
Chapter 2

Wigner Matrices and Semicircular Law

A Wigner matrix is a symmetric (or Hermitian in the complex case) ran-
dom matrix. Wigner matrices play an important role in nuclear physics and
mathematical physics. The reader is referred to Mehta [212] for applications
of Wigner matrices to these areas. Here we mention that they also have a
strong statistical meaning. Consider the limit of a normalized Wishart matrix.
Suppose that x1, · · · ,xn are iid samples drawn from a p-dimensional multi-
variate normal population N(µ, Ip). Then, the sample covariance matrix is
defined as

Sn =
1

n− 1

n∑

i=1

(xi − x)(xi − x)′,

where x = 1
n

∑n
i=1 xi. When n tends to infinity, Sn → Ip and

√
n (Sn − Ip) →√

pWp. It can be seen that the entries above the main diagonal of
√
pWp

are iid N(0, 1) and the entries on the diagonal are iid N(0, 2). This matrix is
called the (standard) Gaussian matrix or Wigner matrix.

A generalized definition of Wigner matrix only requires the matrix to
be a Hermitian random matrix whose entries on or above the diagonal are
independent. The study of spectral analysis of the large dimensional Wigner
matrix dates back to Wigner’s [295] famous semicircular law. He proved
that the expected ESD of an n×n standard Gaussian matrix, normalized by
1/

√
n, tends to the semicircular law F whose density is given by

F ′(x) =

{
1
2π

√
4 − x2, if |x| ≤ 2,

0, otherwise.
(2.0.1)

This work has been extended in various aspects. Grenander [136] proved
that ‖FWn − F‖ → 0 in probability. Further, this result was improved as in
the sense of “almost sure” by Arnold [8, 7]. Later on, this result was further
generalized, and it will be introduced in the following sections.
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16 2 Wigner Matrices and Semicircular Law

2.1 Semicircular Law by the Moment Method

In order to apply the moment method (see Appendix B, Section B.1) to
prove the convergence of the ESD of Wigner matrices to the semicircular
distribution, we calculate the moments of the semicircular distribution and
show that they satisfy the Carleman condition. In the remainder of this sec-
tion, we will show the convergence of the ESD of the Wigner matrix by the
moment method.

2.1.1 Moments of the Semicircular Law

Let βk denote the k-th moment of the semicircular law. We have the following
lemma.

Lemma 2.1. For k = 0, 1, 2, · · · , we have

β2k =
1

k + 1

(
2k

k

)
,

β2k+1 = 0.

Proof. Since the semicircular distribution is symmetric about 0, thus we have
β2k+1 = 0. Also, we have

β2k =
1

2π

∫ 2

−2

x2k
√

4 − x2dx

=
1

π

∫ 2

0

x2k
√

4 − x2dx

=
22k+1

π

∫ 1

0

yk−1/2(1 − y)1/2dy (by setting x = 2
√
y)

=
22k+1

π

Γ (k + 1/2)Γ (3/2)

Γ (k + 2)
=

1

k + 1

(
2k

k

)
.

2.1.2 Some Lemmas in Combinatorics

In order to calculate the limits of moments of the ESD of a Wigner matrix,
we need some information from combinatorics. This is because the mean and
variance of each empirical moment will be expressed as a sum of expectations
of products of matrix entries, and we need to be able to systematically count
the number of significant terms. To this end, we introduce some concepts
from graph theory and establish some lemmas.
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vertices, and F is a function, F : E 7→ V ×V . If F (e) = (v1, v2), the vertices
v1, v2 are called the ends of the edge e, v1 is the initial of e, and v2 is the
terminal of e. If v1 = v2, edge e is a loop. If two edges have the same set of

Let i = (i1, · · · , ik) be a vector valued on {1, · · · , n}k. With the vector i,
we define a Γ -graph as follows. Draw a horizontal line and plot the numbers
i1, · · · , ik on it. Consider the distinct numbers as vertices, and draw k edges
ej from ij to ij+1, j = 1, · · · , k, where ik+1 = i1 by convention. Denote
the number of distinct ij’s by t. Such a graph is called a Γ (k, t)-graph. An
example of Γ (6, 4) is shown in Fig. 2.1.

5
i1=i7 i2=i6 i3=i4 i

Fig. 2.1 A Γ -graph

By definition, a Γ (k, t)-graph starts from vertex i1, and the k edges con-
secutively connect one after another and finally return to vertex i1. That is,
a Γ (k, t)-graph forms a cycle.

Two Γ (k, t)-graphs are said to be isomorphic if one can be converted to
the other by a permutation of (1, · · · , n). By this definition, all Γ -graphs are
classified into isomorphism classes.

We shall call the Γ (k, t)-graph canonical if it has the following properties:

1. Its vertex set is V = {1, · · · , t}.
2. Its edge set is E = {e1, · · · , ek}.
3. There is a function g from {1, 2, · · · , k} onto {1, 2, · · · , t} satisfying g(1) = 1

and g(i) ≤ max{g(1), · · · , g(i− 1)} + 1 for 1 < i ≤ k.
4. F (ei) = (g(i), g(i+1)), for i = 1, · · · , k, with convention g(k+1) = g(1) =

1.

It is easy to see that each isomorphism class contains one and only one
canonical Γ -graph that is associated with a function g, and a general graph
in this class can be defined by F (ej) = (ig(j), ig(j+1)). Therefore, we have the
following lemma.

Lemma 2.2. Each isomorphism class contains n(n−1) · · · (n− t+1) Γ (k, t)
graphs.

A graph is a triple (E, V, F ), where E is the set of edges, V is the set of

ends, they are said to be coincident.
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The canonical Γ (k, t)-graphs can be classified into three categories.
Category 1 (denoted by Γ1(k)): A canonical graph Γ (k, t) is said to belong

to category 1 if each edge is coincident with exactly one other edge of opposite
direction and the graph of noncoincident edges forms a tree (i.e., a connected
graph without cycles). It is obvious that there is no Γ1(k) if k is odd.

Category 2 (Γ2(k, t)) consists of all those canonical Γ (k, t)-graphs that
have at least one single edge; i.e., an edge not coincident with any other
edges.

Category 3 (Γ3(k, t)) consists of all other canonical Γ (k, t)-graphs. If we
classify the k edges into coincidence classes, a Γ3(k, t)-graph contains either a
coincidence class of at least three edges or a cycle of noncoincident edges. In
both cases, t ≤ (k+ 1)/2. Then, in fact we have proved the following lemma.

