
Chapter 2

First-Order Logic

Mathematics and some other disciplines such as computer science often
consider domains of individuals in which certain relations and operations
are singled out. When using the language of propositional logic, our abil-
ity to talk about the properties of such relations and operations is very
limited. Thus, it is necessary to refine our linguistic means of expres-
sion, in order to procure new possibilities of description. To this end, one
needs not only logical symbols but also variables for the individuals of the
domain being considered, as well as a symbol for equality and symbols
for the relations and operations in question. First-order logic, sometimes
called also predicate logic, is the part of logic that subjects properties of
such relations and operations to logical analysis.

Linguistic particles such as “for all” and “there exists” (called quantifiers)
play a central role here, whose analysis should be based on a well prepared
semantic background. Hence, we first consider mathematical structures
and classes of structures. Some of these are relevant both to logic (in
particular model theory) and to computer science. Neither the newcomer
nor the advanced student needs to read all of 2.1, with its mathemati-
cal flavor, at once. The first five pages should suffice. The reader may
continue with 2.2 and later return to what is needed.

Next we home in on the most important class of formal languages,
the first-order languages, also called elementary languages. Their main
characteristic is a restriction of the quantification possibilities. We discuss
in detail the semantics of these languages and arrive at a notion of logical
consequence from arbitrary premises. In this context, the notion of a
formalized theory is made more precise.

W. Rautenberg, A Concise Introduction to Mathematical Logic, 41
Universitext, DOI 10.1007/978-1-4419-1221-3_2,
c© Springer Science+Business Media, LLC 2010

42 2 First-Order Logic

Finally, we treat the introduction of new notions by explicit definitions
and other expansions of a language, for instance by Skolem functions.
Not until Chapter 3 do we talk about methods of formal logical deduc-
tion. While a multitude of technical details have to be considered in this
chapter, nothing is especially profound. Anyway, most of it is important
for the undertakings of the subsequent chapters.

2.1 Mathematical Structures

By a structure A we understand a nonempty set A together with certain
distinguished relations and operations of A, as well as certain constants
distinguished therein. The set A is also termed the domain of A, or its
universe. The distinguished relations, operations, and constants are called
the (basic) relations, operations, and constants of A. A finite structure
is one with a finite domain. An easy example is ({0, 1}, ∧ , ∨, ¬). Here
∧ , ∨, ¬ have their usual meanings on the domain {0, 1}, and no distin-
guished relations or constants occur. An infinite structure has an infinite
domain. A = (N, <,+, ·, 0, 1) is an example with the domain N; here
<, +, ·, 0, 1 have again their ordinary meaning.

Without having to say so every time, for a structure A the correspond-
ing letter A will always denote the domain of A; similarly B denotes the
domain of B, etc. If A contains no operations or constants, then A is also
called a relational structure. If A has no relations it is termed an algebraic
structure, or simply an algebra. For example, (Z, <) is a relational struc-
ture, whereas (Z,+, 0) is an algebraic structure, the additive group Z (it is
customary to use here the symbol Z as well). Also the set of propositional
formulas from 1.1 can be understood as an algebra, equipped with the
operations (α, β) �→ (α∧β), (α, β) �→ (α ∨ β), and α �→ ¬α. Thus, one
may speak of the formula algebra F whenever it is useful to do so.

Despite our interest in specific structures, whole classes of structures
are also often considered, for instance the classes of groups, rings, fields,
vector spaces, Boolean algebras, and so on. Even when initially just a
single structure is viewed, call it the paradigm structure, one often needs
to talk about similar structures in the same breath, in one language, so to
speak. This can be achieved by setting aside the concrete meaning of the
relation and operation symbols in the paradigm structure and considering

2.1 Mathematical Structures 43

the symbols in themselves, creating thereby a formal language that en-
ables one to talk at once about all structures relevant to a topic. Thus,
one distinguishes in this context clearly between denotation and what is
denoted. To emphasize this distinction, for instance for A = (A, +, <, 0),
it is better to write A = (A, +A, <A, 0A), where +A, <A, and 0A mean
the relation, operation, and constant denoted by +, <, and 0 in A. Only
if it is clear from the context what these symbols denote may the super-
scripts be omitted. In this way we are free to talk on the one hand about
the structure A, and on the other hand about the symbols +, <, 0.

A finite or infinite set L resulting in this way, consisting of relation,
operation, and constant symbols of a given arity, is called an extralogical
signature. For the class of all groups (see page 47), L = {◦, e} exemplifies
a favored signature; that is, one often considers groups as structures of
the form (G, ◦, e), where ◦ denotes the group operation and e the unit
element. But one can also define groups as structures of the signature
{◦}, because e is definable in terms of ◦, as we shall see later. Of course,
instead of ◦, another operation symbol could be chosen such as ·, ∗, or +.
The latter is mainly used in connection with commutative groups. In this
sense, the actual appearance of a symbol is less important; what matters
is its arity. r ∈ L always means that r is a relation symbol, and f ∈ L

that f is an operation symbol, each time of some arity n > 0, which of
course depends on the symbols r and f , respectively.1

An L-structure is a pair A = (A, LA), where LA contains for every r ∈ L

a relation rA on A of the same arity as r, for every f ∈ L an operation
fA on A of the arity of f , and for every c ∈ L a constant cA ∈ A. We
may omit the superscripts, provided it is clear from the context which
operation or relation on A is meant. We occasionally shorten also the
notation of structures. For instance, we sometimes speak of the ring Z or
the field R provided there is no danger of misunderstanding.

Every structure is an L-structure for a certain signature, namely that
consisting of the symbols for its relations, functions, and constants. But
this does not make the name L-structure superfluous. Basic concepts,

1 Here r and f represent the general case and look different in a concrete situation.
Relation symbols are also called predicate symbols, in particular in the unary case,
and operation symbols are sometimes called function symbols. In special contexts,
we also admit n = 0, regarding constants as 0-ary operations.

44 2 First-Order Logic

such as isomorphism and substructure, each refer to structures of the
same signature. From 2.2 on, once the first-order language L belonging
to L has been defined, L-structures will mostly be called L-structures.
We then also often say that r, f , or c belongs to L instead of L.

If A ⊆ B and f is an n-ary operation on B then A is closed under f ,
briefly f-closed, if f�a ∈ A for all �a ∈ An. If n = 0, i.e., if f is a constant
c, this simply means c ∈ A. The intersection of any nonempty family of
f -closed subsets of B is itself f -closed. Accordingly, we can talk of the
smallest (the intersection) of all f -closed subsets of B that contain a given
subset E ⊆ B. All of this extends in a natural way if f is here replaced
by an arbitrary family of operations of B.
Example. For a given positive m, the set mZ := {m · n | n ∈ Z} of
integers divisible by m is closed in Z under +, −, and ·, and is in fact the
smallest such subset of Z containing m.

The restriction of an n-ary relation rB ⊆ Bn to a subset A ⊆ B is
rA = rB ∩ An. For instance, the restriction of the standard order of
R to N is the standard order of N. Only because of this fact can the
same symbol be used to denote these relations. The restriction fA of an
operation fB on B to a set A ⊆ B is defined analogously whenever A is
f -closed. Simply let fA�a = fB�a for �a ∈ An. For instance, addition in N

is the restriction of addition in Z to N, or addition in Z is an extension of
this operation in N. Again, only this state of affairs allows us to denote
the two operations by the same symbol.

Let B be an L-structure and let A ⊆ B be nonempty and closed under
all operations of B; this will be taken to include cB ∈ A for constant
symbols c ∈ L. To such a subset A corresponds in a natural way an L-
structure A = (A, LA), where rA and fA for r, f ∈ L are the restrictions
of rB respectively fB to A. Finally, let cA = cB for c ∈ L. The structure A
so defined is then called a substructure of B, and B is called an extension
of A, in symbols A ⊆ B. This is a certain abuse of ⊆ but it does not
cause confusion, since the arguments indicate what is meant.
A ⊆ B implies A ⊆ B but not conversely, in general. For example,

A = (N, <,+, 0) is a substructure of B = (Z, <,+, 0) since N is closed
under addition in Z and 0 has the same meaning in A and B. Here
we dropped the superscripts for <, +, and 0 because there is no risk of
misunderstanding.

2.1 Mathematical Structures 45

A nonempty subset G of the domain B of a given L-structure B defines
a smallest substructure A of B containing G. The domain of A is the
smallest subset of B containing G and closed under all operations of B.
A is called the substructure generated from G in B. For instance, 3N

(= {3n | n ∈ N}) is the domain of the substructure generated from {3} in
(N,+, 0), since 3N contains 0 and 3, is closed under +, and is clearly the
smallest such subset of N. A structure A is called finitely generated if for
some finite G ⊆ A the substructure generated from G in A coincides with
A. For instance, (Z,+,−, 0) is finitely generated by G = {1}.

If A is an L-structure and L0 ⊆ L then the L0-structure A0 with domain
A and where sA0 = sA for all symbols s ∈ L0 is termed the L0-reduct of
A, and A is called an L-expansion of A0. For instance, the group (Z,+, 0)
is the {+, 0}-reduct of the ordered ring (Z, <,+, ·, 0). The notions reduct
and substructure must clearly be distinguished. A reduct of A has always
the same domain as A, while the domain of a substructure of A is as a
rule a proper subset of A.

Below we list some frequently cited properties of a binary relation �
in a set A. It is convenient to write a � b instead of (a, b) ∈�, and a � b

for (a, b) /∈�. Just as a < b < c often stands for a < b & b < c, we
write a � b � c for a � b & b � c. In the listing below, ‘for all a’ and
‘there exists an a’ respectively mean ‘for all a ∈ A’ and ‘there exists some
a ∈ A’. The relation � ⊆ A2 is called

reflexive if a � a for all a,
irreflexive if a � a for all a,
symmetric if a � b ⇒ b � a, for all a, b,
antisymmetric if a � b � a ⇒ a = b, for all a, b,
transitive if a � b � c ⇒ a � c, for all a, b, c,
connex if a = b or a � b or b � a, for all a, b.

Reflexive, transitive, and symmetric relations are also called equivalence
relations. These are often denoted by ∼, ≈, ≡, �, or similar symbols.
Such a relation generates a partition of its domain whose parts, consisting
of mutually equivalent elements, are called equivalence classes.

We now present an overview of classes of structures to which we will
later refer, mainly in Chapter 5. Hence, for the time being, the beginner
may skip the following and jump to 2.2.

46 2 First-Order Logic

1. Graphs, partial orders, and orders. A relational structure (A,�)
with some relation � ⊆ A2 is often termed a (directed) graph. If � is
irreflexive and transitive we usually write < for � and speak of a (strict)
partial order or a partially ordered set, also called a poset for short. If
we define x � y by x < y or x = y, then � is reflexive, transitive, and
antisymmetric, called a reflexive partial order, the one that belongs to <.
If one starts with a reflexive partial order on A and defines x < y by
x � y & x
= y, then (A, <) is clearly a poset.

A connex partial order A = (A, <) is called a total or linear order, also
termed an ordered or a strictly ordered set. N, Z, Q, R are examples with
respect to their standard orders. Here we follow the traditional habit of
referring to ordered sets by their domains only.

Let U be a nonempty subset of some ordered set A such that for all
a, b ∈ A, a < b ∈ U ⇒ a ∈ U . Such a U is called an initial segment of A.
In addition, let V := A\U
= ∅. Then the pair (U, V) is called a cut . The
cut is said to be a gap if U has no largest and V no smallest element.
However, if U has a largest element a, and V a smallest element b, then
(U, V) is called a jump. b is in this case called the immediate successor of
a, and a the immediate predecessor of b, because then there is no element
from A between a and b. An infinite ordered set without gaps and jumps,
like R, is said to be continuously ordered. Such a set is easily seen to be
densely ordered, i.e., between any two elements lies another one.

A totally ordered subset K of a partially ordered set H is called a chain
in H. Such a K is said to be bounded (to the above) if there is some b ∈ H

with a � b for all a ∈ K. Call c ∈ H maximal in H if no a ∈ H exists
with a > c. An infinite partial order need not have a maximal element,
nor need all chains be bounded, as is seen by the example (N, <). With
these notions, a basic mathematical tool can now be stated:

Zorn’s lemma. If every chain in a nonempty poset H is bounded then
H has a maximal element.

A (totally) ordered set A is well-ordered if every nonempty subset of
A has a smallest element; equivalently, there are no infinite decreasing
sequences a0 > a1 > · · · of elements from A. Clearly, every finite ordered
set is well-ordered. The simplest example of an infinite well-ordered set is
N together with its standard order.

2.1 Mathematical Structures 47

2. Groupoids, semigroups, and groups. Algebras A = (A, ◦) with
an operation ◦ : A2 → A are termed groupoids. If ◦ is associative then A
is called a semigroup, and if ◦ is additionally invertible, then A is said
to be a group. It is provable that a group (G, ◦) in this sense contains
exactly one unit element , that is, an element e such that x ◦ e = e ◦x = x

for all x ∈ G, also called a neutral element. A well-known example is the
group of bijections of a set M . If the group operation ◦ is commutative,
we speak of a commutative or abelian group.

Here are some examples of semigroups that are not groups: (a) the
set of strings on some alphabet A with respect to concatenation, the
word-semigroup or free semigroup generated from A. (b) the set MM

of mappings from M to itself with respect to composition. (c) (N,+)
and (N, ·); these two are commutative semigroups. With the exception of
(MM , ◦), all mentioned examples of semigroups are regular, which is to
mean x ◦ y = x ◦ z ⇒ y = z, and x ◦ z = y ◦ z ⇒ x = y, for all x, y, z.

Substructures of semigroups are again semigroups. Substructures of
groups are in general only semigroups, as seen from (N,+) ⊆ (Z,+). Not
so in the signature {◦, e,−1}, where e denotes the unit element and x−1

the inverse of x. Here all substructures are indeed subgroups. The reason
is that in {◦, e,−1}, the group axioms can be written as universally quan-
tified equations, where for brevity, we omit the writing of “for all x, y, z,”
namely as x ◦ (y ◦ z) = (x ◦ y) ◦ z, x ◦ e = x, x ◦x−1 = e. These equations
certainly retain their validity in the transition to substructures. We men-
tion that from the last three equations, e ◦x = x and x−1 ◦x = e are
derivable, although ◦ is not supposed to be commutative.

Ordered semigroups and groups possess along with ◦ some order, with
respect to which ◦ is monotonic in both arguments, like (N,+, 0, �). A
commutative ordered semigroup (A,+, 0, �) with zero element 0, which
at the same time is the smallest element in A, and where a � b iff there
is some c with a + c = b, is called a domain of magnitude. Everyday
examples are the domains of length, mass, money, etc.

3. Rings and fields. These belong to the most commonly known struc-
tures. Below we list the axioms for the theory TF of fields in +, ·, 0, 1. A
field is a model of TF . A ring is a model of the axiom system TR for rings
that derives from TF by dropping the constant 1 from the signature and
the axioms N×, C×, and I× from TF . Here are the axioms of TF :

48 2 First-Order Logic

N+ : x + 0==== x N× : x · 1==== x

C+ : x + y ==== y + x C× : x · y ==== y · x

A+ : (x + y) + z ==== x + (y + z) A× : (x · y) · z ==== x · (y · z)

D : x · (y + z)==== x · y + x · z D′ : (y + z) · x==== y · x + z · x

I+ : ∀x∃y x + y ==== 0 I× : 0
====1∧ (∀x
====0)∃y x · y ==== 1

In view of C×, axiom D′ is dispensable for TF but not for TR. When
removing I+ from TR, we obtain the theory of semirings. A well-known
example is (N,+, ·, 0). A commutative ring that has a unit element 1
but no zero-divisor (i.e., ¬∃x∃y(x, y
==== 0 ∧ x · y ==== 0) is called an integral
domain. A typical example is (Z,+, ·, 0, 1).

