Chapter 2
Wigner Matrices and Semicircular Law

A Wigner matrix is a symmetric (or Hermitian in the complex case) ran-
dom matrix. Wigner matrices play an important role in nuclear physics and
mathematical physics. The reader is referred to Mehta [212] for applications
of Wigner matrices to these areas. Here we mention that they also have a
strong statistical meaning. Consider the limit of a normalized Wishart matrix.
Suppose that x1,---,x, are iid samples drawn from a p-dimensional multi-
variate normal population N(u,I,). Then, the sample covariance matrix is
defined as .
Sn= i 1 Z(Xi —x)(x; —x)/,

i=1
wherex = ' 3" | x;. When n tends to infinity, S,, — I, and v/n (S, — I,,) —
/PWy. It can be seen that the entries above the main diagonal of \/pW,
are iid N(0,1) and the entries on the diagonal are iid N (0, 2). This matrix is
called the (standard) Gaussian matrix or Wigner matrix.

A generalized definition of Wigner matrix only requires the matrix to
be a Hermitian random matrix whose entries on or above the diagonal are
independent. The study of spectral analysis of the large dimensional Wigner
matrix dates back to Wigner’s [295] famous semicircular law. He proved
that the expected ESD of an n x n standard Gaussian matrix, normalized by
1/4/n, tends to the semicircular law F whose density is given by

VA -2 if |z <2
Fl(z) =14 2n ) = 2.0.1
() { 0, otherwise. ( )

This work has been extended in various aspects. Grenander [136] proved
that ||[FW» — F|| — 0 in probability. Further, this result was improved as in
the sense of “almost sure” by Arnold [8, 7]. Later on, this result was further
generalized, and it will be introduced in the following sections.
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16 2 Wigner Matrices and Semicircular Law

2.1 Semicircular Law by the Moment Method

In order to apply the moment method (see Appendix B, Section B.1) to
prove the convergence of the ESD of Wigner matrices to the semicircular
distribution, we calculate the moments of the semicircular distribution and
show that they satisfy the Carleman condition. In the remainder of this sec-
tion, we will show the convergence of the ESD of the Wigner matrix by the
moment method.

2.1.1 Moments of the Semaicircular Law

Let i denote the k-th moment of the semicircular law. We have the following
lemma.

Lemma 2.1. For k=0,1,2,---, we have
1 2k
Pas = k+1<k>’
Bak+1 = 0.

Proof. Since the semicircular distribution is symmetric about 0, thus we have
Bak+1 = 0. Also, we have

1 2
Bop = / mZk\/Zl — x2dx

27T _92
1 2
= / 22k \/4 — 22dx
T Jo
22k+1 1
= / yk_l/Q(l — y)l/Qdy (by setting x = 2./y)
0

- k

9kl Pk 4 1/2)0(3/2) 1 (2
T I'k+2) _k+1< )

2.1.2 Some Lemmas in Combinatorics

In order to calculate the limits of moments of the ESD of a Wigner matrix,
we need some information from combinatorics. This is because the mean and
variance of each empirical moment will be expressed as a sum of expectations
of products of matrix entries, and we need to be able to systematically count
the number of significant terms. To this end, we introduce some concepts
from graph theory and establish some lemmas.
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A graph is a triple (E,V, F'), where E is the set of edges, V is the set of
vertices, and F' is a function, F': E+— V x V. If F(e) = (v1, v2), the vertices
v1, 9 are called the ends of the edge e, vy is the initial of e, and vy is the
terminal of e. If v; = vs, edge e is a loop. If two edges have the same set of
ends, they are said to be coincident.

Let i = (i1,---,ix) be a vector valued on {1,---,n}*. With the vector i,
we define a I'-graph as follows. Draw a horizontal line and plot the numbers
i1, , 1 on it. Consider the distinct numbers as vertices, and draw k edges
ej from i; to ij11, j = 1,---,k, where ix41 = i1 by convention. Denote
the number of distinct i;’s by t. Such a graph is called a I'(k,t)-graph. An
example of I'(6,4) is shown in Fig. 2.1.

L=k L=l 5=l is

Fig. 2.1 A I'-graph

By definition, a I'(k,t)-graph starts from vertex iq, and the k edges con-
secutively connect one after another and finally return to vertex ¢;. That is,
a I'(k,t)-graph forms a cycle.

Two I'(k,t)-graphs are said to be isomorphic if one can be converted to
the other by a permutation of (1,---,n). By this definition, all I'-graphs are
classified into isomorphism classes.

We shall call the I'(k, t)-graph canonical if it has the following properties:

1. Tts vertex set is V.= {1,---,t}.

Its edge set is E = {e1, -+, e}

3. There is a function g from {1,2,---,k} onto {1,2,- - -, ¢} satisfying g(1) = 1
and g(i) < max{g(1),---,g9(i = 1)} +1for 1 <i <k.

4. F(e;) = (g9(i),g9(i+1)),fori=1,---, k, with convention g(k+1) = g(1) =
1.

[\

It is easy to see that each isomorphism class contains one and only one
canonical I'-graph that is associated with a function g, and a general graph
in this class can be defined by F'(e;) = (ig(;),%4(j+1)). Therefore, we have the
following lemma.

Lemma 2.2. Each isomorphism class contains n(n—1)---(n—t+1) I'(k,t)
graphs.
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The canonical I'(k,t)-graphs can be classified into three categories.

Category 1 (denoted by It (k)): A canonical graph I'(k,t) is said to belong
to category 1 if each edge is coincident with exactly one other edge of opposite
direction and the graph of noncoincident edges forms a tree (i.e., a connected
graph without cycles). It is obvious that there is no I'1 (k) if & is odd.