Lemma 2.3. In a Γ3(k, t)-graph, t ≤ (k + 1)/2.

Now, we begin to count the number of Γ1(k)-graphs for k = 2m. We have
the following lemma.

Lemma 2.4. The number of Γ1(2m)-graphs is 1
m+1

(
2m
m

)
.

Proof. Suppose G is a graph of Γ1(2m). We define a function H : E →
{−1, 1}; H(e) = +1 if e is single up to itself (called an innovation) and
= −1 otherwise (called a Type 3 (T3) edge, the edge that coincides with an
innovation that is single up to it). Corresponding to the graph G, we call
the sequence (H(e1), · · · , H(ek)) = (a1 = 1, a2, · · · , a2m−1, a2m = −1) the
characteristic sequence of the graph G. By definition, all partial sums of the
characteristic sequence are nonnegative; i.e., for all 1 ≤ ℓ ≤ 2m,

a1 + a2 + · · · + aℓ ≥ 0. (2.1.1)

We show that there is a one-to-one correspondence between Γ1(2m)-graphs
and the characteristic sequences. That is, we need to show that any sequence
of ±1 satisfying (2.1.1) corresponds to a Γ1(2m)-graph. Suppose (a1, · · · , a2m)
is a given sequence satisfying (2.1.1). We construct a Γ1(2m)-graph with the
given sequence as its characteristic sequence.

By (2.1.1), a1 = 1 and F (e1) = (1, 2); i.e., g(1) = 1, g(2) = 2. Sup-
pose g(1), g(2), · · · , g(s) (2 ≤ s < 2m) have been defined with the following
properties:

(i) For each i ≤ s, we have g(i) ≤ max{g(1), · · · , g(i− 1)} + 1.
(ii) If we define (g(i), g(i+ 1)), i = 1, · · · , s− 1, as edges, then from g(1) = 1

to g(s) there is a path of single innovations if g(s) 6= 1. All other edges
not on the path must coincide with another edge of opposite direction. If
g(s) = 1, then each edge coincides with another edge of opposite direction.

(iii) H(g(i), g(i+ 1)) = ai for all i < s.

Now, we define g(s+ 1) in the following way:
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Case 1. If as = 1, define g(s + 1) = max{g(1), · · · , g(s)} + 1. Obviously,
the edge (g(s), g(s+1)) is a single innovation that, combining the original
path of single innovations, forms the new path of single innovations from
g(1) = 1 to g(s+1) if g(s) 6= 1. If g(s) = 1, then g(s+1) 6= 1 and the edge
(g(s), g(s + 1)) forms the new path of single innovations. Also, all other
edges coincide with an edge of opposite directions. That is, conditions
(i)–(iii) are satisfied.

Case 2. If as = −1, then g(s) 6= 1 for otherwise condition (2.1.1) will be
violated. Hence, there is an i < s such that (g(i), g(s)) is a single innovation
(the last edge of a path of single innovations). Then, define g(s+1) = g(i).
If g(i) = 1, then the new graph has no single edges. If g(i) 6= 1, the original
path of single innovations has at least two single innovations. Then, the
new path of single innovations is obtained by cutting the last edge from the
original path of single innovations. Also, conditions (i)–(iii) are satisfied.

By induction, the functions g(1), · · · , g(2m) are well defined, and hence a
Γ1(2m) with characteristic sequence (a1, · · · , a2m) is defined.

Therefore, to count the number of Γ1(2m)-graphs is equivalent to counting
the number of characteristic sequences of isomorphism classes.

Arbitrarily arrange m ones and m minus ones. The total number of possi-
bilities is obviously

(
2m
m

)
. We shall use the symmetrization principle to count

the number of noncharacteristic sequences. Write the sequence of ±1s as
(a1, · · · , a2m) and S0 = 0 and Si = Si−1 + ai, for i = 1, 2, · · · , 2m. Plot the
graph of (i, S(i)) on the plane. The graph should start from (0, 0) and return
to (2m, 0). If for all i, Si ≥ 0 (that is, the figure is totally above or on the
horizontal axis), then (a1, · · · , a2m) is a characteristic sequence. Otherwise,
if (a1, · · · , a2m) is not a characteristic sequence, then there must be an i ≥ 1
such that Si = −1. Then we turn over the rear part after i along the line
S = −1 and we get a new graph (0, 0) to (2m,−2), as shown in Fig. 2.2.

i

0

−2

2m

S

Fig. 2.2 Symmetrization principle

This is equivalent to defining bj = aj for j ≤ i and bj = −aj for j > i.
Then, the sequence (b1, · · · , b2m) contains m− 1 ones and m+ 1 minus ones.
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Conversely, for any sequence of m−1 ones and m+1 minus ones, there must
be a smallest integer i < 2m such that b1 + · · ·+ bi = −1. Then the sequence
(b1, · · · , bk,−bk+1, · · · ,−b2m) contains m ones and m minus ones which is a
noncharacteristic sequence. The number of b-sequences is

(
2m

m−1

)
. Thus, the

number of characteristic sequences is

(
2m

m

)
−
(

2m

m− 1

)
=

1

m+ 1

(
2m

m

)
.

The proof of the lemma is complete.

2.1.3 Semicircular Law for the iid Case

In this subsection, we will show the semicircular law for the iid case; that is,
we shall prove the following theorem. For brevity of notation, we shall use
Xn for an n×n Wigner matrix and save the notation Wn for the normalized
Wigner matrix, i.e., 1√

n
Xn.

Theorem 2.5. Suppose that Xn is an n×n Hermitian matrix whose diagonal
entries are iid real random variables and those above the diagonal are iid
complex random variables with variance σ2 = 1. Then, with probability 1, the
ESD of Wn = 1√

n
Xn tends to the semicircular law.

Before applying the MCT to the proof of Theorem 2.5, we first remove
the diagonal entries of Xn, truncate the off-diagonal entries of the matrix,
and renormalize them, without changing the LSD. We will proceed with the
proof by taking the following steps.

Step 1. Removing the Diagonal Elements

Let W̃n be the matrix obtained from Wn by replacing the diagonal elements
with zero. We shall show that the two matrices are asymptotically equivalent;
i.e., their LSDs are the same if one of them exists.

Let Nn = #{|xii| ≥ 4
√
n}. Replace the diagonal elements of Wn by

1√
n
xiiI(|xii| < 4

√
n), and denote the resulting matrix by Ŵn. Then, by Corol-

lary A.41, we have

L3(F Ŵn , F W̃n) ≤ 1

n
tr[(W̃n − Ŵn)2] ≤ 1

n2

n∑

i=1

|xii|2I(|xii| < 4
√
n) ≤ 1√

n
.