Let K,K′ be any fields with K ⊂ K′. We call a ∈ K ′ \K algebraic or
transcendental on K, depending on whether a is a zero of a polynomial
with coefficients in K or not. If every polynomial of degree � 1 with
coefficients in K breaks down into linear factors, as is the case for the
field of complex numbers, then K is called algebraically closed, in short, K
is a.c. These fields will be more closely inspected in 3.3 and Chapter 5.
Each field K has a smallest subfield P, called a prime field. One says that
K has characteristic 0 or p (a prime number), depending on whether P is
isomorphic to the field Q or the finite field of p elements. No other prime
fields exist. It is not hard to show that K has the characteristic p iff the
sentence charp : 1 + · · · + 1︸ ︷︷ ︸

p

==== 0 holds in K.

Rings, fields, etc. may also be ordered, whereby the usual monotonicity
laws are required. For example, (Z, <,+, ·, 0, 1) is the ordered ring of
integers and (N, <,+, ·, 0, 1) the ordered semiring of natural numbers.

4. Semilattices and lattices. A = (A, ◦) is called a semilattice if ◦ is
associative, commutative, and idempotent. An example is ({0, 1}, ◦) with
◦ = ∧ . If we define a � b :⇔ a ◦ b = a then � is a reflexive partial order
on A. Reflexivity holds, since a ◦ a = a. As can be easily verified, a ◦ b

is in fact the infimum of a, b with respect to �, a ◦ b = inf{a, b}, that is,
a ◦ b � a, b, and c � a, b ⇒ c � a ◦ b, for all a, b, c ∈ A.
A = (A, ∩ , ∪) is called a lattice if (A, ∩) and (A, ∪) are both semi-

lattices and the following so-called absorption laws hold: a ∩ (a ∪ b) = a

and a ∪ (a ∩ b) = a. These imply a ∩ b = a ⇔ a ∪ b = b. As above,
a � b :⇔ a ∩ b = a defines a partial order such that a ∩ b = inf{a, b}.

2.1 Mathematical Structures 49

In addition, one has a ∪ b = sup{a, b} (the supremum of a, b), which is
to mean a, b � a ∪ b, and a, b � c ⇒ a ∪ b � c, for all c ∈ A. If A
satisfies, moreover, the distributive laws x ∩ (y ∪ c) = (x ∩ y) ∪ (x ∩ c) and
x ∪ (y ∩ c) = (x ∪ y) ∩ (x ∪ c), then A is termed a distributive lattice. For
instance, the power set PM with the operations ∩ and ∪ for ∩ and ∪ re-
spectively is a distributive lattice, as is every nonempty family of subsets
of M closed under ∩ and ∪, a so-called lattice of sets. Another important
example is (N, gcd, lcm). Here gcd(a, b) and lcm(a, b) denote the greatest
common divisor and the least common multiple of a, b ∈ N.

5. Boolean algebras. An algebra A = (A, ∩ , ∪ ,¬) where (A, ∩ , ∪) is
a distributive lattice and in which at least the equations

¬¬x = x, ¬(x ∩ y) = ¬x ∪¬y, x ∩¬x = y ∩¬y

are valid is called a Boolean algebra. The paradigm structure is the two-
element Boolean algebra 2 := ({0, 1}, ∧ , ∨,¬), with ∩ , ∪ interpreted as
∧ , ∨, respectively. One defines the constants 0 and 1 by 0 := a ∩¬a for
any a ∈ A and 1 := ¬0. There are many ways to characterize Boolean
algebras A, for instance, by saying that A satisfies all equations valid in 2 .
The signature can also be variously selected. For example, the signature
∧ , ∨,¬ is well suited to deal algebraically with two-valued propositional
logic. Terms of this signature are, up to the denotation of variables,
precisely the Boolean formulas from 1.1, and a valid logical equivalence
α ≡ β corresponds to the equation α = β, valid in 2 . Further examples
of Boolean algebras are the algebras of sets A = (A,∩,∪,¬). Here A

consists of a nonempty system of subsets of a set I, closed under ∩, ∪,
and ¬ (complementation in I). These are the most general examples; a
famous theorem, Stone’s representation theorem, says that each Boolean
algebra is isomorphic to an algebra of sets.

6. Logical L-matrices. These are structures A = (A, LA, DA), where
L contains only operation symbols (the “logical” symbols) and D denotes
a unary predicate, the set of distinguished values of A. Best known is the
two-valued Boolean matrix B = (2 , DB) with DB = {1}. The consequence
relation �A in the propositional language F of signature L is defined as
in the two-valued case: Let X ⊆ F and ϕ ∈ F. Then X �A ϕ if wϕ ∈ DA

for every w : PV → A with wX ⊆ DA (wX := {wα | α ∈ X}). In words,
if the values of all α ∈ X are distinguished, then so too is the value of ϕ.

50 2 First-Order Logic

Homomorphisms and isomorphisms. The following notions are im-
portant for both mathematical and logical investigations. Much of the
material presented here will be needed in Chapter 5. In the following
definition, n (>0) denotes as always the arity of f or r.

Definition. Let A,B be L-structures and h :A → B (strictly speaking
h : A → B) a mapping such that for all f, c, r ∈ L and �a ∈ An,

(H): hfA�a = fBh�a, hcA = cB, rA�a ⇒ rBh�a
(
h�a = (ha1, . . . , han)

)
.

Then h is called a homomorphism. If the third condition in (H) is replaced
by the stronger condition (S): (∃�b∈An)(h�a=h�b & rA�b) ⇔ rBh�a 2 then h

is said to be a strong homomorphism (for algebras, the word “strong” is
dispensable). An injective strong homomorphism h :A → B is called an
embedding of A into B. If, in addition, h is bijective then h is called an
isomorphism, and in case A = B, an automorphism.

An embedding or isomorphism h :A → B satisfies rA�a ⇔ rBh�a. Indeed,
since h�a=h�b ⇔ �a=�b, (S) yields rBh�a ⇒ (∃�b∈An)(�a=�b & rA�b) ⇒ rA�a.
A,B are said to be isomorphic, in symbols A � B, if there is an isomor-
phism from A to B. It is readily verified that � is reflexive, symmetric, and
transitive, hence an equivalence relation on the class of all L-structures.

Examples 1. (a) A valuation w considered in 1.1 can be regarded as
a homomorphism of the propositional formula algebra F into the two-
element Boolean algebra 2 . Such a w :F → 2 is necessarily onto.
(b) Let A = (A, ∗) be a word semigroup with the concatenation operation
∗ and B the additive semigroup of natural numbers, considered as L-
structures for L = {◦} with ◦A = ∗ and ◦B = +. Let lh(ξ) denote the
length of a word or string ξ ∈ A. Then ξ �→ lh(ξ) is a homomorphism
since lh(ξ ∗ η) = lh(ξ) + lh(η), for all ξ, η ∈ A. If A is generated from a
single letter, lh is evidently bijective, hence an isomorphism.
(c) The mapping a �→ (a, 0) from R to C (= set of complex numbers,
understood as ordered pairs of real numbers) is a good example of an
embedding of the field R into the field C. Nonetheless, in this case, we
are used to saying that R is a subfield of C, and that R is a subset of C.

2 (∃�b∈An)(h�a=h�b & rA�b) abbreviates ‘there is some �b ∈ An with h�a = h�b and rA�b’.
If h :A → B is onto (and only this case will occur in our applications) then (S) is
equivalent to the more suggestive condition rB = {h�a | rA�a}.

2.1 Mathematical Structures 51

(d) Let A = (R, +, <) be the ordered additive group of real numbers
and B = (R+, ·, <) the multiplicative group of positive reals. Then for
any b ∈ R+ \{1} there is precisely one isomorphism η :A → B such that
η1 = b, namely η : x �→ bx, the exponential function expb to the base b.
It is even possible to define expb as this isomorphism, by first proving
that—up to isomorphism—there is only one continuously ordered abelian
group (first noticed in [Ta2] though not explicitly put into words).
(e) The algebras A = ({0, 1},+) and B = ({0, 1},↔) are only apparently
different, but are in fact isomorphic, with the isomorphism δ where δ0 = 1,
δ1 = 0. Thus, since A is a group, B is a group as well, which is not
obvious at first glance. By adjoining the unary predicate D = {1}, A and
B become (nonisomorphic) logical matrices. These actually define the two
“dual” fragmentary two-valued logics for the connectives either . . . or . . . ,
and . . . if and only if . . . , which have many properties in common.

Congruences. A congruence relation (or simply a congruence) in a struc-
ture A of signature L is an equivalence relation ≈ in A such that for all
n > 0, all f ∈ L of arity n, and all �a,�b ∈ An,

�a ≈ �b ⇒ fA�a ≈ fA�b.

Here �a ≈ �b means ai ≈ bi for i = 1, . . . , n. A trivial example is the
identity in A. If h :A → B is a homomorphism then ≈h ⊆ A2, defined
by a ≈h b ⇔ ha = hb, is a congruence in A, called the kernel of h. Let
A′ be the set of equivalence classes a/≈ := {x ∈ A | a ≈ x} for a ∈ A,
also called the congruence classes of ≈, and set �a/≈ := (a1/≈, . . . , an/≈)
for �a ∈ An. Define fA′

(�a/≈) := (fA�a)/≈ and let rA′
�a/≈ :⇔ (∃�b≈�a)rA�b.

These definitions are sound, that is, independent of the choice of the n-
tuple �a of representatives. Then A′ becomes an L-structure A′, the factor
structure of A modulo ≈, denoted by A/≈. Interesting, in particular for
Chapter 5, is the following very general and easily provable

Homomorphism theorem. Let A be L-structure and ≈ a congruence
in A. Then k : a �→ a/≈ is a strong homomorphism from A onto A/≈,
the canonical homomorphism. Conversely, if h :A → B is a strong homo-
morphism from A onto an L-structure B with kernel ≈ then ı : a/≈ �→ ha

is an isomorphism from A/≈ to B, and h = ı ◦ k.

Proof. We omit here the superscripts for f and r just for the sake of
legibility. Clearly, kf�a = (f�a)/≈ = f(�a/≈) = fk�a

(
=f(ka1, . . . , kan)

)
,

52 2 First-Order Logic

and (∃�b∈An)(k�a = k�b & r�b) ⇔ (∃�b≈�a)r�b ⇔ r�a/≈ ⇔ r k�a by definition.
Hence k is what we claimed. The definition of ı is sound, and ı is bijective
since ha = hb ⇒ a/≈ = b/≈. Furthermore, ı is an isomorphism because

ıf(�a/≈) = hf�a = fh�a = fı(�a/≈) and r�a/≈ ⇔ r h�a ⇔ r ı(�a/≈).
Finally, h is the composition ı ◦ k by the definitions of ı and k.

Remark. For algebras A, this theorem is the usual homomorphism theorem of
universal algebra. A/≈ is then named the factor algebra. The theorem covers
groups, rings, etc. In groups, the kernel of a homomorphism is already deter-
mined by the congruence class of the unit element, called a normal subgroup,
in rings by the congruence class of 0, called an ideal. Hence, in textbooks on
basic algebra the homomorphism theorem is separately formulated for groups
and rings, but is easily derivable from the general theorem present here.

Direct products. These provide the basis for many constructions of new
structures, especially in 5.7. A well-known example is the n-dimensional
vector group (Rn, 0, +). This is the n-fold direct product of the group
(R, 0, +) with itself. The addition in Rn is defined componentwise, as is
also the case in the following

Definition. Let (Ai)i∈I be a nonempty family of L-structures. The
direct product B =

∏
i∈I Ai is the structure defined as follows: Its domain

is B =
∏

i∈I Ai, called the direct product of the sets Ai. The elements
a = (ai)i∈I of B are functions defined on I with ai ∈ Ai for each i ∈ I.
Relations and operations in B are defined componentwise, that is,

rB�a ⇔ rAi�ai for all i ∈ I, fB�a = (fAi�ai)i∈I , cB = (cAi)i∈I ,

where �a = (a1, . . . , an) ∈ Bn (here the superscripts count the components)
with aν := (aν

i)i∈I for ν = 1, . . . , n, and �ai := (a1
i , . . . , a

n
i) ∈ An

i .

Whenever Ai = A for all i ∈ I, then
∏

i∈I Ai is denoted by AI and
called a direct power of the structure A. Note that A is embedded in AI

by the mapping a �→ (a)i∈I , where (a)i∈I denotes the I-tuple with the
constant value a, that is, (a)i∈I = (a, a, . . .). For I = {1, . . . , m}, the
product

∏
i∈I Ai is also written as A1 × · · · × Am. If I = {0, . . . , n−1}

one mostly writes An for AI .
Examples 2. (a) Let I = {1, 2}, Ai = (Ai, <

i), and B =
∏

i∈I Ai.
Then a <B b ⇔ a1 <1 b1 & a2 <2 b2, for all a, b ∈ B = A1 × A2. Note
that if A1,A2 are ordered sets then B is only a partial order. The deeper
reason for this observation will become clear in Chapter 5.

2.2 Syntax of First-Order Languages 53

(b) Let B = 2 I be a direct power of the two-element Boolean algebra 2 .
The elements a ∈ B are I-tuples of 0 and 1. These uniquely correspond
to the subsets of I via the mapping ı : a �→ Ia := {i ∈ I | ai = 1}. As a
matter of fact, ı is an isomorphism from B to (PI,∩,∪,¬), as can readily
be verified; Exercise 4.

Exercises

1. Show that there are (up to isomorphism) exactly five two-element
proper groupoids. Here a groupoid (H, ·) is termed proper if the
operation · is essentially binary.

2. ≈ (⊆ A2) is termed Euclidean if a ≈ b & a ≈ c ⇒ b ≈ c, for all
a, b, c ∈ A. Show that ≈ is an equivalence relation in A if and only
if ≈ is reflexive and Euclidean.

3. Prove that an equivalence relation ≈ on an algebraic L-structure A
is a congruence iff for all f ∈ L of arity n, all i = 1, . . . , n, and all
a1, . . . , ai−1, a, a′, ai+1, . . . , an ∈ A with a ≈ a′,

f(a1, . . . , ai−1, a, ai+1, . . . , an) ≈ f(a1, . . . , ai−1, a
′, ai+1, . . . , an).

4. Prove in detail that 2 I � (PI,∩,∪,¬) for a nonempty index set I.
Prove the corresponding statement for any subalgebra of 2 I .

5. Show that h :
∏

i∈I Ai → Aj with ha = aj is a homomorphism for
each j ∈ I.

2.2 Syntax of First-Order Languages

Standard mathematical language enables us to talk precisely about struc-
tures, such as the field of real numbers. However, for logical (and meta-
mathematical) issues it is important to delimit the theoretical framework
to be considered; this is achieved most simply by means of a formalization.
In this way one obtains an object language; that is, the formalized elements
of the language, such as the components of a structure, are objects of our
consideration. To formalize interesting properties of a structure in this
language, one requires at least variables for the elements of its domain,
called individual variables. Further are required sufficiently many logical

54 2 First-Order Logic

symbols, along with symbols for the distinguished relations, functions,
and constants of the structure. These extralogical symbols constitute the
signature L of the formal language that we are going to define.