Category 2 (I%(k,t)) consists of all those canonical I'(k,?)-graphs that
have at least one single edge; i.e., an edge not coincident with any other
edges.

Category 3 (I'35(k,t)) consists of all other canonical I'(k,t)-graphs. If we
classify the k edges into coincidence classes, a I's(k, t)-graph contains either a
coincidence class of at least three edges or a cycle of noncoincident edges. In
both cases, t < (k+1)/2. Then, in fact we have proved the following lemma.

Lemma 2.3. In a I'5(k,t)-graph, t < (k+1)/2.

Now, we begin to count the number of Iy (k)-graphs for k = 2m. We have
the following lemma.

Lemma 2.4. The number of It (2m)-graphs is mi_l (2;")

Proof. Suppose G is a graph of I'1(2m). We define a function H : £ —
{=1,1}; H(e) = +1 if e is single up to itself (called an innovation) and
= —1 otherwise (called a Type 3 (T3) edge, the edge that coincides with an
innovation that is single up to it). Corresponding to the graph G, we call
the sequence (H(e1), -+, H(ex)) = (a1 = 1,a9, -+, a2m—1,a2,m = —1) the
characteristic sequence of the graph G. By definition, all partial sums of the
characteristic sequence are nonnegative; i.e., for all 1 < ¢ < 2m,

a1 +ax~+---+ap>0. (2.1.1)

We show that there is a one-to-one correspondence between Iy (2m)-graphs
and the characteristic sequences. That is, we need to show that any sequence
of £1 satisfying (2.1.1) corresponds to a I'1(2m)-graph. Suppose (a1, - -, a2m)
is a given sequence satisfying (2.1.1). We construct a Iy (2m)-graph with the
given sequence as its characteristic sequence.

By (2.1.1), a1 = 1 and F(e1) = (1,2); ie., g(1) = 1, g(2) = 2. Sup-
pose g(1),9(2),--+,9(s) (2 < s < 2m) have been defined with the following
properties:

(i) For each i < s, we have g(i) < max{g(1),---,9(i — 1)} + 1.

(ii) If we define (g(7),g(i + 1)), i =1,---,s — 1, as edges, then from g(1) =1
to g(s) there is a path of single innovations if g(s) # 1. All other edges
not on the path must coincide with another edge of opposite direction. If
g(s) = 1, then each edge coincides with another edge of opposite direction.

(i) H(g(i),g(i+ 1)) =a; for alli < s.

Now, we define ¢g(s + 1) in the following way:
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Case 1. If ay = 1, define g(s + 1) = max{g(1),---,9(s)} + 1. Obviously,
the edge (g(s),g(s+ 1)) is a single innovation that, combining the original
path of single innovations, forms the new path of single innovations from
g(1)=1tog(s+1)if g(s) # 1. If g(s) = 1, then g(s+1) # 1 and the edge
(9(s),g(s + 1)) forms the new path of single innovations. Also, all other
edges coincide with an edge of opposite directions. That is, conditions
(i)—(iii) are satisfied.

Case 2. If a; = —1, then g(s) # 1 for otherwise condition (2.1.1) will be
violated. Hence, there is an i < s such that (g(i), g(s)) is a single innovation
(the last edge of a path of single innovations). Then, define g(s+1) = g(i).
If g(i) = 1, then the new graph has no single edges. If g(i) # 1, the original
path of single innovations has at least two single innovations. Then, the
new path of single innovations is obtained by cutting the last edge from the
original path of single innovations. Also, conditions (i)—(iii) are satisfied.

By induction, the functions g(1),---,g(2m) are well defined, and hence a
I'1(2m) with characteristic sequence (a1, -, agy) is defined.

Therefore, to count the number of 'y (2m)-graphs is equivalent to counting
the number of characteristic sequences of isomorphism classes.

Arbitrarily arrange m ones and m minus ones. The total number of possi-
bilities is obviously (2;”) We shall use the symmetrization principle to count
the number of noncharacteristic sequences. Write the sequence of +1s as
(a1, -+ ,a9m,) and Sp = 0 and S; = S;—1 + a;, for i = 1,2,---,2m. Plot the
graph of (¢, 5(¢)) on the plane. The graph should start from (0, 0) and return
to (2m,0). If for all ¢, S; > 0 (that is, the figure is totally above or on the

horizontal axis), then (ay,---,a2m) is a characteristic sequence. Otherwise,
if (a1, -+, a2y,) is not a characteristic sequence, then there must be an i > 1
such that S; = —1. Then we turn over the rear part after ¢ along the line

S = —1 and we get a new graph (0,0) to (2m, —2), as shown in Fig. 2.2.

4

Fig. 2.2 Symmetrization principle

This is equivalent to defining b; = a; for j < and b; = —a; for j > .
Then, the sequence (b1, -, ba,,) contains m — 1 ones and m + 1 minus ones.
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Conversely, for any sequence of m — 1 ones and m + 1 minus ones, there must
be a smallest integer ¢ < 2m such that b; +---+b; = —1. Then the sequence
(b1, -+, bk, —biy1,- -, —bay,) contains m ones and m minus ones which is a
noncharacteristic sequence. The number of b-sequences is (,>”,). Thus, the
number of characteristic sequences is

()= () = ()

The proof of the lemma is complete.

