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Response-Based Segmentation Using Finite
Mixture Partial Least Squares

Theoretical Foundations and an Application
to American Customer Satisfaction Index Data

Christian M. Ringle, Marko Sarstedt, and Erik A. Mooi

Abstract When applying multivariate analysis techniques in information systems
and social science disciplines, such as management information systems (MIS) and
marketing, the assumption that the empirical data originate from a single homoge-
neous population is often unrealistic. When applying a causal modeling approach,
such as partial least squares (PLS) path modeling, segmentation is a key issue in cop-
ing with the problem of heterogeneity in estimated cause-and-effect relationships.
This chapter presents a new PLS path modeling approach which classifies units on
the basis of the heterogeneity of the estimates in the inner model. If unobserved
heterogeneity significantly affects the estimated path model relationships on the ag-
gregate data level, the methodology will allow homogenous groups of observations
to be created that exhibit distinctive path model estimates. The approach will, thus,
provide differentiated analytical outcomes that permit more precise interpretations
of each segment formed. An application on a large data set in an example of the
American customer satisfaction index (ACSI) substantiates the methodology’s ef-
fectiveness in evaluating PLS path modeling results.
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2.1 Introduction

2.1.1 On the Use of PLS Path Modeling

Since the 1980s, applications of structural equation models (SEMs) and path model-
ing have increasingly found their way into academic journals and business practice.
Currently, SEMs represent a quasi-standard in management research when it comes
to analyzing the cause—effect relationships between latent variables. Covariance-
based structural equation modeling [CBSEM; 38, 59] and partial least squares anal-
ysis [PLS; 43, 80] constitute the two matching statistical techniques for estimating
causal models.

Whereas CBSEM has long been the predominant approach for estimating SEMs,
PLS path modeling has recently gained increasing dissemination, especially in the
field of consumer and service research. PLS path modeling has several advantages
over CBSEM, for example, when sample sizes are small, the data are non-normally
distributed, or non-convergent results are likely because complex models with many
variables and parameters are estimated [e.g., 20, 4]. However, PLS path model-
ing should not simply be viewed as a less stringent alternative to CBSEM, but
rather as a complementary modeling approach [43]. CBSEM, which was introduced
as a confirmatory model, differs from PLS path modeling, which is prediction-
oriented.

PLS path modeling is well established in the academic literature, which appre-
ciates this methodology’s advantages in specific research situations [20]. Important
applications of PLS path modeling in the management sciences discipline are pro-
vided by [23, 24, 27, 76, 18]. The use of PLS path modeling can be predominantly
found in the fields of marketing, strategic management, and management informa-
tion systems (MIS). The employment of PLS path modeling in MIS draws mainly
on Davis’s [10] technology acceptance model [TAM; e.g., 1, 25, 36]. In marketing,
the various customer satisfaction index models — such as the European customer
satisfaction index [ECSI; e.g., 15, 30, 41] and Festge and Schwaiger’s [18] driver
analysis of customer satisfaction with industrial goods — represent key areas of PLS
use. Moreover, in strategic management, Hulland [35] provides a review of PLS
path modeling applications. More recent studies focus specifically on strategic suc-
cess factor analyses [e.g., 62].

Figure 2.1 shows a typical path modeling application of the American customer
satisfaction index model [ACSI; 21], which also serves as an example for our study.
The squares in this figure illustrate the manifest variables (indicators) derived from
a survey and represent customers’ answers to questions while the circles illustrate
latent, not directly observable, variables. The PLS path analysis predominantly fo-
cuses on estimating and analyzing the relationships between the latent variables in
the inner model. However, latent variables are measured by means of a block of
manifest variables, with each of these indicators associated with a particular latent
variable. Two basic types of outer relationships are relevant to PLS path modeling:
formative and reflective models [e.g., 29]. While a formative measurement model
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has cause—effect relationships between the manifest variables and the latent index
(independent causes), a reflective measurement model involves paths from the latent
construct to the manifest variables (dependent effects).

The selection of either the formative or the reflective outer mode with respect to
the relationships between a latent variable and its block of manifest variables builds
on theoretical assumptions [e.g., 44] and requires an evaluation by means of empir-
ical data [e.g., 29]. The differences between formative and reflective measurement
models and the choice of the correct approach have been intensively discussed in
the literature [3, 7, 11, 12, 19, 33, 34, 68, 69]. An appropriate choice of measure-
ment model is a fundamental issue if the negative effects of measurement model
misspecification are to be avoided [44].

Q = latent variables

|:| = manifest variables (indicators)

Perceived
Quality

Overall
Customer
Satisfaction

Perceived
Value

Customer
Expectations

Customer
Loyalty

Fig. 2.1 Application of the ACSI model

While the outer model determines each latent variable, the inner path model
involves the causal links between the latent variables, which are usually a hypothe-
sized theoretical model. In Fig. 2.1, for example, the latent construct “Overall Cus-
tomer Satisfaction” is hypothesized to explain the latent construct “Customer Loy-
alty.” The goal of prediction-oriented PLS path modeling method is to minimize the
residual variance of the endogenous latent variables in the inner model and, thus,
to maximize their R? values (i.e., for the key endogenous latent variables such as
customer satisfaction and customer loyalty in an ACSI application). This goal un-
derlines the prediction-oriented character of PLS path modeling.
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2.1.2 Problem Statement

While the use of PLS path modeling is becoming more common in management
disciplines such as MIS, marketing management, and strategic management, there
are at least two critical issues that have received little attention in prior work. First,
unobserved heterogeneity and measurement errors are endemic in social sciences.
However, PLS path modeling applications are usually based on the assumption that
the analyzed data originate from a single population. This assumption of homo-
geneity is often unrealistic, as individuals are likely to be heterogeneous in their
perceptions and evaluations of latent constructs. For example, in customer satis-
faction studies, users may form different segments, each with different drivers of
satisfaction. This heterogeneity can affect both the measurement part (e.g., differ-
ent latent variable means in each segment) and the structural part (e.g., different
relationships between the latent variables in each segment) of a causal model [79].
In their customer satisfaction studies, Jedidi et al. [37] Hahn et al. [31] as well as
Sarstedt, Ringle and Schwaiger [72] show that an aggregate analysis can be seri-
ously misleading when there are significant differences between segment-specific
parameter estimates. Muthén [54] too describes several examples, showing that if
heterogeneity is not handled properly, SEM analysis can be seriously distorted. Fur-
ther evidence of this can be found in [16, 66, 73]. Consequently, the identification of
different groups of consumers in connection with estimates in the inner path model
is a serious issue when applying the path modeling methodology to arrive at decisive
interpretations [61]. Analyses in a path modeling framework usually do not address
the problem of heterogeneity, and this failure may lead to inappropriate interpreta-
tions of PLS estimations and, therefore, to incomplete and ineffective conclusions
that may need to be revised.

