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Abstract The phase-space structure of conservative non-integrable dynamical sys-
tems is characterized by a mixture of stable invariant sets and unstable structures
which possibly support diffusion. In these situation, many practical and theoretical
questions are related to the problem of finding orbits which connect the neighbour-
hoods of two points A and B of the phase-space. Hyperbolic dynamics has provided
in the last decades many tools to tackle the problem related to the existence and
the properties of the so called stable and unstable manifolds, which provide natural
paths for the diffusion of orbits in the phase-space. In this article we review some
basic results of hyperbolic dynamics, through the analysis of the stable and unstable
manifolds in basic mathematical models, such as the symplectic standard map, up
to more complicate models related to the Arnold diffusion.

1 Introduction

Diffusion in conservative dynamical systems has been intensively studied in the last
decades by means of analytical and numerical techniques. The problem is particu-
larly complicate and interesting for non-integrable systems, because the phase-space
is filled by a mixture of stable invariant sets and structures of peculiar topology
which possibly support diffusion. The most famous example of non-integrable sys-
tem is represented by the three body problem, which has motivated most of the
researches done in this field. Many branches of dynamical systems theory, such
as the KAM theory, hyperbolic theory, numerical investigations of dynamical sys-
tems with dynamical indicators, have been developed and tested on gravitational
problems, such as the classical three body problem and the stability problems in
our Solar System, up to the more recent problems related to space flight dynamics.
But, why practical problems, such as those related to space flight dynamics, should
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be concerned with these dynamical systems theories? A theoretical formulation
of a practical problem could be the following one: given two points A and B of
the phase-space, one would find an orbit x(t) with initial condition x(0) in a small
neighbourhood of A and x(T) in a small neighbourhood of B at some time T. In the
hypothesis that such an orbit is found, it is usually affected by chaos, i.e. very small
changes in the initial condition x(0) can result in big changes in the complete orbit
x(t). In addition, in presence of chaos, the orbits display topological and statistical
complexities, and the transfer in the phase-space is often called (chaotic) diffu-
sion. Numerical integrations of chaotic diffusion are intrinsically affected by large
numerical errors, which become relevant on a finite (and usually short) time called
Lyapunov time. The analysis of the orbits on times of the order of the Lyapunov
times requires a detailed dynamical analysis of the phase-space structure of the
systems. In the last decades many numerical indicators, based essentially on the
Lyapunov characteristic exponents (such as the so called Fast Lyapunov Indicators,
introduced in [4]) or on the Fourier analysis (such as frequency analysis [14, 15])
have been successfully used to detect the phase-space structure of non-integrable
systems (see, for example, [5]).

The peculiarity of chaos related to the existence of many different orbits with
very close initial conditions on the one hand is clearly a problem for numerical
integrations, on the other hand it provides the opportunity of constructing orbits
with behave, in some sense, as one wishes, with very small corrections to a reference
orbit. The branch of dynamical systems which studies the behavior of chaotic orbits
under small corrections is known as shadowing theory, and it is motivated by the
Anosov–Bowen theorem.

The problems which I have discussed above are related to the existence of pecu-
liar structures in the phase-space called stable and unstable manifolds. Stable and
unstable manifolds are defined (see Section 2) as the sets of points whose orbits
are asymptotic in the past or in the future respectively to an hyperbolic invariant
structure of the phase-space, such as an hyperbolic fixed point, periodic orbit or
invariant torus. Specifically, having in mind the problem of finding transfer orbits
between points A and B of the phase-space, when the points A and B belong to
different hyperbolic invariant sets which we denote by A, B and the unstable man-
ifold Wu of A intersects the stable manifold Ws of B, there exists the possibility
of such transfer orbits between a neighbourhood of A and a neighbourhood of
B. If the intersection of these manifolds is transverse, the possibility of transfer
orbits is coupled to complicate dynamics, usually called “chaotic” dynamics. In this
paper I describe the structure of stable/unstable manifolds for a class of dynami-
cal systems which have been often used as the prototype of conservative systems,
that is the symplectic maps. In Section 2 we analyze the structure of these man-
ifolds in one of the simplest examples in which the structure is already complex,
i.e. the homoclinic tangle of hyperbolic saddle points of the standard map and of
more general two dimensional dynamical systems. In Section 3 we describe how
diffusion can be supported by the heteroclinic tangle related to different periodic
orbits. In Section 4 we describe some higher dimensional examples related to Arnold
diffusion.
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2 The Homoclinic Tangle of Hyperbolic Saddle Points