2.1.3 Semacircular Law for the iid Case

In this subsection, we will show the semicircular law for the iid case; that is,
we shall prove the following theorem. For brevity of notation, we shall use
X, for an n x n Wigner matrix and save the notation W,, for the normalized
Wigner matrix, i.e., \}n Xp-

Theorem 2.5. Suppose that X,, is an nxn Hermitian matriz whose diagonal
entries are iid real random variables and those above the diagonal are iid
complex random variables with variance o = 1. Then, with probability 1, the
ESD of W,, = \/1” X,, tends to the semicircular law.

Before applying the MCT to the proof of Theorem 2.5, we first remove
the diagonal entries of X,,, truncate the off-diagonal entries of the matrix,
and renormalize them, without changing the LSD. We will proceed with the
proof by taking the following steps.

Step 1. Removing the Diagonal Elements
Let W,, be the matrix obtained from W,, by replacing the diagonal elements
with zero. We shall show that the two matrices are asymptotically equivalent;
i.e., their LSDs are the same if one of them exists.

Let N, = #{|zii] > /n}. Replace the diagonal elements of W, by
\/1” il (|zi] < ¥n), and denote the resulting matrix by W... Then, by Corol-
lary A.41, we have

& 1~ = 1 «
L3 (FWr FWn) < (W, — W, )2 < 2 D lailPI(jwi| < /n) <
=1

1
vn
On the other hand, by Theorem A.43, we have

N,
< .

HFWn _ F"X]n

n
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Therefore, to complete the proof of our assertion, it suffices to show that
N, /n — 0 almost surely. Write p,, = P(Jz11] > ¥n) — 0. By Bernstein’s
inequality,! we have, for any € > 0,

P(N, >en) =P (Z(I(ﬂcn > V/n) —pn) > (e —pn)n>

i=1
< 2exp(—(e — pn)2n2/2[npn + (e _pn)nD < 26717”7

for some positive constant b > 0. This completes the proof of our assertion.
In the following subsections, we shall assume that the diagonal elements
of W,, are all zero.

Step 2. Truncation

For any fixed positive constant C, truncate the variables at C' and write
zijcy = Tijl(|zij] < C). Define a truncated Wigner matrix W,y whose
diagonal elements are zero and off-diagonal elements are \/1” Zj(cy- Then, we
have the following truncation lemma.

Lemma 2.6. Suppose that the assumptions of Theorem 2.5 are true. Trun-
cate the off-diagonal elements of X,, at C, and denote the resulting matrix
by X,(cy- Write Wy o) = \/1” Xn(cy- Then, for any fized constant C,

limsup L3 (FWr, FWn©) < B(|z11*I(|z11] > 0)), a.s. (2.1.2)

Proof. By Corollary A.41 and the law of large numbers, we have

2
L3(FWn FWa©)) < 2 Z |zi; 2 I(|z11] > O)

1<i<j<n

— E(‘$11|2I(|l‘11‘ > C))
This completes the proof of the lemma.

Note that the right-hand side of (2.1.2) can be made arbitrarily small by
making C' large. Therefore, in the proof of Theorem 2.5, we can assume that
the entries of the matrix X,, are uniformly bounded.

Step 3. Centralization
Applying Theorem A.43, we have

HFwn(C) _ FWn<c>*a11/H < ! (2.1.3)

— )

n

1 Bernstein’s inequality states that if X1,---, X, are independent random variables with
mean zero and uniformly bounded by b, then, for any € > 0,
P(|Sn| > ¢€) < 2exp(—e?/[2(B2 + be)]), where Sy, = X1 + -+ + X, and B2 = ES2.
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1

where a = \/nﬂ?(E(xlg(c))). Furthermore, by Corollary A.41, we have

2
L(Fwn(c)*%(E(Wmm))’FWn(C)*alll) < RE@120)) — 0. (2.1.4)
n
This shows that we can assume that the real parts of the mean values of
the off-diagonal elements are 0. In the following, we proceed to remove the
imaginary part of the mean values of the off-diagonal elements.

Before we treat the imaginary part, we introduce a lemma about eigenval-
ues of a skew-symmetric matrix.

Lemma 2.7. Let A, be an n X n skew-symmetric matriz whose elements
above the diagonal are 1 and those below the diagonal are —1. Then, the eigen-
values of Ay, are A\, = icot(mw(2k—1)/2n), k =1,2,---,n. The eigenvector as-
sociated with \i, is u, = \/1n(17 Piy e P ), where p = (A, —1) /(A +1) =
exp(—im(2k — 1)/n).

Proof. We first compute the characteristic polynomial of A,,.

A -1 -1 - —1
I A -1 - -1
D,=N—-A,| =1 1 A - ~1
1 1 1 - A

A—1 —(1+)) 0 0

0 A—1  —(1+)) 0

-] 0 0 A-1 - 0],
1 1 1 A

Expanding the above along the first row, we get the following recursive
formula

Dy=M\=1D, 1+ (1 +\N"1

with the initial value Dy = A. The solution is

Dy =AA=1D)"1+ A+ DA=1)" 24 .4 A1)
1

=, (=) + (1)),

Setting D,, = 0, we get

iJ_r 1 =m0/ =12 ., (2.1.5)

which implies that A = icot(w(2k — 1)/2n).
Comparing the two sides of the equation A, u; = Agug, we obtain
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—Up1 — = Uk e—1 F Uk o1+ F Ukn = ApUp e

for £ =1,2,---,n. Thus, subtracting the equations for ¢ + 1 from that for ¢,
we get
Uk, + Uk o1 = N (U e — Uk e41),

which implies that

Mol
Ukt+1 Ak _ e—zﬂ'(?k—l)/n

uge M +1 Pk

Therefore, one can choose uy ¢ = pi_l /v/n.
The proof of the lemma is complete.