Second, there are no well-developed statistical instruments with which to ex-
tend and complement the PLS path modeling approach. Progress toward uncovering
unobserved heterogeneity and analytical methods for clustering data have specif-
ically lagged behind their need in PLS path modeling applications. Traditionally,
heterogeneity in causal models is taken into account by assuming that observations
can be assigned to segments a priori on the basis of, for example, geographic or
demographic variables. In the case of a customer satisfaction analysis, this may be
achieved by identifying high and low-income user segments and carrying out multi-
group structural equation modeling. However, forming segments based on a priori
information has serious limitations. In many instances there is no or only incom-
plete substantive theory regarding the variables that cause heterogeneity. Further-
more, observable characteristics such as gender, age, or usage frequency are often
insufficient to capture heterogeneity adequately [77]. Sequential clustering proce-
dures have been proposed as an alternative. A researcher can partition the sample
into segments by applying a clustering algorithm, such as k-means or k-medoids,
with respect to the indicator variables and then use multigroup structural equa-
tion modeling for each segment. However, this approach has conceptual shortcom-
ings: “Whereas researchers typically develop specific hypotheses about the relation-
ships between the variables of interest, which is mirrored in the structural equation
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model tested in the second step, traditional cluster analysis assumes independence
among these variables” [79, p. 2]. Thus, classical segmentation strategies cannot
account for heterogeneity in the relationships between latent variables and are of-
ten inappropriate for forming groups of data with distinctive inner model estimates
[37, 61,73, 71].

2.1.3 Objectives and Organization

A result of these limitations is that PLS path modeling requires complementary
techniques for model-based segmentation, which allows treating heterogeneity in
the inner path model relationships. Unlike basic clustering algorithms that iden-
tify clusters by optimizing a distance criterion between objects or pairs of ob-
jects, model-based clustering approaches in SEMs postulate a statistical model for
the data. These are also often referred to as latent class segmentation approaches.
Sarstedt [74] provides a taxonomy (Fig. 2.2) and a review of recent latent class
segmentation approaches to PLS path modeling such as PATHMOX [70], FIMIX-
PLS [31, 61, 64, 66], PLS genetic algorithm segmentation [63, 67], Fuzzy PLS Path
Modeling [57], or REBUS-PLS [16, 17]. While most of these methodologies are in
an early or experimental stage of development, Sarstedt [74] concludes that the fi-
nite mixture partial least squares approach (FIMIX-PLS) can currently be viewed as
the most comprehensive and commonly used approach to capture heterogeneity in
PLS path modeling. Hahn et al. [31] pioneered this approach in that they also trans-
ferred Jedidi et al.’s [37] finite mixture SEM methodology to the field of PLS path
modeling. However, knowledge about the capabilities of FIMIX-PLS is limited.

PLS Segmentation Approaches

Distance-based FIMIX-PLS

Fuzzy PLS Path Modeling

Path Modelling
Segmentation Tree

PLS Typological
Regression Approaches

PLS Typological Path Response-based Units
Modeling Segmentation in PLS

PLS Genetic Algorithm
Segmentation

Fig. 2.2 Methodological taxonomy of latent class approaches to capture unobserved heterogeneity
in PLS path models [74]
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This chapter’s main contribution to the body of knowledge on clustering data
in PLS path modeling is twofold. First, we present FIMIX-PLS as recently imple-
mented in the statistical software application SmartPLS [65] and, thereby, made
broadly available for empirical research in the various social sciences disciplines.
We thus present a systematic approach to applying FIMIX-PLS as an appropri-
ate and necessary means to evaluate PLS path modeling results on an aggregate
data level. PLS path modeling applications can exploit this approach to response-
based market segmentation by identifying certain groups of customers in cases
where unobserved moderating factors cause consumer heterogeneity within in-
ner model relationships. Second, an application of the methodology to a well-
established marketing example substantiates the requirement and applicability of
FIMIX-PLS as an analytical extension of and standard test procedure for PLS path
modeling.

This study is particularly important for researchers and practitioners who can ex-
ploit the capabilities of FIMIX-PLS to ensure that the results on the aggregate data
level are not affected by unobserved heterogeneity in the inner path model estimates.
Furthermore, FIMIX-PLS indicates that this problem can be handled by forming
groups of data. A multigroup comparison [13, 32] of the resulting segments indi-
cates whether segment-specific PLS path estimates are significantly different. This
allows researchers to further differentiate their analysis results. The availability of
FIMIX-PLS capabilities (i.e., in the software application SmartPLS) paves the way
to a systematic analytical approach, which we present in this chapter as a standard
procedure to evaluate PLS path modeling results.

‘We organize the remainder of this chapter as follows: First, we introduce the PLS
algorithm — an important issue associated with its application. Next, we present a
systematic application of the FIMIX-PLS methodology to uncover unobserved het-
erogeneity and form groups of data. Thereafter, this approach’s application to a
well-substantiated and broadly acknowledged path modeling application in mar-
keting research illustrates its effectiveness and the need to use it in the evaluation
process of PLS estimations. The final section concludes with implications for PLS
path modeling and directions regarding future research.

2.2 Partial Least Squares Path Modeling

The PLS path modeling approach is a general method for estimating causal relation-
ships in path models that involve latent constructs which are indirectly measured
by various indicators. Prior publications [80, 43, 8, 75, 32] provide the method-
ological foundations, techniques for evaluating the results [8, 32, 43, 75, 80], and
some examples of this methodology. The estimation of a path model, such as the
ACSI example in Fig. 2.1, builds on two sets of outer and inner model linear equa-
tions. The basic PLS algorithm, as proposed by Lohmoller [43], allows the linear
relationships’ parameters to be estimated and includes two stages, as presented in
Table 2.1.
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Table 2.1 The basic PLS algorithm [43]

Stage 1: Iterative estimation of latent variable scores

#1 Inner weights
v — sign cov(Yj; Y;) if Y; and Y; are adjacent
e 0 otherwise
#2 Inside approximation
Yj:= ZVtii
1
#3 Outer weights; solve for
Yiin = V~ij Yin + ek, Mode A
Yin = E‘Wk' Ykin +dj, ModeB
]
#4 Outside approximation
an = Zwkl ijn
kj
Variables: Parameters:
y = manifest variables (data) v = inner weights
Y = latent variables w = weight coefficients
d = validity residuals
e = outer residuals
Indices:
i=1,...,Ifor blocks of manifest variables
j=1,...,J for latent variables
kj = 1,...,K for manifest variables counted within block j
n=1,...,N for observational units (cases)

Stage 2: Estimation of outer weights, outer loadings, and inner path model
coefficients

In the measurement model, manifest variables’ data — on a metric or quasi-metric
scale (e.g., a seven-point Likert scale) — are the input for the PLS algorithm that
starts in step 4 and uses initial values for the weight coefficients (e.g., “+1” for all
weight coefficients). Step 1 provides values for the inner relationships and Step 3
for the outer relationships, while Steps 2 and 4 compute standardized latent vari-
able scores. Consequently, the basic PLS algorithm distinguishes between reflective
(Mode A) and formative (Mode B) relationships in step 3, which affects the gen-
eration of the final latent variable scores. In step 3, the algorithm uses Mode A to
obtain the outer weights of reflective measurement models (single regressions for
the relationships between the latent variable and each of its indicators) and Mode B
for formative measurement models (multiple regressions through which the latent
variable is the dependent variable). In practical applications, the analysis of reflec-
tive measurement models focuses on the loading, whereas the weights are used to
analyze formative relationships. Steps 1 to 4 in the first stage are repeated until con-
vergence is obtained (e.g., the sum of changes of the outer weight coefficients in
step 4 is below a threshold value of 0.001). The first stage provides estimates for the
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latent variable scores. The second stage uses these latent variable scores for ordinary
least squares (OLS) regressions to generate the final (standardized) path coefficients
for the relationships between the latent variables in the inner model as well as the
final (standardized) outer weights and loadings for the relationships between a latent
variable and its block of manifest variables [32].