The paradigm of chaotic dynamics in conservative systems is represented by the
so-called standard map (I,ϕ) �→ (I′,ϕ′) defined by:

ϕ′ = ϕ + I

I′ = I + ε sin (ϕ + 1),
(1)

where I ∈ R is an action variable, ϕ ∈ S
1 is an angle and ε ∈ R is a parameter. For

ε = 0 the standard map is integrable, i.e. the action I is constant while the angle ϕ
rotates with angular velocity I.

Instead, for ε �= 0 the phase-portraits of the map (represented in Fig. 1) show the
existence of invariant curves, as well as of two dimensional regions where motions
seem to be spread, and certainly not organized in invariant curves. This peculiar
structure of the phase-plane qualifies the standard map as a non integrable system.

Fig. 1 Phase portraits of the standard map for ε = 0.6 (left panel) and ε = 1 (right panel). In both
cases the phase-plane contains a mixture of invariant curves and two dimensional regions where
motions seem to spread uniformly. This peculiar structure of the phase-plane qualifies the standard
map as a non integrable system

We remark also the presence of two fixed points (I,ϕ) = (0,0),(0, ±π ), and (0,0)
is an hyperbolic saddle point.

Two dimensional symplectic maps similar to the standard map can be obtained
as Poincaré sections of higher dimensional continuous dynamical systems. An inter-
esting example is provided by a simplified model of the spin-orbit rotations of oblate
satellites, which is described in Fig. 2.

Because the fixed point x∗ = (I∗,ϕ∗) = (0,0) is a saddle point, one can apply the
so called stable (unstable) manifold theorem (see [13]) to prove that the sets:

Ws = {x: lim
t→∞ψ

t(x) = x∗}, Wu = {x: lim
t→∞ψ

−t(x) = x∗} (2)

are smooth curves, locally tangent in x∗ to the eigenvectors of the Jacobian matrix
of ψ : ∂ψ

∂x (x∗). The manifold Ws is called stable manifold of x∗, Wu is called unstable
manifold of x∗.

In every two-dimensional dynamical system defined by a smooth map ψ :M →
M (M denotes the two-dimensional phase-space) with a saddle fixed point x∗ the
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Fig. 2 Left panel: a tri-axial satellite, whose center of mass moves on a Keplerian orbit, is con-
strained to rotate in the plane x,y around an axis of inertia. The equation of motion for the libration

angle ϕ is: ϕ̈ = − 3
2�

2
(

a
|r|
)3

I2−I1
I3

sin (2(ϕ − λ)), where λ,a,r denote the true longitude, the semi-

major axis and the distance from the center of mass to the central body; � denotes the Keplerian
frequency of motion and I1,I2,I3 are the principal moments of inertia. Right panel: phase portrait of
the Poincaré map (ϕ,I) = (ϕ(0),ϕ̇(0)) �−→ (ϕ′,I′) = (ϕ(T),ϕ̇(T)), with T = 2π/�. The eccentric-
ity of the orbit is 0.02 and 3

2�
2 I2−I1

I3
= 0.075. The phase-plane structure is qualitatively similar to

the phase-plane structure of the standard map shown in Fig. 1: the phase-plane contains a mixture
of invariant curves and two dimensional regions where motions seem to spread uniformly. This
peculiar structure of the phase-plane qualifies this dynamical system as a non integrable system

stable and unstable manifolds of x∗ are curves. From the definition it is clear that the
knowledge of the unstable manifold Wu provides knowledge about how the orbits
with initial conditions in a small neighbourhood of x∗ “go away” from x∗, while the
knowledge of the stable manifold Ws provides knowledge about how the orbits of
the phase-space approach asymptotically x∗.