In this manner one arrives at the first-order languages, also termed
elementary languages. Nothing is lost in terms of generality if the set
of variables is the same for all elementary languages; we denote this set
by Var and take it to consist of the countably many symbols v0, v1, . . .

Two such languages therefore differ only in the choice of their extralogical
symbols. Variables for subsets of the domain are consciously excluded,
since languages containing variables both for individuals and sets of these
individuals—second-order languages, discussed in 3.8—have different se-
mantic properties from those investigated here.

We first determine the alphabet , the set of basic symbols of a first-order
language determined by a signature L. It includes, of course, the already
specified variables v0, v1, . . . In what follows, these will mostly be denoted
by x, y, z, u, v, though sometimes other letters with or without indices may
serve the same purpose. The boldface printed original variables are useful
in writing down a formula in the variables vi1 , . . . ,vin , for these can then
be denoted, for instance, by v1, . . . , vn, or by x1, . . . , xn.

Further, the logical symbols ∧ (and), ¬ (not), ∀ (for all), the equality
sign ==== , and, of course, all extralogical symbols from L should belong to
the alphabet. Note that the boldface symbol ==== is taken as a basic symbol;
simply taking = could lead to unintended mix-ups with the metamath-
ematical use of the equality symbol = (in Chapter 4 also identity-free
languages without ==== will be considered). Finally, the parentheses (,)
are included in the alphabet. Other symbols are introduced by definition,
e.g., ∨, → ,↔ are defined as in 1.4 and the symbols ∃ (there exists) and
∃! (there exists exactly one) will be defined later. Let SL denote the set
of all strings made up of symbols that belong to the alphabet of L.

From the set SL of all strings we pick out the meaningful ones, namely
terms and formulas, according to certain rules. A term, under an inter-
pretation of the language, will always denote an element of a domain,
provided an assignment of the occurring variables to elements of that do-
main has been given. In order to keep the syntax as simple as possible,
terms will be understood as certain parenthesis-free strings, although this
kind of writing may look rather unusual at the first glance.

2.2 Syntax of First-Order Languages 55

Terms in L:

(T1) Variables and constants, considered as atomic strings, are terms,
also called prime terms.

(T2) If f ∈ L is n-ary and t1, . . . , tn are terms, then ft1 · · · tn is a term.

This is a recursive definition of the set of terms as a subset of SL. Any
string that is not generated by (T1) and (T2) is not a term in this context
(cf. the related definition of F in 1.1). Parenthesis-free term notation
simplifies the syntax, but for binary operations we proceed differently in
practice and write, for example, the term ·+xyz as (x+y) · z. The reason
is that a high density of information in the notation complicates read-
ing. Our brain does not process information sequentially like a computer.
Officially, terms are parenthesis-free, and the parenthesized notation is
just an alternative way of rewriting terms. Similarly to the unique recon-
struction property of propositional formulas in 1.1, here the unique term
reconstruction property holds, that is,

ft1 · · · tn = fs1 · · · sn implies si = ti for i = 1, . . . , n (ti, si terms),
which immediately follows from the unique term concatenation property

t1 · · · tn = s1 · · · sm implies n = m and ti = si for i = 1, . . . , n.
The latter is shown in Exercise 2. T (= TL) denotes the set of all terms
of a given signature L. Variable-free terms, which can exist only with
the availability of constant symbols, are called constant terms or ground
terms, mainly in logic programming. With the operations given in T by
setting fT (t1, . . . , tn) = ft1 · · · tn, T forms an algebra, the term algebra.
From the definition of terms immediately follows the useful

Principle of proof by term induction. Let E be a property of strings
such that E holds for all prime terms, and for each n > 0 and each n-ary
function symbol f , the assumptions Et1, . . . , Etn imply Eft1 · · · tn. Then
all terms have the property E.

Indeed, T is by definition the smallest set of strings satisfying the condi-
tions of this principle, and hence a subset of the set of all strings with the
property E . A simple application of term induction is the proof that each
compound term t is a function term in the sense that t = ft1 · · · tn for
some n-ary function symbol f and some terms t1, . . . , tn. Simply consider
the property ‘t is either prime or a function term’. Term induction can
also be executed on certain subsets of T , for instance on ground terms.

56 2 First-Order Logic

We also have at our disposal a definition principle by term recursion
which, rather than defining it generally, we present through examples.
The set var t of variables occurring in a term t is recursively defined by

var c = ∅ ; varx = {x} ; var ft1 · · · tn = var t1 ∪ · · · ∪ var tn.

var t, and even var ξ for any ξ ∈ SL, can also be defined explicitly using
concatenation. var ξ is the set of all x ∈ Var for which there are strings
η, ϑ with ξ = ηxϑ. The notion of a subterm of a term can also be defined
recursively. Again, we can also do it more briefly using concatenation.
Definition by term induction should more precisely be called definition by
term recursion. But most authors are sloppy in this respect.

We now define recursively those strings of the alphabet of L to be called
formulas, also termed (first-order) expressions or well-formed formulas.

Formulas in L:

(F1) If s, t are terms, then the string s==== t is a formula.

(F2) If t1, . . . , tn are terms and r ∈ L is n-ary, then rt1 · · · tn is a formula.

(F3) If α, β are formulas and x is a variable, then (α∧β), ¬α, and ∀xα

are formulas.

Any string not generated according to (F1), (F2), (F3) is in this context
not a formula. Other logical symbols serve throughout merely as abbre-
viations, namely ∃xα := ¬∀x¬α, (α ∨ β) := ¬(¬α∧¬β), and as in 1.1,
(α →β) := ¬(α∧¬β), and (α ↔ β) := ((α →β)∧ (β →α)). In addition,
s
==== t will throughout be written for ¬ s==== t. The formulas ∀xα and ∃xα

are said to arise from α by quantification.

Examples. (a) ∀x∃y x + y ==== 0 (more explicitly, ∀x¬∀y¬x + y ==== 0) is a
formula, expressing ‘for all x there exists a y such that x+y = 0’. Here we
assume tacitly that x, y denote distinct variables. The same is assumed
in all of the following whenever this can be made out from the context.
(b) ∀x∀x x==== y is a formula, since repeated quantification of the same
variable is not forbidden. ∀z x==== y is a formula also if z
= x, y, although
z does then not appear in the formula x==== y.

Example (b) indicates that the grammar of our formal language is more
liberal than one might expect. This will spare us a lot of writing. The for-
mulas ∀x∀x x==== y and ∃x∀x x==== y both have the same meaning as ∀x x==== y.

2.2 Syntax of First-Order Languages 57

These three formulas are logically equivalent (in a sense still to be defined),
as are ∀z x==== y and x==== y. It would be to our disadvantage to require any
restriction here. In spite of this liberality, the formula syntax corresponds
roughly to the syntax of natural language.

The formulas procured by (F1) and (F2) are said to be prime or atomic
formulas, or simply called prime. As in propositional logic, prime formulas
and their negations are called literals.

Prime formulas of the form s==== t are called equations. These are the
only prime formulas if L contains no relation symbols, in which case L

is called an algebraic signature. Prime formulas that are not equations
begin with a relation symbol, although in practice a binary symbol tends
to separate the two arguments as, for example, in x � y. The official
notation is, however, that of clause (F2). The unique term concatenation
property clearly implies the unique prime formula reconstruction property

rt1 · · · tn = rs1 · · · sn implies ti = si for i = 1, . . . , n.

The set of all formulas in L is denoted by L. If L = {∈} or L = {◦}
then L is also denoted by L∈ or L◦ , respectively. If L is more complex,
e.g. L = {◦, e}, we write L = L{◦, e}. The case L = ∅ is also permitted;
it defines the language of pure identity, denoted by L====.

Instead of terms, formulas, and structures of signature L, we will talk
of L-terms (writing TL for TL), L-formulas, and L-structures respectively.
We also omit the prefix if L has been given earlier and use the same
conventions of parenthesis economy as in 1.1. We will also allow ourselves
other informal aids in order to increase readability. For instance, variously
shaped brackets may be used as in ∀x∃y∀z[z ∈ y ↔ ∃u(z ∈ u∧u∈ x)]. Even
verbal descriptions (partial or complete) are permitted, as long as the
intended formula is uniquely recognizable.

The strings ∀x and ∃x (read “for all x” respectively “there is an x”) are
called prefixes. Also concatenations of these such as ∀x∃y are prefixes. No
other prefixes are considered here. Formulas in which ∀, ∃ do not occur
are termed quantifier-free or open. These are the Boolean combinations
of prime formulas. Generally, the Boolean combinations of formulas from
a set X ⊆ L are the ones generated by ¬, ∧ (and ∨) from those of X.

X, Y, Z always denote sets of formulas, α, β, γ, δ, π, ϕ, . . . denote formu-
las, and s, t terms, while Φ, Ψ are reserved to denote finite sequences of

58 2 First-Order Logic

formulas and formal proofs. Substitutions (to be defined below) will be
denoted by σ, τ, ω, ρ, and ι.

Principles of proof by formula induction and of definition by formula
induction (more precisely formula recursion) also exist for first-order and
other formal languages. After the explanation of these principles for
propositional languages in 1.1, it suffices to present here some examples,
adhering to the maxim verba docent, exempla trahunt. Formula recursion is
based on the unique formula reconstruction , which is similar to the corre-
sponding property in 1.1: Each composed ϕ ∈ L can uniquely be written
as ϕ = ¬α, ϕ = (α∧β), or ∀xα for some α, β ∈ L and x ∈ Var. A simple
example of a recursive definition is rkϕ, the rank of a formula ϕ. Starting
with rkπ = 0 for prime formulas π it is defined as on page 8, with the
additional clause rk∀xα = rkα+1. Functions on L are sometimes defined
by recursion on rkϕ, not on ϕ, as for instance on page 60.

Useful for some purposes is also the quantifier rank , qrϕ. It represents
a measure of nested quantifiers in ϕ. For prime π let qrπ = 0, and let
qr¬α = qrα, qr(α∧β) = max{qrα, qr β}, qr∀xα = qrα + 1.

Note that qr∃xϕ = qr¬∀x¬ϕ = qr∀xϕ. A subformula of a formula is
defined analogously to the definition in 1.1. Hence, we need say no more
on this. We write x ∈ bnd ϕ (or x occurs bound in ϕ) if ϕ contains the
prefix ∀x. In subformulas of ϕ of the form ∀xα, the formula α is called
the scope of ∀x. The same prefix can occur repeatedly and with nested
scopes in ϕ, as for instance in ∀x(∀x x==== 0 ∧ x<y). In practice we avoid
this way of writing, though for a computer this would pose no problem.

Intuitively, the formulas (a) ∀x∃y x+y ==== 0 and (b) ∃y x+y ==== 0 are differ-
ent in that in every context with a given meaning for + and 0, the former
is either true or false, whereas in (b) the variable x is waiting to be as-
signed a value. One also says that all variables in (a) are bound, while
(b) contains the “free” variable x. The syntactic predicate ‘x occurs free
in ϕ’, or ‘x ∈ free ϕ’ is defined inductively: Let free α = varα for prime
formulas α (varα was defined on page 56), and

free (α∧β) = freeα ∪ free β, free¬α = free α, free∀xα = free α\{x}.
For instance, free (∀x∃y x+y ==== 0) = ∅, while free (x � y ∧ ∀x∃y x+y ==== 0)
equals {x, y}. As the last formula shows, x can occur both free and bound
in a formula. This too will be avoided in practice whenever possible. In
some proof-theoretically oriented presentations, even different symbols are

2.2 Syntax of First-Order Languages 59

chosen for free and bound variables. Each of these approaches has its
advantages and its disadvantages.

Formulas without free variables are called sentences, or closed formulas.
1+1==== 0 and ∀x∃y x+y ==== 0 (= ∀x¬∀y¬x+y ==== 0) are examples. Through-
out take L0 to denote the set of all sentences of L. More generally, let Lk

be the set of all formulas ϕ such that freeϕ ⊆ Vark := {v0, . . . ,vk−1}.
Clearly, L0 ⊆ L1 ⊆ · · · and L =

⋃
k∈N

Lk.
At this point we meet a for the remainder of the book valid

Convention. As long as not otherwise stated, the notation ϕ = ϕ(x)
means that the formula ϕ contains at most x as a free variable; more
generally, ϕ = ϕ(x1, . . . , xn) or ϕ = ϕ(�x) is to mean free ϕ ⊆ {x1, . . . , xn},
where x1, . . . , xn stand for arbitrary but distinct variables. Not all of these
variables need actually occur in ϕ. Further, t = t(�x) for terms t is to be
read completely analogously.

The term ft1 · · · tn is often denoted by f�t , the prime formula rt1 · · · tn
by r�t . Here �t denotes the string concatenation t1 · · · tn. Fortunately, �t

behaves exactly like the sequence (t1, . . . , tn) as was pointed out already;
it has the unique term concatenation property, see page 55.

Substitutions. We begin with the substitution t
x of some term t for a

single variable x, called a simple substitution. Put intuitively, ϕ t
x (also

denoted by ϕx(t) and read “ϕ t for x”) is the formula that results from
replacing all free occurrences of x in ϕ by the term t. This intuitive
characterization is made precise recursively, first for terms by

x t
x = t, y t

x = y (x
= y), c t
x = c, (ft1 · · · tn) t

x = ft′1 · · · t′n,

where, for brevity, t′i stands for ti
t
x , and next for formulas as follows:

(t1 ==== t2) t
x = t′1 ==== t′2, (r�t) t

x = rt′1 · · · t′n,

(α∧β) t
x = α t

x ∧β t
x , (¬α) t

x = ¬(α t
x),

(∀yα)t
x =

{
∀yα if x = y,

∀y(α t
x) otherwise.

Then also (α →β) t
x = α t

x → β t
x , and the corresponding holds for ∨,

while (∃yα) t
x = ∃yα for y = x, and ∃y(α t

x) otherwise. Simple substitu-
tions are special cases of so-called simultaneous substitutions

ϕ t1··· tn
x1···xn (x1, . . . , xn distinct).

For brevity, this will be written ϕ
�t
�x or ϕ�x(�t) or just ϕ(�t), provided there is

no danger of misunderstanding. Here the variables xi are simultaneously
replaced by the terms ti at free occurrences. Simultaneous substitutions

60 2 First-Order Logic

easily generalize to global substitutions σ. Such a σ assigns to every
variable x a term xσ ∈ T . It extends to the whole of T by the clauses
cσ = c and (f�t)σ = ftσ1 · · · tσn, and subsequently to L by recursion on
rkϕ, so that σ is defined for the whole of T ∪ L: (t1 ==== t2)σ = tσ1 ==== tσ2 ,
(r�t)σ = rtσ1 · · · tσn, (α∧β)σ = ασ ∧βσ, (¬α)σ = ¬ασ, and (∀xϕ)σ = ∀xϕτ ,
where τ is defined by xτ = x and yτ = yσ for y
= x.3

These clauses cover also the case of a simultaneous substitution, because
�t
�x can be identified with the global substitution σ such that xσ

i = ti
for i = 1, . . . , n and xσ = x otherwise. In other words, a simultaneous
substitution can be understood as a global substitution σ such that xσ = x

for almost all variables x, i.e., with the exception of finitely many. The
identical substitution, always denoted by ι, is defined by xι = x for all x;
hence tι = t and ϕι = ϕ for all terms t and formulas ϕ.

Clearly, a global substitution yields locally, i.e. with respect to individual
formulas, the same as a suitable simultaneous substitution. Moreover, it
will turn out below that simultaneous substitutions are products of simple
ones. Nonetheless, a separate study of simultaneous substitutions is useful
mainly for Chapter 4.