A key issue in PLS path modeling is the evaluation of results. Since the PLS algo-
rithm does not optimize any global scalar function, fit measures that are well known
from CBSEM are not available for the nonparametric PLS path modeling approach.
Chin [8] therefore presents a catalog of nonparametric criteria to separately assess
the different model structures’ results. A systematic application of these criteria is
a two-step process [32]. The evaluation of PLS estimates begins with the measure-
ment models and employs decisive criteria that are specifically associated with the
formative outer mode (e.g., significance, multicollinearity) or reflective outer mode
(e.g., indicator reliability, construct reliability, discriminant validity). Only if the
latent variable scores show evidence of sufficient reliability and validity is it worth
pursuing the evaluation of inner path model estimates (e.g., significance of path
coefficients, effect sizes, R? values of latent endogenous variables). This assessment
also includes an analysis of the PLS path model estimates regarding their capa-
bilities to predict the observed data (i.e., the predictive relevance). The estimated
values of the inner path coefficients allow the relative importance of each exoge-
nous latent variable to be decided in order to explain an endogenous latent variable
in the model (i.e., R? value). The higher the (standardized) path coefficients — for
example, in the relationship between “Overall Customer Satisfaction” and “Cus-
tomer Loyalty” in Fig. 2.1 — the higher the relevance of the latent predecessor vari-
able in explaining the latent successor variable. The ACSI model assumes significant
inner path model relationships between the key constructs “Overall Customer Sat-
isfaction” and “Customer Loyalty” as well as substantial R values for these latent
variables.

2.3 Finite Mixture Partial Least Squares Segmentation

2.3.1 Foundations

Since its formal introduction in the 1950s, market segmentation has been one of
the primary marketing concepts for product development, marketing strategy, and
understanding customers. To segment data in a SEM context, researches frequently
use sequential procedures in which homogenous subgroups are formed by means
of a priori information to explain heterogeneity, or they revert to the application of
cluster analysis techniques, followed by multigroup structural equation modeling.
However, none of these approaches is considered satisfactory, as observable char-
acteristics often gloss over the true sources of heterogeneity [77]. Conversely, the
application of traditional cluster analysis techniques suffers from conceptual short-
comings and cannot account for heterogeneity in the relationships between latent
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variables. This weakness is broadly recognized in the literature and, consequently,
there has been a call for model-based clustering methods.

In data mining, model-based clustering algorithms have recently gained increas-
ing attention, mainly because they allow researchers to identify clusters based on
their shape and structure rather than on proximity between data points [50]. Sev-
eral approaches, which form a statistical model based on large data sets, have been
proposed. For example, Wehrens et al. [78] propose methods that use one or sev-
eral samples of data to construct a statistical model which serves as a basis for a
subsequent application on the entire data set. Other authors [e.g., 45] developed
procedures to identify a set of data points which can be reasonably classified into
clusters and iterate the procedure on the remainder. Different procedures do not de-
rive a statistical model from a sample but apply strategies to scale down massive
data sets [14] or use reweighted data to fit a new cluster to the mixture model [49].
Whereas these approaches to model-based clustering have been developed within a
data mining context and are thus exploratory in nature, SEMs rely on a confirmatory
concept as researchers need to specify a hypothesized path model in the first step of
the analysis. This path model serves as the basis for subsequent cluster analyses but
is supposed to remain constant across all segments.

In CBSEM, Jedidi et al. [37] pioneered this field of research and proposed the
finite mixture SEM approach, i.e., a procedure that blends finite mixture models
and the expectation-maximization (EM) algorithm [46, 47, 77]. Although the orig-
inal technique extends CBSEM and is implemented in software packages for sta-
tistical computations [e.g., Mplus; 55], the method is inappropriate for PLS path
modeling due to unlike methodological assumptions. Consequently, Hahn et al.
[31] introduced the finite FIMIX-PLS method that combines the strengths of the
PLS path modeling method with the maximum likelihood estimation’s advantages
when deriving market segments with the help of finite mixture models. A finite
mixture approach to model-based clustering assumes that the data originate from
several subpopulations or segments [48]. Each segment is modeled separately and
the overall population is a mixture of segment-specific density functions. Conse-
quently, homogeneity is no longer defined in terms of a set of common scores, but at
a distributional level. Thus, finite mixture modeling enables marketers to cope with
heterogeneity in data by clustering observations and estimating parameters simul-
taneously, thus avoiding well-known biases that occur when models are estimated
separately [37]. Moreover, there are many versatile or parsimonious models, as well
as clustering algorithms available that can be customized with respect to a wide
range of substantial problems [48].

Based on this concept, the FIMIX-PLS approach simultaneously estimates the
model parameters and ascertains the heterogeneity of the data structure within a
PLS path modeling framework. FIMIX-PLS is based on the assumption that het-
erogeneity is concentrated in the inner model relationships. The approach captures
this heterogeneity by assuming that each endogenous latent variable 1; is distributed
as a finite mixture of conditional multivariate normal densities. According to Hahn
etal. [31, p. 249], since “the endogenous variables of the inner model are a function
of the exogenous variables, the assumption of the conditional multivariate normal
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distribution of the 1; is sufficient.” From a strictly theoretical viewpoint, the impo-
sition of a distributional assumption on the endogenous latent variable may prove
to be problematic. This criticism gains force when one considers that PLS path
modeling is generally preferred to covariance structure analysis in circumstances
where assumptions of multivariate normality cannot be made [4, 20]. However, re-
cent simulation evidence shows the algorithm to be robust, even in the face of distri-
butional misspecification [18]. By differentiating between dependent (i.e., endoge-
nous latent) and explanatory (i.e., exogenous latent) variables in the inner model,
the approach follows a mixture regression concept [77] that allows the estimation of
separate linear regression functions and the corresponding object memberships of
several segments.

2.3.2 Methodology

Drawing on a modified presentation of the relationships in the inner model (Table
2.2 provides a description of all the symbols used in the equations presented in this
chapter.),

Bn;, +T¢ =G, 2.1

it is assumed that 1; is distributed as a finite mixture of densities fi‘k(') with K
(K < o) segments

K
Mi ~ Y PifirMil&i, B T, i), (2.2)
=1

whereby py > 0 Vk, Zle pr = 1 and &;, By, Tk, W, depict the segment-specific
vector of unknown parameters for each segment k. The set of mixing proportions
p determines the relative mixing of the K segments in the mixture. Substituting
fieMil&i, Bi, Tk, Wy) results in the following equation:'

1

Zpk [211: M/z\/m1 e

Equation 2.4 represents an EM formulation of the complete log-likelihood (/nL,)
as the objective function for maximization:

—3(T-Bmi+(— FA)E») H((T-Brmit+(— rk)éi). 2.3)

I K
nLe=) Z zie In(f (Mi[&i, Bi, Tk, W) + Z 2 zie In(py) (2.4)
P oy

i=1k=1

An EM formulation of the FIMIX-PLS algorithm (Table 2.3) is used for statis-
tical computations to maximize the likelihood and to ensure convergence in this
model. The expectation of Equation 2.4 is calculated in the E-step, where zj; is 1

! Note that the following presentations slightly differ from Hahn et al.’s [31] original paper.
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Table 2.2 Explanation of symbols

A"’l

am

B m

by
Ya,,, mk
Boymi
Tink
Ok

fi ()