Write b = ES(719(¢)). Then, ES(W,, ) = ibA,. By Lemma 2.7, the
eigenvalues of the matrix iS(E(W,,(¢))) = ibA,, are ibA\;, = —n~'2bcot(m(2k—
1)/2n), k = 1,---,n. If the spectral decomposition of A,, is U, D, U%, then

we rewrite iS(E(W,(¢))) = B1 4 Ba, where B; = — ;n bU,D,;Us, j=1,2,
where U, is a unitary matrix, D,, =diag[A1,---, A,], and

Dnl = Dn — Dn2 = dlag[O, e 7O, )‘[n3/4]’ )‘[n3/4]+1a Tty )\n,[n3/4]7 07 e 70}

For any n x n Hermitian matrix C, by Corollary A.41, we have

1
L3(FC,FO By < > cot?(m(2k — 1)/2n)
n3/4<k<n—n3/4
< 2 0 (2.1.6)
— 1.
n sin?(n=1/47)

and, by Theorem A.43,

) 3/4
|FC — FC—Bz| < “" g, (2.1.7)
n

Summing up estimations (2.1.3)—(2.1.7), we established the following cen-
tralization lemma.

Lemma 2.8. Under the conditions assumed in Lemma 2.6, we have

L(FWr©) FWne)"EWa@)) — o(1). (2.1.8)

Step 4. Rescaling .
Write 02(C) = Var(z11(¢)), and define W, = 01 (C) (W, () — E(W,()))-
Note that the off-diagonal entries of /nW,, are Zp; = o *(O)(zyjc) —

E(xkj(c)))'
Applying Corollary A.41, we obtain



24 2 Wigner Matrices and Semicircular Law

o _ 2(a(C) — 1)?
L(FWr, FWn@=BWae)) < (nggg((;)) Y lzio) — Elzwge)l
1<i<j<n
— (0(C) = 1), as. (2.1.9)

Note that (o(C) — 1)? can be made arbitrarily small if C is large. Com-
bining (2.1.9) with Lemmas 2.6 and 2.8, to prove the semicircular law, we
may assume that the entries of X are bounded by C, having mean zero and
variance 1. Also, we may assume the diagonal elements are zero.

Step 5. Proof of the Semicircular Law

We will prove Theorem 2.5 by the moment method. For simplicity, we still use
W,, and z;; to denote the Wigner matrix and basic variables after truncation,
centralization, and rescaling.

The semicircular distribution satisfies the Riesz condition. Therefore it is
enough to show that the moments of the spectral distribution converge to the
corresponding moments of the semicircular distribution almost surely. The
k-th moment of the ESD of W,, is

(W) = Bp(FWn) = / 2k dFWn ()
1 — 1 1
= ;Af = ntr(WfL) = tr(XF)
1
= X (), (2.1.10)

where \;’s are the eigenvalues of the matrix W,,, X (1) = @;,i,Tinis - * Tiriy s
i = (i1, --,ix), and the summation ) ; runs over all possibilities that i €
{1,---,n}*

By applying the moment convergence theorem, we complete the proof of
the semicircular law for the iid case by showing the following:

(1) E[Bx(W,)] converges to the k-th moment [y of the semicircular distribu-
tion, which are fa,—1 = 0 and fap, = (2m)!/m!(m + 1)! given in Lemma
2.1.

(2) For each fixed k, >, Var[8;(W,)] < co.

The Proof of (1); i.e., E[Bx(W,,)] — Bk.
We have )
E[/Bk(wn)] = nltk/2 ZEX(I)
For each vector i, construct a graph G(i) as in Subsection 2.1.2. To specify

the graph, we rewrite X (i) = X(G(i)). The summation is taken over all
sequences i = (i1,42, -, ix) € {1,2,---,n}k.
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Note that isomorphic graphs correspond to equal terms. Thus, we first
group the terms according to isomorphism classes and then split E[3,(W,,)]
into three sums according to categories. Then

E[Bk(W,)] = 51 + S2 + 53,

where

Sy=n"1TE2 Y > EXG(3)],

I'(kt)eC; GGA)el'(k,t)

in which the summation Zf(k,t)ecj is taken on all canonical I'(k, t)-graphs in
category j and the summation ZG(i)e I(k,t) is taken on all isomorphic graphs
for a given canonical graph.

By definition of the categories and by the assumptions on the entries of
the random matrices, we have

Sy =0.

Since the random variables are bounded by C, the number of isomorphic
graphs is less than n' by Lemma 2.2, and ¢t < (k + 1)/2 by Lemma 2.3, we
conclude that

1S5] < n"17R20(nt) = o(1).

If K =2m — 1, then S; = 0 since there are no terms in S;. We consider
the case where k = 2m. Since each edge coincides with an edge of opposite
direction, each term in S is (E|z12/?)™ = 1. So, by Lemma 2.4,

Sy =n"t7m Z nn—1)---(n—m)

I'(2m,t)eCy

— Gom (1_;)..(1_:}) — Bom.

Assertion (1) is then proved.

The proof of (2). We only need to show that Var(8;(W,,)) is summable
for all fixed k. We have

Var(fu(Wa)) = Bl|5(Wn)?] = | BB (Wa)]|?
= n21+k > HEXO)XG)] - EXOIEX )]} (2.1.11)

where i = (i1, ,ix), j = (j1, ", k), and > " is taken over all possibilities
fori, j € {1,---,n}*. Here, the reader should notice that 8 (W,) is real and
hence the second equality in the above is meaningful, although the variables
X (i) and X (j) are complex.