In the two-dimensional systems with a first integral the stable and unstable man-
ifolds are contained in the level set of the first integral containing the fixed point.
Therefore, they do not have a complicate topology. To produce a complicate topol-
ogy we need different hypotheses. An hypothesis which is sufficient to prove the
existence of a complicate structure for the stable and unstable manifolds due to
Poincaré [18] is related to the existence of a so-called homoclinic point x0, that is a
point of transverse intersection of Ws,Wu. In such a case, one shows that:

• each point of the orbit of the homoclinic point x0:

xt = ψ t(x0) t ∈ Z

is an homoclinic point, i.e. Ws intersects Wu transversely at xt.
• As a consequence, the unstable manifold cuts the stable manifold transversely

infinite times forming typical lobes, as it is shown in Fig. 3.
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Fig. 3 Examples of structure of stable and unstable manifolds of a saddle fixed point of a two
dimensional system, with the hypothesis of existence of homoclinic points. Left panel: the unstable
manifold of x∗ cuts the stable manifold (represented by the bold curve) transversely forming typical
lobes. Right panel: the stable manifold cuts the unstable manifold (represented by the bold curve)
transversely forming typical lobes

• Approaching the fixed point the base of each lobe becomes smaller and the height
becomes bigger, because near the fixed point there is contraction along the stable
direction and expansion along the unstable one.

• Suitably close to x∗, the lobes of the unstable manifold are so long that they are
forced to intersect the stable manifold in points x′,x′′ which are not in the orbit of
x0. Also the orbits of these points contain only homoclinic points (Fig. 4).

All these properties demonstrate that in the hypothesis of existence of at least an
homoclinic point the structure of the stable and unstable manifolds is indeed very
complicate, and is commonly called homoclinic tangle. We remark that because
Wu is the set of all the points whose orbit “comes from the fixed point x∗” (for
t → −∞) and Ws is the set of all the points whose orbit “goes to the fixed point
x∗” (for t → +∞), the homoclinic points are the points whose orbit “comes from
and goes to the fixed point x∗”. Therefore, the complexity of the structure of the
homoclinic tangle reflects the complexity of the dynamics related to the saddle point.
A precise way of representing the complex dynamics in homoclinic tangles uses the
conjugation of the map ψ to special maps called “horseshoe” maps (see [20]).

x"

x’

Fig. 4 Examples of structure of stable and unstable manifolds of a saddle fixed point of a two
dimensional system, with the hypothesis of existence of homoclinic points. Left panel: the homo-
clinic points x′ and x′′ are not in the same homoclinic orbit. Right panel: homoclinic tangle near
the fixed point
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In general, the analytic computation of the stable and unstable manifolds, as well
as the analytic determination of homoclinic points, is not straightforward. In some
perturbative contexts, analytical approximations can be obtained by means of the so
called Poincaré–Melnikov integrals.

Instead, the numerical localization of Ws, Wu, at least in the described case of
two dimensional maps, can be obtained by numerically propagating a set of initial
conditions chosen in a small neighborhood of the saddle point. In such a way, one
directly constructs a neighborhood of a finite piece of the unstable manifold, while
for the stable manifold one repeats the construction for the inverse map. This method
gives very good results for two dimensional maps because the neighborhoods of
the fixed points are two dimensional and can be propagated with reasonable CPU
times. A more sophisticated method is described in [19]. In Fig. 5 we show the
numerical computation of the stable and unstable manifolds of the fixed point (0,0)
of the standard map: from the figures we appreciate the topological complexity of
the homoclinic tangle.

3 From Chaos to Diffusion in two Dimensional
Symplectic Maps

In the previous section we have described the structures which support chaotic
motions in two-dimensional symplectic maps. However, the existence of chaotic
motions does not mean that the system is characterized by macroscopic instability.
For example, the region interested by chaotic motions could be localized in a small
region of the phase-space. To better represent this situation, instead of the usual
standard map (1), we consider a slightly different map defined by:

ϕ′ = ϕ + I

I′ = I + ε sinϕ′

( cosϕ′ + 1.1)2
.

