Chapter 2
Convolution and Correlation

2.1 Introduction

In this chapter we will consider two signal analysis
concepts, namely convolution and correlation. Sig-
nals under consideration are assumed to be real
unless otherwise mentioned. Convolution operation
is basic to linear systems analysis and in determining
the probability density function of a sum of two
independent random variables. Impulse functions
were defined in terms of an integral (see (1.4.4a))
using a test function ¢ ().

o0

/qb(t)é(t—to)dl:qﬁ(to). .11

—00

This integral is the convolution of two functions,
¢(t) and the impulse function 6(f) to be dis-
cussed shortly. In a later chapter we will see that
the response of a linear time-invariant (LTI) sys-
tem to an impulse input 6(¢) is described by the
convolution of the input signal and the impulse
response of the system. Convolution operation
lends itself to spectral analysis. There are two
ways to present the discussion on convolution,
first as a basic mathematical operation and second
as a mathematical description of a response of a
linear time-invariant system depending on the
input and the description of the linear system.
The later approach requires knowledge of systems
along with Fourier series and transforms. This
approach will be considered in Chapter 6.

The process of correlation is useful in comparing
two deterministic signals and it provides a measure
of similarity between the first signal and a time-
delayed version of the second signal (or the first
signal). A simple way to look at correlation is
to consider two signals: xi(z) and x,(¢). One of
these signals could be a delayed, or an advanced,
version of the other. In this case we can write
X2(t) = x1(t + 1), —00 < T < co. Multiplying point
by point and adding all the products, x; (¢)x(t + 1)
will give us a large number for T = 0, as the product
is the square of the function. On the other hand if
7 # 0, then adding all these numbers will result in an
equal or a lower value since a positive number times
a negative number results in a negative number and
the sum will be less than or equal to the peak value.
In terms of continuous functions, this information
can be obtained by the following integral, called the
autocorrelation function of x(¢), as a function of t
not t.

Ry (7) :/x(t)x(t + 17)dt = AC [x(1)] = Ry (7).

(2.1.2)

This gives a comparison of the function x(7) with its
shifted version x(z + 7). Autocorrelation (AC) pro-
vides a nice way to determine the spectral content of
a random signal. To compare two different func-
tions, we use the cross-correlation function defined

Although we will not be discussing random signals 7
in any detail, convolution is applicable in dealing Rwi(7) = x(1) * xh(z) = / x(0)h(t +t)dr. (2.1.3)
with random variables. o0
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2 Convolution and Correlation

Note the symbol (**) for correlation. Correlation isIf x(7) and y(¢) are orthogonal, the energy and power

related to the convolution. As in autocorrelation,
the cross-correlation in (2.1.3) is a function of 7, the
time shift between the function x(7), and the shifted
version of the function A(r).

2.1.1 Scalar Product and Norm

The scalar valued function (x(¢), y(¢)) of two signals
x(f) and y(¢) of the same class of signals, i.e., either
energy or power signals, is defined by

oo

J x(@0)y (1),

energysignals.
/2

lim & [ x(¢)y*(1)dt,

T—o0 -T2

(2.1.4a)

powersignals.

Superscript (*) indicates complex conjugation. Our
discussion will be limited to a subclass of power
signals, namely periodic signals. In that case,
assuming that both the time functions have the
same period (2.1.4b) can be written in the symbolic
form as follows:

Ger0yr(o) = 7 [ x(ow (0.

T

(2.1.4c)

Even though our interest is in real functions, for gen-
erality, we have used complex conjugates in the above
equations. The norm of the function is defined by

x(2)|| = <X(l),x(t)>l/2: {Ex, energy signals

P, power signals
2.1.5)

It gives the energy or power in the given energy or
the power signal. The two functions, x(z) and y(z),
are orthogonal if

(x(0), (1)) = 0. (2.1.6)

In that case,

Ix(6) + y(0)IP= Ix@IP+H O, @.1.7)

(2.1.4b)

contained in the energy or power signal
z(t) = x(t) + y(¢) are respectively given by
E.=E.+E, or P.=P.+P,. (2.18)

Some of the important properties of the norm are
stated as follows:

L. ||x(2)|| = 0 if and only if x(1) =0, (2.1.9a)
2. lx(0) + yOl < IIx(@)) + ()]l

triangular inequality (2.1.9b)
3. lox ()]l = ledlx()]]- (2.1.9¢)

In (2.1.9¢), o is some constant. One measure of
distance, or dissimilarity, between x(z) and y(¢) is
Ix(7) — »(2)]|.- A useful inequality is the Schwarz’s
inequality given by

[,y < IxONy@ll- (2.1.9d)

The two sides are equal when x(¢) or y(¢) is zero or if
y(#) = ax(z) where o is a scalar to be determined. This
can be seen by noting that

+adx (1), p(0) oy (1)1
(2.1.10)

Since o is arbitrary, select
o= —(x(0),y(O)/ IO @.1.11)

Substituting this in (2.1.10), the last two terms can-
cel out, resulting in
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[OROF
(o)IP

(1) + e (D) = [1x (1)~

= [P0 =] (x(0), 007 | 2 0.

(2.1.12)

Equality exists in (2.1.9d) only if x(7) + ay(z) = 0.
Another possibility is the trivial case being either one
of the functions or both are equal to zero. Ziemer
and Tranter (2002) provide important applications
on this important topic.

Correlations in terms of time averages: Cross-
correlation and autocorrelation functions can be
expressed in terms of the time average symbols and

Rup(t)= / x(Oh(t+71)dt=(x(1)h(t+1)),(2.1.13a)

T/2
RT‘,xh(T) = %., / xT(f)hT(t + T)dl
-1 (2.1.13b)
= lT/ xr()hr(t 4 v)dt =(x7()hr(t + 7).
T

In the early part of this chapter we will deal with
convolution and correlation associated with aper-
iodic signals. In the later part we will concentrate on
convolution and correlation with respect to both
periodic and aperiodic signals. Most of the material
in this chapter is fairly standard and can be seen in
circuits and systems books. For example, see
Ambardar (1995), Carlson (1975), Ziemer and
Tranter (2002), Simpson and Houts (1971), Peebles
(1980), and others.

2.2 Convolution

The convolution of two functions, x;(7) and x(z),
is defined by

y(1) = x1(2) * x2(1) = / x1(a)x2(t — o) do
—00 (2.2.1)

This definition describes a higher algebra and
allows us to study the response of a linear time-
invariant system in terms of a signal and a system
response to be discussed in Chapter 6. It should be
emphasized that the end result of the convolution
operation is a function of time. Coming back to the
sifting property of the impulse functions, consider
the equation given in (2.1.1). Two special cases are
of interest.

b0+ = [ 9ot~ 5)ds
‘fc (2.2.2a)
= ¢t — B)o(B)dp = 6(1) (1),
o(t) xo(t) = / 0(a)o(t — a)do = (). (2.2.2b)

2.2.1 Properties of the Convolution
Integral

1. Convolution of two functions, x;(7)and x(z),

satisfies the commutative property,
2(1) = x1(2) * x2(2) = x2(1) * x1(2). (2.2.3)

This equality can be shown by defining a new
variable, f =t — o, in the first integral in (2.2.1)
and simplifying the equation.

2. Convolution operation satisfies the distributive
property, i.e.,

[Xz(l) + X3(l)} ZX1(Z) * Xz(l)
+ X ([) * Xg(l).

X](l) *

(2.2.4)

3. Convolution operation satisfies the associative
property, i.e.,

21(0) (42 (0) + x3(1)) = (31 (1) # 32(0)) £ 33(1). (2:2.5)

The proofs of the last two properties follow from
the definition.

4. The derivative of the convolution operation can be
written in a simple form and
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d%(tf) —%[xl(l) —0)
dxl(t) de(t)

(2.2.6a)

Equation (2.2.6a) can be generalized for higher
order derivatives. We can then write

. d"x; (1)

m d"y(1)
(1) () = =2

d m

* xz(l) =

(2.2.6b)
=50 (Note 579 = 541).

x§m>(l) " xgn)(t) _ d xl([) » d’XQ(l)

dlm d[”
(2.2.6¢)
di71+izy(t) (m+n)
=g =70

Since the impulse function is the generalized deriva-
tive of the unit step function u(z) (see Section 1.4.2.),
we have

y(1) = u(t) « h(2) = ' (1)

=u/(1) = h(t) = (1) * h(t) = h(1).

2.2.7)

5. Convolution is an integral operation and if we
know the convolution of two functions and desire
to compute its running integral, we can use

t !

/y(oc)doc: / [x1 (o) % xo(ar)]dot

—00 —00

—/ [/chl(ﬁ)m(fx—ﬁ)dﬁ] do,

—00 —00

/OC / (o — ﬂ)d% xi(p)dp
7 _ [/} Xz(i)di} x1(B)dp,

—00

:[/xz()»)di} *xl(t):{/xl(ﬂ)dﬁ] Fxa(1).

7 7 (2.2.8)

Example 2.2.1 Find the convolution of a function
x(¢) and the unit step function u(7) and show it is a
running integral of x(7).

Solution: This can be seen from

x(1) *u(t) = 7 (Bl — f)dp
=/x<ﬁ>dﬁ, [u(r—m:{é: ﬁji]
h 229 m

6. Convolution of two delayed functions x1(t — t;)
and x, (1 — 1) are related to the convolution of
x1(7) and x,(1).

Y(t) =x1(8) xx2(t) = x1(t — 11) * x2(t — 12)

=y(t— (1 + 1)). (2.2.10)
This can be seen from
x1(t—1t1) *x2(t — 1)
= /OC xi (o= 11)x2(t — o0 — 12)dox
= [ @l o+ )] - pdp
= ;Z — (1 +1n)). (2.2.11)
Example 2.2.2 Derive the expression for

y(0) = x1(1) x x2(1) = 6(1 — 11)x0(t — 12).
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Solution: Using the integral expression, we have X1e(—1) * x20(—1) = yo, (1),

s s X10(—1) * x20(—1) = 0, (), odd functions.