On the other hand, by Theorem A.43, we have

∥∥∥FWn − F W̃n

∥∥∥ ≤ Nn

n
.
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Therefore, to complete the proof of our assertion, it suffices to show that
Nn/n → 0 almost surely. Write pn = P(|x11| ≥ 4

√
n) → 0. By Bernstein’s

inequality,1 we have, for any ε > 0,

P(Nn ≥ εn) = P

(
n∑

i=1

(I(|xii| ≥ 4
√
n) − pn) ≥ (ε− pn)n

)

≤ 2 exp(−(ε− pn)2n2/2[npn + (ε− pn)n]) ≤ 2e−bn,

for some positive constant b > 0. This completes the proof of our assertion.
In the following subsections, we shall assume that the diagonal elements

of Wn are all zero.

Step 2. Truncation
For any fixed positive constant C, truncate the variables at C and write
xij(C) = xijI(|xij | ≤ C). Define a truncated Wigner matrix Wn(C) whose

diagonal elements are zero and off-diagonal elements are 1√
n
xij(C). Then, we

have the following truncation lemma.

Lemma 2.6. Suppose that the assumptions of Theorem 2.5 are true. Trun-
cate the off-diagonal elements of Xn at C, and denote the resulting matrix
by Xn(C). Write Wn(C) = 1√

n
Xn(C). Then, for any fixed constant C,

lim sup
n

L3(FWn , FWn(C)) ≤ E
(
|x11|2I(|x11| > C)

)
, a.s. (2.1.2)

Proof. By Corollary A.41 and the law of large numbers, we have

L3(FWn , FWn(C)) ≤ 2

n2


 ∑

1≤i<j≤n

|xij |2I(|x11| > C)




→ E
(
|x11|2I(|x11| > C)

)
.

This completes the proof of the lemma.

Note that the right-hand side of (2.1.2) can be made arbitrarily small by
making C large. Therefore, in the proof of Theorem 2.5, we can assume that
the entries of the matrix Xn are uniformly bounded.

Step 3. Centralization
Applying Theorem A.43, we have

∥∥∥FWn(C) − FWn(C)−a11′
∥∥∥ ≤ 1

n
, (2.1.3)

1 Bernstein’s inequality states that if X1, · · · , Xn are independent random variables with
mean zero and uniformly bounded by b, then, for any ε > 0,
P (|Sn| ≥ ε) ≤ 2 exp(−ε2/[2(B2

n + bε)]), where Sn = X1 + · · · + Xn and B2
n = ES2

n.
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where a = 1√
n
ℜ(E(x12(C))). Furthermore, by Corollary A.41, we have

L(FWn(C)−ℜ(E(Wn(C))), FWn(C)−a11′
) ≤ |ℜ(E(x12(C)))|2

n
→ 0. (2.1.4)

This shows that we can assume that the real parts of the mean values of
the off-diagonal elements are 0. In the following, we proceed to remove the
imaginary part of the mean values of the off-diagonal elements.

Before we treat the imaginary part, we introduce a lemma about eigenval-
ues of a skew-symmetric matrix.

Lemma 2.7. Let An be an n × n skew-symmetric matrix whose elements
above the diagonal are 1 and those below the diagonal are −1. Then, the eigen-
values of An are λk = icot(π(2k−1)/2n), k = 1, 2, · · · , n. The eigenvector as-
sociated with λk is uk = 1√

n
(1, ρk, · · · , ρn−1

k )′, where ρk = (λk−1)/(λk +1) =

exp(−iπ(2k − 1)/n).

Proof. We first compute the characteristic polynomial of An.

Dn = |λI − An| =

∣∣∣∣∣∣∣∣∣∣

λ −1 −1 · · · −1
1 λ −1 · · · −1
1 1 λ · · · −1
...

...
...

. . .
...

1 1 1 · · · λ

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

λ− 1 −(1 + λ) 0 · · · 0
0 λ− 1 −(1 + λ) · · · 0
0 0 λ− 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · λ

∣∣∣∣∣∣∣∣∣∣

.

Expanding the above along the first row, we get the following recursive
formula

Dn = (λ − 1)Dn−1 + (1 + λ)n−1,

with the initial value D1 = λ. The solution is

Dn = λ(λ − 1)n−1 + (λ+ 1)(λ− 1)n−2 + · · · + (λ+ 1)n−1

=
1

2
((λ− 1)n + (λ+ 1)n) .

Setting Dn = 0, we get

λ+ 1

λ− 1
= eiπ(2k−1)/n, k = 1, 2, · · · , n, (2.1.5)

which implies that λ = icot(π(2k − 1)/2n).
Comparing the two sides of the equation Anuk = λkuk, we obtain
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−uk,1 − · · · − uk,ℓ−1 + uk,ℓ+1 + · · · + uk,n = λkuk,ℓ

for ℓ = 1, 2, · · · , n. Thus, subtracting the equations for ℓ+ 1 from that for ℓ,
we get

uk,ℓ + uk,ℓ+1 = λk(uk,ℓ − uk,ℓ+1),

which implies that

uk,ℓ+1

uk,ℓ
=
λk − 1

λk + 1
= e−iπ(2k−1)/n := ρk.

Therefore, one can choose uk,ℓ = ρℓ−1
k /

√
n.

The proof of the lemma is complete.

Write b = Eℑ(x12(C)). Then, Eℑ(Wn(C)) = ibAn. By Lemma 2.7, the

eigenvalues of the matrix iℑ(E(Wn(C))) = ibAn are ibλk = −n−1/2bcot(π(2k−
1)/2n), k = 1, · · · , n. If the spectral decomposition of An is UnDnU∗

n, then
we rewrite iℑ(E(Wn(C))) = B1+B2, where Bj = − 1√

n
bUnDnjU

∗
n, j = 1, 2,

where Un is a unitary matrix, Dn =diag[λ1, · · · , λn], and

Dn1 = Dn − Dn2 = diag[0, · · · , 0, λ[n3/4], λ[n3/4]+1, · · · , λn−[n3/4], 0, · · · , 0].

For any n× n Hermitian matrix C, by Corollary A.41, we have

L3(FC, FC−B1) ≤ 1

n2

∑

n3/4≤k≤n−n3/4

cot2(π(2k − 1)/2n)

<
2

n sin2(n−1/4π)
→ 0 (2.1.6)

and, by Theorem A.43,

‖FC − FC−B2‖ ≤ 2n3/4

n
→ 0. (2.1.7)

Summing up estimations (2.1.3)–(2.1.7), we established the following cen-
tralization lemma.

