Salient Biological Features, Systematics,
and Genetic Variation of Populus

Gancho T. Slavov and Peter Zhelev

Abstract The genus Populus includes morphologically diverse species of decid-
uous, relatively short-lived, and fast-growing trees. Most species have wide
ranges of distribution but tend to occur primarily in riparian or mountainous
habitats. Trees from this genus are typically dioecious, flower before leaf emer-
gence, and produce large amounts of wind-dispersed pollen or seeds. Seedlings
are drought- and shade-intolerant, and their establishment depends on distur-
bance and high soil moisture. Asexual reproduction is common and occurs via
root sprouting and/or rooting of shoots. Fossil records suggest that the genus
appeared in the late Paleocene or early Eocene (i.e., 50-60 million years BP).
According to one commonly used classification, the genus is comprised of 29
species divided into six sections, but a number of phylogenetic inconsistencies
remain. Natural hybridization both within and among sections is extensive and
is believed to have played a major role in the evolution of extant species of
Populus. Both neutral molecular markers and adaptive traits reveal high levels
of genetic variation within populations. Deviations from Hardy—Weinberg equi-
librium are commonly detected in molecular marker studies. These deviations
typically have small to moderate magnitudes and tend to be caused by heterozy-
gote deficiency, indicating the possible existence of population substructure. Genetic
differentiation among populations is much stronger for adaptive traits than for
neutral markers, which suggests that divergent selection has played a dominant
role in shaping patterns of adaptive genetic variation. Molecular and bioinfor-
matic resources are actively being developed for multiple species of Populus,
which makes this genus an excellent system for studying tree genetics and
genomics.
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1 Dendrological Overview

1.1 Morphology

Species of the genus Populus (commonly known as aspens, cottonwoods, and
poplars) are deciduous or, rarely, semi-evergreen trees that occur primarily in the
boreal, temperate, and subtropical zones of the northern hemisphere (Eckenwalder,
1996; Dickmann, 2001; Cronk, 2005). Trees from this genus typically have tall and
straight single trunks, with bark that tends to remain thin and smooth until more
advanced ages than in other tree species (Eckenwalder, 1996; Dickmann, 2001).
They rarely live longer than 100-200 years, but are among the fastest growing
temperate trees and can reach large sizes. A notable example is black cottonwood
(Populus trichocarpa), which can exceed 60 m in height and reach up to 3 m in
diameter (DeBell, 1990).

Leaves are alternate and simple, with pinnato-palmate venation, and petioles
are often transversally flattened distally (Eckenwalder, 1996). Leaf size, shape,
and toothing are extremely variable among species, but also within a single tree
and among trees within a species (e.g., Fig. 3 in Eckenwalder, 1996; Fig. 4 in
Dickmann, 2001). Within-tree and within-species variation in leaf characteris-
tics can largely be attributed to two sources of developmental heteromorphism
(Eckenwalder, 1980). First, heteroblasty (i.e., differences in leaf characteristics
between juvenile and adult trees) is common in Populus. Second, there is substantial
seasonal heterophylly because shoots on Populus trees have both preformed leaves
(i.e., expanded from well-formed primordia that overwinter in vegetative buds) and
neoformed leaves (i.e., initiated during the current growing season). Preformed
and neoformed leaves can differ substantially (e.g., Critchfield, 1960), with pre-
formed leaf characteristics typically having higher taxonomic value (Eckenwalder,
1996).

Except for P. lasiocarpa, Populus species are mostly dioecious, although
the occurrence of hermaphroditic trees has been reported in multiple species
(Rottenberg, 2000; Rowland et al., 2002; Cronk, 2005; Slavov et al., 2009). Both
male and female flowers are grouped in pendent catkins. Perianths are strongly
reduced, with 5-60 stamens or 2—4 carpels borne on wide floral disks (Boes
and Strauss, 1994; Eckenwalder, 1996). After pollination, female flowers develop
into capsules that, upon dehiscence, release 2-50 light seeds (>300,000 seeds/kg;
Schreiner, 1974) with cottony hairs (Boes and Strauss, 1994; Eckenwalder, 1996).