/ x1(a)x2(t —o)do= / o(la—10)0(t—ty—a)dx (2.2.14¢)

:5(1—12—OC)|“:[I :5(2‘—11 —Iz).

Noting () *

0(t) = d(r) and using (2.2.11), we have
ot—n)xo(t—1n) =

ot —t1 — 1). [ |

)

7. The time scaling property of the convolution
operation is if y(¢) = x| (¢) * x2(¢), then

/

y(ct),c #0.

xi(eB)xa(e(r = B))dp

x1(ct) x xp(ct) =

1
=— (2.2.12)
|c]
Assuming ¢ < 0 and using the change of variables
o = ¢f, and simplifying, we have

—00

x1(ct) x x2(ct) = % / x1 (o) x2(ct — o)dy

o0

1f I
:7/ o)xa(ct — o) do = c ‘y(ct).

A similar argument can be given in the case of ¢ > 0.
Scaling property applies only when both functions
are scaled by the same constant ¢ # 0. When
¢ = —1, then

x1(=1) * x2(—1) = y(—1). (2.2.13)
This property simplifies the convolution if there are
symmetries in the functions. In Chapter 1, even and

odd functions were identified by subscripts
e for even and 0 for odd (see (1.2.7)). From these

Xie(—1) = x4 (f), an even function;

Xio(—t) = —xp(), an odd function (2.2.14a)

X10(—1) * x20(—1) = y,,(1), even functions
(2.2.14b)

8. The area of a signal was defined in Chapter 1
(see (1.5.1)) by

o0

/ xi(o)do.

—00

Alxi(1)] = (2.2.15)

Area property of the convolution applies if the areas
of the individual functions do not change with a shift
in time. It is given by

= Alx1 ()] A[x2(1)).
(2.2.16)

Aly(0)] = Alxi1(2) * x2(1)]

This can be proved by

o0

[ y®ds=[~ i) xa(plas

[ /oo xi (o) x2(f — oc)d% dp

o oo

= Aln ()] / x1(2)d = Al (1)) Alxi (1)),

—00

Aly()) =

/
/

9. Consider the signals x;(7) and x,(¢) that are non-
zero for the time intervals of ,; and t,,, respec-
tively. That is, we have two time-limited signals,
x1 () and x,(7), with time widths 7., and ty,. Then,
the time width 7, of the signal y(7) = x1 () * x»(¢)
is the sum of the time widths of the two convolved
signals and ¢, = t,, + t,. This is referred to as the
time duration property of the convolution. We will
come back to some intricacies in this property, as
there are some exceptions to this property.

Example 2.2.3 Derive the expression for the convo-
lution y(7) = x1(¢) * x2(#), where x;(¢), i =1, 2 are
as follows:
x1(2) = 0.56(¢ —
XQ(Z‘) = 035(! +

1) +0.55(t — 2),
1) +0.75(t — 3).
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Solution: Convolution of these two functions is
o0

/ x1(o)x2(t — o) dor

—00

y(t) =

/ 10.56(2 — 1) + 0.56(x — 2)] x

—00

[0.36(f —a+ 1) +0.75(t — a0 — 3)]du

o0

_ / (0.5)(0.3)0(o — 1)8(1 — a + 1)d

—00

+ (0.5)(0.7)0(o — 1)o(t — o0 — 3)dlo

+ [ (0.5)(0.3)8(c — 2)3(t — o0 + 1)de

/
/

—00
o0

4 / (0.5)(0.7)5(s — 2)8(t — & — 3)d
— (0.15)0(1) + 0.355(t — 4)
+0.155(1 — 1) +0355(1 — 5). .

Notes: If an impulse function is in the integrand of
the form o(at — b), then use (see (1.4.35), which is

o(at = b) = (1/a])o(r — (b/a)).

2.2.2 Existence of the Convolution
Integral

Convolution of two functions exists if the convolu-
tion integral exists. Existence can be given only in
terms of sufficient conditions. These are related to
signal energy, area, and one sidedness. [t is simple to
give examples, where the convolution does not exist.
Some of these are a*a, a*u(t), cos(t)*u(t), e *e”,
a > 0. Convolution of energy signals and the same-
sided signals always exist. In Chapter 4 we will be
discussing Fourier transforms and the transforms
make it convenient to find the convolution.

2.3 Interesting Examples

In the following, the basics of the convolution
operation, along with using some of the above

properties to simplify the evaluations are illu-
strated. A few comments are in order before the
examples. First, the convolution (1) = x(1)x
x,(1) is an integral operation and can use either
one of the integrals in (2.2.1). Note that y(7), —oco <
t<oo is a time function. The expression for
the convolution, say at ¢ = ty, will yield a zero
value for those values of ¢y over which
x1(f) and x»(tp — ) do not overlap. The area
under the product [x; (f)x,(tp — )], i.e., the integral
of this product gives the value of the convolution at
t = ty. Sketches of the function x;(f) and the time
reversed and delayed function x,(7 — f§) on the
same figure would be helpful in identifying the lim-
its of integration of the product [x;(f)xa2(to — f)]-
As a check, the value of the convolution at end
points of each range must match, except in the
case of impulses and/or their derivatives in the inte-
grand of the convolution integral. This is referred to
as the consistency check. The following steps can be
used to compute the convolution of two functions
x1(7) and x»(1).

% (B) (=p) 2t - )

Multiply the two functions
x1(B) xi(B)x2(t = B).

Integrate }0 X (ﬁ))Q(t _ ﬁ)dﬂ = y(t).

—00

New variable Reverse

X2 (l )
x| ([) New variable

Example 2.3.1 Derive the expression for the convo-
lution of the two pulse functions shown in Fig. 2.3.1
a,b. These are

2.3.1)

x1(B)xa(t — B)dp. (2.3.2)

Figure 2.3.lc,d,e.f give the functions x(f),
x2(B), x2( — p), and x,(z — ), respectively. Note
that the variable 7 is some value between —oo and
oo on the f axis. Different cases are considered, and
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x1(0)
1

a

x1(6) X5(9)

()
1>0: x5 (1= and x; ()
1 1

FaT a

b

(t=5) 0 t a
(h)

t—b<a:x,(t—p) and x| (5)

1
r 1

b

=]
A\ 4
=

(t-b) a t
@

b>a:y()=x; (D, (t)

=]
) I,
[ I

M

Fig. 2.3.1 Convolution of two rectangular pulses (b > @)

in each case, we keep the first function x;(f) sta-
tionary and move (or shift) the second function

x2(—p), resulting in x, (1 — f).

Case 1: 1 < 0. For this case the two functions are
sketched in Fig. 2.3.1 g on the same figure. Noting
that there is no overlap of these two functions, it
follows that

X(1)
1
3
5 I:; Tl
2z
(b)
Xo(—13)
1
-
el b 4 [0
2
(e)

t<0 : x, (t—/) and x; (3)
1 1

5 a

(t-b) t |0 a #
(8
t>a:x,(t—0) and x; (;3)l
l a
b
THO0 e "F
(1)
t—b>a: x,(1—p) and x; (5)
1
T 1
b
0 a (t-5) ey
(k)

b=a:y (1) =x ()" (1)

»(1) =0,1<0. (2.3.3)

Case 2: 0<t < a. The two functions are sketched for
this case in Fig. 2.3.1 h. The two functions overlap
and the convolution is

1

y(1) = /xl(ﬁ)xz(t — B)dp = ﬁz,0<z <a. (23.4)
0
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Case 3: a<t < b. This corresponds to the complete
overlap of the two functions and the functions are
shown in Fig. 2.3.1i. The convolution integral and
the area is

y(t) = /—d/i :é7a<t <b. (2.3.5)
0

Case &: 0<r—b<a<borb<it<(b+a). This
corresponds to a partial overlap of the two func-
tions and is shown in Fig. 2.3.1j. The convolution
integral and the area is

W= [ ap=t2

t—b

b<t<(b+a). (2.3.6)

Case 5: t—b>aort>a-+b. The two functions
corresponding to this range are sketched in Fig.
2.3.1k and from the sketches we see that the two
functions do not overlap and

y()=0,t>(a+b). (2.3.7)
Summary:
0, t<0
L 0<t<a
ab’
1
»(1) = 5’ a<t<b (2.3.8)
Lb_[7 b<t<a-+b
ab
0, t>a-+b

This function is sketched in Fig. 2.3.1 1 and m for the
cases of b > a and b = a. There are several interest-
ing aspects in this example that should be noted.
First, the two functions we started with have first-
order discontinuous and the convolution is an

integral operation, which is a smoothing operation.
Convolution values at end points of each range
must match (consistency check) as we do not have
any impulse functions or their derivatives in the func-
tions that are convolved. Some of these are dis-
cussed below.

The areas of the two pulses are each equal to 1
and the area of the trapezoid is given by

Arealy(1)] = (1/2)a(1/b) + (b — a)(1/b)
+(1/2)a(1/b) =1

= Area[x (1)]Area[x2(1)]. (2.3.9)

This shows that the area property is satisfied. Pee-
bles (2001) shows the probability density function
of the sum of the two independent random variables
is also a probability density function. We should
note that the probability density function is nonne-
gative and the area under this function is 1 (see
Section 1.7). From the above discussion, it follows
that the convolution of two rectangular pulses
(these can be considered as uniform probability
density functions) results in a nonnegative function
and the area under this function is 1. The function
(1) satisfies the conditions of a probability density
function.