—

oy > ™=

Wy

Pk

Number of exogenous variables as regressors in regression m

exogenous variable a,, with a,, = 1,...,A,,
number of endogenous variables as regressors in regression m
endogenous variable b,, with b,, = 1,...,B,,

regression coefficient of a,, in regression m for class k

regression coefficient of b, in regression m for class k

((Yapmk)s (Bp,mi))’ vector of the regression coefficients

cell(m x m) of Wy

constant factor

probability for case i given a class k and parameters (-)

number of cases or observations

case or observation i withi=1,...,1

number of exogenous variables

exogenous variable j with j=1,...,J

number of classes

class or segment k withk =1,...,K

number of endogenous variables

endogenous variable m withm=1,... .M

number of free parameters defined as (K — 1) + KR+ KM

probability of membership of case i to class k

number of predictor variables of all regressions in the inner model

stop or convergence criterion

large negative number

case values of the regressors for regression m of individual i

case values of the regressant for regression m of individual i

zix = 1, if the case i belongs to class k; z;x = 0 otherwise

random vector of residuals in the inner model for case i

vector of endogenous variables in the inner model for case i

vector of exogenous variables in the inner model for case i

M x M path coefficient matrix of the inner model for the relationships between
endogenous latent variables

M x J path coefficient matrix of the inner model for the relationships between
exogenous and endogenous latent variables

M x M identity matrix

difference of currenty,;, and lasty,y,

M x M path coefficient matrix of the inner model for latent class k for the relationships
between endogenous latent variables

M x J path coefficient matrix of the inner model for latent class k for the relationships
between exogenous and endogenous latent variables

M x M matrix for latent class k containing the regression variances

P1,---,Pk), vector of the K mixing proportions of the finite mixture

mixing proportion of latent class k

iff subject i belongs to class k (or 0 otherwise). The mixing proportion pi (i.e.,
the relative segment size) and the parameters &;, By, Iy, and W) of the conditional
probability function are given (as results of the M-step), and provisional estimates
(expected values) E(zj) = Py, for z; are computed according to Bayes’s [5] theo-
rem (Table 2.3).
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Table 2.3 The FIMIX-PLS algorithm

set random starting values for Py ; set last;,;. =V ;set0 < S <1
// run initial M-step

// run EM-algorithm until convergence
repeat do

// the E-step starts here

if A > S then

P, — _ PeliMiliBe T V)
ik S pw S (Nl ,Bres T P )
lasti,r,. = currenty,y,.

Vi k

// the M-step starts here
DYy

Pk = #Vk

determine By, I'y, Wy, Vk

calculate currentyy,.

A = currentiy . — lasty
untilA < §

Equation 2.4 is maximized in the M-step (Table 2.3). This part of the FIMIX-
PLS algorithm accounts for the most important changes in order to fit the finite
mixture approach to PLS path modeling, compared to the original finite mixture
structural equation modeling technique [37]. Initially, we calculate new mixing
proportions py through the average of the adjusted expected values Py, that result
from the previous E-step. Thereafter, optimal parameters are determined for By, I,
and ¥, through independent OLS regressions (one for each relationship between
the latent variables in the inner model). The ML estimators of coefficients and
variances are assumed to be identical to OLS predictions. We subsequently apply
the following equations to obtain the regression parameters for endogenous latent
variables:

Yini =Mmi and X = (Emi;Nmi)/ (2.5)
> =1,.. i
E,. — {15584, 1 Am > Lay,=1,...,A,, NE,,is regressor of m 2.6)
0 else
> =1,.. i
N, — {ni,-Mg, } B, > 1,b,,=1,...,B,, AN, is regressor of m 2.7
0 else

The closed-form OLS analytic formula for 7,,; and ®,, is expressed as follows:

Tk = [X),PX)] ' [X),PYn)] (2.8)
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Ok = [V = X Tuk)' (Y — XonTout) P)] TPk (2.9)

As a result, the M-step determines the new mixing proportions pg, and the
independent OLS regressions are used in the next E-step iteration to improve the
outcomes of Pj. The EM algorithm stops whenever [nLc no longer improves
noticeably, and an a priori-specified convergence criterion is reached.

2.3.3 Systematic Application of FIMIX-PLS

To fully exploit the capabilities of the approach, we propose the systematic ap-
proach to FIMIX-PLS clustering as depicted in Fig. 2.3. In FIMIX-PLS step 1,
the basic PLS algorithm provides path modeling results, using the aggregate set of
data. Step 2 uses the resulting latent variable scores in the inner path model to run
the FIMIX-PLS algorithm as described above. The most important computational
results of this step are the probabilities Py, the mixing proportions p;, class-specific
estimates By and I'y for the inner relationships of the path model, and ¥ for the
(unexplained) regression variances.

Step 1 Standard PLS path modeling: the basic PLS algorithm
provides path model estimates on the aggregate data level
~ =
Scores of latent variables in the inner path model
are used as input for the FIMIX-PLS procedure
- -~ = - = - =
Number of Number of Number of
Step 2 classes K=2 | | classes K=3 | | classes K=4
FIMIX-PLS FIMIX-PLS FIMIX-PLS FIMIX-PLS
Evaluation of results and
identification of an appropriate number of segments
s
Step 3 Ex post analysis and
selection of an explanatory variable for segmentation
s
A-priori segmentation of data and
segment-specific estimation of the PLS path model
Step 4 ——
Evaluation and interpretation of segment-specific PLS results

Fig. 2.3 Analytical steps of FIMIX-PLS
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The methodology fits each observation with the finite mixture’s probabilities Py
into each of the predetermined number of classes. However, on the basis of the
FIMIX-PLS results, it must be specifically decided whether the approach detects
and treats heterogeneity in the inner PLS path model estimates by (unobservable)
discrete moderating factors. This objective is explored in step 2 by analyzing the
results of different numbers of K classes (approaches to guide this decision are pre-
sented in the next section).

When applying FIMIX-PLS, the number of segments is usually unknown. The
process of identifying an appropriate number of classes is not straightforward.
For various reasons, there is no statistically satisfactory solution for this analyt-
ical procedure [77]. One such reason is that the mixture models are not asymp-
totically chi-square distributed and do not allow the calculation of the likelihood
ratio statistic with respect to obtaining a clear-cut decision criterion. Another rea-
son is that the EM algorithm converges for any given number of K classes. One
never knows if FIMIX-PLS stops at a local optimum solution. The algorithm should
be started several times (e.g., 10 times) for each number of segments for dif-
ferent starting partitions [47]. Thereafter, the analysis should draw on the maxi-
mum log-likelihood outcome of each alternative number of classes. Moreover, the
FIMIX-PLS model may result in the computation of non-interpretable segments
for endogenous latent variables with respect to the class-specific estimates By and
I’y of the inner path model relationships and with respect to the regression vari-
ances ¥, when the number of segments is increased. Consequently, segment size
is a useful indicator to stop the analysis of additional numbers of latent classes to
avoid incomprehensible FIMIX-PLS results. At a certain point, an additional seg-
ment is just very small, which explains the marginal heterogeneity in the overall
data set.

In practical applications, researchers can compare estimates of different segment
solutions by means of heuristic measures such as Akaike’s information criterion
(AIC), consistent AIC (CAIC), or Bayesian information criterion (BIC). These in-
formation criteria are based on a penalized form of the likelihood, as they simulta-
neously take a model’s goodness-of-fit (likelihood) and the number of parameters
used to achieve that fit into account. Information criteria generally favor models
with a large log-likelihood and few parameters and are scaled so that a lower value
represents a better fit. Operationally, researchers examine several competing models
with varying numbers of segments and pick the model which minimizes the value
of the information criterion. Researchers usually use a combination of criteria and
simultaneously revert to logical considerations to guide the decision.