(3)

The map (3) is more suitable than (1) to represent generic quasi-integrable maps,
because the Fourier expansion of the perturbation:

f (ϕ′) = ε sinϕ′

( cosϕ′ + 1.1)2
(4)

contains an infinite number of harmonics. The advantage of using maps of the form
(3) has been explained in several papers [5, 7, 8, 6, 9]. We now consider the phase
portraits of the map reported in Fig. 6: for ε = 0.002 (left panel) the phase-space
contains regions characterized by chaotic motions (such as those with action around
the value I = 0.34 and I = 0.36) which are disconnected by invariant curves, acting
as complete barriers to the diffusion of the action variable I. Therefore, there do
not exist orbits which connect these different chaotic regions. The invariant curves
which are complete barriers to the diffusion of the action variable are KAM curves,
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Fig. 5 Numerical representation of finite pieces of the stable and unstable manifolds of the hyper-
bolic fixed point (0,0) of the standard map for ε = 1. On each panel the stable and unstable
manifolds are plotted on the phase portrait of the map. The top panel represents a shorter piece of
the manifold
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Fig. 6 Phase portraits of the map (3) for ε = 0.002 (left panel) and ε = 0.004 (right panel). For
the smallest value of ε we see that there exist invariant curves which act as topological barriers to
the diffusion of the action I. For the largest value of ε the absence of invariant curves means that,
in principle, an orbit can diffuse through all the action values

whose existence can be established by the KAM theorem (Kolmogorov [10], Arnold
[2], Moser [17]). The KAM theorem proves the existence of the KAM invariant
curves if the value of the perturbing parameter ε is suitably small. Instead, for higher
values of ε the KAM curves typically are destroyed and replaced by the so called
cantori, which are discontinuous Aubry–Mather invariant sets, and therefore the
action variables can diffuse through their holes. In Fig. 6, right panel, we represent
a the phase portrait of the map (3) for ε = 0.004: for such an higher value of
the perturbing parameter we do not find KAM curves on the phase-portrait. The
absence of the topological barriers represented by the KAM invariant curves allow
the chaotic orbits to possibly diffuse through all the action values.

The possibility of an orbit of diffusing through all the action values does not
mean that there exist orbits which effectively diffuse. Up to now, there does not
exist a rigorous explanation of global diffusion in generic quasi-integrable systems,
while there exist heuristic criteria. One of the most popular heuristic criteria for
establishing the existence of global diffusion is the so called Chirikov criterion [3]
of overlapping resonances. The idea behind Chirikov criterion is that global dif-
fusion exists when the hyperbolic regions related to the hyperbolic periodic orbits
of different resonances “overlap”. A rigorous way of defining the overlapping of
nearby resonances uses the stable and unstable manifolds of these periodic orbits.
Precisely, a periodic orbit of period k for a map ψ :M → M is defined by a sequence
xj ∈ M, j = 0, . . . ,k − 1 such that ψ(xj + k) = ψ(xj + k) for any j. In particular,
any point xj is a fixed point of the map ψk. We now consider the periodic orbits
of initial conditions x0 such that x0 is a saddle fixed point of ψk. One can therefore
define stable and unstable manifolds for x0 as in the case of fixed points, and look for
homoclinic intersections, producing the homoclinic tangle and chaotic motions. But
now one can do more and can look for the transverse intersections between the sta-
ble/unstable manifolds of the different fixed points of the map ψk which correspond
to different periodic orbits (or fixed points) of the map ψ .
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Fig. 7 Numerical computation of heteroclinic points among the unstable manifold of a saddle
fixed point and the stable manifold of a periodic orbit of period k = 2 of the standard map for
ε = 2. Left panel: phase–portrait of ψ2, where ψ denotes the standard map (1). The bullet denotes
the initial condition of an hyperbolic periodic orbit of period k = 2. Right panel: on the phase–
portrait we report the computation of a finite piece of the unstable manifold of (0,0) and the stable
manifold of the hyperbolic periodic orbit. We can appreciate the presence of many heteroclinic
intersections