The time duration of y(¢), t, is ¢, =ty + 1y,
and

by =a,t, =b=1t,=t,+t,=a+b  (2.3.10)

A special case is when a = b and the function y(r)
given in Fig. 2.3.1m, a triangle, is

a a

nr—“/z] *nr—a/z} :A[I_Ta]. 23.11) m

Example 2.3.2 Give the expressions for the
convolution of the following functions:

x1(8) = u(z) and x»(1) = sin(z)TI [%} (23.12)
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Solution: The convolution integral

00 2
y(1) = x(B)xi1(t—p sin(zf) u(r— p)dp
e
0, 1<0
/sm aB)df = (1/m)(1 —cos(xt), 0<1<2,
0 0, t>2
y(1) = [ sin(xp)dp
/
0, <0
= ¢ (I/m)(1 —cos(nt)), 0<r<2. (2.3.13)
0, t>2

The time duration of the unit step function is oo and
the time duration of x,(¢) is 2. The duration of the
function y(r) is 2, which illustrates a pathological
case where the time duration property of the con-
volution is not satisfied.

The integral or the area of a sine or a cosine
function over one period is equal to zero. The period
of the function sin(nt) is equal to 2 and therefore

Alva(0)] = 4 [sin(m).H {’;H
|
0

= l/n/zdl:2/n.
0

=0=A(1)] = 1 — cos(nt)|dt

Noting  that  Ax;(¢)] = Au(r)] =0  and
Aly(t)] = 2/m, we can see that the area property of
the convolution is not satisfied. See Ambardar
(1995) for an additional discussion. [ |

Example 2.3.3 Derive the expression for the convo-
lution of the following functions shown in
Fig. 2.3.2a,b:

1) =e “u(t),a>0. (2.3.14a)

Solution:

(2.3.14b)

In computing the convolution, we keep one of the
functions at one location and the other function is
time reversed and then shifted. In this example,
since the function /h(f) =0 for 1 <0, we have a
benchmark to keep track of the movement of the
function A(f — ) as ¢ varies. Therefore, the first
integral in (2.3.14b) is simpler to use. The functions
x(B),h(B),h(—=p), and h(t — ) are shown in
Fig. 2.3.2 ¢, d, e, and f respectively. As before, we
will compute the convolution for different intervals
of time.

Case 1: 1 < —T': the two functions, h(f — f§) and
x(p), are sketched in Fig. 2.3.2 g. Clearly there is
no overlap of the two functions and therefore the
integral is zero. That is
y()=0t<-T. (2.3.15)
Case 2: —T <t < T: The two functions h(t — )
and x(f) are sketched in Fig. 2.3.2 h in the same
figure for this interval. There is a partial overlap of

the two functions in the interval —7>¢>T. The
convolution can be expressed by

(e~ dp
(2.3.16)

e“’(’*”} —T<i<T.

Case 3: ¢ > T : From the sketch of the two functions
in Fig. 2.3.2 h, the two functions overlap in this
range — 7 < t < T and the convolution integral is

t>T.

T
y(t> _ / efa(tfﬁ)dﬁ _ 1 [euT _ efaq efat7
a
“r

(2.3.17)
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Fig. 2.3.2 Convolution of a x (1) h(?)
rectangular pulse with an
exponentially decaying pulse I
1
» [ 1 » !
-T 0 T. 0
(a) (b)
x(B) h(B)
1 1
> ! » 8
-T 0 T k 0
(© (d)
h(=p) h(t-3),t20
! 1
—p 1 > f
0 0 t
(e ®

h(t—03),t <-Tand x(3)

h(t—03),t <T and x(3)

e

(1)

Va[l-e207)

t -T
(€9)
Summary:
0, t< =T
1 —a(t+T)
=gl =T —TisT g5
1 [eaT o efaT] 67‘”, >T
a

This function is sketched in Fig. 2.3.2i. Note y(¢) is
smoother than either of the given functions used in
the convolution. Computing the area of y(¢) is not
as simple as finding the areas of the two functions,
x(f) and A(t). Using the area property,

-T 0 T

A1) = A AD] = 2T)(1/a). (23.19) m

Notes: In computing the convolution, one of the
sticky points is finding the integral of the product
[x(P)h(r — )] in (2.3.14b), which requires finding
the region of overlap of the two functions. Sketch-
ing both functions on the same figure allows for an
easy determination of this overlap. The delay prop-
erty is quite useful. For example, if y(¢) = x(t) * h(t)
then it implies y;(f) = x(t —T) «h(t) =y(t —T).
In Example 2.3.3, x(?) [t/ 2T] = u[t+T]
—ult — T]. Therefore



2.3 Interesting Examples

49

y(#) = h(1) * x(1)
=h(t)xu(t+T) = x(t—T)]
=h(t)xu(t+T)—h(t)«u(t—T). [}
Example 2.3.4 Determine the convolution

(1) = x(1) * x(r) with x(z)

Solution: The convolution is

=e “u(t),a>0.

Dlu(Byulr — B))dp

"

0

(2.3.20)

In evaluating the integral, the following expression
is used (see Fig. 2.3.3a):

0, p<0and
-l = {7 P20 eam
The functions x(¢) and y(z) are shown in

Fig. 2.3.3b,c. Note that the function x(¢) has a
discontinuity at ¢=0. The function y(7),
obtained by convolving two identically decaying
signals, x(#) and x(#) is smoother than either one
of the convolved signals. This is to be expected
as the convolution operation is a smoothing
operation. H

ult- B) u(p) ulBu(t - )
1
> f ¥
0 ¢ 0 t
(a)

x()=e""u(r) x()=¢"ur) YO =x(0)*x(t)

(b) (c)

Fig. 2.3.3 Example 2.3.4

Example 2.3.5 Derive the expression y;(f) =
xi(t) for the following two cases:

h(t) *

a.x(t) = u(t),b.xy(t) = (1).

Solution: . Since u(t — o) = 0,2 > ¢, we have the
running integral

(2.3.22)

b. Noting that the impulse function is the general-
ized derivative of the unit step function, we can
compute the convolution

12 =030 =h() 2Dy, (1) .
(2323) m
Example 2.3.6 Let /(1) = ¢ “u(t),a > 0 a. Deter-
mine the running integral of h(1).
b. Using (2.3.23), determine y, (7).
Solution:
a w= [ Kpds= [ e upap
:2(1 ~aryu(p), (2.3.24)
dy(t) _1d —at
b.ya(t) === == (1= “Ju(t)
— 1 —at d 1 d(l — e—at)
—5(1 —e )zu(t)—l—au(l)T
=(1/a)(1 —e *)o(t) +e “u(r)
=(1/a)[6(1) = 0(1)] + e “'u(2)
=(1/a)e”"u(z). (2325 m

In a later chapter this result will be used in dealing
with step and impulse inputs to an RC circuit with
an impulse response /(1) = e “u(t).
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Example 2.3.7 Express the following integral in the
form of x(7) = p(z), (p(¢) is a pulse function:

+T/2
(1) = / x (o) dor. (2.3.26)
—T)/2
Solution:
+H(T/2) —(1/2)
(1) = x(at)do — x (o) do

=x(t)*u(t+ (T/2)) — x(t) x u(t — (T/2))
= x(0) % [u(t + (T/2)) — u(t — T/2))]

— (1) + T [% (2.3.27)

The output is the convolution of x(z) with a pulse
width of 7' with unit amplitude and the process is a
running average. u

Example 2.3.8 Find the derivative of the running
average of the function in (2.3.27) and express the
function x(¢) in terms of the derivative of y().

Solution: McGillem and Cooper (1991) give an
interesting solution for this problem.

¥(6) = x(1) * {d”“ +(T/2) _ds _dET/z))}

:x(t)*5<t+§> —x(l)*é(t—%)

= x(t+(1/2)) = x(t = (1/2))
=x(0)=y(t—(T/2))+x(t—T). (2.3.28) m

Example 2.3.9 Derive the expressions a. y(f) =
u(t) «u(t), b.y2(t) =u(t)*u(—1).

Solution:

a. () =u(t) xu(t) = / u(o)u(t — o)do

(2.3.29)
/(l)dt 0, >0
70 - t, <0

),

o0

b.y (1) = / u(o)u(o+ t)do

—00

f‘ u(o)doe — 0o, 1 <0 (2.3.30)
t

J u(or+ t)dor — 00,1>0
0

It follows that y,(7) = 0o, —oo0 <t<oco. In this case,
convolution does not exist. [ |

2.4 Convolution and Moments

In the examples considered so far, except in the
cases of impulses, convolution is found to be a
smoothing operation. We like to quantify and com-
pare the results of the convolution of nonimpulse
functions to the Gaussian function. In Section 1.7.1,
the moments associated with probability density
functions were considered.

A useful result can be determined by consid-
ering the center of gravity convolution in terms
of the centers of gravity of the factors in the
convolution. First, the moments m,(x) of a wave-
form x(7) and its center of gravity n are, respec-
tively, defined as

() = / Px(t)dt, (2.4.1)
ofo tx(1)dt
0= _m(x) (24.2)
mo(x)

We note that we can define a term like the variance
in Section 1.7.1 by

(2.4.3)

Now consider the expressions for the convolution
y(2) = g(¢) = h(z). First,
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r r 7 Signal-to-noise ratio = Average signal power
m(y) = / ty(t)dt = / t / eWh(t — Ndi|dt '8 ~ Noise power, g2
. s e (2.4.8)
[o.¢] [o¢]
_ / ¢(2) / th(t — 2)di| di. E)fample 2.4.1.Verify the result is true in (2.4.7)
K K using the functions

Defining a new variable ¢ = ¢t — 4 on the right and
rewriting the above equation results in

o) o]

[ s [ erimeaga

—00 o0

mi(y)

oo

/

—00

2g(2)dJ. / h(&)dé + / Eh(&)de

g(A)di=my(g)mo(h) + my (h)moy(g). (2.4.4)

/

From the area property, it follows that myq(y) =
mo(g)mo(h). The center of gravity is

n (h)

mi(g) _
(/’l) = ny - ng + M-

“mle)

mi(y)
mo(y)

(2.4.5)
my

Consider the expression for the squares of the
spread of y(7) in terms of the squares of the spreads
of g(¢) and h(t). The derivation is rather long and
only results are presented.