Winter twigs range from slender to moderately stout (more rarely stout), from
glabrous to lightly pubescent, and can be yellow- or greenish-brown, reddish,
or gray, typically with conspicuous lighter-colored lenticels (Seiler and Peterson,
http://www.cnr.vt.edu/dendro/). Vegetative buds are long (0.5-2.5 cm), conical, and
sharp-pointed (Seiler and Peterson, http://www.cnr.vt.edu/dendro/). They are cov-
ered by several bud scales, the most basal of which is oriented away from the
stem, and are often impregnated with resinous hydrophobic exudates (Eckenwalder,
1996). Reproductive buds are often found in clusters and, in some species, are
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distinguishable between the sexes and from vegetative buds based on size and shape
(Stanton and Villar, 1996).

1.2 Habitat

Most species of Populus have wide native ranges, often spanning more than
20 degrees of latitude and a great diversity of climates and soils (Eckenwalder, 1996;
Dickmann, 2001). Populus trees grow in a striking variety of habitats, ranging from
hot and arid, desert-like sites in central Asia and northern and central Africa to
alpine or boreal forests in Europe and North America (e.g., Fig. 1). They are shade-
and drought-intolerant, and seed establishment typically depends on major distur-
bances, such as fire, floods, or ice scours (Romme et al., 1995, 1997; Rood et al.,
2007).

Populus trees tend to occur in two general categories of habitats. First, many
species typically grow in riparian areas and wetlands characterized by seasonal
flooding and high water tables, with optimal establishment conditions occurring on
fresh silt and sand, immediately following the recession of water from point bars and
gravel bars (Braatne et al., 1996; Dickmann, 2001). One example is black cotton-
wood (P. trichocarpa), which is common in riparian areas of the Pacific Northwest
of North America (Fig. 1a). Some riparian species, however, are extremely phreato-
phytic (i.e., deep-rooting). Euphrates poplar (P. euphratica), for example, can grow
under remarkably hot, dry, and high-salinity conditions (e.g., Fig. 1b), with water
tables as deep as 10—13 m (Ma et al., 1997; Hukin et al., 2005; Ferreira et al.,
2006; Thevs et al., 2008). Second, aspens and some white poplars (section Populus;
Table 1) grow primarily in mountainous or upland habitats. The North-American
quaking aspen (P. tremuloides), for example, occurs at elevations up to 3,500 m (e.g.,
Fig. 1c) and grows best on well-drained, loamy soils, with water tables between 0.6
and 2.5 m, although it can also establish and grow on ash-covered soils, shallow
soils on rock outcrops, landslides, mine waste dumps, and borrow pits (Perala, 1990;
Dickmann, 2001).

1.3 Life History

1.3.1 Sexual Reproduction

Under favorable conditions, Populus trees reach reproductive maturity within
4-8 years in intensively managed plantations and within 10—15 years in natural pop-
ulations (Stanton and Villar, 1996). Reported sex ratios for natural populations of
various Populus species range from female-biased to balanced (approximately 1:1)
and male-biased (reviewed by Farmer, 1996; Braatne et al., 1996; Stanton and Villar,
1996; see also Gom and Rood, 1999; Rowland and Johnson, 2001; Hultine et al.,
2007). Although no consistent pattern has emerged, several of these studies suggest
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Fig. 1 An example of the diverse habitats occupied by species of Populus. (a): P. trichocarpa
along the Willamette River in Oregon, USA (photograph courtesy of Steve DiFazio); (b) P.
euphratica south of the Taklamakan Desert, Xinjiang, China (photograph courtesy of Pavel
Sekerka); (¢) P. tremuloides in the Rocky Mountain National Park, Colorado, USA (photograph
courtesy of Amy Brunner)

that site-specific biases in sex ratio may be present, with female trees predominat-
ing (1) at sites with abundant moisture and nutrients and (2) at lower elevations,
whereas males may be more common at high elevations, as well as in warmer, drier,
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Table 1 Classification of Populus following Eckenwalder (1996)