It always holds that t1t2
x1x2 = t2t1

x2x1 , whereas the compositions t1
x1

t2
x2 and

t2
x2

t1
x1 are distinct, in general. Let us elaborate by explaining the difference

between ϕ t1t2
x1x2 and ϕ t1

x1
t2
x2

(
= (ϕ t1

x1) t2
x2

)
. For example, if one wants

to swap x1, x2 at their free occurrences in ϕ then the desired formula
is ϕ x2x1

x1x2 , but not, in general, ϕ x2
x1

x1
x2 (choose for instance ϕ = x1<x2).

Rather ϕ x2x1
x1x2 = ϕ y

x2
x2
x1

x1
y for any y /∈ varϕ∪{x1, x2}, as is readily shown

by induction on ϕ after first treating terms. We recommend to carry out
this induction in detail. In the same way we obtain

(1) ϕ
�t
�x = ϕ y

xn
t1··· tn-1
x1···xn-1

tn
y (y /∈ varϕ ∪ var �x ∪ var�t , n � 2).

This formula shows that a simultaneous substitution is a suitable product
(composition) of simple substitutions. Conversely, it can be shown that
each such product can be written as a single simultaneous substitution.
In some cases (1) can be simplified. Useful, for example, is the following
equation which holds in particular when all terms ti are variable-free:

(2) ϕ
�t
�x = ϕ t1

x1 · · · tn
xn (xi /∈ var tj for i
= j).

3 Since rk ϕ < rk ∀xϕ, we may assume according to the recursive construction of σ that
ϕτ is already defined for all global substitutions τ .

2.3 Semantics of First-Order Languages 61

Getting on correctly with substitutions is not altogether simple; it
requires practice, because our ability to regard complex strings is not
especially trustworthy. A computer is not only much faster but also more
reliable in this respect.

Exercises

1. Show by term induction that a terminal segment of a term t is a
concatenation s1 · · · sm of terms si for some m � 1. Thus, a symbol
in t is at each position in t the initial symbol of a unique subterm s

of t. The uniqueness of s is an easy consequence of Exercise 2(a).

2. Let L be a first-order language, T = TL, and Et the property ‘No
proper initial segment of t (∈ T) is a term, nor is t a proper initial
segment of a term from T ’. Prove (a) Et for all t ∈ T , hence
tξ = t′ξ′ ⇒ t = t′ for all t, t′ ∈ T and arbitrary ξ, ξ′ ∈ SL, and
(b) the unique term concatenation property (page 55).

3. Prove (a) No proper initial segment of a formula ϕ is a formula.
(b) The unique formula reconstruction property stated on page 58.
(c) ¬ξ ∈ L ⇒ ξ ∈ L and α, (α∧ ξ) ∈ L ⇒ ξ ∈ L. (c) easily yields
(d) α, (α → ξ) ∈ L ⇒ ξ ∈ L, for all ξ ∈ SL.

4. Prove ϕ t
x = ϕ for x /∈ freeϕ, and ϕ y

x
t
y = ϕ t

x for y /∈ varϕ. It can
be shown that these restrictions are indispensable, provided t
= x.

5. Let X ⊆ L be a nonempty formula set and X∗ = X ∪{¬ϕ |ϕ ∈ X}.
Show that a Boolean combination of formulas from X is equivalent
to a disjunction of conjunctions of formulas from X∗.

2.3 Semantics of First-Order Languages

Intuitively it is clear that the formula ∃y y+y ==== x can be allocated a truth
value in the domain (N,+) only if to the free variable x there corresponds a
value in N. Thus, along with an interpretation of the extralogical symbols,
a truth value allocation for a formula ϕ requires a valuation of at least the
variables occurring free in ϕ. However, it is technically more convenient

62 2 First-Order Logic

to work with a global assignment of values to all variables, even if in a
concrete case only the values of finitely many variables are needed. We
therefore begin with the following

Definition. A model M is a pair (A, w) consisting of an L-structure A
and a valuation w : Var → A, w : x �→ xw. We denote rA, fA, cA, and xw

also by rM, fM, cM, and xM, respectively. The domain of A will also
called the domain of M.

Models are sometimes called interpretations, occasionally also L-models
if the connection to L is to be highlighted. Some authors identify models
with structures from the outset. This also happens in 2.5, where we
are talking about models of theories. The notion of a model is to be
maintained sufficiently flexible in logic and mathematics.

A model M allocates in a natural way to every term t a value in A,
denoted by tM or tA,w or just by tw. Clearly, for prime terms the value is
already given by M. This evaluation extends to compound terms by term
induction as follows: (f�t)M = fM�tM, where �tM abbreviates here the
sequence (tM1 , . . . , tMn). If the context allows we neglect the superscripts
and retain just an imaginary distinction between symbols and their inter-
pretation. For instance, if A = (N, +, ·, 0, 1) and xw = 2, say, we write
somewhat sloppily (0 · x + 1)A,w = 0 · 2 + 1 = 1.

The value of t under M depends only on the meaning of the symbols
that effectively occur in t; using induction on t, the following slightly more
general claim is obtained: if var t ⊆ V ⊆ Var and M,M′ are models with
the same domain such that xM = xM′ for all x ∈ V and sM = sM

′ for
all remaining symbols s occurring in t, then tM = tM

′ . Clearly, tA,w may
simply be denoted by tA, provided the term t contains no variables.

We now are going to define a satisfiability relation � between models
M = (A, w) and formulas ϕ, using induction on ϕ as in 1.3. We read
M � ϕ as M satisfies ϕ, or M is a model for ϕ.

Sometimes A � ϕ [w] is written instead of M � ϕ. A similar notation,
just as frequently encountered, is introduced later. Each of these notations
has its advantages, depending on the context. If M � ϕ for all ϕ ∈ X

we write M � X and call M a model for X. For the formulation of
the satisfaction clauses below (taken from [Ta1]) we consider for given
M = (A, w), x ∈ Var, and a ∈ A also the model Ma

x (generalized to M�a
�x

2.3 Semantics of First-Order Languages 63

below). Ma
x differs from M only in that the variable x receives the value

a ∈ A instead of xM. Thus, Ma
x = (A, w′) with xw′

= a and yw′
= yw

otherwise. The satisfaction clauses then look as follows:
M � s==== t ⇔ sM = tM,

M � r�t ⇔ rM�tM,

M � (α∧β) ⇔ M � α and M � β,

M � ¬α ⇔ M � α,

M � ∀xα ⇔ Ma
x � α for all a ∈ A.

Remark 1. The last satisfaction clause can be stated differently if a name for
each a ∈ A, say a, is available in the signature: M � ∀xα ⇔ M � α a

x for all
a ∈ A. This assumption permits the definition of the satisfaction relation for
sentences using induction on sentences while bypassing arbitrary formulas. If
not every a ∈ A has a name in L, one could “fill up” L in advance by adjoining
to L a name a for each a. But expanding the language is not always wanted and
does not really simplify the matter.

Ma
x is slightly generalized to M�a

�x := Ma1···an
x1···xn

(= (Ma1
x1

)a2
x2

. . .), which
differs from M in the values of a sequence x1, . . . , xn of distinct variables.
This and writing ∀�xϕ for ∀x1 · · · ∀xnϕ permits a short notation of a useful
generalization of the last clause above, namely

M � ∀�xϕ ⇔ M�a
�x � ϕ for all �a ∈ An.

The definitions of α ∨ β, α →β, and α ↔ β from page 56 readily imply
the additional clauses M � α ∨ β iff M � α or M � β, M � α →β

iff M � α ⇒ M � β, and analogously for ↔. Clearly, if ∨, → ,↔ were
treated as independent connectives, these equivalences would have to be
added to the above ones. Further, the definition of ∃xϕ in 2.2 corresponds
to its intended meaning, because M � ∃xϕ ⇔ Ma

x � ϕ for some a ∈ A.
Indeed, whenever M � ¬∀x¬ϕ (= ∃xϕ) then Ma

x � ¬ϕ does not hold
for all a; hence there is some a ∈ A such that Ma

x � ¬ϕ, or equivalently,
Ma

x � ϕ. And this chain of reasoning is obviously reversible.

Example 1. M � ∃x x==== t for arbitrary M, provided x /∈ var t. Indeed,
Ma

x � x==== t with a := tM, since xMa
x = a = tM = tM

a
x in view of x /∈ var t.

The assumption x /∈ var t is essential. For instance, M � ∃x x==== fx holds
only if the function fM has a fixed point.

We now introduce several fundamental notions that will be treated more
systematically in 2.4 and 2.5, once certain necessary preparations have
been completed.

64 2 First-Order Logic

Definition. A formula or set of formulas in L is termed satisfiable if it
has a model. ϕ ∈ L is called generally valid, logically valid, or a tautology,
in short, � ϕ, if M � ϕ for every model M. Formulas α, β are called
(logically or semantically) equivalent , in symbols, α ≡ β, if

M � α ⇔ M � β, for each L-model M.
Further, let A � ϕ (read ϕ holds in A or A satisfies ϕ) if (A, w) � ϕ for
all w : Var → A. One writes A � X in case A � ϕ for all ϕ ∈ X. Finally,
let X � ϕ (read from X follows ϕ, or ϕ is a consequence of X) if every
model M of X also satisfies the formula ϕ, i.e., M � X ⇒ M � ϕ.

As in Chapter 1, � denotes both the satisfaction and the consequence
relation. Here, as there, we write ϕ1, . . . , ϕn � ϕ for {ϕ1, . . . , ϕn} � ϕ.
Note that in addition, � denotes the validity relation in structures, which
is illustrated by the following

Example 2. We show that A � ∀x∃y x
==== y, where the domain of A
contains at least two elements. Indeed, let M = (A, w) and let a ∈ A

be given arbitrarily. Then there exists some b ∈ A with a
= b. Hence,
(Ma

x)b
y = Ma b

xy � x
==== y, and so Ma
x � ∃y x
==== y. Since a was arbitrary,

M � ∀x∃y x
==== y. Clearly the actual values of w are irrelevant in this
argument. Hence (A, w) � ∀x∃y x
====y for all w, that is, A � ∀x∃y x
====y.

Here some care is needed. While M � ϕ or M � ¬ϕ for all formulas,
A � ϕ or A � ¬ϕ (the law of the excluded middle for validity in structures)
is in general correct only for sentences ϕ, as Theorem 3.1 will show. If
A contains more than one element, then, for example, neither A � x==== y

nor A � x
====y. Indeed, x==== y is falsified by any w such that xw
= yw, and
x
====y by any w with xw = yw. This is one of the reasons why models were
not simply identified with structures.

For ϕ ∈ L let ϕg be the sentence ∀x1 · · · ∀xmϕ, where x1, . . . , xm is
an enumeration of free ϕ according to index size, say. ϕg is called the
generalized of ϕ, also called its universal closure. For ϕ ∈ L0 clearly
ϕg = ϕ. From the definitions immediately results

(1) A � ϕ ⇔ A � ϕg ,
and more generally, A � X ⇔ A � X g (:= {ϕg | ϕ ∈ X}). (1) explains
why ϕ and ϕg are often notionally identified, and the information that
formally runs ϕg is often shortened to ϕ. It must always be clear from

2.3 Semantics of First-Order Languages 65

the context whether our eye is on validity in a structure, or on validity in
a model with its fixed valuation. Only in the first case can a generaliza-
tion (or globalization) of the free variables be thought of as carried out.
However, independent of this discussion, � ϕ ⇔ � ϕg always holds.

Even after just these incomplete considerations it is already clear that
numerous properties of structures and whole systems of axioms can ad-
equately be described by first-order formulas and sentences. Thus, for
example, an axiom system for groups in ◦, e,−1, mentioned already in
2.1, can be formulated as follows:

∀x∀y∀z x ◦ (y ◦ z)==== (x ◦ y) ◦ z; ∀x x ◦ e==== x; ∀x x ◦x−1 ==== e.

Precisely, the sentences that follow from these axioms form the elementary
group theory in ◦, e,−1. It will be denoted by T ====

G . In the sense elaborated
in Exercise 3 in 2.6 an equivalent formulation of the theory of groups in
◦, e, denoted by TG, is obtained if the third T ====

G -axiom is replaced by
∀x∃y x ◦ y ==== e. Let us mention that ∀x e ◦x==== x and ∀x∃y y ◦x==== e are
provable in TG and also in T ====

G .
An axiom system for ordered sets can also easily be provided, in that

one formalizes the properties of being irreflexive, transitive, and connex.
Here and elsewhere, ∀x1 · · ·xnϕ stands for ∀x1 · · · ∀xnϕ:

∀x x ≮ x; ∀xyz(x < y ∧ y < z →x < z); ∀xy(x
====y →x < y ∨ y < x).

In writing down these and other axioms the outer ∀-prefixes are very
often omitted so as to save on writing, and we think implicitly of the
generalization of variables as having been carried out. This kind of eco-
nomical writing is employed also in the formulation of (1) above, which
strictly speaking runs ‘for all A, ϕ : A � ϕ ⇔ A � ϕg ’.

For sentences α of a given language it is intuitively clear that the values
of the variables of w for the relation (A, w) � α are irrelevant. The
precise proof is extracted from the following theorem for V = ∅. Thus,
either (A, w) � α for all w and hence A � α, or else (A, w) � α for no w,
i.e., (A, w) � ¬α for all w, and hence A � ¬α. Sentences therefore obey
the already-cited tertium non datur.

Theorem 3.1 (Coincidence theorem). Let V ⊆ Var, free ϕ ⊆ V , and
M,M′ be models on the same domain A such that xM = xM′ for all
x ∈ V , and sM = sM

′ for all extralogical symbols s occurring in ϕ. Then
M � ϕ ⇔ M′ � ϕ.

66 2 First-Order Logic

Proof by induction on ϕ. Let ϕ = r�t be prime, so that var�t ⊆ V . As was
mentioned earlier, the value of a term t depends only on the meaning of the
symbols occurring in t. But in view of the suppositions, these meanings
are the same in M and M′. Therefore, �t M = �t M′ (i.e., tMi = tM

′
i for

i = 1, . . . , n), and so M � r�t ⇔ rM�t M ⇔ rM
′�t M′ ⇔ M′ � r�t . For

equations t1 ==== t2 one reasons analogously. Further, the induction hypoth-
esis for α, β yields M � α∧β ⇔ M � α, β ⇔ M′ � α, β ⇔ M′ � α∧β.
In the same way one obtains M � ¬α ⇔ M′ � ¬α. By the induction step
on ∀ it becomes clear that the induction hypothesis needs to be skillfully
formulated. It must be given with respect to any pair M,M′ of models
and any subset V of Var.

Therefore let a ∈ A and Ma
x � ϕ. Since for V ′ := V ∪ {x} certainly

free ϕ ⊆ V ′ and the models Ma
x, M′ a

x coincide for all y ∈ V ′ (although
in general xM
= xM′), by the induction hypothesis Ma

x � ϕ ⇔ M′ a
x � ϕ,

for each a ∈ A. This clearly implies
M � ∀xϕ ⇔ Ma

x � ϕ for all a ⇔ M′ a
x � ϕ for all a ⇔ M′ � ∀xϕ.