Although the preceding heuristics explain over-parameterization through the in-
tegration of a penalty term, they do not ensure that the segments are sufficiently sep-
arated in the selected solution. As the targeting of markets requires segments to be
differentiable, i.e., the segments are conceptually distinguishable and respond dif-
ferently to certain marketing mix elements and programs [40], this point is of great
practical interest. Classification criteria that are based on an entropy statistic, which
indicates the degree of separation between segments, can help to assess whether the
analysis produces well-separated clusters [77]. Within this context, the normed en-
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tropy statistic [EN; 58] is a critical criterion for analyzing segment-specific FIMIX-
PLS results. This criterion indicates the degree of all observations’ classification and
their estimated segment membership probabilities Py on a case-by-case basis and
subsequently reveals the most appropriate number of latent segments for a clear-cut
segmentation:

[>; Xk —Puln(Py)]
IIn(K)

The EN ranges between 0 and 1 and the quality of the classification commensu-
rates with the increase in ENg. The more the observations exhibit high membership
probabilities (e.g., higher than 0.7), the better they uniquely belong to a specific
class and can thus be properly classified in accordance with high EN values. Hence,
the entropy criterion is especially relevant for assessing whether a FIMIX-PLS so-
lution is interpretable or not. Applications of FIMIX-PLS provide evidence that EN
values above 0.5 result in estimates of Py, that permit unambiguous segmentation
[66, 71, 72].

An explanatory variable must be uncovered in the ex post analysis (step 3) in sit-
uations where FIMIX-PLS results indicate that heterogeneity in the overall data set
can be reduced through segmentation by using the best fitting number of K classes.
In this step, data are classified by means of an explanatory variable, which serves
as input for segment-specific computations with PLS path modeling. An explana-
tory variable must include both the similar grouping of data, as indicated by the
FIMIX-PLS results, and the interpretability of the distinctive clusters. However, the
ex post analysis is a very challenging FIMIX-PLS analytical step. Ramaswamy et al.
[58] propose a statistical procedure to conduct an ex post analysis of the estimated
FIMIX-PLS probabilities. Logistic regressions, or in the case of large data sets,
CHAID analyses, and classification and regression trees [9] may likewise be applied
to identify variables that can be used to classify additional observations in one of the
designed segments. While these systematic searches uncover explanatory variables
that fit the FIMIX-PLS results well in terms of data structure, a logical search, in
contrast, mostly focuses on the interpretation of results. In this case, certain variables
with high relevance with respect to explaining the expected differences in segment-
specific PLS path model computations are examined regarding their ability to form
groups of observations that match FIMIX-PLS results.

The process of identifying an explanatory variable is essential for exploiting
FIMIX-PLS results. The findings are also valuable to researchers to confirm that
unobserved heterogeneity in the path model estimates is not an issue, or they al-
low this problem to be dealt with by means of segmentation and, thereby, facili-
tate multigroup PLS path modeling analyses [13, 32] in step 4. Significantly dif-
ferent group-specific path model estimations impart further differentiated interpre-
tations of PLS modeling results and may foster the origination of more effective
strategies.

ENg =1-— (2.10)
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2.4 Application of FIMIX-PLS

2.4.1 On Measuring Customer Saftisfaction

When researchers work with empirical data and do not have a priori segmentation
assumptions to capture heterogeneity in the inner PLS path model relationships,
FIMIX-PLS is often not as clear-cut as in the simulation studies presented by Ringle
[61] as well as Esposito Vinzi et al. [16]. To date, research efforts to apply FIMIX-
PLS and assess its usefulness with respect to expanding the methodological toolbox
were restricted by the lack of statistical software programs for this kind of analysis.
Since such functionalities have recently been provided as a module in the SmartPLS
software, FIMIX-PLS can be applied more easily to empirical data, thereby increas-
ing our knowledge of the approach and its applicability. As a means of presenting
the benefits of the method for PLS path modeling in marketing research, we focus
on customer satisfaction to identify and treat heterogeneity in consumers through
segmentation. However, the general approach of this analysis can be applied to any
PLS application such as the various TAM model estimations in MIS.

Customer satisfaction has become a fundamental and well-documented construct
in marketing that is critical with respect to demand and for any business’s success
given its importance and established relation with customer retention and corporate
profitability [2, 52, 53]. Although it is often acknowledged that there are no truly
homogeneous segments of consumers, recent studies report that there is indeed sub-
stantial unobserved customer heterogeneity within a given product or service class
[81]. Dealing with this unobserved heterogeneity in the overall sample is critical
for forming groups of consumers that are homogeneous in terms of the benefits that
they seek or their response to marketing programs (e.g., product offering, price dis-
counts). Segmentation is therefore a key element for marketers in developing and
improving their targeted marketing strategies.

2.4.2 Data and Measures

We applied FIMIX-PLS to the ACSI model to measure customer satisfaction as pre-
sented by Fornell et al. [21] in the Journal of Marketing but used empirical data from
their subsequent survey in 1999.% These data are collected quarterly to assess cus-
tomers’ overall satisfaction with the services and products that they buy from a num-
ber of organizations. The ACSI study has been conducted since 1994 for consumers
of 200 publicly traded Fortune 500 firms as well as several US public administration
and government departments. These firms and departments comprise more than 40%
of the US gross domestic product. The sample selection mechanism ensures that all

2 The data were provided by Fornell, Claecs. AMERICAN CUSTOMER SATISFACTION INDEX,
1999 [Computer file]. ICPSR04436-v1. Ann Arbor, MI: University of Michigan. Ross School of
Business, National Quality Research Center/Reston, VA: Wirthlin Worldwide [producers], 1999.
Ann Arbor, MI: Inter-University Consortium for Political and Social Research [distributor], 2006-
06-09. We would like to thank Claes Fornell and the ICPSR for making the data available.
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types of organizations are included across all economic sectors considered. For the
1999 survey, about 250 consumers of each organization’s products/services were
selected via telephone. Each call identified the person in the household (for house-
hold sizes >1) whose birthday was closest, after which this person (if older than 18
years) was asked about the durables he or she had purchased during the last 3 years
and about the nondurables purchased during the last month. If the products or ser-
vices mentioned originated from one of the 200 organizations, a short questionnaire
was administered that contained the measures described in Table 2.4.

The data-gathering process was carried out in such a manner that the final data
were comparable across industries [21]. The ACSI data set has frequently been used
in diverse areas in the marketing field, using substantially different methodologies
such as event history modeling or simultaneous equations modeling. However, past

research has not yet accounted for unobserved heterogeneity.

Table 2.4 Measurement scales, items, and descriptive statistics

Construct

Items

Overall Customer
Satisfaction

Customer
Expectations
of Quality

Perceived Quality

Perceived Value

Customer
Complaints

Customer Loyalty
Covariates

Age

Gender

Education

Race

Total Annual
Family Income

Overall satisfaction

Expectancy disconfirmation (performance falls short of or exceeds
expectations)

Performance versus the customer’s ideal product or service in the category

Overall expectations of quality (prior to purchase)

Expectation regarding customization, or how well the product fits the
customer’s personal requirements (prior to purchase)

Expectation regarding reliability, or how often things would go wrong
(prior to purchase)

Overall evaluation of quality experience (after purchase)

Evaluation of customization experience, or how well the product fits the
customer’s personal requirements (after purchase)

Evaluation of reliability experience, or how often things have gone wrong
(after purchase)

Rating of quality given price

Rating of price given quality

Has the customer complained either formally or informally about the
product or service?