Section (synonym) Species Distribution
Abaso Eckenwalder Populus mexicana Wesmael Mexico
Turanga Bunge P. euhratica Olivier NE Africa, Asia

P. ilicifolia (Engler) Rouleau E Africa

P. pruinosa Schrenk Asia
Leucoides Spach P. glauca Haines sl * China

P. heterophylla L. USA

P. lasiocarpa Olivier China
Aigeiros Duby P. deltoides Marshall sl * N America

P. fremontii S. Watson USA

P, nigra L. Eurasia, N Africa
Tacamahaca Spach P. angustifolia James N America

P. balsamifera L. N America

P. ciliata Royle Himalayas

P. laurifolia Ledebour Eurasia

P. simonii Carriere E Asia

P. suaveolens Fischer sl ? NE China, Japan

P. szechuanica Schneider E Eurasia

P. trichocarpa Torrey & Gray N America

P. yunnanensis Dode Eurasia
Populus (Leuce Duby) P. adenopoda Maximowicz China

P. alba L.

Europe, N Africa,
Central Asia

P. gamblei Haines E Eurasia
P. grandidentata Michaux N America
P. guzmanantlensis Vazques Mexico

& Cuevas
P. monticola Brandegee Mexico
P. sieboldii Miquel Japan
P. simaroa Rzedowski Mexico

P. tremula L.
P. tremuloides Michaux

Europe, N Africa, NE Asia
N America

4 Sensu lato

and more extreme environments. This biologically interesting hypothesis, however,
needs to be tested through replicated, large-scale studies that adequately account
for (1) developmental differences between the two genders (i.e., male trees in some
species may reach reproductive maturity before female trees, thus possibly skew-
ing sex ratios; Stanton and Villar, 1996) and (2) the extensive clonality which is
characteristic of many species of Populus (discussed below).

With the exception of some subtropical species, flowering occurs before leaf
emergence in early spring (Braatne et al., 1996; Eckenwalder, 1996). Individual
trees flower for 1-2 weeks (Stanton and Villar, 1996; G. T. Slavov and S. P. DiFazio,
unpublished data), but the pollination period in a population can exceed one or
even two months (Braatne et al., 1996). The relative timing of flowering follows
a temperature-dependent progression, with populations at higher-elevations, more
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northern latitudes, and more continental climates flowering later (e.g., DeBell, 1990;
Perala, 1990; Zasada and Phipps, 1990; Braatne et al., 1996). Pollen is dispersed
by wind, and effective long-distance pollination can be extensive (Tabbener and
Cottrell, 2003; Lexer et al., 2005; Pospiskovd and gélkové, 2006; Vanden Broeck
et al., 2006; Slavov et al., 2009). Fertilization occurs within 24 h after a viable
pollen grain has landed on a receptive stigma (Braatne et al., 1996). Capsules typ-
ically dehisce 4—-6 weeks (but in some species and populations from 2-3 weeks
to 3-5 months) after fertilization, which tends to coincide with snowmelt runoff,
when microsites favoring seed establishment are most abundant (Braatne et al.,
1996; Stella et al., 2006). Seeds are produced in great numbers (>25 million per
tree per year, Braatne et al., 1996), and can potentially be dispersed over very
long distances by wind and water (Braatne et al., 1996; Karrenberg et al., 2002),
but direct empirical data on seed dispersal distances are limited (DiFazio, 2002).
Under natural conditions, seeds retain viability for only 1-2 weeks and germination
occurs within 24 h (Braatne et al., 1996; Karrenberg et al., 2002). On appropriate
microsites, seedlings establish in great numbers (e.g., up to 4,000 m=2), but mor-
tality in the first year is typically high (i.e., up to 77-100%), primarily as a result
of desiccation, prolonged flooding, and scouring (Braatne et al., 1996; Karrenberg
et al., 2002; Dixon, 2003; Dixon and Turner, 2006).