Let us consider the following example: let ψ be the standard map (1) with ε = 2
and let us consider the periodic orbits of period k = 2. The map ψ2 has (0,0) as
saddle fixed point, but also a saddle fixed point x0 = (ϕ0,I0) which corresponds to
an hyperbolic periodic orbit of the standard map of period 2 (see Fig. 7, left panel).
The numerical computation of the phase portrait shows that there are not invariant
KAM curves which act as topological barriers to the diffusion of the action vari-
able in the interval [0,I0]. To show that diffusion indeed occurs in this interval, we
use the mechanism provided by the existence of transverse intersections among the
stable manifold of one periodic orbit and the unstable manifold of the fixed point
(0,0). Such transverse intersection points are called heteroclinic points, and they
are used since decades to explain global diffusion in the phase-space. Establishing
the existence of heteroclinic points rigorously is even more difficult than for homo-
clinic points. Instead, numerical methods apply without additional difficulties. In
Fig. 7, right panel, we report the numerical computation of the unstable manifold
of (0,0) and the stable manifold of x0: the existence of transverse intersections is
evident. Because of the existence of heteroclinic points one easily finds initial con-
ditions which chaotically diffuse from a neighbourhood of the fixed points (0,0) to
a neighborhood of the periodic orbit of initial condition x0.

4 Higher Dimensional Systems: from Arnold’s Model
to Four Dimensional Maps

The general mechanisms which can produce drift and diffusion in the phase–space
of higher dimensional systems is an interesting, and in general open, problem.
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The problem becomes more difficult when the system is close to an integrable
one. Interesting examples of chaos and diffusion in a three-body problem using
stable/unstable manifolds is described in [16].

Many diffusive phenomena in higher dimensional systems are called Arnold dif-
fusion, because they are more or less inspired by the pioneering example proposed
by Arnold [1]. Arnold’s example is defined by the Hamiltonian system:

H = I2
1

2
+ I2

2

2
+ ε cosϕ1 + εμ( cosϕ1 − 1)( sinϕ2 + sin t), (5)

where ϕ1,ϕ2 ∈ S
1, I1,I2 ∈ R, and ε,μ are parameters. The Hamilton equations of

(5) are:
ϕ̇1 = I1

ϕ̇2 = I2

İ1 = ε sinϕ1 + εμ sinϕ1( sinϕ2 + sin t)

İ2 = −εμ( cos ϕ1 − 1) cosϕ2.

(6)

The system depends on two small parameters ε andμ. For ε = 0 the system has only
three dimensional invariant tori (considering t as a periodic variable with equation
ṫ = 1) defined by the constant value of the actions I1,I2, and the motions on these
tori are quasi–periodic with three frequencies:

ϕ̇1 = I1 ϕ̇2 = I2 ṫ = 1. (7)

For ε,μ �= 0 the system becomes non integrable, and understanding its dynamics
is not trivial. Specifically, for suitably small ε the KAM theorem (in its hysoener-
getic formulation) applies to Hamiltonian (5), establishing the existence of a large
volume set of invariant tori in the phase–space. However, at variance with the case
of two dimensional maps, where KAM curves divided the phase–space acting as
complete barriers for diffusion, in such a five dimensional system the three dimen-
sional invariant tori do not divide the phase–space, and diffusion of orbits among
the invariant tori is in principle possible.

To prove the existence of diffusion, Arnold considered the special resonance:
ϕ̇1 = 0, which contains an invariant manifold � defined by I1 = 0,ϕ1 = 0. The
invariant manifold � is fibered by the invariant two dimensional tori:

I1 = 0 ϕ1 = 0 ϕ̇2 = I2(0) ṫ = 1, (8)

which are hyperbolic if μ is suitably small. In fact, for μ = 0 the Hamiltonian of
the system is:

H = I2
1

2
+ ε cosϕ1 + I2

2

2
,

which is the Hamiltonian of a pendulum and a rotator. In this case, the stable and
unstable manifolds of each invariant torus (8) are the separatrices of the pendulum.
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As a consequence, for μ = 0, the invariant manifold � is hyperbolic. By general
hyperbolic theory the manifold� remains hyperbolic also for suitably small μ �= 0.