3 (ml(y))2
mo(y)
Using the expressions for mg(y), m;(y) and my(y)

and simplifying the integrals results in

o2 = my(y)
Tomo(y)

(2.4.6)

3

o) =0, +0}. (2.4.7)
That is, the variance of y is equal to the sum of the
variances of the two factors. It also verifies that
convolution is a broadening operation for pulses.
Noting that if g(¢) and A(¢) are probability density
functions then (2.4.7) is valid. In communications
theory we are faced with a signal, say g(z) is cor-
rupted by a noise n(z) with the variance, 2. The
signal-to-noise ratio (SNR) is given by

g(t) = h(t) = e " and y(1) = g(1) * h(1).

Solution: Using integral tables, it can be shown that

mo(g) = / eldt=1,m(g) = / te”'dt =1,
0 0
my(g) = / Pe”ldt =2,
0
mi(g) , m(g) 5
= = 170‘ = — =1,
T mo(e) % T mae) e

a7 = 1 (note g(t) = h(1)),
(1) = g(t) x h(t) = te 'u(t)(see Example 2.3.4).

/ e ldr =2,
0

o0

mo(y) = [ tetde =1,m(3) =

my(y) =
0
mi(y) 2 my(y) 2
= =2,00= - =2=
) T T T my)
a§:a§+ai:1+1:2. n

As an example, consider that we have signal
g(t) = Acos(mwpt) and is corrupted by a noise with a
variance equal to ¢2. Then, the signal-to-noise ratio is

A42)2

5
On

SNR =

In Chapter 10, we will make use of this in quantiza-
tion methods, wherein 4 and SNR are given and
determine oﬁ. This, in turn, provides the informa-
tion on the size of the error that can be tolerated.

Notes: For readers interested in independent random
variables, the probability density function of a sum of
two independent random variables is the convolution
of the density functions of the two factors of the
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convolution, and the variance of the sum of the two
random variables equals the sum of their variances.
For a detailed discussion on this, see Peebles (2001).1

2.4.1 Repeated Convolution and the
Central Limit Theorem

Convolution operation is an integral operation, which
is a smoothing operation. In Example 2.3.1, we have
considered the special case of the convolution of two
identical rectangular pulses and the convolution of
these two pulses resulted in a triangular pulse (see
Fig. 2.3.1m). The discontinuities in the functions
being convolved are not there in the convolved signal.
As more and more pulse functions convolve, the resul-
tant functions become smoother and smoother.
Repeated convolution begins to take on the bell-
shaped Gaussian function. The generalized version
of this phenomenon is called the central limit theorem.
It is commonly presented in terms of probability den-
sity functions. In simple terms, it states that if we
convolve N functions and one function does not dom-
inate the others, then the convolution of the N func-
tions approaches a Gaussian function as N — oo. In
the general form of the central limit theorem, the
means and variances of the individual functions that
are convolved are related to the mean and the variance
of the Gaussian function (see Peebles (2001)).

Given x;(t), i=1,2,...,N, the convolution of
these functions is

y(1) = x1(1) x x2(2) * ... x xn(1).  (2.4.9)

The function y() can be approximated using (1) v,
the sum of the individual means of the functions,
and g3, the sum of the individual variances by

1

(1) =
\/2ma?

Example 2.4.2 Illustrate the effects of convolution
and compare y(¢) to a Gaussian function by con-
sidering the convolution

(= (m)y)*/2, (2.4.10)

y(1) = x1(2) * x2(1),

_ 24.11
xi(r):ln[ﬂ},iz 1,2, (41D

a a

Solution: y(7) is a triangular function (see Example
2.3.1) given by

(2.4.12)

The mean values of the two rectangular pulses are
a/2 (see Section 1.7). The mean value of y(7) is
2(a/2) = a. The variance of each of the rectangular
pulses is

ol =my—mt =a*/12,i=1,2. (2.4.13a)
The variance is given by o7 = o} + 03 = ¢*/6. The
Gaussian approximation is

i
w()3)

This Gaussian and the triangle functions are sym-
metric around a. They are sketched in Fig. 2.4.1.
Even with N = 2, we have a good approximation. B

((6))In=2 =~ (2.4.13b)

> !

a 2a

f=1

Fig. 2.4.1 Triangle function y(7) in (2.4.12) and the Gaus-
sian function in (2.4.13b)

Example 2.4.3 In Example 2.4.1 we considered two
identically exponentially decaying functions:
x1(t) = e 'u(t) = x5(¢). The convolution of these
two functions is given by y,(7) = te”'u(t). Approx-
imate this function using the Gaussian function.

Solution: The Gaussian function approximations

of y,(1), considering n =2 and for n large, are,
respectively, given below. Note that mg(y) = 2.

L (-2r)
27(2)

(1) ~
| (2.4.14)
(1) ~ e*((f*ﬂ)z/2(n))‘
yu(t) 0]
For sketches of these functions for various values of
n, sce Ambardar (1995). [ |
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2.4.2 Deconvolution x(2) = (1) * hine (1) = x(2) % h(2) * hiny (1)
i i i = x(1) * [1(1) * hiny(2)], = h(1) * hiny(7)
In this chapter, we have defined the convolution
= (1) and x(1) * 6(1) = x(1). (2.4.15)

(1) = h(1) * x(¢) as a mathematical operation. If
x() needs to be recovered from y(z), we use a pro-
cess called the deconvolution defined by

It is a difficult problem to find /i,y (7), which may
not even exist.

Table 2.4.1 Properties of aperiodic convolution

Definition:

(1) =x1(0)"x2(t) = fic xi(o0)xa(t — o) dow = LO;

Amplitude scaling:

X2 (o) x1 (1 — o) dor.

oxy ()" Bxa(t) = af(x(1)"h(1)),xand fare constants.

Commutative:
X1 ([)*X2(l) = xz(t)*xl ([)

Distributive:

x1 (1) [x2 (1) + x3(0)] = xi (1) 2 (1) + 1 (1) x3(0).

Associative:

x1(0) [x2(0) x5 ()] = 1 (1) x2 ()] "3 ().

Delay:

xl(t— l[)*XQ(I — 12) = xl(l — lz)*,‘Q(l — l]) :y([— (1‘1 + lz)).

Impulse response:

x(1)°3(1) = x(1).

Derivatives:

Step response:

" (1) (1) =y ).

(1) = x(0)"u(t) = fjoc x(o)dor, (1) = x(2)"9(2) = x(2).

Area:

Alxi (1) x2(0)] = A[p(1)], where Alx(1)] = [

Duration:

Iy, + 1y, = 1.
Symmetry:

X16(1) %20 (1) = pe(1),
Time scaling:

xi(ct) xa(ct) = ﬁy(ct)7 c#0.

x1(1) x20(1) = yo (1),

> x(t)dt.

—00

x10(1)" x20(2) = pe(1)-
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2.5 Convolution Involving Periodic
and Aperiodic Functions

2.5.1 Convolution of a Periodic Function
with an Aperiodic Function

Let A7) be an aperiodic function and x7(7) be a
periodic function with a period 7. We desire to
find the convolution of these two functions. That
is, find y(1) = x7(1) x h(z).

Example 2.5.1 Derive the expressions for the con-
volution of the following two functions:
or(t) and h(¢) assuming 7 =1.5and T=2 and
sketch the results for the two cases.

h(r) =Alf].  (2.5.1)

Derive the expressions for the convolution of these
two functions assuming 7= 1.5and T=2 and
sketch the results of the convolution for the two
cases.