1.3.2 Asexual Reproduction

Vegetative propagation is one of the distinctive characteristics of the genus
(Dickmann, 2001). The means of asexual reproduction and the extent of clonal-
ity, however, differ dramatically among species (Braatne et al., 1996; Schweitzer
etal., 2002; Rood et al., 2003, 2007). The North-American quaking aspen (P. tremu-
loides), for example, propagates vegetatively through root sprouting (i.e., formation
of adventitious shoots on shallow lateral roots, a process also referred to as root
suckering; Perala, 1990). Because of the rare opportunities for seedling establish-
ment, root sprouting is believed to have been the primary means of reproduction
of P. tremuloides in the Rocky Mountains over the last century (Romme et al.,
1995, 1997, 2005). The existence of extremely large, and possibly ancient, quak-
ing aspen clones has been reported (Mitton and Grant, 1996), although the direct
verification of extreme clone ages and sizes remains a technical challenge (Ally
et al., 2008; Mock et al., 2008; DeWoody et al., 2008). In other species, such as the
North-American cottonwoods P. balsamifera, P. trichocarpa, and P. angustifolia,
and the European black poplar (P. nigra), asexual reproduction occurs commonly
both through root sprouting and through rooting of shoots from broken branches or
entire tree trunks that have been toppled during storms and floods and then buried
in sediment (Braatne et al., 1996; Rood et al., 2003, 2007; Barsoum et al., 2004,
Smulders et al., 2008). In a third group, including the North-American plains cot-
tonwood (P. deltoides) and Fremont cottonwood (P. fremontii), asexual reproduction
is relatively rare and occurs primarily via rooting of shoots (Braatne et al., 1996;
Gom and Rood, 1999; Schweitzer et al., 2002; Rood et al., 2003, 2007).
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2 Systematics and Evolution

2.1 Fossil Record

Fossil materials, some of which date back to the Cretaceous, have often been
missclassified as belonging to Populus (Cronk, 2005), but the most ancient undis-
puted fossil records (e.g., Manchester et al., 1986, 2006) suggest that the genus
appeared no later than the Eocene, and probably as early as the late Paleocene (about
60 million years BP). Fossil records dating from the Eocene and the Oligocene
are relatively abundant and are available in many parts of the northern hemisphere
(Manchester et al., 1986, 2006; Ramirez and Cevallos-Ferriz, 2000; Iljinskaja,
2003). Presumably, precursors of all extant sections of Populus (Table 1) were
present by the Miocene (Eckenwalder, 1996; Cronk, 2005).

2.2 Relationships to Salix and Other Families

Traditionally, Populus and its “sister” lineage, the genus Salix (willows), have been
considered the only two genera in the Salicaceae family, although some taxonomists
have included other genera, mostly from Eastern Asia (Eckenwalder, 1996). More
recently, however, the Flacourtiaceae family, the closest relative of Salicaceae, was
re-classified, and a number of genera formerly included in Flacourtiaceae are now
assigned to Salicaceae sensu lato, within the Malpighiales order of the “Eurosid I”
clade (Chase et al., 2002; Angiosperm Phylogeny Group, 2003).

The availability of molecular data and sophisticated methods of phylogenetic
analysis has revolutionized plant classification (Soltis and Soltis, 2001; Angiosperm
Phylogeny Group, 2003; Soltis et al., 2005). Recent molecular phylogenetic studies
in Salicaceae (Leskinen and Alstrom-Rapaport, 1999; Hamzeh and Dayanandan,
2004; Cervera et al., 2005; Hamzeh et al., 2006) showed that Populus and Salix
clearly form two separate groups. Interestingly, in one of these studies the presum-
ably most ancient species of Populus (P. mexicana; Eckenwalder, 1996) showed
higher similarity to Salix than to any other species of Populus (Cervera et al., 2005).
While studies designed specifically to clarify the status of P. mexicana will probably
resolve this issue in the near future, identifying the common ancestor of Populus and
Salix, and establishing whether both genera are monophyletic natural groups remain
wide-open questions.