Likelihood rating prior to purchase

Average = 43, Standard deviation = 15, minimum = 18, maximum = 84
42% male, 58% female

Less than high school = 4.8%, high school graduate = 21.9%,

some college = 34.6%,

college graduate = 23.1%, post graduate = 15.5%

‘White = 82.4%, Black/African American = 7.2%, American

Indian = 1.1%, Asian or Pacific Islander = 1.8%, other race = 3.7%
Under $20.000 = 13.5%, $20.000—$30.000 = 13.9%,

$30.000— $40.000 = 14.9%, $40.000—$60.000 = 22.3%,
$60.000—$80.000 = 15.1%, $80.000—$100.000 = 8.4%,

Over $100.000 = 11.9%
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To illustrate the capabilities of FIMIX-PLS, we used data from the first quar-
ter of 1999 (N = 17,265). To ensure the validity of our analysis, we adjusted the
data set by carrying out a missing value analysis. In standard PLS estimations,
researchers frequently revert to mean replacement algorithms. However, when re-
placing relatively high numbers by missing values per variable and case by mean
values, FIMIX-PLS will most likely form its own segment of these observations.
Consequently, we applied case-wise replacement. As this procedure would have led
to the exclusion of a vast number of observations, we decided to reduce the origi-
nal ACSI model as presented by Fornell et al. [21]. Consequently, we excluded two
items from the “Customer Loyalty” construct, as they had a high number of missing
values. Furthermore, we omitted the construct “Customer Complaints,” measured
by a binary single item, because we wanted to use this variable as an explanatory
variable in the ex post analysis (step 3 in Fig. 2.3).

As our goal is to demonstrate the applicability of FIMIX-PLS regarding empiri-
cal data and to illustrate a cause—effect relationship model with respect to customer
satisfaction, we do not regard the slight change in the model setup as a debilitating
factor. Consequently, the final sample comprised N = 10,417 observations. Fig-
ure 2.1 illustrates the path model under consideration.

Fornell et al. [21] identified the three driver constructs ‘“Perceived Quality,” “Cus-
tomer Expectations of Quality,” and “Perceived Value,” which are measured by three
and two reflective indicators, with respect to “Overall Customer Satisfaction.” The
ACSI construct itself directly relates to the “Customer Loyalty” construct. Both la-
tent variables also employ a reflective measurement operationalization. Table 2.4
provides the measurement scales and the items used in our study plus various de-
scriptive statistics of the full sample.

2.4.3 Data Analysis and Results

Methodological considerations that are relevant to the analysis include the assess-
ment of the measures’ reliability, their discriminant validity. As the primary concern
of the FIMIX-PLS algorithm is to capture heterogeneity in the inner model, the fo-
cus of the comparison lies on the evaluation of the overall goodness-of-fit of the
models. Nevertheless, as the existence of reliable and valid measures is a prerequi-
site for deriving meaningful solutions, we also deal with these aspects.

As depicted in Fig. 2.3, the basic PLS algorithm [43] is applied to estimate the
overall model by using the SmartPLS 2.0 [64] in step 1. To evaluate the PLS esti-
mates, we follow the suggestions by Chin [8] and Henseler et al. [32]. On assessing
the empirical results, almost all factor loadings exhibit very high values of above
0.8. The smallest loading of 0.629 still ranges well above the commonly suggested
threshold value of 0.5 [35], thus supporting item reliability. Composite reliability is
assessed by means of composite reliability p, and Cronbach’s o. Both measures’
values are uniformly high around 0.8, thus meeting the stipulated thresholds [56].
To assess the discriminant validity of the reflective measures, two approaches are
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applied. First, the indicators’ cross loadings are examined, which reveals that no
indicator loads higher on the opposing endogenous constructs. Second, the Fornell
and Larcker [22] criterion is applied, in which the square root of each endogenous
construct’s average variance extracted (AVE) is compared with its bivariate corre-
lations with all opposing endogenous constructs [cp. 28, 32]. The results show that
in all cases, the square root of AVE is greater than the variance shared by each con-
struct and its opposing constructs. Consequently, we can also presume a high degree
of discriminant validity with respect to all constructs in this study.

The central criterion for the evaluation of the inner model is the R>. Whereas
ACSI exhibits a highly satisfactory R?> value of 0.777, all other constructs show
only moderate values of below 0.5 (Table 2.8).

In addition to the evaluation of R? values, researchers frequently revert to
the cross-validated redundancy measure Q> (Stone—Geisser test), which has been
developed to assess the predictive validity of the exogenous latent variables and
can be computed using the blindfolding procedure. Values greater than zero imply
that the exogenous constructs have predictive relevance for the endogenous con-
struct under consideration, whereas values below zero reveal a lack of predictive
relevance [8]. All Q% values range significantly above zero, thus indicating the ex-
ogenous constructs’ high predictive power. Another important analysis concerns the
significance of hypothized relationships between the latent constructs. For example,
“Perceived Quality” as well as “Perceived Value” exert a strong positive influence
on the endogenous variable “Overall Customer Satisfaction,” whereas the effect of
“Customer Expectations of Quality” is close to zero. To test whether path coeffi-
cients differ significantly from zero, ¢ values were calculated using bootstrapping
with 10,417 cases and 5000 subsamples [32]. The analysis reveals that all relation-
ships in the inner path model exhibit statistically significant estimates (Table 2.8).

In the next analytical step, the FIMIX-PLS module of SmartPLS was applied
to segment observations based on the estimated latent variable scores (step 2 in
Fig. 2.3). Initially, FIMIX-PLS results are computed for two segments (see settings
in Fig. 2.4). Thereafter, the number of segments is increased sequentially. A compar-
ison of the segment-specific information and classification criteria, as presented in
Table 2.5, reveals that the choice of two groups is appropriate for customer segmen-
tation purposes. All relevant evaluation criteria increase considerably in the ensuing
numbers of classes.

The choice of two segments is additionally supported by the EN value of 0.504.
As illustrated in Table 2.6, more than 80% of all our observations are assigned to
one of the two segments with a probability Py of more than 0.7. These probabilities
decline considerably with respect to higher numbers of K classes, which indicates
an increased segmentation fuzziness that is also depicted by the lower EN. An EN
of 0.5 or higher for a certain number of segments allows the unambiguous segmen-
tation of data.

Next, observations are assigned to each segment according to their segment
membership’s maximum probability. Table 2.7 shows the segment sizes with respect
to the different segment solutions, which allows the heterogeneity that affects the
analysis to be specified: (a) As the number of segments increases, the smaller seg-
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Table 2.5 Information and classification criteria for varying K

K InL AIC BIC CAIC EN

2 —44,116.354 88,278.708 88,445.486 88,468.486 0.504
3 —46,735.906 93,541.811 93,795.563 93,830.563 0.431
4 —47,276.720 94,647.440 94,988.246 95,035.246 0.494
5 —49,061.353 98,240.706 98,668.527 98,727.527 0.447
6 —50,058.503 100,259.006 100,773.840 100,844.840 0.443

Table 2.6 Overview of observations’ highest probability of segment membership

Pic K=2 K=3 K =4 K=5 K=6
[0.9, 1.0] 0.510 0.158 0.134 0.054 0.046
(0.8, 0.9) 0211 0.279 0.237 0.093 0.061
[0.7,0.8) 0.118 0.182 0.195 0.253 0.171
[0.6,0.7) 0.090 0.153 0.173 0.225 0.198
[0.5, 0.6) 0.071 0.142 0.151 0.198 0.236
[0.4,0.5) 0.076 0.087 0.147 0.225
[0.3,0.4) 0.009 0.022 0.030 0.061
[0.2,0.3) 0.001 0.002
[0.1,0.2)

[0, 0.1)

Sum 1.000 1.000 1.000 1.000 1.000

Table 2.7 Segment sizes for different numbers of segments

K pi P2 P3 P4 pPs Ps %Pk

2 0.673 0.327 1.000
3 0.179 0.219 0.602 1.000
4 0.592 0.075 0.075 0.258 1.000
5 0.534 0.036 0.245 0.096 0.089 1.000
6 0.079 0313 0.449 0.037 0.081 0.041 1.000

ment is gradually split up to create additional segments, while the size of the larger
segment remains relatively stable (about 0.6 for K € {2,3,4} and 0.5 for K € {5,6}).
(b) The decline in the outcomes of additional numbers of classes based on the EN
criterion allows us to conclude that the overall set of observations regarding this
particular analysis of the ACSI consists of a large, stable segment and a small fuzzy
one. (¢) FIMIX-PLS cannot further reduce the fuzziness of the smaller segment.

