each other. They form a normal dodeca-
hedron (Fig.2.5). The planes of the dodecahedron are not free of normal stresses.
Shear stress values are dictated by (2.27).

Exercise 2.1 Transformation of a (3x3) stress matrix. Consider the stress matrix

(a) Find the three principal stresses (o, 0,, 6,) by solving the eigenvalue problem.
(b) Compute the stress invariants (/,, 7, /) from principal stresses.

(c) What are the direction cosines of the planes on which the principal stresses act?
(d) The matrix formed by the nine components of the three eigenvectors describes

what kind of geometrical operation in space?
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Fig. 2.5 Visualization of
planes in which principal
shear stresses are effective
on a pentagon dodecahedron
(3D arrangement of 12 sur-
faces with 5 corners)

We have two final remarks about principal stresses. Firstly, the fact that the stresses
transform in an eigenvalue problem according to aij/- = Ro;R" when the coordi-
nate system is rotated is the defining property that makes the stress a second-order
tensor. The traction vector transforms according to 6" = Ro. The appearance of
only one rotation matrix, R in this transformation law is the reason that vectors are
referred to as first-order tensors. A zero-order tensor is a scalar quantity with mag-
nitude only (e.g. temperature). Secondly, principal stresses have particular signifi-
cance for rock engineering. The process of creating a new surface in a rock mass by
excavation causes principal stresses to be locally oriented perpendicular and paral-
lel to the free surface. The principal stress perpendicular to the free surface is zero.
The other two principal stresses, i.e. the maximum and minimum value, occur in a
direction parallel to the rock-free surface. Therefore, any excavation plane within
the Earth’s crust is a principal stress plane.

Note-Box Each stress matrix can be transformed from an arbitrary refer-
ence frame into the frame of principal axes. The state of stress in the new
system is then defined by three principal stresses (stress magnitudes) and
three principal axes (stress orientations). The physical meaning of the stress
tensor is captured in tensor invariants, which are independent of the ref-
erence frame used. Principal normal stresses are visualized on a cube the
faces of which are free of shear stresses. Principal shear stresses exist and
act on a dodecahedron, which planes are not free of normal stresses. All
unsupported rock excavation surfaces within the Earth’s crust are principal
normal stress planes.
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2.3 Mohr Circle of Stress

To make practical use of the stress matrix in Eq.(2.13), we must be able to find the
stress components in directions different from the reference directions. One possi-
bility was demonstrated by the principal stress matrix in Eq.(2.23). The Mohr circle
of stress is a second, simple graphical method of transforming the stress tensor. As
the discussion of stress is algebraically simpler in 2D than in 3D, the Mohr circle is
introduced in 2D. Many problems in rock mechanics are essentially 2D as stresses
do not vary along one Cartesian coordinate perpendicular to the free surface (cf.
stresses around boreholes, Chap. 7). Hence, it is worthwhile to study the properties
of 2D stress tensors.

Consider the arbitrary plane ds (unit length assumed in the z-direction) in a
deformable body whose normal makes an angle o with the orientation of maximum
principal stress o, (Fig.2.6). We look for the normal stress (o) and shear stress com-
ponent (7) acting on the surface element ds as a function of principal stresses and
tilt angle (o, 0,, &). Again, two equilibrium conditions must be fulfilled. For infini-
tesimal volumes, the balance of moments leads to the condition that pairs of shear
stresses must be equal (symmetry of stress tensor). The balance of forces prevents
the prism from translation and rotation. Note that in the 2D description of the Mohr
circle, we have to operate with prisms (Fig.2.6, triangles with unit length in the
third direction), since stress is defined as force per unit area.