Lemma 2.8. Under the conditions assumed in Lemma 2.6, we have

L(FWn(C) , FWn(C)−E(Wn(C))) = o(1). (2.1.8)

Step 4. Rescaling

Write σ2(C) = Var(x11(C)), and define W̃n = σ−1(C)
(
Wn(C) − E(Wn(C))

)
.

Note that the off-diagonal entries of
√
nW̃n are x̂kj = σ−1(C)

(
xkj(C) −

E(xkj(C))
)
.

Applying Corollary A.41, we obtain
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L3(F W̃n , FWn(C)−E(Wn(C))) ≤ 2(σ(C) − 1)2

n2σ2(C)

∑

1≤i<j≤n

|xkj(C) − E(xkj(C))|2

→ (σ(C) − 1)2, a.s. (2.1.9)

Note that (σ(C) − 1)2 can be made arbitrarily small if C is large. Com-
bining (2.1.9) with Lemmas 2.6 and 2.8, to prove the semicircular law, we
may assume that the entries of X are bounded by C, having mean zero and
variance 1. Also, we may assume the diagonal elements are zero.

Step 5. Proof of the Semicircular Law
We will prove Theorem 2.5 by the moment method. For simplicity, we still use
Wn and xij to denote the Wigner matrix and basic variables after truncation,
centralization, and rescaling.

The semicircular distribution satisfies the Riesz condition. Therefore it is
enough to show that the moments of the spectral distribution converge to the
corresponding moments of the semicircular distribution almost surely. The
k-th moment of the ESD of Wn is

βk(Wn) = βk(FWn) =

∫
xk dFWn(x)

=
1

n

n∑

i=1

λk
i =

1

n
tr(Wk

n) =
1

n1+ k
2

tr(Xk
n)

=
1

n1+ k
2

∑

i

X(i), (2.1.10)

where λi’s are the eigenvalues of the matrix Wn, X(i) = xi1i2xi2i3 · · ·xiki1 ,
i = (i1, · · · , ik), and the summation

∑
i runs over all possibilities that i ∈

{1, · · · , n}k.
By applying the moment convergence theorem, we complete the proof of

the semicircular law for the iid case by showing the following:

(1) E[βk(Wn)] converges to the k-th moment βk of the semicircular distribu-
tion, which are β2m−1 = 0 and β2m = (2m)!/m!(m+ 1)! given in Lemma
2.1.

(2) For each fixed k,
∑

n Var[βk(Wn)] <∞.

The Proof of (1); i.e., E[βk(Wn)] → βk.

We have

E[βk(Wn)] =
1

n1+k/2

∑
EX(i).

For each vector i, construct a graph G(i) as in Subsection 2.1.2. To specify
the graph, we rewrite X(i) = X(G(i)). The summation is taken over all
sequences i = (i1, i2, · · · , ik) ∈ {1, 2, · · · , n}k.
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Note that isomorphic graphs correspond to equal terms. Thus, we first
group the terms according to isomorphism classes and then split E[βk(Wn)]
into three sums according to categories. Then

E[βk(Wn)] = S1 + S2 + S3,

where
Sj = n−1−k/2

∑

Γ (k,t)∈Cj

∑

G(i)∈Γ (k,t)

E[XG(i)],

in which the summation
∑

Γ (k,t)∈Cj
is taken on all canonical Γ (k, t)-graphs in

category j and the summation
∑

G(i)∈Γ (k,t) is taken on all isomorphic graphs
for a given canonical graph.

By definition of the categories and by the assumptions on the entries of
the random matrices, we have

S2 = 0.

Since the random variables are bounded by C, the number of isomorphic
graphs is less than nt by Lemma 2.2, and t ≤ (k + 1)/2 by Lemma 2.3, we
conclude that

|S3| ≤ n−1−k/2O(nt) = o(1).

If k = 2m − 1, then S1 = 0 since there are no terms in S1. We consider
the case where k = 2m. Since each edge coincides with an edge of opposite
direction, each term in S1 is (E|x12|2)m = 1. So, by Lemma 2.4,

S1 = n−1−m
∑

Γ (2m,t)∈C1

n(n− 1) · · · (n−m)

= β2m

(
1 − 1

m

)
· · ·
(
1 − m

n

)
→ β2m.

Assertion (1) is then proved.

The proof of (2). We only need to show that Var(βk(Wn)) is summable
for all fixed k. We have

Var(βk(Wn)) = E[|βk(Wn)|2] − |E[βk(Wn)]|2

=
1

n2+k

∑ ∗{E[X(i)X(j)]− E[X(i)]E[X(j)]}, (2.1.11)

where i = (i1, · · · , ik), j = (j1, · · · , jk), and
∑∗

is taken over all possibilities
for i, j ∈ {1, · · · , n}k. Here, the reader should notice that βk(Wn) is real and
hence the second equality in the above is meaningful, although the variables
X(i) and X(j) are complex.

Using i and j, one can construct two graphs G(i) and G(j), as in the proof
of (1). If there are no coincident edges between G(i) and G(j), then X(i) is
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independent of X(j), and thus the corresponding term in the sum is 0. If
the combined graph G = G(i) ∪ G(j) has a single edge, then E[X(i)X(j)] =
E[X(i)]E[X(j)] = 0, and hence the corresponding term in (2.1.11) is also 0.

Now, suppose that G contains no single edges and the graph of noncoin-
cident edges has a cycle. Then the noncoincident vertices of G are not more
than k. If G contains no single edges and the graph of noncoincident edges
has no cycles, then there is at least one edge with coincidence multiplicity
greater than or equal to 4, and thus the number of noncoincident vertices is
not larger than k. Also, each term in (2.1.11) is not larger than 2C2kn−2−k.
Consequently, we can conclude that

Var(βk(Wn)) ≤ KkC
2kn−2, (2.1.12)

where Kk is a constant that depends on k only. This completes the proof of
assertion (2).

The proof of Theorem 2.5 is then complete.

2.2 Generalizations to the Non-iid Case

Sometimes, it is of practical interest to consider the case where, for each n,
the entries above or on the diagonal of Wn are independent complex random
variables with mean zero and variance σ2 (for simplicity we assume σ = 1 in
the following), but may depend on n. For this case, we present the following
theorem.