It follows from this theorem that an L-model M = (A, w) of ϕ for
the case that ϕ ∈ L ⊆ L′ can be completely arbitrarily expanded to an
L′-model M′ = (A′, w) of ϕ, i.e., arbitrarily fixing sM

′ for s ∈ L′ \L
gives M � ϕ ⇔ M′ � ϕ by the above theorem with V = Var. This
readily implies that the consequence relation �L′ with respect to L′ is a
conservative extension of �L in that X �L ϕ ⇔ X �L′ ϕ, for all sets
X ⊆ L and all ϕ ∈ L. Hence, there is no need here for using indices. In
particular, the satisfiability or general validity of ϕ depends only on the
symbols effectively occurring in ϕ.

Another application of Theorem 3.1 is the following fact, which justifies
the already mentioned “omission of superfluous quantifiers.”

(2) ∀xϕ ≡ ϕ ≡ ∃xϕ whenever x /∈ free ϕ.

Indeed, x /∈ freeϕ implies M � ϕ ⇔ Ma
x � ϕ (here a ∈ A is arbitrary)

according to Theorem 3.1; choose M′ = Ma
x and V = freeϕ. Therefore,

M � ∀xϕ ⇔ Ma
x � ϕ for all a ⇔ M � ϕ

⇔ Ma
x � ϕ for some a ⇔ M � ∃xϕ.

Very important for the next theorem and elsewhere is
(3) If A ⊆ B, M = (A, w), M′ = (B, w) and w : Var → A then

tM = tM
′ .

2.3 Semantics of First-Order Languages 67

This is clear for prime terms, and the induction hypothesis tMi = tM
′

i for
i = 1, . . . , n together with fM = fM′ imply

(f�t)M = fM(tM1 , . . . , tMn) = fM′
(tM

′
1 , . . . , tM

′
n) = (f�t)M

′
.

For M = (A, w) and xw
i = ai let tA,�a, or more suggestively tA(�a) denote

the value of t = t(�x). Then (3) can somewhat more simply be written as
(4) A ⊆ B and t = t(�x) imply tA(�a) = tB(�a) for all �a ∈ An.

Thus, along with the basic functions, also the so-called term functions
�a �→ tA(�a) are the restrictions to their counterparts in B. Clearly, if n = 0
or t is variable-free, one may write tA for tA(�a). Note that in these cases
tA = tB whenever A ⊆ B, according to (4).

By Theorem 3.1 the satisfaction of ϕ in (A, w) depends only on the
values of the x ∈ free ϕ. Let ϕ = ϕ(�x)4 and �a = (a1, . . . , an) ∈ An. Then
the statement

(A, w) � ϕ for a valuation w with xw
1 = a1, . . . , x

w
n = an

can more suggestively be expressed by writing
(A,�a) � ϕ or A � ϕ [a1, . . . , an] or A � ϕ [�a]

without mentioning w as a global valuation. Such notation also makes
sense if w is restricted to a valuation on {x1, . . . , xn}. One may accord-
ingly extend the concept of a model and call a pair (A,�a) a model for a
formula ϕ(�x) whenever (A,�a) � ϕ(�x), in particular if ϕ ∈ Ln. We return
to this extended concept in 4.1. Until then we use it only for n = 0. That
is, besides M = (A, w) also the structure A itself is occasionally called a
model for a set S ⊆ L0 of sentences, provided A � S.

As above let ϕ = ϕ(�x). Then ϕA := {�a ∈ An | A � ϕ [�a]} is called the
predicate defined by the formula ϕ in the structure A. For instance, the
�-predicate in (N,+) is defined by ϕ(x, y) = ∃z z + x==== y, but also by
several other formulas.

More generally, a predicate P ⊆ An is termed (explicitly or elementarily
or first-order) definable in A if there is some ϕ = ϕ(�x) with P = ϕA, and
ϕ is called a defining formula for P . Analogously, f : An → A is called
definable in A if ϕA = graph f for some ϕ(�x, y). One often talks in this
4 Since this equation is to mean free ϕ ⊆ {x1, . . . , xn}, �x is not uniquely determined
by ϕ. Hence, the phrase “Let ϕ = ϕ(�x) . . . ” implicitly includes along with a given ϕ

also a tuple �x given in advance. The notation ϕ = ϕ(�x) does not even state that ϕ

contains free variables at all.

68 2 First-Order Logic

case of explicit definability of f in A, to distinguish it from other kinds
of definability. Much information is gained from the knowledge of which
sets, predicates, or functions are definable in a structure. For instance,
the sets definable in (N, 0, 1, +) are the eventually periodic ones (periodic
from some number on). Thus, · cannot explicitly be defined by +, 0, 1
because the set of square numbers is not eventually periodic.
A ⊆ B and ϕ = ϕ(�x) do not imply ϕA = ϕB ∩ An, in general. For

instance, let A = (N, +), B = (Z,+), and ϕ = ∃z z + x==== y. Then
ϕA = �A, while ϕB contains all pairs (a, b) ∈ Z2. As the next theorem
will show, ϕA = ϕB ∩ An holds in general only for open formulas ϕ, and
is even characteristic for A ⊆ B provided A ⊆ B. Clearly, A ⊆ B is much
weaker a condition than A ⊆ B:

Theorem 3.2 (Substructure theorem). For structures A,B such that
A ⊆ B the following conditions are equivalent:

(i) A ⊆ B,
(ii) A � ϕ [�a] ⇔ B � ϕ [�a], for all open ϕ = ϕ(�x) and all �a ∈ An,
(iii) A � ϕ [�a] ⇔ B � ϕ [�a], for all prime formulas ϕ(�x) and �a ∈ An.

Proof. (i)⇒(ii): It suffices to prove that M � ϕ ⇔ M′ � ϕ, with
M = (A, w) and M′ = (B, w), where w : Var → A. In view of (3) the
claim is obvious for prime formulas, and the induction steps for ∧ ,¬ are
carried out just as in Theorem 3.1. (ii)⇒(iii): Trivial. (iii)⇒(i): By (iii),
rA�a ⇔ A � r�x [�a] ⇔ B � r�x [�a] ⇔ rB�a. Analogously,

fA�a = b ⇔ A � f�x==== y [�a, b] ⇔ B � f�x==== y [�a, b] ⇔ fB�a = b,

for all �a ∈ An, b ∈ A. These conclusions state precisely that A ⊆ B.

Let α be of the form ∀�xβ with open β, where ∀�x may also be the empty
prefix. Then α is a universal or ∀-formula (spoken “A-formula”), and for
α ∈ L0 also a universal or ∀-sentence. A simple example is ∀x∀y x==== y,
which holds in A iff A contains precisely one element. Dually, ∃�xβ with
β open is termed an ∃-formula, and an ∃-sentence whenever ∃�xβ ∈ L0.
Examples are the “how-many sentences”

∃1 := ∃v0 v0 ==== v0; ∃n := ∃v0 · · · ∃vn−1
∧

i<j<n vi
====vj (n > 1).
∃n states ‘there exist at least n elements’, ¬∃n+1 thus that ‘there exist
at most n elements’, and ∃=n := ∃n ∧¬∃n+1 says ‘there exist exactly

2.3 Semantics of First-Order Languages 69

n elements’. Since ∃1 is a tautology, it is convenient to set
 := ∃1,
and ∃0 := ⊥ := ¬
 in all first-order languages with equality. Clearly,
equivalent definitions of
, ⊥ may be used as well.

Corollary 3.3. Let A ⊆ B. Then every ∀-sentence ∀�xα valid in B is also
satisfied in A. Dually, every ∃-sentence ∃�xβ valid in A is also valid in B.

Proof. Let B � ∀�xβ and �a ∈ An. Then B � β [�a], hence A � β [�a] by
Theorem 3.2. �a was arbitrary and therefore A � ∀�xβ. Now let A � ∃�xβ.
Then A � β [�a] for some �a ∈ An, hence B � β [�a] by Theorem 3.2, and
consequently B � ∃�xβ.

We now formulate a generalization of certain individual often-used ar-
guments about the invariance of properties under isomorphisms:

Theorem 3.4 (Invariance theorem). Let A,B be isomorphic structures
of signature L and let ı :A → B be an isomorphism. Then for all ϕ = ϕ(�x)

A � ϕ [�a] ⇔ B � ϕ [ı�a]
(
�a ∈ An, ı�a = (ıa1, . . . , ıan)

)
.

In particular A � ϕ ⇔ B � ϕ, for all sentences ϕ of L.

Proof. It is convenient to reformulate the claim as
M � ϕ ⇔ M′ � ϕ

(
M = (A, w), M′ = (B, w′), w′ : x �→ ıxw

)
.

This is easily confirmed by induction on ϕ after first proving ı(tM) = tM
′

inductively on t. This proof clearly includes the case ϕ ∈ L0.

Thus, for example, it is once and for all clear that the isomorphic image
of a group is a group even if we know at first only that it is a groupoid.
Simply let α in the theorem run through all axioms of group theory.
Another application: Let ı be an isomorphism of the group A = (A, ◦)
onto the group A′ = (A′, ◦) and let e and e′ denote their unit elements,
not named in the signature. We claim that nonetheless ıe = e′, using
the fact that the unit element of a group is the only solution of x ◦x==== x

(Example 2, page 83). Thus, since A � e ◦ e==== e, we get A′ � ıe ◦ ıe==== ıe by
Theorem 3.4, hence ıe = e′. Theorem 3.4, incidentally, holds for formulas
of higher order as well. For instance, the property of being a continuously
ordered set (formalizable in a second-order language, see 3.8) is likewise
invariant under isomorphism.
L-structures A,B are termed elementarily equivalent if A � α ⇔ B � α,

for all α ∈ L0. One then writes A ≡ B. We consider this important notion

70 2 First-Order Logic

in 3.3 and more closely in 5.1. Theorem 3.4 states in particular that
A � B ⇒ A ≡ B. The question immediately arises whether the converse
of this also holds. For infinite structures the answer is negative (see 3.3),
for finite structures affirmative; a finite structure of a finite signature can,
up to isomorphism, even be described by a single sentence. For example,
the 2-element group ({0, 1},+) is up to isomorphism well determined by
the following sentence, which tells us precisely how + operates:

∃v0∃v1[v0
====v1 ∧∀x(x==== v0 ∨ x==== v1)

∧ v0 + v0 ==== v1 + v1 ==== v0 ∧ v0 + v1 ==== v1 + v0 ==== v1].

We now investigate the behavior of the satisfaction relation under sub-
stitution. The definition of ϕ t

x in 2.2 pays no attention to collision of
variables , which is taken to mean that some variables of the substitution
term t fall into the scope of quantifiers after the substitution has been
performed. In this case M � ∀xϕ does not necessarily imply M � ϕ t

x ,
although this might have been expected. In other words, ∀xϕ � ϕ t

x is
not unrestrictedly correct. For instance, if ϕ = ∃y x
==== y then certainly
M � ∀xϕ (= ∀x∃y x
==== y) whenever M has at least two elements, but
M � ϕ y

x (= ∃y y
==== y) is certainly false. Analogously ϕ t
x � ∃xϕ is not

correct, in general. For example, choose ∀y x==== y for ϕ and y for t.

One could forcibly obtain ∀xϕ � ϕ t
x without any limitation by renam-

ing bound variables by a suitable modification of the inductive definition
of ϕ t

x in the quantifier step. However, such measures are rather unwieldy
for the arithmetization of proof method in 6.2. It is therefore preferable
to put up with minor restrictions when we are formulating rules of deduc-
tion later. The restrictions we will use are somewhat stronger than they
need to be but can be handled more easily; they look as follows:

Call ϕ, t
x collision-free if y /∈ bnd ϕ for all y ∈ var t distinct from x.

We need not require x /∈ bnd ϕ because t is substituted only at free oc-
currences of x in ϕ, that is, x cannot fall after substitution within the
scope of a prefix ∀x, even if x ∈ var t. For collision-free ϕ, t

x we always
get ∀xϕ � ϕ t

x by Corollary 3.6 below.

If σ is a global substitution (see 2.2) then ϕ, σ are termed collision-free
if ϕ, xσ

x are collision-free for every x ∈ Var. If σ = �t
�x , this condition clearly

need be checked only for the pairs ϕ, xσ

x with x ∈ var �x and x ∈ freeϕ.

2.3 Semantics of First-Order Languages 71

For M = (A, w) put Mσ := (A, wσ) with xwσ
:= (xσ)M for x ∈ Var,

so that xMσ
= xσM (= (xσ)M). This equation reproduces itself to

(5) tM
σ

= tσM for all terms t.
Indeed, tM

σ
= fM(tM

σ

1 , . . . , tM
σ

n) = fM(tσ
1
M, . . . , tσ

n
M) = tσM for

t = f�t in view of the induction hypothesis tM
σ

i = tσ
i
M (i = 1, . . . , n).

Notice that Mσ coincides with M�tM
�x for the case σ = �t

�x .

Theorem 3.5 (Substitution theorem). Let M be a model and σ a
global substitution. Then holds for all ϕ such that ϕ, σ are collision-free,

(6) M � ϕσ ⇔ Mσ � ϕ.
In particular, M � ϕ

�t
�x ⇔ M�tM

�x � ϕ, provided ϕ,
�t
�x are collision-free.

Proof by induction on ϕ. In view of (5), we obtain

M � (t1 ==== t2)σ ⇔ tσ1
M = tσ2

M ⇔ tM
σ

1 = tM
σ

2 ⇔ Mσ � t1 ==== t2.

Prime formulas r�t are treated analogously. The induction steps for ∧ ,¬
in the proof of (6) are harmless. Only the ∀-step is interesting. The
reader should recall the definition of (∀xα)σ page 60 and realize that the
induction hypothesis refers to an arbitrary global substitution τ .

M �(∀xα)σ⇔ M � ∀x ατ (xτ = x and yτ = yσ else)
⇔ Ma

x � ατ for all a (definition)
⇔ (Ma

x)τ � α for all a (induction hypothesis)
⇔ (Mσ)a

x � α for all a
(
(Ma

x)τ = (Mσ)a
x, see below

)
⇔ Mσ � ∀xα.

We show that (Ma
x)τ = (Mσ)a

x. Since ∀xα, σ (hence ∀xα, yσ

y for every y)
are collision-free, we have x /∈ var yσ if y
= x, and since yτ = yσ we get
in this case y(Ma

x)τ
= yτMa

x = yσMa
x = yσM = yM

σ
= y(Mσ)a

x . But also
in the case y = x we have x(Ma

x)τ
= xτMa

x = xMa
x = a = x(Mσ)a

x .

Corollary 3.6. For all ϕ and �t
�x such that ϕ,

�t
�x are collision-free, the

following properties hold:
(a) ∀�xϕ � ϕ

�t
�x , in particular ∀xϕ � ϕ t

x , (b) ϕ
�t
�x � ∃�xϕ,

(c) ϕ s
x , s==== t � ϕ t

x , provided ϕ, s
x , t

x are collision-free.

Proof. Let M � ∀�xϕ, so that M�a
�x � ϕ for all �a ∈ An. In particular,

M�t M
�x � ϕ. Therefore, M � ϕ

�t
�x by Theorem 3.5. (b) follows easily from

¬∃�xϕ � ¬ϕ
�t
�x . This holds by (a), for ¬∃�xϕ ≡ ∀�x¬ϕ and ¬(ϕ �t

�x) ≡ (¬ϕ) �t
�x .

72 2 First-Order Logic

(c): Let M � ϕ s
x , s==== t, so that sM = tM and MsM

x � ϕ by the theorem.
Clearly, then also MtM

x � ϕ. Hence M � ϕ t
x .