Using i and j, one can construct two graphs G(i) and G(j), as in the proof
of (1). If there are no coincident edges between G(i) and G(j), then X (i) is
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independent of X (j), and thus the corresponding term in the sum is 0. If
the combined graph G = G(i) U G(j) has a single edge, then E[X (1) X (j)] =
E[X(1)]E[X (j)] = 0, and hence the corresponding term in (2.1.11) is also 0.

Now, suppose that G contains no single edges and the graph of noncoin-
cident edges has a cycle. Then the noncoincident vertices of G are not more
than k. If G contains no single edges and the graph of noncoincident edges
has no cycles, then there is at least one edge with coincidence multiplicity
greater than or equal to 4, and thus the number of noncoincident vertices is
not larger than k. Also, each term in (2.1.11) is not larger than 2C%n=2-*,
Consequently, we can conclude that

Var(6x(W,,)) < KpC*n=2, (2.1.12)

where K, is a constant that depends on k& only. This completes the proof of
assertion (2).
The proof of Theorem 2.5 is then complete.

2.2 Generalizations to the Non-iid Case

Sometimes, it is of practical interest to consider the case where, for each n,
the entries above or on the diagonal of W, are independent complex random
variables with mean zero and variance o2 (for simplicity we assume o = 1 in
the following), but may depend on n. For this case, we present the following
theorem.

Theorem 2.9. Suppose that W,, = 1an 1s a Wigner matriz and the en-

tries above or on the diagonal of X,, are independent but may be dependent
on n and may not necessarily be identically distributed. Assume that all the
entries of X,, are of mean zero and variance 1 and satisfy the condition that,
for any constant n > 0,

. 1 n n
Jim ST Bl P12 > nyvn) = 0. (2.2.1)
jk

Then, the ESD of W, converges to the semicircular law almost surely.

Remark 2.10. In Girko’s book [121], it is stated that condition (2.2.1) is nec-
essary and sufficient for the conclusion of Theorem 2.9.

2.2.1 Proof of Theorem 2.9

Again, we need to truncate, remove diagonal entries, and renormalize before
we use the MCT. Because the entries are not iid, we cannot truncate the
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entries at constant positions. Instead, we shall truncate them at 7,+/n for
some sequence 7, | 0.

Step 1. Truncation
Note that Corollary A.41 may not be applicable in proving the almost sure
asymptotic equivalence between the ESD of the original matrix and that of
the truncated one, as was done in the last section. In this case, we shall use
the rank inequality (see Theorem A.43) to truncate the variables.

Note that condition (2.2.1) is equivalent to: for any n > 0,

lim 772 o DBl R1(alY| > nvn) = 0. (2.2.2)
ik

Thus, one can select a sequence 7, | 0 such that (2.2.2) remains true
when 7 is replaced by 7,,. Define W,, = \/nn(ax( ") (\m(")\ < Nnuy/n). By using
Theorem A.43, one has

[FWr — FWr || < “rank(W,, = W, )

ST 1|2 = navn). (2.2.3)

1<i<j<n

IN
S o3

By condition (2.2.2), we have

ST 1(2P) > pav/n)

1<i<j<n

2 " n
< o S Bl P12 = uv/n) = o(1),
n ik
and

S 1] = mvn)

1<i<j<n

<2 SZE\ PRI | > nav/n) = o(1/n).

Then, applying Bernstein’s inequality, for all small ¢ > 0 and large n, we
have

ST (2] = pavn) 2 e | <2075, (2.2.4)

1<i<j<n
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which is summable. Thus, by (2.2.3) and (2.2.4), to prove that with probabil-
ity one FWr converges to the semicircular law, it suffices to show that with

probability one FW» converges to the semicircular law.

Step 2. Removing diagonal elements
Let W,, be the matrix W,, with diagonal elements replaced by 0. Then, by
Corollary A.41, we have

~ ~ 1 n n
r (Fwn’Fwn) = n2 Z |931(ck)|21 ‘mkk)‘ < mav/n) <y — 0.
k=1

Step 3. Centralization
By Corollary A.41, it follows that

L3 (F‘/ﬁ\/n F\/A\/'nfE\/f\\/'n)

< s LS BE1(20] < /o)
275]
2 ZEWH 1|25 > nav/n) — 0. (2.2.5)
M ij

Step 4. Rescaling

Write Wn = \/1” )"in, where

(1) 71,.() () 7o1,.(0)
% (x T(j?) < mo/m) =Bl I < mv/m) ) %))7

O’ij

= Bl 1(2] < navn) = B 1(125| < nay/n))? and 6 is Kro-
necker S delta
By Corollary A.41, it follows that

L3 (F"X]n FV/On*E‘/A\/n)

1 — n n n n
< o 2 (=05 Pl T < mav/in) = Baf 1(af | < nav/) P

i#j
Note that

A 102 < ) — B 1) < )

i#]
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221_%

n’ng

weye SIS I = /) B2 (1) > /)] —
ij

IN

Also, we have?

4
2

) I(|z (n)‘ < Np/n) — (xgjn)f(@gt” < Muv/n))

221_

i#]

i#] i#]
< On™2[n~ ), + ],
which is summable. From the two estimates above, we conclude that
L (FWH,FWH*EWH) 0, as.

Step 5. Proof by MCT

Up to here, we have proved that we may truncate, centralize, and rescale
the entries of the Wigner matrix at 7,,v/n and remove the diagonal elements
without changing the LSD. These four steps are almost the same as those we
followed for the iid case.

Now, we assume that the variables are truncated at 7,,v/n and then cen-
tralized and rescaled.