The balance of forces (force = stress times area) at the small prism surface ds
(area = length (ds) times unit length (1)) reads

oy sinads — o sinads + T cosads =0

o1 cosads — o cosads — T sinads = 0 (2.29)
Using trigonometric identities
cos2a = 2cos’a — 1 = 1 — 2sin’«
) ) , (2.30)
sin 2 = 2 sin & cos o
a o, b
a
7
/
7
/
/7
4 Gds
Oz dsi/l ] — N Oady
_ldy Tds
//'/ dx
Fig. 2.6 In a deformable /,//
body loaded by minimum 4 T
and maximum principal ' Oydx
stress a a small prism is
shown b where the balance y
of forces is computed X
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the normal stress ¢ and shear stress 7 on the prism surface ds follow as a function of
the two principal stresses

o,+oy 01— 0)
o= + cos 2a
2 2
0y — 0y .
T = ———sin2w
2

: (2.31)

These are the equations of a circle in the (o, 7) plane with its centre at the point
(6=(0,%0))/2, 7=0) and with radius (¢,—0,)/2. Equation(2.31) defines the Mohr
circle of stress. This representation of stress was first proposed in 1882 by the Ger-
man engineer Otto Mohr (1835-1918). It relates the principal stresses applied to
a deformable body to the normal and shear stresses of an arbitrary oriented plane
inside the body (Fig.2.6). Equations (2.29)—~(2.31) express the crucial difference
between forces and stresses, which is the key to understanding the concept of stress.
The resolution of a normal force requires, e.g., cosa, the resolution of a normal
stress component however requires cos’a. One cosa is due to the resolution of nor-
mal force and one cosa is due to the resolution of the slicing plane on which the
force is acting. Due to trigonometric identities (Eq. (2.30)), the double resolution of
stresses is hidden in the term cos2a of the Mohr circle equation (Eq. (2.31)).

Each point P on the Mohr circle (Fig.2.7a) states values of normal and shear
stress on the arbitrary plane within the body. For a given set of principal stresses
(reference frame o, 0,), we can compute a second set of normal and shear stresses
(frame o, 7) at arbitrary (angle o) oriented surfaces. The values of normal and shear
stress versus angle is seen in Fig.2.7b for ¢ =1 MPa and 5,=0.5MPa. The trans-
formation [o,, 0,]—[0, 7] of stress components in 2D is analogous to the eigenvalue
problem of the stress matrix in 3D visualized in Fig. 2.4. The points where the Mohr
circle intersects the g-axis represent principal planes. The associated o-values are
the principal stresses, o, and ¢,. The Mohr circle shows that the principal stresses
are the maximum and minimum values of normal stresses in a body. The points

Stress (MPa)

Tmax

0.2 T

0 15 30 45 60 75 90
Angle, o (°)

Fig. 2.7 Mohr circle of stress a in stress space, and b in physical space. The Mohr circle relates
principal stresses (o), 7,) to normal and shear stresses on an arbitrary tilted plane (o, 7, @) inside a
deformable body
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representing principal planes lie opposite the diameter in stress space. In physical
space (Fig.2.6, small prism), the planes are perpendicular since twice the rotation
takes place on the Mohr circle. The maximum shear stress t__occurs when 2a=90°.
Thus the plane of maximum shear stress is oriented at 45° to the principal planes.
Note that in rock mechanics notation, the positive z-axis is upside down and positive
shear stresses plot below the o-axis. Also in times of fast personal computers, the
Mohr circle of stress does not lose its significance for displaying stress, in particular
with respect to the presentation of rock failure criteria (Chap. 3).

The Mohr circle is a way of plotting the normal and shear components for trac-
tion vectors associated with all possible planes through point P. Note the difference
between the stress tensor at a point (Sect.2.1) and the traction vector acting on some
given plane through that point (Sect.2.3). In Mohr space (= stress space), the nor-
mal and shear stress components of the stress vector with respect to the given plane
are displayed. In physical space, the fracture plane within a rock mass after failure is
typically inspected (Chap. 3). The orientation of the fracture plane is also governed
by the internal friction of the material and therefore differs from the stress space.