Theorem 2.9. Suppose that Wn = 1√
n
Xn is a Wigner matrix and the en-

tries above or on the diagonal of Xn are independent but may be dependent
on n and may not necessarily be identically distributed. Assume that all the
entries of Xn are of mean zero and variance 1 and satisfy the condition that,
for any constant η > 0,

lim
n→∞

1

n2

∑

jk

E|x(n)
jk |2I(|x(n)

jk | ≥ η
√
n) = 0. (2.2.1)

Then, the ESD of Wn converges to the semicircular law almost surely.

Remark 2.10. In Girko’s book [121], it is stated that condition (2.2.1) is nec-
essary and sufficient for the conclusion of Theorem 2.9.

2.2.1 Proof of Theorem 2.9

Again, we need to truncate, remove diagonal entries, and renormalize before
we use the MCT. Because the entries are not iid, we cannot truncate the
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entries at constant positions. Instead, we shall truncate them at ηn
√
n for

some sequence ηn ↓ 0.

Step 1. Truncation
Note that Corollary A.41 may not be applicable in proving the almost sure
asymptotic equivalence between the ESD of the original matrix and that of
the truncated one, as was done in the last section. In this case, we shall use
the rank inequality (see Theorem A.43) to truncate the variables.

Note that condition (2.2.1) is equivalent to: for any η > 0,

lim
n→∞

1

η2n2

∑

jk

E|x(n)
jk |2I(|x(n)

jk | ≥ η
√
n) = 0. (2.2.2)

Thus, one can select a sequence ηn ↓ 0 such that (2.2.2) remains true

when η is replaced by ηn. Define W̃n = 1√
n
n(x

(n)
ij I(|x(n)

ij | ≤ ηn
√
n). By using

Theorem A.43, one has

‖FWn − F W̃n‖ ≤ 1

n
rank(Wn − Wn(ηn

√
n))

≤ 2

n

∑

1≤i≤j≤n

I(|x(n)
ij | ≥ ηn

√
n). (2.2.3)

By condition (2.2.2), we have

E


 1

n

∑

1≤i≤j≤n

I(|x(n)
ij | ≥ ηn

√
n)




≤ 2

η2
nn

2

∑

jk

E|x(n)
ij |2I(|x(n)

ij | ≥ ηn

√
n) = o(1),

and

Var


 1

n

∑

1≤i≤j≤n

I(|x(n)
ij | ≥ ηn

√
n)




≤ 4

η2
nn

3

∑

jk

E|x(n)
ij |2I(|x(n)

ij | ≥ ηn

√
n) = o(1/n).

Then, applying Bernstein’s inequality, for all small ε > 0 and large n, we
have

P


 1

n

∑

1≤i≤j≤n

I(|x(n)
ij | ≥ ηn

√
n) ≥ ε


 ≤ 2e−εn, (2.2.4)
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which is summable. Thus, by (2.2.3) and (2.2.4), to prove that with probabil-
ity one FWn converges to the semicircular law, it suffices to show that with

probability one F W̃n converges to the semicircular law.

Step 2. Removing diagonal elements

Let Ŵn be the matrix W̃n with diagonal elements replaced by 0. Then, by
Corollary A.41, we have

L3
(
F W̃n , F Ŵn

)
≤ 1

n2

n∑

k=1

|x(n)
kk |2I(|x(n)

kk | ≤ ηn

√
n) ≤ η2

n → 0.

Step 3. Centralization
By Corollary A.41, it follows that

L3
(
F Ŵn , F Ŵn−EŴn

)

≤ 1

n2

∑

i 6=j

|E(x
(n)
ij I(|x(n)

ij | ≤ ηn

√
n))|2

≤ 1

n3η2
n

∑

ij

E|x(n)
jk |2I(|x(n)

jk | ≥ ηn

√
n) → 0. (2.2.5)

Step 4. Rescaling

Write W̃n = 1√
n
X̃n, where

X̃n =

(
x

(n)
ij I(|x(n)

ij | ≤ ηn
√
n) − E(x

(n)
ij I(|x(n)

ij | ≤ ηn
√
n))

σij
(1 − δij)

)
,

σ2
ij = E|x(n)

ij I(|x(n)
ij | ≤ ηn

√
n) − E(x

(n)
ij I(|x(n)

ij | ≤ ηn
√
n))|2 and δij is Kro-

necker’s delta.
By Corollary A.41, it follows that

L3
(
F W̃n , F Ŵn−EŴn

)

≤ 1

n2

∑

i6=j

(1 − δ−1
ij )2|x(n)

ij I(|x(n)
ij | ≤ ηn

√
n) − E(x

(n)
ij I(|x(n)

ij | ≤ ηn

√
n))|2.

Note that

E


 1

n2

∑

i 6=j

(1 − δ−1
ij )2|x(n)

ij I(|x(n)
ij | ≤ ηn

√
n) − E(x

(n)
ij I(|x(n)

ij | ≤ ηn

√
n))|2




≤ 1

n2η2
n

∑

ij

(1 − σij)
2
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≤ 1

n2η2
n

∑

ij

(1 − σ2
ij)

≤ 1

n2η2
n

∑

ij

[E|x(n)
jk |2I(|x(n)

jk | ≥ ηn

√
n) + E2|x(n)

jk |I(|x(n)
jk | ≥ ηn

√
n)] → 0.

Also, we have2

E

∣∣∣∣∣∣
1

n2

∑

i6=j

(1 − δ−1
ij )2

∣∣∣x(n)
ij I(|x(n)

ij | ≤ ηn

√
n) − E(x

(n)
ij I(|x(n)

ij | ≤ ηn

√
n))
∣∣∣
2

∣∣∣∣∣∣

4

≤ C

n8



∑

i6=j

E|x(n)
ij |8I(|x(n)

ij | ≤ ηn

√
n) +


∑

i6=j

E|x(n)
ij |4I(|x(n)

ij | ≤ ηn

√
n)




2



≤ Cn−2[n−1η6
n + η4

n],

which is summable. From the two estimates above, we conclude that

L
(
F W̃n , F Ŵn−EŴn

)
→ 0, a.s.

Step 5. Proof by MCT

Up to here, we have proved that we may truncate, centralize, and rescale
the entries of the Wigner matrix at ηn

√
n and remove the diagonal elements

without changing the LSD. These four steps are almost the same as those we
followed for the iid case.