2.3 Classification

The number of species included in the genus Populus varies among classifica-
tions from as few as 22 to as many as 85 (Eckenwalder, 1996). Two reasons
for these drastic differences are the misclassification of natural hybrids (discussed
below) as “true” species and the philosophical differences between “splitter” and
“lumper” taxonomists (Eckenwalder, 1996). One classification that is commonly
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used in recent years is that of Eckenwalder (1996), who recognized 29 species sub-
divided into six sections based on relative morphological similarity and crossability
(Table 1). A consensus cladogram from the 840 most parsimonious trees built based
on 76 morphological characters (Fig. 6 in Eckenwalder, 1996) provided evidence
that all sections except for Tacamahaca are monophyletic. Section Tacamahaca was
split into two monophyletic groups, one comprised of “typical balsam poplars” (e.g.,
P. balsamifera and P. trichocarpa) and the other one comprised of “narrow-leaved,
thin-twigged” species (e.g., P. angustifolia, P. simonii). Combining fossil records
with information from this consensus tree, Eckenwalder (1996) speculated that (1)
after the original spread of the genus from either North America or Asia in the
Paleocene, the two “primitive” subtropical sections, Abaso and Turanga were split
by a vicariance event, (2) temperate habitats were first invaded by species from sec-
tion Leucoides, and (3) the remaining “advanced” sections evolved rapidly in the
Miocene.

More recent molecular studies provide only partial support for this evolu-
tionary scenario and clearly conflict with some of its aspects (Hamzeh and
Dayanandan, 2004; Cervera et al., 2005; Hamzeh et al., 2006). The most parsi-
monious tree based on 151 Amplified Fragment Length Polymorphisms (Cervera
et al., 2005), for example, suggests that section Populus (referred to as Leuce in
this study) is the most “primitive” section in the genus, which is diametrically
opposed to Eckenwalder’s interpretation based on morphological traits. A number of
inconsistencies in the classification of Populus remain. Their successful
resolution will likely require integration of abundant molecular genetic and genomic
data with informative morphological traits and the fossil record (Soltis and Soltis,
2001; Delsuc et al., 2005).

2.4 Natural Hybridization

Hybridization is believed to have played a major role in the evolution of extant
species of Populus (Eckenwalder, 1996; Hamzeh and Dayanandan, 2004; Cervera
etal., 2005; Hamzeh et al., 2006). The existence of relict hybrids (i.e., hybrids occur-
ring far away from the current distribution of one or both of the presumed species),
and extensive contemporary hybridization both within and among sections has been
documented based on morphological traits and molecular markers (e.g., Table 2;
Eckenwalder, 1984a, b, c; Rood et al., 1986; Campbell et al., 1993; Martinsen et al.,
2001; Floate, 2004; Lexer et al., 2005; Hamzeh et al., 2007).

Hybridization plays a key role in Populus domestication (Stettler et al., 1996).
Naturally occurring hybrid zones, for example, provide a tremendous potential for
admixture mapping, which can be a powerful complement to intraspecific genetic
association studies (Lexer et al., 2004, 2007; Lexer and van Loo, 2006; Buerkle and
Lexer, 2008). Finally, zones of hybridization between species of Populus have been
among the primary study systems for the emerging field of community genetics
(Whitham et al., 1999, 2003, 2006, 2008).
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Table 2 Examples of naturally occurring hybrids of Populus

Hybrid Scientific name

P. alba x P. adenopoda P. x tomentosa Carriere
P. alba x P. tremula P. x canescens (Aiton) Smith
P. angustifolia x P. balsamifera P. x brayshawii B. Boivin
P. angustifolia x P. deltoides P. x acuminata Rydb.