Note-Box The Mohr circle of stress is obtained from balancing forces on a
small prism within a deformable body under applied principal stresses. The
Mohr circle relates normal and shear stress acting on an arbitrary slicing sur-
face element of the prism to the applied principal stresses. The Mohr circle is
a graphical method of transforming the stress tensor, and one way to visualize
the stress field of a deformable body.

2.4 Visualizing Stress

In order to completely specify the state of stress in 2D (3D) with three (six) pieces
of information, it is necessary to know the values of the stress components at each
point on the body or, alternatively, to know the two (three) principal stresses and
one (three) principal stress direction(s). Although it is difficult to display all of these
data, there are a number of graphical methods that are useful in giving a partial pic-
ture of the stress field. As we know from Chap. 1, a stress field describes the way
that the state of stress varies through space in a body. Since stress is not a straightfor-
ward descriptive quantity (Sect. 1.1, fictitious term; Sect. 2.1, abstract concept), we
require appropriate techniques to display stress components and stress orientations.

One way to visualize stress magnitudes in 2D is Lame s stress ellipse combin-
ing Cartesian components of the stress vector (g, ay) with components of principal
stresses (o, ¢,). Balancing forces according to the small prism presented in Fig.2.8a

it follows that
2 2
Oy oy
(—) + (—) =1. (2.32)
[oa] (o))
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Fig. 2.8 Visualizing stress in physical space (/eff) and stress space (right). The relationship in 2D
between a Cartesian frame and principal stresses (a) is shown by a stress ellipse (b). The relation-
ship in 3D between a Mohr frame (normal and shear stress) and principal stresses of a normal fault
in the Earth’s crust (c¢) is shown by a Mohr circle of stress (d). Principal stress directions at points

(e) are shown as stress trajectories (f)
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Each vector from the origin to a point on the ellipse (Fig.2.8b) represents a trac-
tion vector that acts on some plane passing through the point at which the principal
stresses are (o, 0,). However, although Lame’s stress ellipse shows the various
traction vectors that act on different planes, it does not indicate the plane on which
the given traction acts. It can be shown that in 3D the locus of all points traced out
by the stress vector for all possible orientations of the plane on which it is acting
defines an stress ellipsoid, the equation of which is given, e.g., in Jaeger and Cook
(1979). The stress ellipsoid is one way to provide a 3D description of the state
of stress at a single point in a deformable body. Note that the concept of stress
can also be associated with that of a continuum and therefore is of value only at a
scale at which the continuum concept is valid. The minimum volume for which an
equivalent volume can be defined is termed the representative elementary volume
(Chap. 10, REV). Generally, the continuum concept is of interest when the volume
under investigation is at least two orders of magnitude larger than that of the REV
(Hudson et al. 2003). In conclusion, a finite REV is needed for the physical defini-
tion of the concept of stress, while a point (zero volume) in Eq. (2.1) is needed for
the mathematical definition of the concept of stress.

Our second way of visualizing stress components is the Mohr circle but, instead
of 2D (Sect.2.3), we now consider a 3D state of stress determined by three principal
stresses and their orientations. Using Cauchy’s second law, the stress vector com-
ponents can be written

o? + 2 = 0,0, = O’]zn]z + 022n22 + 0321132
(2.33)

2 2 2
0 = oin; = o1n|" + oyny” + o3m3

With the help of nn =1, e.g., the identity

2 2
0y — O oy 4+ 0
(a— 22 3) +t2:_o(02+03)+< 22 3) +e2+1Y), (234

we obtain the expression

2 2
+ —
<o _2 5 63> + 12 = m%(01 — o )(01 — 03) + (Uz 5 U3> . (235)

Mathematically, this is the equation of a circle with its centre at (6= (o, +7,)/2, 7=0) and
a radius which depends on 7. Since 0<n *<1, the minimum centre point distance of
stress points is (¢,—0,)/2=1, for n,=0, whereas the maximum distance is ¢, +(0,~0,)/2
for n,=x1. Analogue findings on two additional equations following from (2.35) by
cyclic permutation of indices lead to the Mohr circles of stress in 3D. Arranging prin-
cipal stresses with respect to magnitude (o, 20,2 0,), we obtain the stress points within
the shaded area of Fig.2.8d. The circles with radii z, correspond to slicing planes with
the surface normal perpendicular to one of the three principal axes.