Again for simplicity, the truncated and centralized variables are still de-
noted by z;;, We assume:

(1) The variables {x;;, 1 <i < j < n} are independent and z;; = 0.

(ii) E(z;;) =0 and Var(z;;) = 1.

(ili) |zij] < nuy/ne
Similar to what we did in the last section, in order to prove Theorem 2.9, we
need to show that:

(1) E[Br(W,,)] converges to the k-th moment [ of the semicircular distribu-

tion.
(2) For each fixed k, >, E|8r(W,) — E(Bx(Wp))|* < cc.

The proof of (1)
Let i= (i1,---,ir) € {1,---,n}*. As in the iid case, we write

2 Here we use the elementary inequality E| Y X;|?* < C, (D E|X;|?* + (O E[X;|)F) for
some constant C}, if the X;’s are independent with zero means.
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E[ﬁk(wn)} =n TR Z EX(G(I))v

where X (G(1)) = @iy i Tig iy - -+ » Tiy i, annd G(1) is the graph defined by i.

By the same method for the iid case, we split E[8;(W,,)] into three sums
according to the categories of graphs. We know that the terms in Sy are all
zero, that is, So = 0.

We now show that S3 — 0. Split S3 as S31 + S32, where S3; consists
of the terms corresponding to a I5(k,t)-graph that contains at least one
noncoincident edge with multiplicity greater than 2 and Ss is the sum of the
remaining terms in Ss.

To estimate Ss1, assume that the I'3(k,t)-graph contains ¢ noncoincident
edges with multiplicities vy, - - -, v, among which at least one is greater than
or equal to 3. Note that the multiplicities are subject to vy + --- 4+ vy = k.
Also, each term in Ss3; is bounded by

L
w2 T Bl < 07 T2 (/n) 202 = g,
i=1

Since the graph is connected and the number of its noncoincident edges is ¢,
the number of noncoincident vertices is not more than ¢ + 1, which implies
that the number of terms in Ss; is not more than n'*t¢. Therefore,

|Sa1] < Cpnt=2t =0

since k — 24 > 1.

To estimate Ss2, we note that the I'z(k,t)-graph contains exactly k/2
noncoincident edges, each with multiplicity 2 (thus & must be even). Then
each term of Ssy is bounded by n~'~%/2. Since the graph is not in category 1,
the graph of noncoincident edges must contain a cycle, and hence the number
of noncoincident vertices is not more than k/2 and therefore

‘532‘ S C’nil — 0.

Then, the evaluation of S; is exactly the same as in the iid case and hence
is omitted. Hence, we complete the proof of ES,(W,,) — fBy.

The proof of (2)

Unlike in the proof of (2.1.11), the almost sure convergence cannot follow by
estimating the second moment of 8, (W,,). We need to estimate its fourth
moment as

E(ﬂk (Wn) - E(ﬂk (Wn)))4

—n 2% S B (X)) - E(X), (2:2.6)

i;,7=1,2,34 j=1



2.3 Semicircular Law by the Stieltjes Transform 31

where i; is a vector of k integers not larger than n, j = 1,2,3,4. As in the
last section, for each i;, we construct a graph G; = G(ij).

Obviously, if, for some j, G(ij) does not have any edges coincident with
edges of the other three graphs, then the term in (2.2.6) equals 0 by inde-
pendence. Also, if G = U?zl G, has a single edge, the term in (2.2.6) equals
0 by centralization.

Now, let us estimate the nonzero terms in (2.2.6). Assume that G has ¢
noncoincident edges with multiplicities v4, - - -, vy, subject to the constraint
vy + -+ vp = 4k. Then, the term corresponding to G is bounded by

¢
n—4-2k H(ﬁn\/n)”"fz = k=2t =it
j=1

Since the graph of noncoincident edges of G can have at most two pieces
of connected subgraphs, the number of noncoincident vertices of G is not
greater than ¢+ 2. If ¢ = 2k, then vy, = --- = vy = 2. Therefore, there is at
least one noncoincident edge consisting of edges from two different subgraphs
and hence there must be a cycle in the graph of noncoincident edges of G.
Therefore,

E(ﬂk (Wn) - E(ﬁk (Wn)))4

< Ck’n72k74 Z n@+2(,’772Ln)2k7€ +n2k+1 < Cknnnia
L<2k

which is summable, and thus (2) is proved. Consequently, the proof of The-
orem 2.9 is complete.

2.3 Semicircular Law by the Stieltjes Transform
As an illustration of the use of Stieltjes transforms, in this section we shall
present a proof of Theorem 2.9 using them.

2.3.1 Stieltjes Transform of the Semicircular Law

Let z = u+ iv with v > 0 and s(z) be the Stieltjes transform of the semicir-
cular law. Then, we have

I
s(z) / V402 — 22dx.

2w02 J_ o, v — 2
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Letting x = 20 cosy, then

2 [T 1 9
= 31 d
5(z) 77/0 20 cosy — z S Yy

1 2 1 eiy — eiiy 2
= / iy L p—iy ( . ) dy
mJo 20T —2 21

_ 1 1 g (et
N 4i777{g_1g(<+<1)_2(g ¢ )C dC(bett g C e)

_ 1 (2 —1)?
o i ji_l (¢ 40— 20) dc. (2.3.1)

We will use the residue theorem to evaluate the integral. Note that the in-
tegrand has three poles, at (5 = 0, (1 = Z+\/ZQZ_4"2, and (o = 2—Vz2—do?