(1) = h(z) * or(1)

Z h(t

k=—o00

}:az—kT

k=—00
)« (1 — kT). (2.5.2)

Noting that i(z) x 0(t — kT) = h(t — kT), it follows
that

= i h(t —kT) = yr(1).

k=—00

(2.5.3)

Figure 2.5.1a,b gives the sketches of the functions
or(t) and K(t). The sketches for the convolution are
shown in Fig. 2.5.1c,d. In the first case, there were
no overlaps, whereas in the second case there are
overlaps. [ |

Example 2.5.2 Derive an expression for the convo-
lution y(#) = h(z) * x7(),

x7(t) = cos(wot + 0) and h(t) = e “u(r). (2.5.4)

or (1)

h(t)
(a)
1
1 1 .
yr(t)
(b)
3 :2 1 1 2 3 -
yr(t)
(©
(d)

Fig. 2.5.1 (a) Periodic impulse sequence, (b) A[/], (¢) yr(1),
T =2, and (d) yr(1), T=2

Solution: y(t) = h(t) *x7(t) = Ofoe“’ﬁ cos(wo(t—B)+
0)dp 0

— / e~ Pcos(wot + 0) cos(woff)
sin(wot + 0) sin(wef)]dp

0

_|_

[/ e~ cos(wop) dﬁ] cos(wot + 0)
0

+ [/ e b sin(woﬁ)dﬂ] sin(wot + 0).  (2.5.5)

0

Using the identities given below (see (2.5.7 a, b, and

¢.)), (2.5.5) can be simplified.
y(1) = [a/(a* + )] cos(wot + 0)

+ [wo/(a* + )] sin(wot + 0)
1

= ﬁcos(wot + 0 — tan" ' (wp/a))
as + wy

= yr(1),

(2.5.6)
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x 7aﬂ
/ ~9F sin(wof)dp = f[ asin(wof)
0
— wy cos(wgﬂ)]!(‘;O = %Ow%,
(2.5.72)
00 o—ab
/ e~ cos(mop)dff = > [—acos(wof)
) as + wy
+ wo sirl(cooﬂ)]’f)C = ﬁw%’
(2.5.7b)

acos(wgt + 0) + fsin(wot + 0) = ccos(wot + ¢),

24 B d = [—tan" (/) + 0). (2.5.7¢)
The functions y(7) = yr(¢) and x7(7) are sinusoids at
the same frequency w,. The amplitude and the phase

of y(t) are different compared to that of x7(z). H

The derivation given above can be generalized for a
periodic function

xr(t +Z ] cos(kawot 4 0[k]), wy = 21/ T,
(2.5.8a)

§(0) = xr(0) % h(t) = 0+ elicos(kay:
+ 0[K]) * h(1)], o = 27/T. - (2.5.8b)

2.5.2 Convolution of Two Periodic
Functions

In Section 1.5 energy and power signals were con-
sidered. The energy in a periodic function is infinity
and its average power is finite. One period of a
periodic function has all its information. In the
same vein, the average convolution is a useful mea-
sure of periodic convolution. Such averaging pro-
cess is called periodic or cyclic convolution. The con-
volution of two periodic functions with different
periods is very difficult and is limited here to the
convolution of two periodic functions, each with the
same period.

The periodic convolution of two periodic func-
tions, x7(¢) and hr(r), is defined by

to+T
=xr()@hr(t)== | xr(0)hr(t—a)dx

)

l/xT Yhr(t—o docflT/xT(tfoc)hT(oc)doc
T T

=hr(t)®@x7(1).

yr(t)

(2.5.9a)

Note that the symbol ® used for the periodic con-
volution and the constant (7)) in the denominator in
(2.5.9a) indicates that it is an average periodic con-
volution. yr(7) is periodic since

hT(l + 71— OC) = hT(I - OC) and
xr(t+ T — o) =xr(t — ). (2.5.9b)
Also, periodic convolution is commutative. Many of
the aperiodic convolution properties discussed ear-
lier are applicable for periodic convolution with
some modifications. The expression for the periodic
convolution can be obtained by considering aperio-
dic convolution for one period of each of the two
functions.
Consider the periodic functions in the form

xr(t) = Z x(t —nT) and hr(r) th—nT
(2.5.10a)
(1) = {xT(z), hh<t<ty+T
= 0, otherwise
hp(t), o <t<to+T
h(r) = { rlthto < t<iot (2.5.10b)
0, otherwise.

Note that the time-limited functions, x(¢) and h(z),
are defined from the periodic functions x7(¢) and
hr(t). Using (2.5.10b) the periodic convolution is

yrlt) = lT / syt — o)ds
= %/ xr(o) ”;ooh(t —o—nT)do
T
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1 00

== Z /x(oc)h(t —a—nT)do

n=-—00

T

— LSS M e bt -,

Tnzfoo
(2.5.11a)
yr(t) = xr(1) @ hr(1)
:lT Z y(t=nT),p(1) =x(t) xh(r). (2.5.11b)

That is, y7(¢) can be determined by considering one
period of each of the two functions and finding the
aperiodic convolution.

Example 2.5.3 a. Determine and sketch the aperio-
dic convolution y(f) = h(t) * x(¢).

x(r):%n{%], h(t):% {’_31‘5} 2.5.12)

b. Determine and sketch the periodic convolution
yr(t) = x7(1) ® hy(t) for periods T'= 6 and 4.
o0 o0

XT(Z) =

k=—00 k=—00

(2.5.13)

Solution: a. From (2.5.13), the results for the aper-
iodic convolution can be derived. The sketches of
the two functions and the result of the convolution
are shown in Fig. 2.5.2a. The periodic convolutions
for the two different periods are shown in Fig.
2.5.2b,c. There are no overlaps of the functions
from one period to the next in Fig. 2.5.2b, whereas

> x(t—kT) and he(r) = > h(t—kT).

Convolution of almost periodic or random signals,
x(#) and h(t), is defined by

/2

/ x(a)h(t —o)de.  (2.5.14)

)

1
y(1) = lim =

T—oo T

This reduces to the periodic convolution if
x(#) and h(t) are periodic with the same period.

2.6 Correlation

Equation (2.1.3) gives the cross-correlation of
x(#) and h(z) as the integral of the product of two
functions, one displaced by the other by 7 between
the interval ¢ < ¢ < b and is given by

b
Rup(t) =x(z) +h(z) = / ©(Oh(14+7)di= (x()h(1+7).

a

Cross-correlation function gives the similarity
between the two functions: x(z) and /(¢ + 7). Many
a times the second function /(7) may be a corrupted
version of x(z), such as /(r) = x(¢) + n(z), where
n(t) is a noise signal. In the case of x(7) = h(r),
cross-correlation reduces to autocorrelation. In
this case, at v =0, the autocorrelation integral
gives the highest value at T = 0. Comparison of
two functions appears in many identification situa-
tions. For example, to identify an individual based

in Fig. 2.5.2¢c, the pulses overlap. B upon his speech pattern, we can store his speech
x() h(?) (@) = h(ty=x(f)
1/2
« 13 = i
> ¢ r : >
3 0 2 3 5

Fig. 2.5.2 Example 2.5.1
(a) Aperiodic convolution;

(b) periodic convolution
T = 6; (c) periodic
convolution, 7= 4

1
0 2 345 89

(©
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segment in a computer. When he enters, say a secure
area, we can request him to speak and compute the
cross-correlation between the stored and the
recorded. Then decide on the individual’s identifica-
tion based on the cross-correlation function. Gen-
erally, an individual is identified if the peak of the
cross-correlation is close to the possible peak auto-
correlation value. Allowance is necessary since the
speech is a function of the individual’s physical and
mental status of the day the test is made. Quantita-
tive measures on the cross-correlation will be con-
sidered a bit later.

The order of the subscripts on the cross-correla-
tion function Ry;(7) is important and will get to it
shortly. In the case of x(7) = /(z), we have the auto-
correlation and the function is referred to as R, (1)
with a single subscript. The cross- and autocorrela-
tion functions are functions of 7 and not 7. Correla-
tion is applicable to periodic, aperiodic, and ran-
dom signals. In the case of periodic functions, we
assume that both are periodic with the same period.

Cross-correlation: Aperiodic:

Ru(7) = / x(Oh(t+7)dt  (2.6.1a)
Cross-correlation: Periodic:
1
Ry xh(t) = ?/ xr()hr(t 4 t)dt (2.6.1b)
T
Autocorrelation: Aperiodic:
R.(1) = / x(Ox(t+1)dt  (2.6.1¢)
Autocorrelation: Periodic:
1
RT,X(T) = ?/XT(I)XT([ + T)d[. (261(1)
T

Notes: Cross- and autocorrelations of periodic
functions and random signals are referred to as
average periodic cross- and autocorrelation functions.
In the case of random or noise signals, the average
cross-correlation function is defined by

57
/2

Ryu(t) = Tlgr;? / x()h(t+7)dt.  (2.6.1e)
)

For periodic functions, (2.6.1¢) reduces to (2.6.1b).

2.6.1 Basic Properties
of Cross-Correlation Functions

Folding relationship between the two cross-correla-
tion functions is

RX;,(‘L') = th(—‘f), (262)
= Ry (t) = x(t)h(t + t)dt
= x(a — t)h(a)da= Ryx(—7). (2.6.3)

2.6.2 Cross-Correlation and Convolution

The cross-correlation function is related to the con-
volution. From (2.6.3) we have

Rip(t) = x(1) *xh(t) = x(—7) « h(1), (2.6.4a)

Ry (1) = h(t) *xx(1) = h(—7) * x(1).  (2.6.4b)
Equation (2.6.4a) can be seen by first rewriting the
first integral in (2.6.3) using a new variable 1 = —a,
and then simplifying it. That is,

Ry(n) = / x()h(t + 7)dt = / x(—a)h(t — o)do

= x(—1) * h(1). (2.6.4¢)
Equation (2.6.4b) can be similarly shown. Noting
the explicit relation between correlation and convo-
lution, many of the convolution properties are
applicable to the correlation. To compute the cross—
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correlation, R,;(7), one can use either of the integral
in (2.6.3) or the integral in (2.6.4c). Ry(7) is not
always equal to Rj.(t). In case, if one of the functions
is symmetric, say x(t) = x(—t), then

Ryy(t) = x(—71) * h(t) = x(7) * h(1). (2.6.5)
Example 2.6.1 illustrates the use of this property. In
particular, the area and duration properties for con-
volution also apply to the correlation. We should
note that the correlations are functions of T and not t,
where 7 is the time shift between x(¢) and (¢ + t).
In the case of energy signals, the energies in the real
signals, g(7) and /i(z), are

J

o0

/ W (t)dt= Ej,.

—00

R,(0)= [ g*(t)dt=E,, R,;(0)=

2.66) m

2.6.3 Bounds on the Cross-Correlation
Functions

Consider the integral

/[x(l):l:h(t—l—r)]zdt: / X (1)dt
+ / Rt +1)dt +2 / x(6)h(t + 1)dt

- R‘C(O) + Rh(o) + ZRxh(I) > 0. (267‘1)

This follows since the integrand in (2.6.7a) is non-
negative and

[R.u (1) < (R.(0) + Ry(0))/2. (2.6.7b)

An interesting bound can be derived using the
Schwarz’s inequality. See (2.1.9d).