In the process of increasing the number of segments, FIMIX-PLS can still iden-
tify the larger segment with comparably high probabilities of membership but
is ambivalent when processing the small group with heterogeneous observations.
Consequently, the probability of membership P declines, resulting in decreasing
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EN values. This indicates methodological complexity in the process of assigning
the observations in this data set to additional segments. FIMIX-PLS computation
forces observations to fit within a given number of K classes. As a result, FIMIX-
PLS generates outcomes that are statistically problematic for the segment-specific
estimates By and for Iy, i.e., regarding the inner relationships of the path model,
and for W, i.e., regarding the regression variances of endogenous latent variables.
In this example, results exhibiting inner path model relationships and/or regression
variances above one are obtained with respect to K = 7 classes. Consequently, the
analysis of additional numbers of classes can stop at this juncture in accordance
with the development of segment sizes in Table 2.7.

Table 2.8 presents the global model and FIMIX-PLS results of two latent seg-
ments. Before evaluating goodness-of-fit measures and inner model relationships,
all outcomes with respect to segment-specific path model estimations were tested
with regard to reliability and discriminant validity. The analysis showed that all
measures satisfy the relevant criteria for model evaluation [32]. As in the global
model, all paths are significant at a level of 0.01.

When comparing the global model with the results derived from FIMIX-PLS, one
finds that the relative importance of the driver constructs “Overall Customer Satis-
faction” differs quite substantially within the two segments. For example, the global
model suggests that the perceived quality is the most important driver construct with

Table 2.8 Global model and FIMIX-PLS results of two latent segments

FIMIX-PLS
Global k=1 k=2 t[mgp]

Customer Expectations of Quality 0.556** 0.807** 0.258** 26.790**
— Perceived Quality (56.755) (168.463) (13.643)
Customer Expectations of Quality 0.072%* 0.218* —0.107*** 15.571%*
— Perceived Value (7.101) (16.619) (6.982)
Customer Expectations of Quality 0.021** 0.117** —0.068*** 14.088***
— Opverall Customer Satisfaction (3.294) (14.974) (6.726)
Perceived Quality 0.557* 0.425%* 0.633** 10.667**
— Overall Customer Satisfaction (63.433) (50.307) (49.038)
Perceived Quality 0.619** 0.582%* 0.5447** 1.899**
— Perceived Value (62.943) (46.793) (42.394)
Perceived Value 0.394*** 0.455%* 0.308*** 7.922%**
— Overall Customer Satisfaction (44.846) (62.425) (21.495)
Overall Customer Satisfaction 0.687** 0.839*** 0.481** 19.834**
— Customer Loyalty (93.895) (208.649) (31.794)
Pk 1.000 0.673 0.327
Rlz’erceived Quality 0.309 0.651 0.067

l%meived Value 0.439 0.591 0.277
R(z)verall Customer Satisfaction 0.777 0.848 0.679
R%usmmer Loyalty 0.471 0.704 0.231

t[mgp] = t-value for multi-group comparison test
*** sig. at 0.01, **sig. at 0.05, *sig. at 0.1
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respect to customer overall satisfaction. As “Perceived Quality” describes an ex post
evaluation of quality, companies should emphasize product and service quality and
their fit with use, which can be achieved through informative advertising. How-
ever, in the first segment of FIMIX-PLS, the most important driver construct with
respect to customer satisfaction is “Perceived Value.” In addition, also “Customer
Expectations of Quality” exerts an increased positive influence on customer satis-
faction. Likewise, both segments differ considerably with regard to the relationships
between the three driver constructs ‘“Perceived Quality,” “Customer Expectations of
Quality,” and “Perceived Value.”

However, only significant differences between the segments offer valuable inter-
pretations for marketing practice. Consequently, we performed a multigroup com-
parison to assess whether segment-specific path coefficients differ significantly. The
PLS path modeling multigroup analysis (PLS-MGA) applies the permutation test
(5000 permutations) as described by [13] and which has recently been implemented
as an experimental module in the SmartPLS software.

Multigroup comparison results show that all paths differ significantly between
k =1 and k = 2. Thus, consumers in each segment exhibit significantly different
drivers with respect to their overall satisfaction, which allows differentiated mar-
keting activities to satisfy customers’ varying wants better. At the same time, all
endogenous constructs have increased R> values, ranging between 2% (“Overall
Customer Satisfaction”) and 49% (“Perceived Quality”) higher than in the global
model. These were calculated as the sum of each endogenous construct’s R> values
across the two segments, weighted by the relative segment size.

The next step involves the identification of explanatory variables that best charac-
terize the two uncovered customer segments. We consequently applied the QUEST
[42] and Exhaustive CHAID [6] algorithm, using SPSS Answer Tree 3.1 on the
covariates to assess if splitting the sample according to the sociodemographic vari-
ables’ modalities leads to a statistically significant discrimination in the dependent
measure. In the latter, continuous covariates were first transformed into ordinal pre-
dictors. In both approaches, “age” and “total annual family income” showed the
greatest potential for meaningful a priori segmentation, with Exhaustive CHAID
producing more accurate results. The result is shown in Fig. 2.5. The percentages
in the nodes denote the share of total observations (as described in the root node)
with respect to each segment. These mark the basis of the a priori segmentation of
observations based on the maximum percentages for each node.

Segment one (1] = 6,314) comprises middle-aged customers (age € (28,44])
with a total annual family income between $40,000 and less than $100,000. Fur-
thermore, customers aged 44 and above belong to this segment. Segment two (1, =
4,103) consists of young customers (age < 28) as well as middle-aged customers
with a total annual family income of less than $40,000 or more than $100,000. The
resulting classification corresponds to 56.878% of the FIMIX-PLS classification.
In addition to this clustering according to sociodemographic variables, we used the
behavioral variable “Customer Complaints” (Table 2.4) to segment the data. Seg-
ment one (ng; = 7,393) represents customers that have not yet complained about
a product or service, whereas segment two (1, = 3,023) contains customers who
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k % ofk n
1 100.000 7,008
2 100.000 3,409
I
Age
Adj. p—value=0,00|3; ¥*=34.443; d=3
[ I T ]

<28 (28,44] (44,63] >63
k %ofk n k %ofk n k % ofk n k %ofk n
1 17.994 1,261 1 40.868 2,564 1 29994 2,102 1 11.14 781
2 21.385 729 2 42241 1,440 2 27926 952 2 8.448 288
Total annual family income
Adj. p-value=0.000; *=24.757; df=2
|
| | |
< $40,000 [$40,000,$100,000) = $100,000
k % ofk n k% ofk n k% ofk n
1 11.886 833 1 21.861 1,532 1 7120 499
2 14990 511 2 19331 659 2 7.920 270

Fig. 2.5 Segmentation tree results of the exhaustive CHAID analysis

have complained in the past (consistency with FIMIX-PLS classification: 62.811%).
Table 2.9 documents the results of the ex post analysis. The evaluation of the PLS
path modeling estimates [8] with respect to these four a priori segmented data sets
confirms that the results are satisfactory.