P. angustifolia x P. fremontii P. x hinckleyana Correll
P. balsamifera x P. deltoides P. x jackii Sargent

P. deltoides x P. nigra P. x canadensis Moench
P. grandidentata x P. tremuloides P. x smithii B. Boivin

P. trichocarpa x P. deltoides P. x generosa Henry

P. trichocarpa x P. fremontii P. x parryi Sargent

3 Genetic Variation

3.1 Molecular Markers

3.1.1 Allozymes and RFLP

As a result of their (1) obligately outcrossing mating systems, (2) relatively large
population sizes, and (3) extensive long-distance pollen and seed dispersal, species
of the genus Populus have high levels of genetic variation for neutral molecu-
lar markers. Early studies based primarily on allozyme markers and Restriction
Fragment Length Polymorphisms (RFLP) depicted several basic aspects of the
population genetics of Populus species (Table 3). First, levels of polymorphism
(as measured by the average number of alleles per locus, A) and heterozygosity
expected under Hardy-Weinberg equilibrium (He, also referred to as gene diversity;
Nei, 1973) in Populus are close to the mean values for long-lived woody species
(A = 1.8, H. = 0.15) and are higher than those for plants in general (A = 1.5,
H. = 0.11; Hamrick et al., 1992). Second, while deviations from Hardy-Weinberg
equilibrium are not uncommon and can be caused by both deficiency and excess of
heterozygotes, the magnitudes of these deviations are typically small to moderate.
Deviations caused by heterozygote deficiency (i.e., positive values of Fig) are more
common, indicating the possible existence of unaccounted population substructure
(i.e., Wahlund Effect; Hedrick, 2005b). Finally, differentiation among populations
as measured by Fst (Wright, 1965) is typically weak, with differences among popu-
lations accounting for only 1-7% of the genetic variation. The median value of Fgr
for the genus (0.047) is almost two times lower than the mean for long-lived woody
species (Fst = 0.084) and nearly five times lower than that for plants in general
(Fst = 0.228; Hamrick et al., 1992). The weak differentiation among populations
is in good agreement with direct studies of gene flow, the findings of which suggest
that long-distance pollination can be extensive in Populus (Tabbener and Cottrell,
2003; Pospiskova and gélkové, 2006; Vanden Broeck et al., 2006; Slavov et al.,
2009).
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Polymorphism and heterozygosity vary substantially among species of Populus,
and even among studies in the same species (Table 3). Interestingly, however, both
the number of alleles per locus and gene diversity appear to be consistently higher
in P. tremuloides than in any other species of Populus (Table 3). Two life history
peculiarities of P. tremuloides may provide an explanation for its elevated genetic
variation.

First, this species is believed to reproduce almost exclusively asexually over
much of its range (Mitton and Grant, 1996; Romme et al., 1995; 1997, 2005).
Population genetics theory predicts that predominantly and strictly clonal organisms
will have much lower genotypic diversity (i.e., fewer unique genotypes for a given
number of individuals sampled) and (2) higher allelic diversity and heterozygosity
(i.e., as a result of accumulation of mutations known as the “Meselson effect”)
compared to organisms with similar life histories but with predominantly sexual
reproduction (Balloux et al., 2003; Halkett et al., 2005; de Mees et al., 2007). The
first prediction appears to hold only partially in P. tremuloides. Aspen clones span-
ning large areas (i.e., up to 44 ha) have been discovered in the Rocky Mountains
(Mitton and Grant, 1996; Mock et al., 2008; DeWoody et al., 2008; S.P. DiFazio
et al., unpublished data). However, relatively high genotypic diversities have been
observed in most studies (Hyun et al., 1987; Jelinski and Cheliak, 1992; Lund et al.,
1992; Liu and Furnier, 1993; Yeh et al., 1995; Namroud et al., 2005; Mock et al.,
2008), suggesting that sexual reproduction may be more frequent and/or its impact
on the genetic structure of aspen populations may be more persistent than previously
assumed. The second prediction, which under certain conditions holds even for low
rates of asexual reproduction (Yonezawa, 1997; Yonezawa et al., 2004), appears to
be consistent with empirical data. The median gene diversity from six studies of P.
tremuloides (H, = 0.25) is comparable to that from two studies of its “sister” species
P. tremula in Europe (H. = 0.20), and is more than two times higher than that for
other species of Populus (H. = 0.09). This agrees with the general trend in woody
plants (mean He = 0.25 for species with both asexual and sexual reproduction vs.
H. = 0.14 for species that only reproduce sexually; Hamrick et al., 1992).