We remark that for μ = 0 the action I2 is a first integral of the system, while for
μ �= 0 it is a first integral only for the restriction of the map to the invariant manifold
�. Therefore, there is not diffusion of the action I2 on�, but as soon as ε,μ �= 0 the
action I2 can diffuse in any small neighbourhood of �. To prove that this diffusion
indeed exists, Arnold proved that the unstable manifolds of hyperbolic tori of �
intersect transversely the stable manifolds of close hyperbolic tori, thus providing
the mechanism for initial conditions in the neighbourhood of � to diffuse through
these manifolds. This kind of diffusion is called Arnold diffusion.

Though the results on the Arnold’s model have not been generalized to generic
quasi–integrable systems, the ideas contained in Arnold’s work have inspired in
the last decades the studies of diffusion in higher dimensional systems. Below,
we describe recent numerical studies of slow diffusion in four dimensional quasi–
integrable systems inspired by Arnold’s model of diffusion. [5, 7, 11, 8, 6, 9].

In many papers in collaboration with Froeschlé and Lega [5, 7, 8, 6, 9, 12] we
considered specific quasi-integrable systems which are more generic than Arnold’s
model. Specifically, we considered two coupled twist maps as follows:

ϕ′
1 = ϕ1 + I1, ϕ′

2 = ϕ2 + I2

I′
1 = I1 − ε ∂f

∂ϕ1
(ϕ′

1,ϕ′
2), I′

2 = I2 − ε ∂f

∂ϕ2
(ϕ′

1,ϕ′
2)

(9)

where ε is a small parameter and the perturbation f is:

f = 1

cos (ϕ1) + cos (ϕ2) + c

with c > 2. This specific choice of the perturbation has been done because the
Fourier expansion of f contains an infinite number of harmonics, and the exponential
decay of the harmonics is determined by the choice of the constant c.

If ε = 0 the map (9) is integrable: the actions of this system are constants of
motion and the angles rotate at constant angular velocity. Because it is not possible
to represent the orbits of (9) in the complete four dimensional phase-space, it is
convenient to represent them on a two dimensional surface such as:

S = {(I1,I2,ϕ1,ϕ2): (ϕ1,ϕ2) = (0,0)}.

For ε = 0, any orbit with initial condition x on S is on an invariant torus. Therefore,
the orbit does not return on S if the ratio of the frequencies is irrational, or it returns
exactly on S on the point x if the ratio of the frequencies is rational. Therefore, each
orbit with initial conditions on S can be symbolically represented by a dot on S.

If ε �= 0 the system is not integrable and the actions are not constants of motion,
but if ε is sufficiently small, the phase-space is filled by a large volume of two
dimensional KAM tori. Anyone of these tori intersects transversely S only on one
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I1

I1

ϕ1 = 0 ϕ2 = 0

k1I1 + k2I2 + 2πk3 = 0

k’1I1 + k’2I2 + 2πk’3 = 0

Fig. 8 Left panel: the KAM tori do not trap motions in the four dimensional space. Right
panel: the KAM tori are outside the neighborhood of the resonances defined by the Diophantine
condition (12)

point (see [7]), and therefore each invariant torus is symbolically represented by a
point on S. Therefore, the surface S contains many points representing two dimen-
sional invariant tori, which however do not trap motions in the four dimensional
phase–space. There is therefore the possibility of diffusion among these invariant
tori even for very small ε �= 0 (see Fig. 8 for a symbolic representation of possible
diffusion paths).

Diffusion, as far as we know, needs hyperbolic structures, which are related to
the resonances of the system, therefore we need a method to identify the hyperbolic
structures of the map. We first recall the definition of the resonances for the map
(9). Any linear combination of the angles k1ϕ1 + k2ϕ2, with k1,k2 ∈ Z, is resonant
if there exists k3 ∈ Z such that:

k1ϕ
′
1 + k2ϕ

′
2 = (k1ϕ1 + k2ϕ2) + (k1I1 + k2I2) = (k1ϕ1 + k2ϕ2) + 2πk3 , (10)

i.e. if:

k1 I1 + k2 I2 − 2πk3 = 0. (11)