20 )
where here, and throughout the book, the square root of a complex number
is specified as the one with the positive imaginary part. By this convention,

we have

> = sign 12 + 2 2.3.2
v = sign(3z ) 212+ 7) (2:3.2)
or
R(Vz) = \/251gn 2V |z + Rz = V(] - 1)
and . %]
T2 Viel = e = V2()2) + Rz)

This shows that the real part of 1/z has the same sign as the imaginary part
of z. Applying this to ¢; and (s, we find that the real part of v/22 — 402 has
the same sign as z, which implies that |¢1]| > [(2|. Since (1(> = 1, we conclude
that |(2| < 1 and thus the two poles 0 and (; of the integrand are in the disk
|z| < 1. By simple calculation, we find that the residues at these two poles

are ) §
-1
z and (CQ ) _
o3 (G — 1)
Substituting these into the integral of (2.3.1), we obtain the following lemma.

MG — ) = —072V/22 — 402,

Lemma 2.11. The Stieltjes transform for the semicircular law with scale

parameter o? is

s(z):— z—\/22 40?).
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2.3.2 Proof of Theorem 2.9

At first, we truncate the underlying variables at 7,1/n and remove the di-
agonal elements and then centralize and rescale the off-diagonal elements as
done in Steps 14 in the last section. That is, we assume that:

(i) Fori# j, [xij] < mpy/n and xy; = 0.
(ii) For all i # j, Ez;; = 0, E|z;;|* = 0%
(ii) The variables {z;;,7 < j} are independent.

For brevity, we assume o2 = 1 in what follows.
By definition, the Stieltjes transform of FW= is given by

sn(z) = }ltr(Wn 1 S (2.3.3)

We shall then proceed in our proof by taking the following three steps:

(i) For any fixed z € CT = {z,5(2) > 0}, sn(2) — Esn(2) — 0, a.s.
(i) For any fixed z € C*, Es,(z) — s(z), the Stieltjes transform of the semi-
circular law.
(iii) Outside a null set, s,(z) — s(z) for every z € C*.

Then, applying Theorem B.9, it follows that, except for this null set, FW» —
F weakly.

Step 1. Almost sure convergence of the random part
For the first step, we show that, for each fixed z € CT,

sn(2) —E(sp(2)) — 0 as. (2.3.4)
We need the extended Burkholder inequality.

Lemma 2.12. Let {X}} be a complex martingale difference sequence with
respect to the increasing o-field {Fy}. Then, for p > 1,

E ’ZXk’p <KE(Y \Xk\Q)p/z .

Proof. Burkholder [67] proved the lemma for a real martingale difference
sequence. Now, both {RX}} and {SX}} are martingale difference sequences.
Thus, we have

DRI SRR LY
<c, [KPE (Z |%Xk‘2)p/2 +K,E (Z |<5Xk2)p/2]

<20, (Y |Xk|2>p/2,
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where C), = 2771, This lemma is proved.
For later use, we introduce here another inequality proved in [67].

Lemma 2.13. Let {X} be a complex martingale difference sequence with
respect to the increasing o-field Fy, and let Ey, denote conditional expectation
w.r.t. Fi. Then, for p > 2,

p p/2
E’ZXk <Kp<E(ZEk1|Xk2) +EZ|Xk|P>.

Similar to Lemma 2.12, Burkholder proved this lemma for the real case.
Using the same technique as in the proof of Lemma 2.12, one may easily
extend the Burkholder inequality to the complex case.

Now, we proceed to the proof of the almost sure convergence (2.3.4).
Denote by Eg(-) conditional expectation with respect to the o-field gen-
erated by the random variables {z;;,i,j > k}, with the convention that
Ensn(z) = Es,,(2) and Egs,,(2) = s,(2). Then, we have

sn(2) — E(sn(2)) = Z[Ek—l(sn(z)) — Er(sn(2))] == Z“Ym
k=1

x>
Il
—

where, by Theorem A.5,

Vo= (Beo1tr(W, —2I)7" — Egtr(W,, — 2I)71)

(Ep—1[tr(Wy, — 2I) 7" — tr(Wy — 2L,-1) ']

—Ep[tr(W,, — 2I) 7! — tr(Wy, — 2L,1) 1))

1 E 1+ QZ(Wk — ZIn_l)_QOLk
=, af(Wy — 2L, 1) loy,

1+a; (Wi —2L,1) 2
—z—of(Wy—z2L, 1) lay )’

S =3 =

_Ek:

where W, is the matrix obtained from W,, with the k-th row and column
removed and «y, is the k-th column of W,, with the k-th element removed.
Note that

11+ o (W — 2L,1) 2y
<1+ ai (Wi —2L,_1) (W — 2L, 1) ey,
=0 1Sz 4 af (W, — 21, 1) tay)
which implies that
k| < 2/n.

Noting that {7} forms a martingale difference sequence, applying Lemma
2.12 for p = 4, we have
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Elsn(2) — B(sn(2))|* < K4E (Z 7k|2>

k=1

2
2
<xi(3,0)
k=1
4Ky

— n2pt’
By the Borel-Cantelli lemma, we know that, for each fixed z € CT,

sn(z) = E(sn(2)) — 0, a.s.