Second, the frequency of triploid aspen trees, at least in the Rocky Mountains,
may be substantially higher than previously thought (Mock et al., 2008; S.P. DiFazio
et al., unpublished data). The occurrence of triploids at high frequencies is expected
to result in (1) increased gene diversity and (2) heterozygote excess relative to
Hardy-Weinberg predictions for a population of diploids (i.e., because phenotypes
with two different alleles would occur more frequently than in a population com-
prised of strictly diploid individuals; Krieger and Keller, 1998; Ridout, 2000). As
discussed above, gene diversity estimates for P. tremuloides tend to be higher
than those for other species of Populus, but heterozygote excess (i.e., negative
F1s) was observed in only two studies. Thus, although both extensive clonality
and triploidy appear as likely explanations for the high levels of genetic varia-
tion in P. tremuloides, more definitive answers about their relative or combined
effects, as well as about the contribution of other factors (e.g., the possible role of
past hybridization, Barnes, 1967), will come from studies designed to specifically
address these questions.
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3.1.2 Microsatellites

The availability of highly variable microsatellites spurred a recent wave of pop-
ulation genetic studies in Populus (Table 4). Because of the substantially higher
mutation rates of microsatellite loci, results from these studies are not directly
comparable to those based on allozyme and RFLP markers. The general trends dis-
cussed above, however, appear to hold in microsatellite-based studies. Observed
and expected heterozygosities are generally high and fall within the broad range
of values reported for other angiosperm (e.g., Dow et al., 1995; Brondani et al.,
1998; Streiff et al., 1998) and gymnosperm (e.g., Elsik et al., 2000, Table 3 in
Slavov et al., 2004) trees. Heterozygote deficiency is the more common cause for
departures from Hardy-Weinberg equilibrium and is slightly more prevalent than
for allozyme and RFLP markers, presumably because of the much higher rates
of null alleles and allele “drop-out” at microsatellite loci (Ewen et al., 2000).
Differentiation is typically weak and comparable to levels observed for allozyme
and RFLP markers, despite the constraint on Fst imposed by the higher het-
erozygosities of microsatellite markers (Hedrick, 1999; Hedrick, 2005a). Unlike
for allozyme and RFLP markers (Table 3), P. tremuloides does not appear to
have higher microsatellite polymorphism and gene diversity than other species of
Populus (Table 4). It is very likely, however, that this difference exists but remains
undetected. Two of the three microsatellite studies in which polymorphism and
diversity were reported for P. tremuloides were based on the same four loci, two
of which are tri-nucleotide repeats. Tri-nucleotide microsatellites tend to be less
variable than di-nucleotide microsatellites (Chakraborty et al., 1997; Schug et al.,
1998), which were used in most other studies. The third study used 16 loci, all
of which were developed for other species of Populus. Transferring microsatel-
lites across species of Populus can be very successful (Tuskan et al., 2004) but
markers tend to be much less variable in the recipient species than in the species
in which they were developed (e.g., Gonzdlez-Martinez et al., 2004), presumably
because of ascertainment bias (Ellegren et al., 1995). Because of the inherently
high heterogeneity of microsatellite markers, empirical data need to be expanded
considerably before meaningful comparisons among studies and species can
be made.