Remark 2. The identical substitution ι is obviously collision-free with every
formula. Thus, ∀xϕ � ϕ (= ϕι) is always the case, while ∀xϕ � ϕ t

x is correct
in general only if t contains at most the variable x, since ϕ, t

x are then collision-
free. Theorem 3.5 and Corollary 3.6 are easily strengthened. Define inductively
a ternary predicate ‘t is free for x in ϕ’, which intuitively is to mean that no free
occurrence in ϕ of the variable x lies within the scope of a prefix ∀y whenever
y ∈ var t. In this case Theorem 3.5 holds for σ = t

x as well, so that nothing
needs to be changed in the proofs based on this theorem if one works with
‘t is free for x in ϕ’, or simply reads “ϕ, t

x are collision-free” as “t is free for x in
ϕ.” Though collision-freeness is somewhat cruder and slightly more restrictive,
it is for all that more easily manageable, which will pay off, for example, in 6.2,
where proofs will be arithmetized. Once one has become accustomed to the
required caution, it is allowable not always to state explicitly the restrictions
caused by collisions of variables, but rather to assume them tacitly.

Theorem 3.5 also shows that the quantifier “there exists exactly one,” de-
noted by ∃!, is correctly defined by ∃!xϕ := ∃xϕ ∧ ∀x∀y(ϕ∧ϕ y

x →x==== y)
with y /∈ varϕ. Indeed, it is easily seen that M � ∀x∀y(ϕ∧ϕ y

x →x==== y)
means just Ma

x � ϕ & Mb
y � ϕ y

x ⇒ a = b. In short, Ma
x � ϕ for at most

one a. Putting everything together, M � ∃!xϕ iff there is precisely one
a ∈ A with Ma

x � ϕ. An example is M � ∃!x x==== t for arbitrary M and
x /∈ var t. In other words, ∃!x x==== t is a tautology. Half of this, namely
� ∃x x==== t, was shown in Example 1, and � ∀x∀y(x==== t∧y ==== t →x==== y) is
obvious. There are various equivalent definitions of ∃!xϕ. For example,
a short and catchy formula is ∃x∀y(ϕ y

x ↔ x==== y), where y /∈ varϕ. The
equivalence proof is left to the reader.

Exercises

1. Let X � ϕ and x /∈ free X. Show that X � ∀xϕ.

2. Prove that ∀x(α →β) � ∀xα →∀xβ, which is obviously equivalent
to � ∀x(α →β) →∀xα →∀xβ.

3. Suppose A′ results from A by adjoining a constant symbol a for
some a ∈ A. Prove A � α [a] ⇔ A′ � α(a) (= α a

x) for α = α(x),
by first verifying t(x)A,a = t(a)A

′ . This is easily generalized to the
case of more than one free variable in α.

2.4 General Validity and Logical Equivalence 73

4. Show that (a) A conjunction of the ∃i and their negations is equiva-
lent to ∃n ∧¬∃m for suitable n, m (∃n ∧¬∃0 ≡ ∃n, ∃1 ∧¬∃m ≡ ¬∃m).
(b) A Boolean combination of the ∃i is equivalent to

∨
ν�n ∃=kν or

to ∃k ∨
∨

ν�n ∃=kν , with k0 < · · · < kn < k. Note that
∨

ν�n ∃=kν

equals ∃=0 (≡ ⊥) for n=k0=0 and ¬∃n ≡ ∨
ν<n ∃=ν for n>0.

2.4 General Validity and Logical Equivalence

From the perspective of predicate logic α ∨ ¬α (α ∈ L) is a trivial example
of a tautology, because it results by inserting α for p from the propositional
tautology p ∨ ¬p. Every propositional tautology provides generally valid
L-formulas by the insertion of L-formulas for the propositional variables.
But there are tautologies not arising in this way. ∀x(x < x ∨ x ≮ x) is
an example, though it has still a root in propositional logic. Tautologies
without a such a root are ∃x x==== x and ∃x x==== t for x /∈ var t. The former
arises from the convention that structures are always nonempty, the latter
from the restriction to totally defined basic operations. A particularly
interesting tautology is given by the following

Example 1 (Russell’s antinomy). We will show that the “Russellian
set” u, consisting of all sets not containing themselves as a member, does
not exist which clearly follows from � ¬∃u∀x(x∈ u ↔ x /∈ x). We start with
∀x(x∈ u ↔ x /∈ x) � u∈ u ↔ u /∈ u. This holds by Corollary 3.6(a). Clearly,
u∈ u ↔ u /∈ u is unsatisfiable. Hence, the same holds for ∀x(x∈ u ↔ x /∈ x),
and thus for ∃u∀x(x∈ u ↔ x /∈ x). Consequently, � ¬∃u∀x(x∈ u ↔ x /∈ x).

Note that we need not assume in the above argument that ∈ means
membership. The proof of � ¬∃u∀x(x∈ u ↔ x /∈ x) need not be related to
set theory at all. Hence, our example represents rather a logical paradox
than a set-theoretic antinomy. What looks like an antinomy here is the
expectation that ∃u∀x(x∈ u ↔ x /∈ x) should hold in set theory if ∈ is to
mean membership and Cantor’s definition of a set is taken literally.

The satisfaction clause for α →β easily yields α � β ⇔ � α →β,
a special case of X, α � β ⇔ X � α →β. This can be very useful
in checking whether formulas given in implicative form are tautologies, as
was mentioned already in 1.3. For instance, from ∀xα � α t

x (which holds
for collision-free α, t

x) we immediately get � ∀xα →α t
x .

74 2 First-Order Logic

As in propositional logic, α ≡ β is again equivalent to � α ↔ β.
By inserting L-formulas for the variables of a propositional equivalence
one automatically procures one of predicate logic. Thus, for instance,
α →β ≡ ¬α ∨ β, because certainly p →q ≡ ¬p ∨ q. Since every L-formula
results from the insertion of propositionally irreducible L-formulas in a
formula of propositional logic, one also sees that every L-formula can be
converted into a conjunctive normal form. But there are also numerous
other equivalences, for example ¬∀xα ≡ ∃x¬α and ¬∃xα ≡ ∀x¬α. The
first of these means just ¬∀xα ≡ ¬∀x¬¬α (= ∃x¬α), obtained by replac-
ing α by the equivalent formula ¬¬α under the prefix ∀x. This is a simple
application of Theorem 4.1 below with ≡ for ≈.

As in propositional logic, semantic equivalence is an equivalence relation
in L and, moreover, a congruence in L. Speaking more generally, an
equivalence relation ≈ in L satisfying the congruence property

CP: α ≈ α′, β ≈ β′ ⇒ α∧β ≈ α′ ∧β′, ¬α ≈ ¬α′, ∀xα ≈ ∀xα′

is termed a congruence in L. Its most important property is expressed by

Theorem 4.1 (Replacement theorem). Let ≈ be a congruence in L
and α ≈ α′. If ϕ′ results from ϕ by replacing the formula α at one or
more of its occurrences in ϕ by the formula α′, then ϕ ≈ ϕ′.

Proof by induction on ϕ. Suppose ϕ is a prime formula. Both for ϕ = α

and ϕ
= α, ϕ ≈ ϕ′ clearly holds. Now let ϕ = ϕ1 ∧ϕ2. In case ϕ = α

holds trivially ϕ ≈ ϕ′. Otherwise ϕ′ = ϕ′
1 ∧ϕ′

2, where ϕ′
1, ϕ

′
2 result from

ϕ1, ϕ1 by possible replacements. By the induction hypothesis ϕ1 ≈ ϕ′
1

and ϕ2 ≈ ϕ′
2. Hence, ϕ = ϕ1 ∧ϕ2 ≈ ϕ′

1 ∧ϕ′
2 = ϕ′ according to CP above.

The induction steps for ¬, ∀ follow analogously.

This theorem will constantly be used, mainly with ≡ for ≈, without
actually specifically being cited, just as in the arithmetical rearrangement
of terms, where the laws of arithmetic used are hardly ever named ex-
plicitly. The theorem readily implies that CP is provable for all defined
connectives such as → and ∃. For example, α ≈ α′ ⇒ ∃xα ≈ ∃xα′,
because α ≈ α′ ⇒ ∃xα = ¬∀x¬α ≈ ¬∀x¬α′ = ∃xα′.

First-order languages have a finer structure than those of propositional
logic. There are consequently further interesting congruences in L. In
particular, formulas α, β are equivalent in an L-structure A, in symbols

2.4 General Validity and Logical Equivalence 75

α ≡A β, if A � α [w] ⇔ A � β [w], for all w. Hence, in A = (N, <,+, 0)
the formulas x < y and ∃z (z
====0 ∧ x + z ==== y) are equivalent. The proof
of CP for ≡A is very simple and is therefore left to the reader.

Clearly, α ≡A β is equivalent to A � α ↔ β. Because of ≡ ⊆ ≡A,
properties such as ¬∀xα ≡ ∃x¬α carry over from ≡ to ≡A. But there
are often new interesting equivalences in certain structures. For instance,
there are structures in which every formula is equivalent to a formula
without quantifiers, as we will see in 5.6.

A very important fact with an almost trivial proof is that the intersec-
tion of a family of congruences is itself a congruence. Consequently, for
any class K
= ∅ of L-structures, ≡K :=

⋂{≡A | A ∈ K} is necessarily a
congruence. For the class K of all L-structures, ≡K equals the logical
equivalence ≡, which in this section we deal with exclusively. Below we
list its most important features; these should be committed to memory,
since they will continually be applied.

(1) ∀x(α∧β) ≡ ∀xα∧∀xβ, (2) ∃x(α ∨ β) ≡ ∃xα ∨ ∃xβ,

(3) ∀x∀yα ≡ ∀y∀xα, (4) ∃x∃yα ≡ ∃y∃xα.

If x does not occur free in the formula β, then also
(5) ∀x(α ∨ β) ≡ ∀xα ∨ β, (6) ∃x(α∧β) ≡ ∃xα∧β,

(7) ∀xβ ≡ β, (8) ∃xβ ≡ β,

(9) ∀x(α →β) ≡ ∃xα →β, (10) ∃x(α →β) ≡ ∀xα →β.

The simple proofs are left to the reader. (7) and (8) were stated in (2)
in 2.3. Only (9) and (10) look at first sight surprising. But in practice
these equivalences are very frequently used. For instance, consider for a
fixed set of formulas X the evidently true metalogical assertion ‘for all α:
if X � α,¬α then X � ∀x x
====x’. This clearly states the same as ‘If there
is some α such that X � α,¬α then X � ∀x x
====x’.

Remark. In everyday speech variables tend to remain unquantified, partly be-
cause in some cases the same meaning results from quantifying with “there exists
a” as with “for all.” For instance, consider the following three sentences, which
obviously tell us the same thing, and of which the last two correspond to the
logical equivalence (9):

• If a lawyer finds a loophole in the law it must be changed.
• If there is a lawyer who finds a loophole in the law it must be changed.
• For all lawyers: if one of them finds a loophole in the law then it must be

changed.

76 2 First-Order Logic

Often, the type of quantification in linguistic bits of information can be made
out only from the context, and this leads not all too seldom to unintentional (or
intentional) misunderstandings. “Logical relations in language are almost always
just alluded to, left to guesswork, and not actually expressed” (G. Frege).

Let x, y be distinct variables and α ∈ L. One of the most important
logical equivalences is renaming of bound variables (in short, bound re-
naming), stated in

(11) (a) ∀xα ≡ ∀y(α y
x), (b) ∃xα ≡ ∃y(α y

x) (y /∈ varα).
(b) follows from (a) by rearranging equivalently. Note that y /∈ varα is
equivalent to y /∈ free α and α, y

x collision-free. Writing My
x for MyM

x , (a)
derives as follows:

M � ∀xα ⇔ Ma
x � α for all a (definition)

⇔ (Ma
y)a

x � α for all a (Theorem 3.1)
⇔ (Ma

y)
y
x � α for all a

(
(Ma

y)
y
x = (Ma

y)a
x

)
⇔ Ma

y � α y
x for all a (Theorem 3.5)

⇔ M � ∀y(α y
x) .

(12) and (13) below are also noteworthy. According to (13), substitu-
tions are completely described up to logical equivalence by so-called free
renamings (substitutions of the form y

x). (13) also embraces the case
x ∈ var t. In (12) and (13) we tacitly assume that α, t

x are collision-free.

(12) ∀x(x==== t →α) ≡ α t
x ≡ ∃x(x==== t ∧ α) (x /∈ var t).

(13) ∀y(y ==== t →α y
x) ≡ α t

x ≡ ∃y(y ==== t ∧ α y
x) (y /∈ varα, t).

Proof of (12): ∀x(x==== t →α) � (x==== t →α) t
x = t==== t →α t

x � α t
x by

Corollary 3.6. Conversely, let M � α t
x . If Ma

x � x==== t then clearly
a = tM. Hence also Ma

x � α, since MtM
x � α. Thus, Ma

x � x==== t →α for
any a ∈ A, i.e., M � ∀x(x==== t →α). This proves the left equivalence in
(12). The right equivalence reduces to the left one because

∃x(x==== t ∧ α) = ¬∀x¬(x==== t ∧ α) ≡ ¬∀x(x==== t → ¬α) ≡ ¬¬α t
x ≡ α t

x .

Item (13) is proved similarly. Note that ∀y(y ==== t →α y
x) � α y

x
t
y = α t

x

by Corollary 3.6 and Exercise 4 in 2.2.
With the above equivalences we can now regain an equivalent formula

starting with any formula in which all quantifiers are standing at the be-
ginning. But this result requires both quantifiers ∀ and ∃, in the following
denoted by Q, Q1, Q2, . . .

2.4 General Validity and Logical Equivalence 77

A formula of the form α = Q1x1 · · · Qnxnβ with an open formula β

is termed a prenex formula or a prenex normal form, in short, a PNF.
β is called the kernel of α. W.l.o.g. x1, . . . , xn are distinct and xi occurs
free in β since we may drop “superfluous quantifiers,” see (2) page 66.
Prenex normal forms are very important for classifying definable number-
theoretic predicates in 6.3, and for other purposes. The already mentioned
∀- and ∃-formulas are the simplest examples.

Theorem 4.2 (on the prenex normal form). Every formula ϕ is
equivalent to a formula in prenex normal form that can effectively be con-
structed from ϕ.

Proof. Without loss of generality let ϕ contain only the logical symbols
¬, ∧ , ∀, ∃ (besides ====). For each prefix Qx in ϕ consider the number of
symbols ¬ or ∧ occurring to the left of Qx. Let sϕ be the sum of these
numbers, summed over all prefixes occurring in ϕ. Clearly, ϕ is a PNF iff
sϕ = 0. Let sϕ
= 0. Then ϕ contains some prefix Qx and ¬ or ∧ stands
immediately in front of Qx. A successive application of either
¬∀xα ≡ ∃x¬α, ¬∃xα ≡ ∀x¬α, or β ∧Qxα ≡ Qy(b∧α y

x) (y /∈ varα, β),
inside ϕ obviously reduces sϕ stepwise.

Example 2. ∀x∃y(x
====0 →x ·y ==== 1) is a PNF for ∀x(x
====0 →∃y x ·y ==== 1).
And ∃x∀y∀z(ϕ∧ (ϕ y

x ∧ϕ z
x →y ==== z)) for ∃xϕ∧∀y∀z(ϕ y

x ∧ϕ z
x →y ==== z),

provided y, z /∈ free ϕ; if not, a bound renaming will help. An equivalent
PNF for this formula with minimal quantifier rank is ∃x∀y(ϕ y

x ↔ x==== y).