Now, we assume that the variables are truncated at ηn
√
n and then cen-

tralized and rescaled.
Again for simplicity, the truncated and centralized variables are still de-

noted by xij , We assume:

(i) The variables {xij , 1 ≤ i < j ≤ n} are independent and xii = 0.
(ii) E(xij) = 0 and Var(xij) = 1.
(iii) |xij | ≤ ηn

√
n.

Similar to what we did in the last section, in order to prove Theorem 2.9, we
need to show that:

(1) E[βk(Wn)] converges to the k-th moment βk of the semicircular distribu-
tion.

(2) For each fixed k,
∑

n E|βk(Wn) − E(βk(Wn))|4 <∞.

The proof of (1)
Let i = (i1, · · · , ik) ∈ {1, · · · , n}k. As in the iid case, we write

2 Here we use the elementary inequality E|
∑

Xi|2k ≤ Ck(
∑

E|Xi|2k + (
∑

E|Xi|2)k) for
some constant Ck if the Xi’s are independent with zero means.
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E[βk(Wn)] = n−1−k/2
∑

i

EX(G(i)),

where X(G(i)) = xi1,i2xi2,i3 · · · , xik,i1 , and G(i) is the graph defined by i.
By the same method for the iid case, we split E[βk(Wn)] into three sums

according to the categories of graphs. We know that the terms in S2 are all
zero, that is, S2 = 0.

We now show that S3 → 0. Split S3 as S31 + S32, where S31 consists
of the terms corresponding to a Γ3(k, t)-graph that contains at least one
noncoincident edge with multiplicity greater than 2 and S32 is the sum of the
remaining terms in S3.

To estimate S31, assume that the Γ3(k, t)-graph contains ℓ noncoincident
edges with multiplicities ν1, · · · , νℓ among which at least one is greater than
or equal to 3. Note that the multiplicities are subject to ν1 + · · · + νℓ = k.
Also, each term in S31 is bounded by

n−1−k/2
ℓ∏

i=1

E|xai,bi |νi ≤ n−1−k/2(ηn

√
n)
∑

(νi−2) = n−1−ℓηk−2ℓ
n .

Since the graph is connected and the number of its noncoincident edges is ℓ,
the number of noncoincident vertices is not more than ℓ + 1, which implies
that the number of terms in S31 is not more than n1+ℓ. Therefore,

|S31| ≤ Ckη
k−2ℓ
n → 0

since k − 2ℓ ≥ 1.
To estimate S32, we note that the Γ3(k, t)-graph contains exactly k/2

noncoincident edges, each with multiplicity 2 (thus k must be even). Then
each term of S32 is bounded by n−1−k/2. Since the graph is not in category 1,
the graph of noncoincident edges must contain a cycle, and hence the number
of noncoincident vertices is not more than k/2 and therefore

|S32| ≤ Cn−1 → 0.

Then, the evaluation of S1 is exactly the same as in the iid case and hence
is omitted. Hence, we complete the proof of Eβk(Wn) → βk.

The proof of (2)
Unlike in the proof of (2.1.11), the almost sure convergence cannot follow by
estimating the second moment of βk(Wn). We need to estimate its fourth
moment as

E(βk(Wn) − E(βk(Wn)))4

= n−4−2k
∑

ij ,j=1,2,3,4

E
4∏

j=1

(X [ij] − E(X [ij])) , (2.2.6)
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where ij is a vector of k integers not larger than n, j = 1, 2, 3, 4. As in the
last section, for each ij , we construct a graph Gj = G(ij).

Obviously, if, for some j, G(ij) does not have any edges coincident with
edges of the other three graphs, then the term in (2.2.6) equals 0 by inde-

pendence. Also, if G =
⋃4

j=1Gj has a single edge, the term in (2.2.6) equals
0 by centralization.

Now, let us estimate the nonzero terms in (2.2.6). Assume that G has ℓ
noncoincident edges with multiplicities ν1, · · · , νℓ, subject to the constraint
ν1 + · · · + νℓ = 4k. Then, the term corresponding to G is bounded by

n−4−2k
ℓ∏

j=1

(ηn

√
n)νj−2 = η4k−2ℓ

n n−4−ℓ.

Since the graph of noncoincident edges of G can have at most two pieces
of connected subgraphs, the number of noncoincident vertices of G is not
greater than ℓ + 2. If ℓ = 2k, then ν1 = · · · = νℓ = 2. Therefore, there is at
least one noncoincident edge consisting of edges from two different subgraphs
and hence there must be a cycle in the graph of noncoincident edges of G.
Therefore,

E(βk(Wn) − E(βk(Wn)))4

≤ Ckn
−2k−4

[∑

ℓ<2k

nℓ+2(η2
nn)2k−ℓ + n2k+1

]
≤ Ckηnn

−2,

which is summable, and thus (2) is proved. Consequently, the proof of The-
orem 2.9 is complete.

2.3 Semicircular Law by the Stieltjes Transform

As an illustration of the use of Stieltjes transforms, in this section we shall
present a proof of Theorem 2.9 using them.

2.3.1 Stieltjes Transform of the Semicircular Law

Let z = u+ iv with v > 0 and s(z) be the Stieltjes transform of the semicir-
cular law. Then, we have

s(z) =
1

2πσ2

∫ 2σ

−2σ

1

x− z

√
4σ2 − x2dx.
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Letting x = 2σ cos y, then

s(z) =
2

π

∫ π

0

1

2σ cos y − z
sin2 ydy

=
1

π

∫ 2π

0

1

2σ eiy+e−iy

2 − z

(eiy − e−iy

2i

)2

dy

= − 1

4iπ

∮

|ζ|=1

1

σ(ζ + ζ−1) − z
(ζ − ζ−1)2ζ−1dζ (setting ζ = eiy)

= − 1

4iπ

∮

|ζ|=1

(ζ2 − 1)2

ζ2(σζ2 + σ − zζ)
dζ. (2.3.1)

We will use the residue theorem to evaluate the integral. Note that the in-

tegrand has three poles, at ζ0 = 0, ζ1 = z+
√

z2−4σ2

2σ , and ζ2 = z−
√

z2−4σ2

2σ ,
where here, and throughout the book, the square root of a complex number
is specified as the one with the positive imaginary part. By this convention,
we have √

z = sign(ℑz) |z| + z√
2(|z|+ ℜz)

(2.3.2)

or

ℜ(
√
z) =

1√
2
sign(ℑz)

√
|z| + ℜz =

ℑz√
2(|z| − ℜz)

and

ℑ(
√
z) =

1√
2

√
|z| − ℜz =

|ℑz|√
2(|z| + ℜz)

.