Step 2. Convergence of the expected Stieltjes transform
By Theorem A.4, we have

Il
—+
—

E
3

I
I
[

3
S~—"
-

Sn(z)
1 & 1
= Z e al(Wh— ATy ) len (2.3.5)

Write e, = Esp(2) — af (W — 2I,_1) tay. Then we have

1 — 1
Es,, = E
sn(2) n ’; —z —BEsp(2) + ek
1
= Be () T (2.3.6)

where

B 1 " €k
On = n ZE ((z + Es,(2))(—2z — Es,(2) —|—e’:‘k)> '

k=1

Solving equation (2.3.6), we obtain two solutions:
S (7 + b /(2 4 60) — 4).
We show that
Esp,(z) = 1(—z+6n+ V(z+6,)%—4). (2.3.7)

2

When fixing %z and letting 3z = v — 00, we have Es,,(z) — 0, which implies
that J,, — 0. Consequently,
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%(;(—z—&—én — \/(z+5n)2 —4)) < —v_2|5"‘ — —00,

which cannot be Es, (z) since it violates the property that Ss,(z) > 0. Thus,
assertion (2.3.7) is true when v is large. Now, we claim that assertion (2.3.7)
is true for all z € C*.

It is easy to see that Es,(2) and } (—z+8,+ V(2 + 6,)2 — 4) are continuous
functions on the upper half plane CT. If Es,,(z) takes a value on the branch
A(—z+8, — V(2 +6,)% — 4) for some z, then the two branches A(—z+6, +
V/(z + 6,)% — 4) should cross each other at some point zg € C*. At this point,
we would have /(29 + ,)2 — 4 = 0 and hence Es,,(29) has to be one of the
following:

1 1
2(—20 +0,) = 2(—220 +2).

However, both of the two values above have negative imaginary parts. This
contradiction leads to the truth of (2.3.7).
From (2.3.7), to prove Es,(z) — s(z), it suffices to show that

0n — 0. (2.3.8)
Now, rewrite

RES E(ep) 1 « 2
On = n ; (z + Esn(2))? * n ’;E ((z + Es,(2))2(—2z — Esp(2) —|—e’:‘k)>

=Jy + Jo.

By (A.1.10) and (A.1.12), we have

1
|Eex| = ’nE(tr(Wn — 27—t (W — zIn_l)_l)’

1 E 1+ OLZ(Wk — zIn_l)’zak
n  —z—o (Wi —zI,1) tay

Note that
|z + Esp(2)] > S(z+ Esn(2) = v+ E(S(sn(2)) > v.
Therefore, for any fixed z € CT,

1

‘Jl‘ < nwd — 0.

On the other hand, we have

| =2 —Bsp(2) +exl = | — 2 — af (Wi — 2L,_1) Loy
> S(z+ 0 (W, — 2L 1) )
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= o1+ o (W — 2L, 1) (W, — 2L, 1)) lay) > v
To prove Jo — 0, it is sufficient to show that
m]?XE|Ek|2 — 0.

‘Write (Wk — ZIn_l)_l = (bij)i,jgn—l- ‘We then have

Elex — Eep|* = Blaf(Wy, — 21, 1) tagp —  Btr(Wy — 21, 1) H?

S =3 =

= E|a; (W — zIn,l)_lak — tr((Wg — zIn,l)_l)|2

1 1 2
+E ’ntr((Wk — 2L, 1)) — nEtr((Wk —z2L,1)7 Y

By elementary calculations, we have

1
E|a; (W — zIn,l)*lak — ntr((Wk — zIn,l)*l)|2

1
= | DU [EIbi; PElzl *Elaj|* + Eb} Eaf Ead,] + Y B3| (Blag| — 1)
ik ik
2 2 77721 2
< > Elby* + ; > Bl
ij i#k
_ 2 Etr(Wy — 21,,_1) (W), — 21,,_1)) "' + s > Elbul®
n2 k n—1 k n—1 n 4 i
i#k
2 2
< o2 +mn;, — 0. (2.3.9)

By Theorem A.5, one can prove that

1 1 2
E ntr((Wn — 2L, )7 - nEtr((Wn — 2L, )Y < 1/n0?

Then, the assertion J, — 0 follows from the estimates above and the fact
that
Elen|? = Elep, — Een|? + [Eep |

The proof of the mean convergence is complete.

Step 3. Completion of the proof of Theorem 2.9
In this step, we need Vitali’s convergence theorem.

Lemma 2.14. Let f1, fo,--- be analytic in D, a connected open set of C,
satisfying | fn(2)] < M for everyn and z in D, and f,(z) converges as n — oo
for each z in a subset of D having a limit point in D. Then there exists a
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function f analytic in D for which f,(z) — f(z) and f](z) — f'(z) for
all z € D. Moreover, on any set bounded by a contour interior to D, the
convergence is uniform and {f}(z)} is uniformly bounded.

Proof. The conclusions on {f,} are from Vitali’s convergence theorem (see
Titchmarsh [275], p. 168). Those on {f} } follow from the dominated conver-
gence theorem (d.c.t.) and the identity

ORI I

- 2mi w—2z)?2
where C is a contour in D and enclosing z. The proof of the lemma is complete.
By Steps 1 and 2, for any fixed 2 € C*, we have
sn(z) — s(2), as.,

where s(z) is the Stieltjes transform of the standard semicircular law. That
is, for each z € C*, there exists a null set N, (i.e., P(N,) = 0) such that

sn(z,w) — s(z) for all we NZ.

Now, let C§ = {z,,} be a dense subset of C* (e.g., all z of rational real and
imaginary parts) and let N = UN,, . Then

sn(2,w) — s(z) for all w € N and z € C.

Let Ct = {2z € C",32z > 1/m, |z| < m}. When z € C/,, we have |s,,(2)| <
m. Applying Lemma 2.14, we have

sp(z,w) — s(z) for all w € N®and z € C;l.
Since the convergence above holds for every m, we conclude that

sn(z,w) — s(z) for all we€ N°and z € C.
Applying Theorem B.9, we conclude that

w
FWrn B F as.
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