2.4 Visualizing Stress 33

Our third way of visualizing stress is restricted to the direction of principal
stresses. Like in Finite Element (FE) codes where principal stress directions are
displayed at Gaussian integration points within a finite element (Fig. 2.8e, dots), we
can define stress trajectories. A line whose tangent at every point is in the direction
of a principal stress component is called a stress trajectory. In the 2D rock model
with a T-shaped crack (Fig.2.8f), two stress trajectories are shown, one for the
direction of the largest and the other for the direction of the least principal stress.
As principal stresses are always at right angles to each other, stress trajectories
form an orthogonal set of lines (Fig.2.8f, o, perpendicular o,). In Exercise 2.2, the
reader can complete a dense network of stress trajectories for the model sketched
in Fig.2.8f using stresses at all Gaussian integration points within the full finite
element model.

Analogue to the lines of electric (or magnetic) flux where electric (or magnetic)
fields are visualized, stress trajectories are used to visualize the elastic stress field
in a deformable body. An early picture of electric flux lines is shown in Fig.2.9,
where the Russian Jakob von Narkievicz-Jodko electrified a human hand in 1895
and saved the picture on a photographic plate. A bunch of electric lines was cap-
tured in silver gelatine to give an idea of the complex internal electric field of a
human hand. You can imagine that also in the case of a complex rock body with or
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Fig. 2.9 In 1895, Jakob von
Narkievicz-Jodko electrified
a human hand in order to
capture the electric flux line
network in silver gelatine
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Fig. 2.10 Finite element mesh of a T-shaped crack formed during cooling of a 2D periodic rock
model showing directions and magnitudes of ¢, and o, at every single Gaussian integration point
within each of the 436 quadratic finite elements (Zang 1991)

without excavation surfaces, many data points of principal stresses are needed to
draw a realistic network of stress trajectories characterizing the elastic stress field
(see Exercise 2.2).

Among the experimental techniques to visualize stress are isochromatics (con-
stant maximum shear stress, see Sect. 6.4), isopachs (curves along which the mean
normal stress is constant, e.g. Durelli et al. (1958) electrical conducting paper),
isoclines (curve on which principal axes make a constant angle with a given fixed
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reference direction, photoelasticity), and fault slip lines (curves on which the shear
stress is maximum, structural geology).

Exercise 2.2 Stress Trajectories. Consider the finite element mesh with a T-shaped
crack in Fig.2.10. Put a transparency foil on top of the figure.

(a) Draw a set of solid lines onto the foil following the o -orientation in the rock
model using the stress orientations given at Gaussian integration points. Add a
second set of lines with a different color, which follows the o,-orientation.

(b) What may be the reason for the rotation of the stress field in the rock model near
the two marked bold solid lines?

Note that at crack tips, stress magnitudes increase (Fig.2.10, mesh refinement) and
stress orientations may change quickly over short distances. The reason for this
will be expanded in Chap. 3, where crack-tip stress singularities are treated. As is
true for large rock mass excavation surfaces, also small cracks in rock serve as free
surfaces and therefore are principal normal stress planes.

Note-Box The way that the state of stress varies through space (stress field)
can be visualized, e.g., by firstly a stress ellipse (ellipsoid), secondly a Mohr
stress circle, and thirdly stress trajectories. Along a stress trajectory (line), the
direction of principal stress is tangential in every point. In the first two meth-
ods, the state of stress is described at a point of a deformable body. Lame’s
stress ellipse defines the locus of all points traced out by the stress vector for
all possible orientations of the plane on which it is acting. The normal and
shear stress components of the stress vector with respect to the given plane
are visualized in the Mohr circle.
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