This shows that the real part of
√
z has the same sign as the imaginary part

of z. Applying this to ζ1 and ζ2, we find that the real part of
√
z2 − 4σ2 has

the same sign as z, which implies that |ζ1| > |ζ2|. Since ζ1ζ2 = 1, we conclude
that |ζ2| < 1 and thus the two poles 0 and ζ1 of the integrand are in the disk
|z| ≤ 1. By simple calculation, we find that the residues at these two poles
are

z

σ2
and

(ζ2
2 − 1)2

σζ2
2 (ζ2 − ζ1)

= σ−1(ζ2 − ζ1) = −σ−2
√
z2 − 4σ2.

Substituting these into the integral of (2.3.1), we obtain the following lemma.

Lemma 2.11. The Stieltjes transform for the semicircular law with scale
parameter σ2 is

s(z) = − 1

2σ2
(z −

√
z2 − 4σ2).
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2.3.2 Proof of Theorem 2.9

At first, we truncate the underlying variables at ηn
√
n and remove the di-

agonal elements and then centralize and rescale the off-diagonal elements as
done in Steps 1–4 in the last section. That is, we assume that:

(i) For i 6= j, |xij | ≤ ηn
√
n and xii = 0.

(ii) For all i 6= j, Exij = 0, E|xij |2 = σ2.
(iii) The variables {xij , i < j} are independent.

For brevity, we assume σ2 = 1 in what follows.
By definition, the Stieltjes transform of FWn is given by

sn(z) =
1

n
tr(Wn − zIn)−1. (2.3.3)

We shall then proceed in our proof by taking the following three steps:

(i) For any fixed z ∈ C+ = {z,ℑ(z) > 0}, sn(z) − Esn(z) → 0, a.s.
(ii) For any fixed z ∈ C+, Esn(z) → s(z), the Stieltjes transform of the semi-

circular law.
(iii) Outside a null set, sn(z) → s(z) for every z ∈ C+.

Then, applying Theorem B.9, it follows that, except for this null set, FWn →
F weakly.

Step 1. Almost sure convergence of the random part
For the first step, we show that, for each fixed z ∈ C

+,

sn(z) − E(sn(z)) → 0 a.s. (2.3.4)

We need the extended Burkholder inequality.

Lemma 2.12. Let {Xk} be a complex martingale difference sequence with
respect to the increasing σ-field {Fk}. Then, for p > 1,

E
∣∣∣
∑

Xk

∣∣∣
p

≤ KpE
(∑

|Xk|2
)p/2

.

Proof. Burkholder [67] proved the lemma for a real martingale difference
sequence. Now, both {ℜXk} and {ℑXk} are martingale difference sequences.
Thus, we have

E
∣∣∣
∑

Xk

∣∣∣
p

≤ Cp

[
E
∣∣∣
∑

ℜXk

∣∣∣
p

+ E
∣∣∣
∑

ℑXk

∣∣∣
p]

≤ Cp

[
KpE

(∑
|ℜXk|2

)p/2

+KpE
(∑

|ℑXk|2
)p/2

]

≤ 2CpKpE
(∑

|Xk|2
)p/2

,
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where Cp = 2p−1. This lemma is proved.
For later use, we introduce here another inequality proved in [67].

Lemma 2.13. Let {Xk} be a complex martingale difference sequence with
respect to the increasing σ-field Fk, and let Ek denote conditional expectation
w.r.t. Fk. Then, for p ≥ 2,

E

∣∣∣∣
∑

Xk

∣∣∣∣
p

≤ Kp

(
E
(∑

Ek−1|Xk|2
)p/2

+ E
∑

|Xk|p
)
.

Similar to Lemma 2.12, Burkholder proved this lemma for the real case.
Using the same technique as in the proof of Lemma 2.12, one may easily
extend the Burkholder inequality to the complex case.

Now, we proceed to the proof of the almost sure convergence (2.3.4).
Denote by Ek(·) conditional expectation with respect to the σ-field gen-
erated by the random variables {xij , i, j > k}, with the convention that
Ensn(z) = Esn(z) and E0sn(z) = sn(z). Then, we have

sn(z) − E(sn(z)) =

n∑

k=1

[Ek−1(sn(z)) − Ek(sn(z))] :=

n∑

k=1

γk,

where, by Theorem A.5,

γk =
1

n

(
Ek−1tr(Wn − zI)−1 − Ektr(Wn − zI)−1

)

=
1

n

(
Ek−1[tr(Wn − zI)−1 − tr(Wk − zIn−1)

−1]

−Ek[tr(Wn − zI)−1 − tr(Wk − zIn−1)
−1]
)

=
1

n

(
Ek−1

1 + α∗
k(Wk − zIn−1)

−2αk

−z − α∗
k(Wk − zIn−1)−1αk

−Ek
1 + α∗

k(Wk − zIn−1)
−2αk

−z − α∗
k(Wk − zIn−1)−1αk

)
,

where Wk is the matrix obtained from Wn with the k-th row and column
removed and αk is the k-th column of Wn with the k-th element removed.

Note that

|1 + α∗
k(Wk − zIn−1)

−2αk|
≤ 1 + α∗

k(Wk − zIn−1)
−1(Wk − z̄In−1)

−1αk

= v−1ℑ(z + α∗
k(Wk − zIn−1)

−1αk)

which implies that
|γk| ≤ 2/nv.

Noting that {γk} forms a martingale difference sequence, applying Lemma
2.12 for p = 4, we have
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E|sn(z) − E(sn(z))|4 ≤ K4E

(
n∑

k=1

|γk|2
)2

≤ K4

(
n∑

k=1

2

n2v2

)2

≤ 4K4

n2v4
.

By the Borel-Cantelli lemma, we know that, for each fixed z ∈ C+,

sn(z) − E(sn(z)) → 0, a.s.

Step 2. Convergence of the expected Stieltjes transform
By Theorem A.4, we have

sn(z) =
1

n
tr(Wn − zIn)−1

=
1

n

n∑

k=1

1

−z − α∗
k(Wk − zIn−1)−1αk

. (2.3.5)

Write εk = Esn(z) − α∗
k(Wk − zIn−1)

−1αk. Then we have

Esn(z) =
1

n

n∑

k=1

E
1

−z − Esn(z) + εk

= − 1

z + Esn(z)
+ δn, (2.3.6)

where

δn =
1

n

n∑

k=1

E

(
εk

(z + Esn(z))(−z − Esn(z) + εk)

)
.

Solving equation (2.3.6), we obtain two solutions:

1

2
(−z + δn ±

√
(z + δn)2 − 4).