Similar results as those with the FIMIX-PLS analysis were obtained with re-
gard to the ex post analysis using the Exhaustive CHAID algorithm. Again, the
goodness-of-fit measures of the first segment exhibit increased values. Furthermore,
the path coefficients differ significantly between the two segments. For example, the
large segment exhibits a substantial relationship between “Customer Expectations
of Quality” and “Overall Customer Satisfaction,” which is highly relevant from a
marketing perspective. With respect to this group of mostly older consumers, satis-
faction is also explained by expected quality, which can potentially be controlled by
marketing activities. For example, non-informative advertising (e.g., sponsorship
programs) can primarily be used as a signal of expected product quality [39, 51].
However, it must be noted that with respect to the global model, the differences are
less pronounced than those in the FIMIX-PLS analysis. Even though there are sev-
eral differences observable, the path coefficient estimates are more balanced across
the two segments, thus diluting response-based segmentation results. Similar fig-
ures result with respect to the ex post analysis based on the variable “customer
complaints.”

Despite the encouraging results of the ex post analysis, the analysis showed that
the covariates available in the ACSI data set only offer a limited potential for mean-
ingful a priori segmentation. Even though one segment’s results improved, the dif-



43

2 Response-Based Segmentation Using Finite Mixture Partial Least Squares

10 "3Is , ‘600 e SIS, ‘T0°0 e SIS .,
159 uostredwod dnos3-nynuwr 10§ onfea-) = [d3w]y

KekoT 1owoIsn),

L6V'0 08€°0 881°0 657°0 1LY0 |

86L°0 €1L°0 TSL0 €6L°0 LLLO HOHPRISHES IO M0

8870 TE€0 90%°0 19%°0 6570 SHIEA patiaindy

192°0 LYE0 LLTO 1€€°0 60€°0 Apend pantaatadyy

0620 01L0 Y6€0 909°0 I d

(508°LS) (626'8S) (L0T'LS) (5L6'89) (568°€6) AireAoT BWOISNY —

il €T9 «SOL0 9190 Nzl 8690 il L0 w890 UONORJSILS IOWOISND) [[BIOAQ

(665°€7) (8TL°SE) (1LS'%T) (LLEYE) (9v8'¥h) UONORJSTRS IDWOISND) [[RISAQ —

809°0 «06€0 wZ0P0 6180 wV8E0 w0070 wP6E0 aN[uA PAAIOIR

(L6E*ED) (Z80°5€) (692°9€) (L1¥°05) (E¥6'79) SN[BA PIAIDIS] —

8159 <6590 w6150 wOILT 6650 «SE90 w6190 Areng) paaooIag

(908°5€) (L1TSH) (198°5€) (€59°St) (€€v°€9) UONORJSHRS I9WOISND) [[BISAQ —

wOLTE «8LS0 el 160 £8T'1 wTLS0 w8750 il S0 Apeng) paarooIag

(#60°0) (9€€°9) (TST0) (FEEY) (#6T°€) UOORJSHRS I9WOISND) [[BISAQ —

wlSTE 100°0— el 700 e 19LT 200°0— e 9€0°0 w1200 AyrenQ) jo suoneioadxy owoisn)

(ST0'Y) (691°9) (185°€) (115°9) (101°L) AN[BA PIAIDIS] —

SZ8°0 e 1L00 <6800 9vT0 w900 wTLO0 wTLO0 AyrenQ) jo suoneioadxy owoisn)

(42T’ 62) (+8°05) (956'62) (+81°SH) (S5L°95) Ai[eng) paaedIag «—

sl SPE I § £ 6850 w668°T «9TS0 wSLS0 w9550 ArenQ) jo suoneioadxy owoisn)
[dSur]y =3 =9 [dSur]y =1 =3 [2qo1D

‘[dwo) 1sn) 3504 xg AIVHD 1s0d Xd

SQINSBAW J1J-JO-SSAUPOOT PUE SaN[eA 7 YIIM SJUAIOYJR0d yied [opowr 1ouu] 67 dqeL



44 Christian M. Ringle, Marko Sarstedt, and Erik A. Mooi

ferences between the segments were considerably smaller when compared to those
of the FIMIX-PLS results.

2.5 Summary and Conclusion

Unobserved heterogeneity and measurement errors are common problems in social
sciences. Jedidi et al. [37] have addressed these problems with respect to CBSEM.
Hahn et al. [31] have further developed their finite mixture SEM methodology for
PLS path modeling, which is an important alternative to CBSEM for researchers
and practitioners. This chapter introduced and discussed the FIMIX-PLS approach,
as it has recently been implemented in the software application SmartPLS. Conse-
quently, researchers from marketing and other disciplines can exploit this approach
to response-based segmentation by identifying certain groups of customers. We
demonstrate the potentials of FIMIX-PLS by applying the procedure on data from
the ACSI model. We thus extend prior research work on this important model by
explaining unobserved heterogeneity in the inner model path estimates. Moreover,
we show that, contrary to existing work on the same data set, there are different
segments, which has significant implications.

Our example application demonstrates how FIMIX-PLS reliably identifies an ap-
propriate number of customer segments, provided that unobserved moderating fac-
tors account for consumer heterogeneity within inner model path relationships. In
this kind of very likely situation, FIMIX-PLS enables us to identify two segments
with distinct inner model path estimates that differ substantially from the aggregate-
level analysis. For example, unlike in the global model, “Customer Expectations of
Quality” exerts a pronounced influence on the customers’ perceived value. Further-
more, the FIMIX-PLS analysis achieved a considerably increased model fit in the
larger segment.

In the course of an ex post analysis, two explanatory variables (“Age” and “To-
tal Annual Family Income”) were uncovered. An a priori segmentation based on
the exhaustive CHAID analysis results, followed by segment-specific path analy-
ses yielded similar findings as the FIMIX-PLS procedure. The same holds for seg-
menting along the modalities of the behavioral variable “Customer Complaints.”
These findings allow marketers to formulate differentiated, segment-specific mar-
keting activities to better satisfy customers’ varying wants. Researchers can exploit
these additional analytic potentials where theory essentially supports path modeling
in situations with heterogeneous data. We expect that these conditions will hold true
in many marketing-related path modeling applications.

Future research will require the extensive use of FIMIX-PLS on marketing ex-
amples with heterogeneous data to illustrate the applicability and the problematic
aspects of the approach from a practical point of view. Researchers will also need
to test the FIMIX-PLS methodology by means of simulated data with a wide range
of statistical distributions and a large variety of path model setups to gain additional
implications. Finally, theoretical research should provide satisfactory improvements
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of problematic areas such as convergence to local optimum solutions, computation
of improper segment-specific FIMIX-PLS results, and identification of suitable ex-
planatory variables for a priori segmentation. These critical aspects have been dis-
cussed, for example, by Ringle [61] and Sarstedt [74]. By addressing these deficien-
cies, the effectiveness and precision of the approach could be extended, thus further
extending the analytical ground of PLS path modeling.
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