00 2
(e(Oh( + 1)°= / X(Oh( + 7)dr
< /|x(t)|2dz /\h(z+r)|2dt7 (2.6.8)

oo o0

SR ()< / P(1)dt / R (1)dt
_ RL(O)RA(0), h (2.6.92)
|Ru ()| < v/ R(0)R;(0). (2.6.9b)

Equation (2.6.9b) represents a tighter bound com-
pared to the one in (2.6.7b), as the geometric mean
cannot exceed the arithmetic mean. That is,
Another way to prove (2.6.9b) is as follows. Start

with the inequality below. Expand the function and
identify the auto- and cross-correlation terms.

o

.

Write the resulting equation in a quadratic form in
terms of o.. In order for the equation in (2.6.10) to be
true, the roots of the quadratic equation have to be

real and equal or the roots have to be complex con-
jugates. The proof is left as a homework problem.

[x(2) + ah(1 + 7)]*dt > 0. (2.6.10)

Example 2.6.1 Determine the cross-correlation of
the functions given in Fig. 2.3.2.

=nfg).

Solution: Example 2.3.3 dealt with computing the
convolution of these two functions. The cross-cor-
relation functions are as follows:

h(t) = e “u(t),a > 0. (2.6.11a)

Rin(7) = / h(0)x(t+ )t = h(=7) % x(2),

Ry(t) = / x(Oh(t+1)dt = x(—7) * h(7).

—0o0

(2.6.11b)

Note that we have x(—1) = x(1), and therefore the
cross-correlation Ry (t) = x(t) * h(t) is the convo-
lution determined before (see (2.3.18).), except the
cross-correlation is a function of 7 rather than 7. It is
given below. The two cross-correlation functions are
sketched in Fig. 2.6.1a,b. Note R;.(7) = Ry, (—7)
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Fig. 2.6.1 Cross- R0 Ry (@)
correlations (a)Ry; (1),
(b) th(T)(Rxh(T) =
11— e 2] = Ry (—T))
> >
T 0 T 0 T
(a) ()
0, 1< -T The significance of p,(7) can be seen by consider-
1 (et T) ing some extreme cases. When x(¢) = oh(t), o > 0,
Ry(t) =< 4 {1 e } , —I'<z=T we have the correlation coefficient p ;,(t) = 1. In the
Lewr ur case of x(f) =ah(r), « <0 and p,,(r)=—1. In
P [ —e e r>T communication theory, we will be interested in
(2.6.11c) m Signals that are corrupted by noise, usually identi-

2.6.4 Quantitative Measures
of Cross-Correlation

The amplitudes of Ry;(7) (and Ry (7)) vary. It is
appropriate to consider the normalized correlation
coefficient (or correlation coefficient) of two energy
signals defined by

p(1) = Run(7) _ Ry(7)
xh = = \/Eth’
\/ [f xz(t)dt} [f hz(t)dz}
(2.6.12a)
= [pu(D)] < 1. (2.6.12b)

Equation (2.6.12b) can be shown as follows. From
(2.1.13a) and using the Schwarz’s inequality (see
(2.1.9d)), we have

Run(7) = (x(O)h(1+ 1)) < [|x@]l[|A(2 + )| = V ExE)

It should be noted that the case of x(z) = h(r), the
correlation coefficient reduces to

peel®) = (2.6.13)

Correlation measures are very useful in statistical
analysis. See Yates and Goodman (1999), Cooper
and McGillem (1999) and others.

fied by n(z), which can be defined only in statis-
tical terms. In the following, we will consider the
analysis without going through statistical analysis.
Noise signal n(t) is assumed to have a zero average
value. That is,

/2
Jim — / n(f)dt =0 (2.6.14)
—T)2

Cross-correlation function can be used to compare
two signals. The signals x(z) and /() are uncorre-
lated if the average cross-correlation satisfies the
relation

T/2
.1
Ram(f)—Tlgr;C—/ x()h(t + 7)dt
7/2
T/2 T/2
1 1
= |jm 7 [ o) |im 7. [ ioa
T/2 T/2

(2.6.15)

Example 2.6.2 If the signals x(7) and a zero average
noise signal n(z) are uncorrelated, then show

/2
Tlim = / x(f)n(t —t)dt =0 for all . (2.6.16)
-7/2
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Fig. 2.6.2 Correlation
detect
etector @ [y pdt  |—
x/#)
Received
Signal Threshold | Decision
¥ Comparator '
HO=x,(5) +n(0)
or x,(t) + n(f) xzf)
@ [y (ndt  |—
Solution: Using (2.6.14) and (2.6.15), we have correlation detector (or receiver) shown in

/2
Tlgrolo? / x()n(t + 7)dt
-T/2
/2 /2
.1 .1
= Tlgrolo?/ x(1)dt Tlglgoi/ n(t+1)di| =0.
/2 /2

(2.6.17)

Cross-correlation function can be used to estimate
the delay caused by a system. Suppose we know that
a finite duration signal x(¢) is passed through an
ideal transmission line resulting in the output func-
tion y(7) = x(r — tp). The delay #, caused by the
transmission line is unknown and can be estimated
using the cross-correlation function R.,(7). At
T = tg, Ry(t) gives a maximum value. Then deter-
mine t corresponding to the maximum value of
Ry, (7). [ |

Example 2.6.3 Consider the transmitted signals
x1(7) and x;(7) in the interval 0 < ¢t < T, and zero
otherwise. Use the cross-correlation function to
determine which signal was transmitted out of the
two. They are assumed to be mutually orthogonal
(see Section 2.1.1) over the interval and satisfy

5

Ex, =L, i=]j

o . (2.6.18)
0, i#ji=12

xi()x;(t)dt = {

Tt~

E. is the energy contained in each signal. The two
signals to be transmitted are assumed to be available
at the receiver. A simple receiver is the binary

Fig. 2.6.2. The received signals y;(¢) are assumed
to be of the form in (2.6.19). Decide which signal
has been transmitted using the cross-correlation
function.

vi(t) = x;(t) + noise, i = 1 or 2. (2.6.19)
Solution: Let the transmitted signal be x; (7). Using
the top path in Fig. 2.6.2, we have

T

/ [x1(£) + n(0)]x1 (0)d = A / 2(0)dr. (2.6.20)
0 0

Using the bottom path, with the transmitted signal
equal to x;(¢), we have

s

T T,
[xl(t)+n(l)]xz(t)dl:/[xl(l)xz(t)-i-xl(t)n(t)]dt
0

K

0
T‘.&

:/m@mmm:B (2.6.21)

0

Since the noise signal has no relation to x;(z), B will
be near zero and 4 >> B, implying x;(7) was trans-
mitted. If x,(r) was transmitted, the roles are
reversed and B> A. The correlation method of
detection is based on the following:

1. If A > B = transmitted signal is x; (7).

2. If B> A = transmitted signal is x,(7).

3. If B= A = no decision can be made as noise
swamped the transmitted signal. ]
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Example 2.6.4 Derive the expressions for the cross-
correlation Ry (tr) and  Ry(t) assuming
x(t) = e~ u(t), h(t) = e >u(t).

Solution: Using the expression in (2.6.3), we have

Rxh(T) - )C(C{ — ‘c)h(oc)drx

e e (o — t)u(o)]de (2.6.22a)

—4
/Oo
Consider the following and then the corresponding

correlations:

T>0:

[u(@)u(o — 7))

l,a>1
0, Otherwise’

1<0:

[u(e)u(e — 7))

{ I, >0
0, Otherwise’

1>0: Ry(r)= e’/ ey,

1 1
—ef—e ¥ ’fo = ge’hu(r), (2.6.22b)

o0 1 .
e
1<0: Ry(r) =¢" / e do = efe *3“‘0 =—.
0

(=3) 3
(2.6.22¢)
Ry (t) is shown in Fig. 2.6.3. Note that
th(T) = Rxl1(_T)- | |
Rxh(T)
) 1/3
ge’u(—f) ~e"u(t)

A
Q

Fig. 2.6.3 R.(1)

Example 2.6.5 Derive the cross—correlation R, (1)
for the following functions:

Solution: See Fig. 2.6.4cfor /(¢ + 7) for an arbitrary
7. The function /(7 4 7) starts at = —7 and ends at
t =2 — 1. Ast varies from — oo to oo, there are five
possible regions we need to consider. These are
sketched in Fig. 2.6.4 d.e.f,g,h. In each of these cases
both the functions are sketched in the same figure,
which allows us to find the regions of overlap. The
regions of overlap are listed in Table 2.6.1.

Case 1: T > —1: See Fig. 2.6.4d. There is no overlap
between x(¢) and A(z + 1) and

Ry(t)=0,—t>1ort<—1. (2.6.24)
Case 2: 0<—t<lor —1 <7t<0 : See Fig.
2.6.4e. Using Table 2.6.1
1
/ + ul L,
(t+1)
= 5 ,—1<t<0. (2.6.25)

Case 3: 0 <t < 1: See Fig. 2.6.4 f. Using Table
2.6.1, we have

1
1 1+2r
xh Z+T :_+ t[: :Tv

0

0<t<1.