From KAM theorem we know that invariant tori are located far from a suitable
neighbourhood of all these resonances (see Fig. 8). In fact, a KAM torus exists near
the values (I1,I2) satisfying a non-resonance Diophantine condition of the form:

|k1I1 + k2I2 − 2πk3| ≥ O(
√
ε)

|(k1,k2,k3)|τ , ∀(k1,k2,k3) ∈ Z
3\(0,0,0), τ > 2. (12)

The complement of the set of invariant tori, which is in the neighbourhood of the
resonances, is called Arnold web, and contains the hyperbolic structures which pos-
sibly support chaotic diffusion. An efficient way of detecting numerically the Arnold
web of a system is provided by the so called Fast Lyapunov Indicator, first defined
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in [4]. For a generic map ψ :M → M the Fast Lyapunov Indicator FLI(x,v,T) is a
function which depends on a point x ∈ M, on a tangent vector v ∈ R

n = TxM, and
on a positive time T as follows:

FLI(x,v,T) = log
∥∥∥∂ψ

T

∂x
(x)v
∥∥∥. (13)

For a fixed vector v and suitably long time T the computation of the function
FLI(x,v,T) on the surface S provides a precise detection of the Arnold web and
of the hyperbolic structures of the system, as it is explained in detail in [5, 7]. Here,
we report the results of the computation of the FLI for the map (9) on the surface
S. For any point x on a grid of S we computed the Fast Lyapunov Indicator, and
represented it with a color scale. Precisely,

• the points with the higher values of the FLI (which corresponds to white in
the color scale used to represent the value of the indicator) denote motions on
hyperbolic structures within the resonances of the system;

• the points with an intermediate value of the FLI (which corresponds to intermedi-
ate gray in the color scale used to represent the value of the indicator) are regular
motions (including KAM tori);

• the points with lower value of the FLI (which corresponds to black or dark gray
in the color scale used to represent the value of the indicator) are regular motions
(including resonant tori).

Therefore, the color representation of the FLI on S allows one to clearly identify
the KAM tori, the resonant tori, as well as the hyperbolic structures which possibly
support diffusion in the phase-space. The result of the computation is reported in
Fig. 9. For ε = 0.6 (left panel) there is a prevalence of KAM tori in the phase-space,

Fig. 9 Computation of the Arnold web on the section S using a color representation of the FLI.
Left panel: ε = 0.6, c = 4. Right panel: ε = 1.6, c = 4.
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and the hyperbolic structures are organized as a web of resonances, as predicted by
the KAM theorem. Chaotic diffusion can occur only on this network of hyperbolic
structures. Instead, for the higher value ε = 1.6 there is a prevalence of hyperbolic
motions. In such a case, the hyperbolic structures are not organized in a web, we
are not in a regime described by the KAM theorem, and chaotic diffusion can occur
practically in any direction.

In [11, 8] we have shown how initial conditions in the hyperbolic manifolds
diffuse in the Arnold web. We have chosen initial conditions in the region of the
hyperbolic motions and then we computed numerically their orbits up to the very
long 1011 iterations. The results are reported in Fig. 10: on the section S, represented

Fig. 10 Evolution on section S (black dots) of 20 orbits for the map (9) with hyperbolic initial
conditions near (I1,I2) = (1.71,0.81) on a time t < 108 iterations (top left), t < 109 iterations (top
right), t < 1010 iterations (bottom left), t < 1011 iterations (bottom right) for ε = 0.6. The orbits
fill a macroscopic region of the action plane whose structure is that of the Arnold web



Chaos and Diffusion in Dynamical Systems 111

by the action plane, we plotted as black dots all points of the orbits which have
returned after some time near the section S. Because computed orbits are dis-
crete we represented the points which enter the neighbourhood of S defined by
|ϕ1|,|ϕ2| ≤ 0.005, (reducing the tolerance 0.005 reduces only the number of points
on the section, but does not change their diffusion properties). In such a way we
represent the chaotic diffusion for orbits with initial conditions in a neighborhood
of S.It happens that the orbits fill a macroscopic region of the action plane whose
structure is that of the Arnold web. The possibility of visiting all possible resonances
is necessarily limited by finite computational times.
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