The formula ∀x(x
====0 →∃y x·y ==== 1) from Example 2 may be abbreviated
by (∀x
====0)∃y x · y ==== 1. More generally, we shall often write (∀x
==== t)α for
∀x(x
==== t →α) and (∃x
==== t)α for ∃x(x
==== t ∧ α). A similar notation is used
for �, <, ∈ and their negations. For instance, (∀x�t)α and (∃x�t)α
are to mean ∀x(x�t →α) and ∃x(x�t ∧ α), respectively. For any binary
relation symbol �, the “prefixes” (∀y�x) and (∃y�x) are related to each
other, as are ∀ and ∃, see Exercise 2.

Exercises

1. Let α ≡ β. Prove that α
�t
�x ≡ β

�t
�x (α,

�t
�x and β,

�t
�x collision-free).

2. Prove that ¬(∀x�y)α ≡ (∃x�y)¬α and ¬(∃x�y)α ≡ (∀x�y)¬α.
Here � represents any binary relation symbol.

78 2 First-Order Logic

3. Show by means of bound renaming that both the conjunction and
the disjunction of ∀-formulas α, β is equivalent to some ∀-formula.
Prove the same for ∃-formulas.

4. Show that every formula ϕ ∈ L is equivalent to some ϕ′ ∈ L built
up from literals by means of ∧ , ∨, and ∃.

5. Let P be a unary predicate symbol. Prove that ∃x(Px →∀yPy) is
a tautology.

6. Call α, β ∈ L tautologically equivalent if � α ⇔ � β. Confirm that
the following (in general not logically equivalent) formulas are tau-
tologically equivalent: α, ∀xα, and α c

x , where the constant symbol
c does not occur in α.

2.5 Logical Consequence and Theories

Whenever L′ ⊇ L, the language L′ is called an expansion or extension
of L and L a reduct or restriction of L′. Recall the insensitivity of the
consequence relation to extensions of a first-order language, mentioned in
2.3. Theorem 3.1 yields that establishing X � α does not depend on the
language to which the set of formulas X and the formula α belong. For
this reason, indices for �, such as �L, are dispensable.

Because of the unaltered satisfaction conditions for ∧ and ¬, all prop-
erties of the propositional consequence gained in 1.3 carry over to the
first-order logical consequence relation. These include general properties
such as, for example, the reflexivity and transitivity of �, and the seman-
tic counterparts of the rules (∧1), (∧2), (¬1), (¬2) from 1.4, for instance

the counterpart of (∧1),
X � α, β

X � α∧β
.5

In addition, Gentzen-style properties such as the deduction theorem
automatically carry over. But there are also completely new properties.
Some of these will be elevated to basic rules of a logical calculus for first-
order languages in 3.1, to be found among the following ones:
5 A suggestive way of writing “X � α, β implies X � α ∧β,” a notation that was
introduced already in Exercise 3 in 1.3. A corresponding notation will also be used
in stating the properties of � on the next page.

2.5 Logical Consequence and Theories 79

Some properties of the predicate logical consequence relation.

(a) X � ∀xα

X � α t
x

(α, t
x collision-free),

(b)
X � α s

x , s==== t

X � α t
x

(α, s
x and α, t

x collision-free),

(c) X, β � α

X, ∀xβ � α
(anterior generalization),

(d) X � α

X � ∀xα
(x /∈ free X, posterior generalization),

(e) X, β � α

X, ∃xβ � α
(x /∈ free X, α, anterior particularization),

(f)
X � α t

x

X � ∃xα
(α, t

x collision-free, posterior particularization)

(a) follows from X � ∀xα � α t
x , for � is transitive. Similarly, (b) follows

from α s
x , s==== t � α t

x , stated in Corollary 3.6. Analogously (c) results from
∀xβ � β. To prove (d), suppose that X � α, M � X, and x /∈ freeX.
Then Ma

x � X for any a ∈ A by Theorem 3.1, which just means M � ∀xα.
As regards (e), let X, β � α. Observe that by contraposition and by (d),

X, β � α ⇒ X,¬α � ¬β ⇒ X,¬α � ∀x¬β,

whence X,¬∀x¬β � α. (e) captures deduction from an existence claim,
while (f) confirms an existence claim. (f) holds since α t

x � ∃xα according
to Corollary 3.6. Both (e) and (f) are permanently applied in mathemati-
cal reasoning and will briefly be discussed in Example 1 on the next page.
All above properties have certain variants; for example, a variant of (d) is

(g)
X � α y

x

X � ∀xα
(y /∈ free X ∪ varα).

This results from (d) with α y
x for α and y for x, since ∀yα y

x ≡ ∀xα.
From the above properties, complicated chains of deduction can, where

necessary, be justified step by step. But in practice this makes sense only
in particular circumstances, because formalized proofs are readable only
at the expense of a lot of time, just as with lengthy computer programs,
even with well-prepared documentation. What is most important is that a
proof, when written down, can be understood and reproduced. This is why
mathematical deduction tends to proceed informally, i.e., both claims and

80 2 First-Order Logic

their proofs are formulated in a mathematical “everyday” language with
the aid of fragmentary and flexible formalization. To what degree a proof
is to be formalized depends on the situation and need not be determined
in advance. In this way the strict syntactic structure of formal proofs is
slackened, compensating for the imperfection of our brains in regard to
processing syntactic information.

Further, certain informal proof methods will often be described by a
more or less clear reference to so-called background knowledge, and not
actually carried out. This method has proven itself to be sufficiently
reliable. As a matter of fact, apart from specific cases it has not yet been
bettered by any of the existing automatic proof machines. Let us present
a very simple example of an informal proof in a language L for natural
numbers that along with 0, 1, +, · contains the symbol for divisibility,
defined by m n ⇔ ∃k m · k = n. In addition, let L contain a symbol f for
some given function from N to N. We need no closer information on this
function, but we shall write fi for f(i) in Example 1.

Example 1. We want to prove ∀n∃x(∀i�n)fi x. That is, for every n,
f0, . . . , fn have a common multiple. A careful proof proceeds by induction
on n. Here we focus solely on X, ∃x(∀i�n)fi x � ∃x(∀i�n+1)fi x, the
induction step. X represents our prior knowledge about familiar proper-
ties of divisibility. Informally we reason as follows: Suppose ∃x(∀i�n)fi x

and let x denote any common multiple of f0, . . . , fn. Then x · fn+1 is
clearly a common multiple of f0, . . . , fn+1, hence ∃x(∀i�n+1)fi x. That’s
all. To argue here formally like a proof machine, let us start from the
obvious (∀i�n)fi x � (∀i�n+1)fi (x · fn+1). Posterior particularization of
x yields X, (∀i�n)fi x � ∃x(∀i�n+1)fi x. From this follows the desired
X, ∃x(∀i�n)fi x � ∃x(∀i�n+1)fi x by anterior particularization. Thus,
formalizing a nearly trivial informal argument may need a lot of writing
and turns out to be nontrivial in some sense.

Some textbooks deal with a somewhat stricter consequence relation,
which we denote here by �g. The reason is that in mathematics one largely
considers derivations in theories. For X ⊆ L and ϕ ∈ L define X �g ϕ if
A � X ⇒ A � ϕ, for all L-structures A. In contrast to �, which may
be called the local consequence relation, �g can be considered as the global
consequence relation since it cares only about A, not about a concrete
valuation w in A as does �.

2.5 Logical Consequence and Theories 81

Let us collect a few properties of �g. Obviously, X � ϕ implies X �g ϕ, but
the converse does not hold in general. For example, x==== y �g ∀xy x==== y,
but x==== y � ∀xy x==== y. By (d) from page 79, X � ϕ ⇒ X � ϕg holds
in general only if the free variables of ϕ do not occur free in X, while
X �g ϕ ⇒ X �g ϕg (hence ϕ �g ϕg) holds unrestrictedly. A reduction of �g

to � is provided by the following equivalence, which easily follows from
M � X g ⇔ A � X g , for each model M = (A, w):

(1) X �g ϕ ⇔ X g � ϕ.
Because of S g = S for sets of sentences S, we clearly obtain from (1)

(2) S �g ϕ ⇔ S � ϕ (S ⊆ L0).
In particular, �g ϕ ⇔ � ϕ. Thus, a distinction between � and �g is apparent
only when premises are involved that are not sentences. In this case the
relation �g must be treated with the utmost care. Neither the rule of case

distinction X, α �g β X,¬α �g β

X �g β
nor the deduction theorem X, α �g β

X �g α →β
is

unrestrictedly correct. For example x==== y �g ∀xy x==== y, but it is false that
�g x==== y →∀xy x==== y. This means that the deduction theorem fails to hold
for the relation �g. It holds only under certain restrictions.

One of the reasons for our preference of � over �g is that � extends the
propositional consequence relation conservatively, so that features such as
the deduction theorem carry over unrestrictedly, while this is not the case
for �g. It should also be said that �g does not reflect the actual procedures of
natural deduction in which formulas with free variables are frequently used
also in deductions of sentences from sentences, for instance in Example 1.

We now make more precise the notion of a formalized theory in L, where
it is useful to think of the examples in 2.3, such as group theory. Again,
the definitions by different authors may look somewhat differently.

Definition. An elementary theory or first-order theory in L, also termed
an L-theory, is a set of sentences T ⊆ L0 deductively closed in L0, i.e.,
T � α ⇔ α ∈ T , for all α ∈ L0. If α ∈ T then we say that α is valid
or true or holds in T , or α is a theorem of T . The extralogical symbols
of L are called the symbols of T . If T ⊆ T ′ then T is called a subtheory
of T ′, and T ′ an extension of T . An L-structure A such that A � T is
also termed a model of T , briefly a T -model. MdT denotes the class of
all models of T in this sense; MdT consist of L-structures only.

82 2 First-Order Logic

For instance, {α ∈ L0 | X � α} is a theory for any set X ⊆ L, since �
is transitive. A theory T in L satisfies T � ϕ ⇔ A � ϕ for all A � T ,
where ϕ ∈ L is any formula. Important is also T � ϕ ⇔ T � ϕg . These
readily confirmed facts should be taken in and remembered, since they
are constantly used. Different authors may use different definitions for a
theory. For example, they may not demand that theories contain sentences
only, as we do. Conventions of this type each have their advantages and
disadvantages. Proofs regarding theories are always adaptable enough to
accommodate small modifications of the definition. Using the definition
given above we set the following
Convention. In talking of the theory S, where S is a set of sentences, we
always mean the theory determined by S, that is, {α ∈ L0 | S � α}. A set
X ⊆ L is called an axiom system for T whenever T = {α ∈ L0 |X g � α},
i.e., we tacitly generalize all possibly open formulas in X. We have always
to think of free variables occurring in axioms as being generalized.

Thus, axioms of a theory are always sentences. But we conform to stan-
dard practice of writing long axioms as formulas. We will later consider
extensive axiom systems (in particular, for arithmetic and set theory)
whose axioms are partly written as open formulas just for economy.

There exists a smallest theory in L, namely the set Taut (= TautL) of all
generally valid sentences in L, also called the “logical” theory. An axiom
system for Taut is the empty set of axioms. There is also a largest the-
ory: the set L0 of all sentences, the inconsistent theory, which possesses
no models. All remaining theories are called satisfiable or consistent .6

Moreover, the intersection T =
⋂

i∈I Ti of a nonempty family of theories
Ti is in turn a theory: if T � α ∈ L0 then clearly Ti � α and so α ∈ Ti for
each i ∈ I, hence α ∈ T as well. In this book T and T ′, with or without
indices, exclusively denote theories.

For T ⊆ L0 and α ∈ L0 let T + α denote the smallest theory that
extends T and contains α. Similarly let T + S for S ⊆ L0 be the smallest
theory containing T ∪S. If S is finite then T ′ = T +S = T +

∧
S is called

a finite extension of T . Here
∧

S denotes the conjunction of all sentences
in S. A sentence α is termed compatible or consistent with T if T + α is
6 Consistent mostly refers to a logic calculus, e.g., the calculus in 3.1. However, it will
be shown in 3.2 that consistency and satisfiability of a theory coincide, thus justifying
the word’s ambiguous use.

2.5 Logical Consequence and Theories 83

satisfiable, and refutable in T if T +¬α is satisfiable. Thus, the theory TF

of fields is compatible with the sentence 1 + 1==== 0. Equivalently, 1 + 1
====0
is refutable in TF , since the 2-element field satisfies 1 + 1==== 0.

If both α and ¬α are compatible with T then the sentence α is termed
independent of T . The classic example is the independence of the parallel
axiom from the remaining axioms of Euclidean plane geometry, which
define absolute geometry. Much more difficult is the independence proof
of the continuum hypothesis from the axioms for set theory. These axioms
are presented and discussed in 3.4.

At this point we introduce another important concept; α, β ∈ L are
said to be equivalent in or modulo T , α ≡T β, if α ≡A β for all A � T .
Being an intersection of congruences, ≡T is itself a congruence and hence
satisfies the replacement theorem. This will henceforth be used without
mention, as will the obvious equivalence of α ≡T β, T � α ↔ β, and of
T � (α ↔ β)g . A suggestive writing of α ≡T β would also be α====T β.

Example 2. Let TG be as on p. 65. Claim: x ◦x==== x ≡TG
x==== e. The only

tricky proof step is TG � x ◦x==== x → x==== e. Let x ◦x==== x and choose some
y with x ◦ y ==== e. The claim then follows from x==== x ◦ e==== x ◦x ◦ y ==== x ◦ y ==== e.
A strict formal proof of the latter uses anterior particularization.

Another important congruence is term equivalence. Call terms s, t

equivalent modulo (or in) T , in symbols s ≈T t, if T � s==== t, that is,
A � s==== t [w] for all A � T and w : Var →A. For instance, in T = T ====

G ,
(x ◦ y)−1 ==== y−1 ◦x−1 is easily provable, so that (x ◦ y)−1 ≈T y−1 ◦x−1.
Another example: in the theory of fields, each term is equivalent to a
polynomial in several variables with integer coefficients.

If all axioms of a theory T are ∀-sentences then T is called a univer-
sal or ∀-theory. Examples are partial orders, orders, rings, lattices, and
Boolean algebras. For such a theory, MdT is closed with respect to sub-
structures, which means A ⊆ B � T ⇒ A � T . This follows at once
from Corollary 3.3. Conversely, a theory closed with respect to substruc-
tures is necessarily a universal one, as will turn out in 5.4. ∀-theories are
further classified. The most important subclasses are equational, quasi-
equational, and universal Horn theories, all of which will be considered to
some extent in later chapters. Besides ∀-theories, the ∀∃-theories (those
having ∀∃-sentences as axioms) are of particular interest for mathematics.
More about all these theories will be said in 5.4.

84 2 First-Order Logic

Theories are frequently given by structures or classes of structures. The
elementary theory ThA and the theory ThK of a nonempty class K of
structures are defined respectively by

ThA := {α ∈ L0 | A � α}, ThK :=
⋂{ThA |A ∈ K}.

It is easily seen that ThA and ThK are theories in the precise sense
defined above. Instead of α ∈ ThK one often writes K � α. In general,
MdThK is larger than K, as we shall see.

One easily confirms that the set of formulas breaks up modulo T (more
precisely, modulo ≡T) into equivalence classes; their totality is denoted
by BωT . Based on these we can define in a natural manner operations
∧ , ∨,¬. For instance, ᾱ∧ β̄ = α∧β, where ϕ̄ denotes the equivalence
class to which ϕ belongs. One shows easily that BωT forms a Boolean
algebra with respect to ∧ , ∨,¬. For every n, the set BnT of all ϕ̄ in
BωT such that the free variables of ϕ belong to Varn (= {v0, . . . ,vn−1})
is a subalgebra of BωT . Note that B0T is isomorphic to the Boolean
algebra of all sentences modulo ≡T , also called the Tarski–Lindenbaum
algebra of T . The significance of the Boolean algebras BnT is revealed only
in the somewhat higher reaches of model theory, and they are therefore
mentioned only incidentally.