(2.6.26)

Case 4: 1 <17 <2: See Fig. 2.6.3 g. Using Table
2.6.1 we have

2—
xh /

0

4

T

t=2—1

t+r —+rl|

2 (2.6.27)

Case 5: 2 < 7: See Fig. 2.6.4 h. There is no overlap
and
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Fig. 2.6.4 (a) x(1), (b) h(1),

(c) h(t+1),

(d) x(¢) and h(t+ 1),

—7> l(or 7 < —1),

(e) x(¢)andh(t+1),—1<7<0,
() x(r)and h(t+7),0<t<1,
() x(r)and h(t+7), 1 <1<2,
(h) x(¢)and h(t+1),7>2,

(1) Rxh T)

—~ o

Table 2.6.1 Example 2.6.4

Case T

1 < —1 No over lap
2 —-1<t<0 —r<t<1

3 0<t< 0<t<l

4 1l<t<2 l<t<2-—1
5

T>2 No over lap

x(?) h(f)
1
} > ! ' > 7
0051 0 1 2
(a) (b)
2 2
1
> Lo ¢
T 2-17 1-7 2-7
(©) (d
2
1 1
1 > > !
0 -z 1 2-7 < 0 I 2-7
(e) ()
-2 2
/
1 1
; > > 1
-T 0 : 1 -T 2-7 0
2-7 (h)
(2
- T
Ry(t) =0,7 > 2. (2.6.28)

Range of overlap/ integration range

See Fig. 2.6.4i for the cross-correlation R,;(7)
sketch. There are no impulses in either of the two
functions and therefore the cross-correlation func-

tion is continuous.
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2.7 Autocorrelation Functions of Energy In addition, if y(7) = x(7 £ o), then
Signals Ri() = Ry(1). 2.7.7)

Autocorrelation function describes the similarity or
coherence between the given function x(7) and its
delayed or its advanced version x(7+7). It is an
even function. The autocorrelation (AC) function
of an aperiodic signal x(¢) was defined by

AC{x(t)}=R.(1)= / x(t)x(t+7)dt

z

R.(—1) = R(7).(even function)

x(O)x(t—71)dt={x(t)x(t—7)). (2.7.1)

(2.7.2)

Second, the maximum value of the autocorrelation
function occurs at t = 0. That is

[R.(2)] < R.(0). (273)
The proof of the symmetry property in (2.7.2) can
be shown by changing the variable f =+ 1 and
simplifying the integral. The proof on the upper
bound on the autocorrelation function is shown
below by noting the integral with a nonnegative
integrand is nonnegative.

o0

[x(7) £ x(t — 0)][x(1) £ x(t — 7)]dt > 0. (2.7.4)

ooxz(t)dt+ /Ooxz(tr)dtj:2 /oox(t)x(t‘c)dl
:2[7x2(t)dti /Oox(l)x(l—r)a’t]z()
= R(0) = / X (1)dt > |Ry(7)]
— Oox(t)x(t—f)dt]. (2.7.5)
Third, N
E. = R.(0) = 7 x*(t)dt.(energy in x(1)). (2.7.6)

This can be seen first for T > 0 from

R,(1)= /y(t)y(tf‘c)dt:/x(tfoc)x(tfocf‘c)dt
_ / X(B)x(B—7)df = Ru(2). (2.7.8)

Change of a variable § = (¢ — o) was made in the
above integral and then simplified. Since the auto-
correlation function is even, the result follows for
T < 0.

Example 2.7.1 Find the AC of x(7) = e~ “u(t),a > 0
by first computing the AC for t > 0 and then use the
symmetry property to find the other half of the
autocorrelation function.

Solution: First,

I
()t — ) = u(t — 1) = {0 O;efrwise, 2.7.9)
£ 0 R(7) = / (0)x(t — 7)dt
= / e u(t)e " u(t — 1) dr

o0
—art

at —2at €
=¢ e Mt = —.
/ 2a

Using the symmetry property of the AC, we have

R (1) = (1/2a)e . (2.7.10)

The energy contained in the exponentially decaying
pulse is E = R.(0) = (1/2a). The autocorrelation
function is sketched in Fig. 2.7.1. [ ]

Example 2.7.2 Consider the function x(¢)=
[t — 1/2]. Determine its autocorrelation function
and its energy using this function.

Solution: The AC function for t > 0 is

o0

R0 |

—00

x(l)x(l—r)dt:/ TT{r— )T [1—— .S},
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R(7)

1/2a

‘7
~

Fig. 2.7.1 Example 2.7.1

The function IT[s—1/2] is a rectangular pulse
centered at r=1/2 with a width of 1, and
I[t — (t + (1/2))] is a rectangular pulse centered
at (t +0.5) with a width of 1. See Fig. (2.7.2a) for
the case 0 < 7 < 1. In the case of T > 1, there is no
overlap indicating that R,(t) = 0,7 > 1.

1
Rx(r):/dt:(l—r),0§r< 1.
Using the symmetry property, we have

Ru(6) = Ru(—c) = { (=[O <l <1 b= g

0, Otherwise
(2.7.11a)

This is sketched in Fig. 2.7.2b indicating that there is
correlation for |t7] <1 and no correlation for
|t] > 1. The peak value of the autocorrelation is
when 7 = 0andis R (0) = 1. The energy contained
in the unit rectangular pulse is equal to 1 and by
using the autocorrelation function, i.e., R,(0) =1,
the same by both the methods. Noting that the
autocorrelation function of a given function and
its delayed or advanced version are the same, the

T [z-0.5]

1
<« I [t-(z+ 0.5)]

> ¢
0 1(+1)
(7+0.5)

(a)

AC function is much easier to compute using this
property. The AC of the pulse function IT[z — .5]
can be computed by ignoring the delay. That is,
AC{II[t — .5]} = AC{I1[{]}. Interestingly,

ac{nfz]} - [z

The AC function of a rectangular pulse of
width T is a triangular pulse of width 27 and its
amplitude at t = 0 is 7. We can verify the last part
by noting

(2.7.11b)

el e

Note x(#)[T[4] extracts x(7) for the time —T/2 <
t < T/2. Thatis,

l} B {x(t),—T/z <t< T/2. 2.7.12)

HIil|=| =
X(1) { 0, otherwise

Example 2.7.3 Find the autocorrelation of the func-
tion y(1) = cos(wot)I[t/T].

Solution:

10 F] 13 {Z_TT] cos(2wot—1)dt.

(b)

Fig. 2.7.2 Example 2.7.2 Autocorrelation of a rectangular pulse
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:{(1/2)TA[TT] cosfwr) +B ST 5545

0, |t1|>T

Now consider the evaluation of B. For t > 0,

I {—} I {[_TT] cos(2wgt — t)dt

/2
1
= 5/ cos(2wot — wot)dt

T

- [sin(woT — wyt) — sin(wpt)].  (2.7.14)

0

If w, is large, R, (7) in (2.7.13) can be approximated
by the first term and

Ry(t) ~ TAH cos(wor).  (2.7.15)

1
2 LT
The envelope of the autocorrelation function in
(2.7.16) is a triangular function, which follows
since the correlation of the two identical rectangular
functions is a triangular function. Noting that the
cosine function oscillates between + 1, the envelope
of the autocorrelation function in (2.7.15) is shown
in Fig. 2.7.3. [ |

Ry(T)

/|
B
,
,
,
.
.

,
.
,
~
\
\
-T J
.
.
\
\
\
.
.
\

Fig. 2.7.3 Sketch of R (1)

,
B
,
——
>
77 o0~
,
,

N
\\
A
\/ v
/
T
//
;ST
2

2

Notes: Conditions for the existence of an aperiodic
autocorrelation are similar to those of convolution
(see Section 2.2.3). But there are a few exceptions.
For example, the autocorrelation of the unit step
function does not exist.

2.8 Cross- and Autocorrelation
of Periodic Functions

The cross- and the autocorrelation functions of
periodic functions of x7(¢) and /i7() are

RTAXh(‘L') = %/ XT(l)hT(l + ‘C)dt = <XT(l)hT(l + ‘L')>
(2.8.12)

Rri(1) = lT/xT(l)xr(t+ t)dt = (xp()xr(t + 1)) .
T

(2.8.1b)

Note that the periods of the functions,
xr(t) and hr(t), are assumed to be the same and
the constant (1/7) before the integrals in (2.8.1a
and b). If they have different periods, computation
of (2.8.1a) is difficult and these cases will not be
discussed here. Many of the cross-correlation and
AC function properties derived earlier for the aper-
iodic case apply for the periodic functions with
some modifications. Note that

RT‘xh (T) = RT,hx(*T)v

R7x(0) + R7;(0) > 2| Ry (7). (2.8.2)

In Section 2.5.1, aperiodic convolution was used to
find periodic convolution. The same type of analysis
can be used to determine periodic cross-correlations
using aperiodic cross-correlations. Furthermore, as
discussed before, correlation is related to convolu-
tion. First define two finite duration functions,
x(t) and h(z), over the interval 1y <1<t + T.
Assume that they are zero outside this interval.
Now create two periodic functions:

[&°]

xr(t) = Z x(t—=nT), hr(t)= i h(t — nT).

n=—00 n=—0o0

(2.8.32)

The periodic cross-correlation function is defined
by
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1 to+T
R0 =7 [

to

xT(Z)hT(I + ’L')dl‘, hT(l + ‘L')

(2.8.3b)

= i h(t+t—nT).

n=—00

The expression for periodic convolution is given in
terms of aperiodic convolution and

Rri(t Z Ry (t — nT),
n——oo
to+T
Ry(t—nT) = x(0)h(t +7 —nT). (2.8.3¢)

fo

The details of the derivation are left as an exercise.
Copies of R, (t) will overlap if the width of Ry (7) is
wider than 7.