We show that

Esn(z) =
1

2
(−z + δn +

√
(z + δn)2 − 4). (2.3.7)

When fixing ℜz and letting ℑz = v → ∞, we have Esn(z) → 0, which implies
that δn → 0. Consequently,
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ℑ
(1

2
(−z + δn −

√
(z + δn)2 − 4)

)
≤ −v − |δn|

2
→ −∞,

which cannot be Esn(z) since it violates the property that ℑsn(z) ≥ 0. Thus,
assertion (2.3.7) is true when v is large. Now, we claim that assertion (2.3.7)
is true for all z ∈ C+.

It is easy to see that Esn(z) and 1
2 (−z+δn±

√
(z + δn)2 − 4) are continuous

functions on the upper half plane C+. If Esn(z) takes a value on the branch
1
2 (−z+ δn −

√
(z + δn)2 − 4) for some z, then the two branches 1

2 (−z+ δn ±√
(z + δn)2 − 4) should cross each other at some point z0 ∈ C+. At this point,

we would have
√

(z0 + δn)2 − 4 = 0 and hence Esn(z0) has to be one of the
following:

1

2
(−z0 + δn) =

1

2
(−2z0 ± 2).

However, both of the two values above have negative imaginary parts. This
contradiction leads to the truth of (2.3.7).

From (2.3.7), to prove Esn(z) → s(z), it suffices to show that

δn → 0. (2.3.8)

Now, rewrite

δn = − 1

n

n∑

k=1

E(εk)

(z + Esn(z))2
+

1

n

n∑

k=1

E

(
ε2k

(z + Esn(z))2(−z − Esn(z) + εk)

)

= J1 + J2.

By (A.1.10) and (A.1.12), we have

|Eεk| =

∣∣∣∣
1

n
E(tr(Wn − zI)−1 − tr(Wk − zIn−1)

−1)

∣∣∣∣

=

∣∣∣∣
1

n
· E 1 + α∗

k(Wk − zIn−1)
−2αk

−z − α∗
k(Wk − zIn−1)−1αk

∣∣∣∣ ≤
1

nv
.

Note that

|z + Esn(z)| ≥ ℑ(z + Esn(z)) = v + E(ℑ(sn(z)) ≥ v.

Therefore, for any fixed z ∈ C+,

|J1| ≤
1

nv3
→ 0.

On the other hand, we have

| − z − Esn(z) + εk| = | − z − α∗
k(Wk − zIn−1)

−1αk|
≥ ℑ(z + α∗

k(Wk − zIn−1)
−1αk)
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= v(1 + α∗
k((Wk − zIn−1)(Wk − z̄In−1))

−1αk) ≥ v.

To prove J2 → 0, it is sufficient to show that

max
k

E|εk|2 → 0.

Write (Wk − zIn−1)
−1 = (bij)i,j≤n−1. We then have

E|εk − Eεk|2 = E|α∗
k(Wk − zIn−1)

−1αk − 1

n
Etr((Wk − zIn−1)

−1)|2

= E|α∗
k(Wk − zIn−1)

−1αk − 1

n
tr((Wk − zIn−1)

−1)|2

+E

∣∣∣∣
1

n
tr((Wk − zIn−1)

−1) − 1

n
Etr((Wk − zIn−1)

−1)

∣∣∣∣
2

.

By elementary calculations, we have

E|α∗
k(Wk − zIn−1)

−1αk − 1

n
tr((Wk − zIn−1)

−1)|2

=
1

n2


∑

ij 6=k

[E|bij |2E|xik|2E|xjk|2 + Eb2ijEx
2
ikEx2

jk] +
∑

i6=k

E|b2ii|(E|x4
ik| − 1)




≤ 2

n2

∑

ij

E|bij |2 +
η2

n

n

∑

i6=k

E|bii|2

=
2

n2
Etr((Wk − zIn−1)(Wk − z̄In−1))

−1 +
η2

n

n

∑

i6=k

E|bii|2

≤ 2

nv2
+ η2

n → 0. (2.3.9)

By Theorem A.5, one can prove that

E

∣∣∣∣
1

n
tr((Wn − zIn−1)

−1) − 1

n
Etr((Wn − zIn−1)

−1)

∣∣∣∣
2

≤ 1/n2v2.

Then, the assertion J2 → 0 follows from the estimates above and the fact
that

E|εn|2 = E|εn − Eεn|2 + |Eεn|2.
The proof of the mean convergence is complete.

Step 3. Completion of the proof of Theorem 2.9
In this step, we need Vitali’s convergence theorem.

Lemma 2.14. Let f1, f2, · · · be analytic in D, a connected open set of C,
satisfying |fn(z)| ≤M for every n and z in D, and fn(z) converges as n→ ∞
for each z in a subset of D having a limit point in D. Then there exists a
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function f analytic in D for which fn(z) → f(z) and f ′
n(z) → f ′(z) for

all z ∈ D. Moreover, on any set bounded by a contour interior to D, the
convergence is uniform and {f ′

n(z)} is uniformly bounded.

Proof. The conclusions on {fn} are from Vitali’s convergence theorem (see
Titchmarsh [275], p. 168). Those on {f ′

n} follow from the dominated conver-
gence theorem (d.c.t.) and the identity

f ′
n(z) =

1

2πi

∫

C

fn(w)

(w − z)2
dw,

where C is a contour inD and enclosing z. The proof of the lemma is complete.

By Steps 1 and 2, for any fixed z ∈ C+, we have

sn(z) → s(z), a.s.,

where s(z) is the Stieltjes transform of the standard semicircular law. That
is, for each z ∈ C+, there exists a null set Nz (i.e., P (Nz) = 0) such that

sn(z, ω) → s(z) for all ω ∈ N c
z .

Now, let C
+
0 = {zm} be a dense subset of C+ (e.g., all z of rational real and

imaginary parts) and let N = ∪Nzm . Then

sn(z, ω) → s(z) for all ω ∈ N c and z ∈ C
+
0 .

Let C+
m = {z ∈ C+,ℑz > 1/m, |z| ≤ m}. When z ∈ C+

m, we have |sn(z)| ≤
m. Applying Lemma 2.14, we have

sn(z, ω) → s(z) for all ω ∈ N c and z ∈ C
+
m.

Since the convergence above holds for every m, we conclude that

sn(z, ω) → s(z) for all ω ∈ N c and z ∈ C
+.

Applying Theorem B.9, we conclude that

FWn
w→ F, a.s.
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