Exercises

1. Suppose x /∈ free X and c is not in X, α. Prove the equivalence of

(i) X � α, (ii) X � ∀xα, (iii) X � α c
x .

This holds then in particular if X is the axiom system of a theory
or itself a theory. Then x /∈ freeX is trivially satisfied.

2. Let S be a set of sentences, α and β formulas, x /∈ free β, and let c

be a constant not occurring in S, α, β. Show that

S � α c
x →β ⇔ S � ∃xα →β.

3. Verify for all α, β ∈ L0 that β ∈ T + α ⇔ α →β ∈ T .

4. Let T ⊆ L be a theory, L0 ⊆ L, and T0 := T ∩ L0. Prove that T0 is
also a theory (the so-called reduct theory in the language L0).

2.6 Explicit Definitions—Language Expansions 85

2.6 Explicit Definitions—Language Expansions

The deductive development of a theory, be it given by an axiom system
or a single structure or classes of those, nearly always goes hand in hand
with expansions of the language carried out step by step. For example,
in developing elementary number theory in the language L(0, 1, +, ·), the
introduction of the divisibility relation by means of the (explicit) definition
x y ↔ ∃z x · z ==== y has certainly advantages not only for purely technical
reasons. This and similar examples motivate the following

Definition I. Let r be an n-ary relation symbol not occurring in L. An
explicit definition of r in L is to mean a formula of the form

ηr : r�x ↔ δ(�x)

with δ(�x) ∈ L and distinct variables in �x, called the defining formula.
For a theory T , the extension Tr := T + η g

r is then called a definitorial
extension (or expansion) of T by r, more precisely, by ηr.

Tr is a theory in L[r], the language resulting from L by adjoining the
symbol r. It will turn out that Tr is a conservative extension of T , which,
in the general case, means a theory T ′ ⊇ T in L′ ⊇ L such that T ′∩L = T .
Thus, Tr contains exactly the same L-sentences as does T . In this sense, Tr

is a harmless extension of T . Our claim constitutes part of Theorem 6.1.
For ϕ ∈ L[r] define the reduced formula ϕrd ∈ L as follows: Starting from
the left, replace every prime formula r�t occurring in ϕ by δ�x(�t). Clearly,
ϕrd = ϕ, provided r does not appear in ϕ.

Theorem 6.1 (Elimination theorem). Let Tr ⊆ L[r] be a definitorial
extension of the theory T ⊆ L0 by the explicit definition ηr. Then for all
formulas ϕ ∈ L[r] holds the equivalence

(∗) Tr � ϕ ⇔ T � ϕrd.

For ϕ ∈ L we get in particular Tr � ϕ ⇔ T � ϕ (since ϕrd = ϕ). Hence,
Tr is a conservative extension of T , i.e., α ∈ Tr ⇔ α ∈ T , for all α ∈ L0.

Proof. Each A � T is expandable to a model A′ � Tr with the same
domain, setting rA

′
�a :⇔ A � δ [�a] (�a ∈ An). Since r�t ≡Tr δ(�t) for any �t ,

we obtain ϕ ≡Tr ϕrd for all ϕ ∈ L[r] by the replacement theorem. Thus,
(∗) follows from

86 2 First-Order Logic

Tr � ϕ ⇔ A′ � ϕ for all A � T (MdTr = {A′ | A � T})
⇔ A′ � ϕrd for all A � T (because ϕ ≡Tr ϕrd)
⇔ A � ϕrd for all A � T (Theorem 3.1)
⇔ T � ϕrd.

Operation symbols and constants can be similarly introduced, though
in this case there are certain conditions to observe. For instance, in TG

(see page 65) the operation −1 is defined by η : y ==== x−1 ↔ x ◦ y ==== e. This
definition is legitimate, since TG � ∀x∃!y x ◦ y ==== e; Exercise 3. Only this
requirement (which by the way is a logical consequence of η) ensures that
TG+η g is a conservative extension of TG. We therefore extend Definition I
as follows, keeping in mind that to the end of this section constant symbols
are to be counted among the operation symbols.

Definition II. An explicit definition of an n-ary operation symbol f not
occurring in L is a formula of the form

ηf : y ==== f�x ↔ δ(�x, y) (δ ∈ L and y, x1, . . . , xn distinct).
ηf is called legitimate in T ⊆ L if T � ∀�x ∃!yδ, and Tf := T + η g

f is
then called a definitorial extension by f , more precisely by ηf . In the case
n = 0 we write c for f and speak of an explicit definition of the constant
symbol c. Written more suggestively y ==== c ↔ δ(y).

Some of the free variables of δ are often not explicitly named, and thus
downgraded to parameter variables. More on this will be said in the
discussion of the axioms for set theory in 3.4. The elimination theorem is
proved in almost exactly the same way as above, provided ηf is legitimate
in T . The reduced formula ϕrd is defined correspondingly. For a constant
c (n = 0 in Definition II), let ϕrd := ∃z(ϕ z

c ∧ δ z
y), where ϕ z

c denotes the
result of replacing c in ϕ by z (/∈ varϕ). Now let n > 0. If f does not
appear in ϕ, set ϕrd = ϕ. Otherwise, looking at the first occurrence of
f in ϕ from the left, we certainly may write ϕ = ϕ0

f�t
y for appropriate

ϕ0, �t , and y /∈ varϕ. Clearly, ϕ ≡Tf
∃y(ϕ0 ∧ y ==== f�t) ≡Tf

ϕ1, with
ϕ1 := ∃y(ϕ0 ∧ δf (�t , y)). If f still occurs in ϕ1 then repeat this procedure,
which ends in, say, m steps in a formula ϕm that no longer contains f .
Then put ϕrd := ϕm.

Frequently, operation symbols f are introduced in more or less strictly
formalized theories by definitions of the form

(∗) f�x := t(�x),

2.6 Explicit Definitions—Language Expansions 87

where of course f does not occur in the term t(�x). This procedure is in
fact subsumed by Definition II, because the former is nothing more than
a definitorial extension of T with the explicit definition

ηf : y ==== f�x ↔ y ==== t(�x).

This definition is legitimate, since ∀�x ∃!y y ==== t(�x) is a tautology. It can
readily be shown that η g

f is logically equivalent to ∀�x f�x==== t(�x). Hence,
(∗) can indeed be regarded as a kind of an informative abbreviation of a
legitimate explicit definition with the defining formula y ==== t(�x).
Remark 1. Instead of introducing new operation symbols, so-called iota-terms
from [HB] could be used. For any formula ϕ = ϕ(�x, y) in a given language,
let ιyϕ be a term in which y appears as a variable bound by ι. Whenever
T � ∀�x∃!yϕ, then T is extended by the axiom ∀�x∀y[y ==== ιyϕ(�x, y) ↔ ϕ(�x, y)], so
that ιyϕ(�x, y) so to speak stands for the function term f�x, which could have been
introduced by an explicit definition. We mention that a definitorial language
expansion is not a necessity. In principle, formulas of the expanded language can
always be understood as abbreviations in the original language. This is in some
presentations the actual procedure, though our imagination prefers additional
notions over long sentences that would arise if we were to stick to a minimal set
of basic notions.

Definitions I and II can be unified in a more general declaration. Let
T , T ′ be theories in the languages L, L′, respectively. Then T ′ is called a
definitorial extension (or expansion) of T whenever T ′ = T + Δ for some
list Δ of explicit definitions of new symbols legitimate in T , given in terms
of those of T (here legitimate refers to operation symbols and constants
only). Δ need not be finite, but in most cases it is finite. A reduced
formula ϕrd ∈ L is stepwise constructed as above, for every ϕ ∈ L′.
In this way the somewhat long-winded proof of the following theorem is
reduced each time to the case of an extension by a single symbol:

Theorem 6.2 (General elimination theorem). Let T ′ be a definitorial
extension of T . Then α ∈ T ′ ⇔ αrd ∈ T . In particular, α ∈ T ′ ⇔ α ∈ T

whenever α ∈ L, i.e., T ′ is a conservative extension of T .

A relation or operation symbol s occurring in T ⊆ L is termed explicitly
definable in T if T contains an explicit definition of s whose defining
formula belongs to L0, the language of symbols of T without s. For
example, in the theory TG of groups the constant e is explicitly defined
by x==== e ↔ x ◦x==== x; Example 2 page 83. Another example is presented

88 2 First-Order Logic

in Exercise 3. In such a case each model of T0 := T ∩L0 can be expanded
in only one way to a T -model. If this special condition is fulfilled then s is
said to be implicitly definable in T . This could also be stated as follows: if
T ′ is distinct from T only in that the symbol s is everywhere replaced by a
new symbol s′, then either T ∪T ′ � ∀�x(s�x ↔ s′�x) or T ∪T ′ � ∀�x(s�x==== s′�x),
depending on whether s, s′ are relation or operation symbols. It is highly
interesting that this kind of definability is already sufficient for the explicit
definability of s in T . But we will go without the proof and only quote
the following theorem.

Beth’s definability theorem. A relation or operation symbol implicitly
definable in a theory T is also explicitly definable in T .

Definitorial expansions of a language should be conscientiously distin-
guished from expansions of languages that arise from the introduction of
so-called Skolem functions. These are useful for many purposes and are
therefore briefly described.

Skolem normal forms. According to Theorem 4.2, every formula α can
be converted into an equivalent PNF, α ≡ Q1x1 · · · Qkxkα

′, where α′ is
open. Obviously then ¬α ≡ Q1x1 · · · Qkxk¬α′, where ∀ = ∃ and ∃ = ∀.
Because � α if and only if ¬α is unsatisfiable, the decision problem for
general validity can first of all be reduced to the satisfiability problem
for formulas in PNF. Using Theorem 6.3 below, the latter—at the cost
of introducing new operation symbols—is then completely reduced to the
satisfiability problem for ∀-formulas.

Call formulas α and β satisfiably equivalent if both are satisfiable (not
necessarily in the same model), or both are unsatisfiable. We construct
for every formula, which w.l.o.g. is assumed to be given in prenex form
α = Q1x1 · · · Qkxkβ, a satisfiably equivalent ∀-formula α̂ with additional
operation symbols such that free α̂ = free α. The construction of α̂ will be
completed after m steps, where m is the number of ∃-quantifiers among the
Q1, . . . , Qk. Take α = α0 and αi to be already constructed. If αi is already
an ∀-formula let α̂ = αi. Otherwise αi has the form ∀x1 · · · ∀xn∃yβi for
some n � 0. With an n-ary operation symbol f (which is a constant
in case n=0) not yet used let αi+1 = ∀�xβi

f�x
y . Thus, after m steps an

∀-formula α̂ is obtained such that free α̂ = free α; this formula α̂ is called
a Skolem normal form (SNF) of α.

2.6 Explicit Definitions—Language Expansions 89

Example 1. If α is the formula ∀x∃y x < y then α̂ is just ∀x x < fx.
For α = ∃x∀y x · y ==== y we have α̂ = ∀y c · y ==== y.
If α = ∀x∀y∃z(x < z ∧ y < z) then α̂ = ∀x∀y(x < fxy ∧ y < fxy).

Theorem 6.3. Let α̂ be a Skolem normal form for the formula α. Then
(a) α̂ � α, (b) α is satisfiably equivalent to α̂.

Proof. (a): It suffices to show that αi+1 � αi for each of the described
construction steps. βi

f�x
y � ∃yβi implies αi+1 = ∀�xβi

f�x
y � ∀�x ∃yβi = αi,

by (c) and (d) in 2.5. (b): If α̂ is satisfiable then by (a) so too is α.
Conversely, suppose A � ∀�x ∃yβi(�x, y, �z) [�c]. For each �a ∈ An we choose
some b ∈ A such that A � β [�a, b,�c] (which is possible in view of the
axiom of choice AC) and expand A to A′ by setting fA′

�a = b for the new
operation symbol. Then evidently A′ � αi+1 [�c]. Thus, we finally obtain
a model for α̂ that expands the initial model.

Now, for each α, a tautologically equivalent ∃-formula α̌ is gained as
well (that is, � α ⇔ � α̌). By the above theorem, we first produce for
β = ¬α a satisfiably equivalent SNF β̂ and put α̌ := ¬β̂. Then indeed
� α ⇔ � α̌, because

� α ⇔ β unsatisfiable ⇔ β̂ unsatisfiable ⇔ � α̌.

Example 2. For α := ∃x∀y(ry →rx) we have ¬α ≡ β := ∀x∃y(ry ∧¬rx)
and β̂ = ∀x(rfx∧¬rx). Thus, α̌ = ¬β̂ ≡ ∃x(rfx →rx). The last formula
is a tautology. Indeed, if rA
= ∅ then clearly A � ∃x(rfx →rx). But the
same holds if rA = ∅, for then never A � rfx. Thus, α̌ and hence also α

is a tautology, which is not at all obvious after a first glance at α. This
shows how useful Skolem normal forms can be for discovering tautologies.

Remark 2. There are many applications of Skolem normal forms, mainly in
model theory and in logic programming. For instance, Exercise 5 permits one to
reduce the satisfiability problem of an arbitrary first-order formula set to a set
of ∀-formulas (at the cost of adjoining new function symbols). Moreover, a set
X of ∀-formulas is satisfiably equivalent to a set X ′ of open formulas as will be
shown in 4.1, and this problem can be reduced completely to the satisfiability of
a suitable set of propositional formulas, see also Remark 1 in 4.1. The examples
of applications of the propositional compactness theorem in 1.5 give a certain
feeling for how to proceed in this way.

90 2 First-Order Logic

Exercises

1. Suppose that Tf results from T by adjoining an explicit definition η

for f and let αrd be constructed as explained in the text. Show that
Tf is a conservative extension of T if and only if η is a legitimate
explicit definition.

2. Let S : n �→ n+1 denote the successor function in N = (N, 0, S,+, ·).
Show that ThN is a definitorial extension of Th (N, S, ·); in other
words, 0 and + are explicitly definable by S and · in N .

3. Prove that η : y ==== x−1 ↔ x ◦ y ==== e is a legitimate explicit definition
in TG (it suffices to prove TG � x ◦ y ==== x ◦ z →y ==== z). Show in ad-
dition that T ====

G = TG + η. Thus, T ====
G is a definitorial and hence a

conservative extension of TG. In this sense, the theories T ====
G and TG

are equivalent formulations of the theory of groups.

4. As is well known, the natural <-relation of N is explicitly definable
in (N, 0, +), for instance, by x < y ↔ (∃z
====0)z + x==== y. Prove that
the <-relation of Z is not explicitly definable in (Z, 0, +).

5. Construct to each α ∈ X (⊆ L) an SNF α̂ such that X is satisfiably
equivalent to X̂ = {α̂ | α ∈ X} and X̂ � X, called a Skolemization
of X. Since we do not suppose that X is countable, the function
symbols introduced in X̂ must properly be indexed.

http://www.springer.com/978-1-4419-1220-6

	2 First-Order Logic
	2.1 Mathematical Structures
	2.2 Syntax of First-Order Languages
	2.3 Semantics of First-Order Languages
	2.4 General Validity and Logical Equivalence
	2.5 Logical Consequence and Theories
	2.6 Explicit Definitions—Language Expansions