Example 2.8.1 Give the lower bound on the period 7’
so that there are no overlaps in the cross-correlation
of the functions x7(7) and Ar(r) given below. See
Example 2.6.5.

mgznwiﬁmosz%q,
Z h(t +nT).

n=—00

[0.¢]

Z (I+HT hT

n=—00

xr(t) =

Solution: If the period 7'is larger than 3, then there
are no overlaps in the periodic cross-correlation
function. In that case, one period of the cross-cor-
relation function can be obtained from the aperio-
dic cross-correlation in that example and dividing it
by the period T. If the period is less than 3, then
there will be overlaps. [ |

Example 2.8.2 Consider the periodic functions

= X,[0], c[k] cos(kwot + O[k]).

(2.8.4)

xm(t) XTyz(l) =

a. Find the AC functions for the functions in
(2.8.4). b. Find the cross-correlation of the two
functions.

Solution:
1
aRmMﬂz?/ﬁMm:ﬁM, (2.8.52)
T
Ry () = xra(t)xro(t +1)dt

a

Nl =
'S"\]\

2
2T/ cos(kwgt)d
62[k]
2T

/ cos(kwo (2t + 1) + 20[k])dt
T

k] cos(kwot) k] cos(kwot)
___77__/m___77__'
0

(2.8.5b)

Note that the integral of a cosine function over any
integer number of periods is zero.

b. The cross-correlation of a constant and a cosine
function over one period is zero. Also note that
the two functions are orthogonal. That is

<xT1(t)7xTz(t)> =0. | ]

Example 2.8.3 Find the AC of xr(7) given below
with k # m, kandmare integers.

xr(t) = x71(1) + x12(1), X711 (2)
= c[k] cos(kwot + O[k]), x7.(1)
= c[m] cos(mwyt + 0[m]).

Solution: The periodic autocorrelations are deter-
mined as follows:

Rru(e) =7 / ber () + 7O (¢ + )

+xm0+ﬂwt:%/meMmU+ﬂm

T

+%/XT’2( )XTz( +‘L’)d
T
1
+7_,/le xra(t+1)d
T

(2.8.6)
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Note 1| &
P=X0]+5) k. 2.8.1
S[O]+2/;c[k} (28.10)
1
T / xr1(t)xra(t+1)dt The difference between the total power and the dc
T power is the variance and is given by
1
=57 clk)e[m] cos[(k + m)wot + mwot + O[k]
. 1 <
r | Variance = 5262[k]' (28.11) m
+%MMH5?/MHWMwﬂ%—mmM—mmﬂ k=l
T

+(0k] — 0m)))dt = 0.

Similarly the fourth term in (2.8.6) goes to zero.
From the last example,

2 2
CT[k]cos(kwor) + #cos(mwgr),k £ m.

287 m

RT’X(T)

These results can be generalized using the last two
examples and the autocorrelation of a periodic
function x7(¢) is given as follows:

xr(1) = X;[0] + i clk] cos(kwot + Ok]),  (2.8.8)
k=1
= Ry (1) =X?[0] —&-%icz[k} cos(kwot),wo=2m/T.
k=1
(2.8.9)

AC function of a periodic function is also a
periodic function with the same period. It is inde-
pendent of 0[k]. It does not have the phase
information contained in (2.8.8). In the next
chapter, (2.8.8) will be derived for an arbitrary
periodic function and will be referred to as the
harmonic form of Fourier series of a periodic
function x7(¢). [ |

Notes: The AC function of a constant X;[0] is X2[0].
The AC of the sinusoid c[k]cos(kwot + 0k]) is
(c*[k]/2) cos(kwyt). That is, it loses the phase infor-
mation in the function in the sinusoid. The power
contained in the periodic function x7(¢) in (2.8.8)
can be computed from the autocorrelation function
evaluated at t = 0. That is,

Example 2.8.4 Consider the corrupted signal
»(2) = x(1) +n(r), where n(f) is assumed to be
noise. Assuming the signal x(¢) and noise n(z) are
uncorrelated, derive an expression for the autocor-
relation function of y(z).

Solution:
T2
Ry()=fim 2 [ y(ow(e+ e
-T)2
7/2
1
—Jim 2 [ () O+ Dt ),
)
7/2 7)2
= Tlim x()x(t+1)dt+ Tlim x(O)n(t+1)dt
~T/2 -T/2
7/2 7/2
+ lim [ n(O)x(t+1)dt+ lim [ x(0)x(r+7)dr.
T~>oo_T/2 T—»oo_T/2

(2.8.12)

Noting that the signal and the noise are uncorre-
lated, i.e., Ry, (t) = R, (1) =0, we have
Ryy(7)

= Ry(1) + Run(7). (2.8.13) m

The average power contained in the signal and the
noise is given by

R.(0) + a2

n

(2.8.14)

P, =P.+ P, =R.(0)+ R,(0)

The signal-to-noise ratio (SNR), P./P,, can be
computed. It is normally identified in terms of dec-
ibels. See Section 1.9.
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2 Convolution and Correlation

2.9 Summary

We have introduced the basics associated with the
two important signal analysis concepts: convolu-
tion and correlation. Specific principal topics that
were included are

e Convolution integral: its computations and its

properties

Moments associated with functions

Central limit theorem

Periodic convolutions

Auto- and cross-correlations

Examples of correlations involving noise without

going into probability theory

e (Quantitative measures of cross-correlation func-
tions and the correlation coefficient

® Auto- and cross-correlation functions of energy
and periodic signals

e Signal-to-noise ratios

Problems

2.1.1 Consider the following functions defined over
0 <t < 1. Using (2.1.3), identify the two functions
that give the maximum cross-correlation at T = 0.

xi(1) = 7', xa(1) = sin(1), x3(2) = (1/2).

2.2.1 Prove the commutative, distributive, and the
associate properties of the convolution.

= h(1) %

2.2.2 Find the convolution y(¢)
following functions:

x(¢) for the

h(1) = T4,

d. x(t) = e "u(t), h(t) = e "u(r)
forcases:1.a>0,b>0, 2a=0,b>0
e.x(t) =T1[t/2], h(r) =Mt —.5] -t — 1.5]

fox(@)=0(t=1), h(t) =e"u()

g. x(1) = cos(nt)II[f], h(t) = e u(t).

2.2.3 Use the area property of convolution to find
the integrals of y(¢) in Problem 2.2.2.

2.3.1 a. Derive the expression for the convolution of
two pulse functions given by x(¢) = IT[r — 1] and
h[tf] = II[t — 2]. Compute this directly first and
then verify your result by using the delay property
of convolution.

b. Verify the time duration property of the convolu-
tion using the above problems.

2.3.2 Determine the area of y(7) in (2.3.18) using the
area property of the convolution.

2.4.1 Approximate the function y(r) in Example
2.3.1 using the Gaussian function.

2.4.2 Use the derivative property of the convolution
to derive the convolution of the two functions given
below using the results in Example 2.5.2.

x7(t) = sin(wot), h(t) = e “u(t),a > 0.
2.4.3 Use the delay property of the convolution to
determine
x(t) = e “u(t) xu(t — 1).

2.5.1 Derive the expressions for the periodic convo-
lution of the two periodic functions

)= S a0, o~ 352

n=—00 n=—00

h(t) =

2.6.1 Find the cross-correlation of the functions
x(#) and h(t) given in (2.6.11a) by directly deriving
the result and verify the result using the results in
Example 2.6.1.

2.6.2 Show the bounds given in (2.6.7a and b) and
(2.6.9b) are valid. Use (2.6.11a).
2.6.3 Show (2.6.9b) using (2.6.10).

2.7.1 Find the autocorrelations of the following
functions:

axi(t) =Tt —.5] = [z — 1.5],

bxo(t) =u(t —.5) —u(t+.5), cx3(t)=II[t].

Compute the energies contained in the functions
directly and then verify the results using the auto-
correlation functions derived in the first part.

2.7.2 Verify the result in (2.7.3) using the results in
Example 2.7.1.
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2.7.3 Show the identity
AC|x(t — t9)] = AC[x(1)].

2.7.4 Derive the AC function step by step for the
function x(7) = cos(wt)I1[z/T].

Use the integral formula by assuming
wy =mn and T = 4. Verify the results in Example
2.7.3 using the information provided in this pro-
blem. Give the appropriate bounds.

2.7.5 Show that the autocorrelations of the function
x2(1) = e“u(r) for a > 0 do not exist.

2.8.1 a. Derive the time-average periodic autocorre-
lation function R, r(t) for the following periodic
function using the integral formula.

x7(t) = Ay cos(wot + 01) + Az cos(2mwot + 0,).

b. Verify the result using (2.8.8) and (2.8.9).

¢. Compute the average power contained in the
function directly and by evaluating the autocorrela-
tion function at t = 0. Sketch the function x(7) by
assuming the values 4, = 5,4, =2,0, =20°,0, =
120°. Sketch the autocorrelation function using

these constants. Suppose we are interested in deter-
mining the period T from these two sketches, which
function is better, the given function or its autocor-
relation? Why?

2.8.2 Let yr(r) = A + xr(t), A — constant. Repeat
the last problem, except for the plots.

2.8.3 a. Show that the following functions are
orthogonal over a period:

x7(t) = cos(wot + 0), y(t) = A b. Show the func-
tions x(¢) = I1[¢], y[t] = ¢ are orthogonal.

2.8.4 Consider the signal z(7) = x(¢) + (). Show
that the AC of this function is given by

R:(7) = R(7) + Ry(7) + Ryy(7) + Ry (7).
Simplify the expression for R.(t) by assuming that
x(?) is orthogonal to y(¢) for all 7.

2.8.5 Complete the details in deriving the periodic
cross-correlation function in terms of the aperiodic
convolution leading up to Equation (2.8.3c).

2.8.6 Show (2.8.3c) using (2.6.5).
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