3.1.3 Nucleotide Diversity

The whole-genome sequence of Populus trichocarpa (Tuskan et al., 2006), which
has been integrated with a detailed genetic map (Kelleher et al., 2007), provides
an excellent resource for understanding the population genetics of the genus.
Information on nucleotide diversity and linkage disequilibrium in Populus is still
less abundant than in other model organisms, but the growing interest in genetic
association studies (Howe et al., 2003; DiFazio, 2005; Gonzalez-Martinez et al.,
2006; Neale and Ingvarsson, 2008; Ingvarsson et al., 2008; see also Chapter
“Nucleotide polymorphism, linkage disequilibrium and complex trait dissection in
Populus™ by Ingvarsson in this volume) will probably create an avalanche of Single
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Nucleotide Polymorphism (SNP) data. Levels of nucleotide diversity appear to vary
substantially among species and genes (Ingvarsson, 2005a, b, 2008; Ingvarsson
et al., 2006; Gilchrist et al., 2006; Hall et al., 2007; Chapter “Nucleotide poly-
morphism, linkage disequilibrium and complex trait dissection in Populus” by
Ingvarsson in this volume), but are generally comparable to those in other tree
species (Gonzédlez-Martinez et al., 2006; Savolainen and Pyhéjarvi, 2007; Chapter
“Nucleotide polymorphism, linkage disequilibrium and complex trait dissection in
Populus” by Ingvarsson in this volume). Interestingly, nucleotide diversity in trees
does not seem to be substantially higher than in other plants, including Arabidopsis
thaliana, an annual characterized by high levels of self-fertilization. Presumably,
this is because (1) longer generation cycles in trees translate into lower neutral sub-
stitution rates per year than in plants with shorter life cycles and (2) the genomes
of many tree species, including those in the genus Populus, may still be affected by
past demographic oscillations (Savolainen and Pyhéjdrvi, 2007; Ingvarsson, 2008).

3.2 Adaptive Traits

Extensive genecological studies have revealed that forest trees typically have high
levels of adaptive genetic variation both within and among populations, and Populus
is no exception (Farmer, 1996; Morgenstern, 1996; Howe et al., 2003; Savolainen
et al., 2007; Aitken et al., 2008). These studies also provided compelling indirect
evidence for the existence of local adaptation (i.e., genotypes originating from a
given habitat tend to have higher fitness in that habitat than genotypes originat-
ing from other habitats; Kawecki and Ebert, 2004). First, genotype-by-environment
(GxE) interactions, a necessary condition for local adaptation, are commonly
detected (Morgenstern, 1996; White et al., 2007). Second, differentiation among
populations is generally much higher for adaptive traits than for neutral genetic
markers (Fig. 2; Merild and Crnokrak, 2001; McKay and Latta, 2002; Howe et al.,
2003; Savolainen et al., 2007), which suggests that divergent selection has played
a dominant role in shaping adaptive genetic variation. Finally, and most impor-
tantly, genecological studies have revealed strong and repeatable correspondence
between clinal genetic variation for adaptive traits and climatic and geographic
factors believed to be important agents of natural selection (Morgenstern, 1996;
St.Clair et al., 2005; Aitken et al., 2008).

Because gene flow is believed to be extensive in most forest trees, the preva-
lence of local adaptation is a paradox. This apparent contradiction can be explained
by (1) reproductive isolation by distance and phenological asynchrony between
populations growing under different climatic conditions, (2) very strong diver-
gent selection, or most likely (3) a complex interaction between these two factors.
Unraveling the relative roles of gene flow and natural selection, as well as the
molecular underpinnings of adaptive genetic variation will be critical for our basic
understanding of the evolution of Populus and other forest trees, and thus for
designing adequate conservation and domestication strategies.
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Fig. 2 Differentiation among populations for neutral genetic markers (Fst; Wright, 1965) and its
equivalent for quantitative traits (Qst; Whitlock, 2008) calculated for the timing of vegetative bud
burst in five species of Populus. Fst values are based on studies listed in Tables 3 and 4 (median
values were used when multiple entries were available for a species). Qs values for P. balsamifera
and P. tremuloides are from Table 1 in Howe et al. (2003), those for P. tremula were reported by Hall
et al. (2007), and those for P. angustifolia and P. trichocarpa were calculated based on unpublished
data (G.T. Slavov and S.P. DiFazio) and data from Dunlap and Stettler (1996), respectively, using
Equation (1) in Howe et al. (2003)

4 Conclusions

1. Populus is comprised of morphologically and ecologically diverse species whose
peculiar life history characteristics (e.g., dioecy, disturbance-dependent estab-
lishment, natural hybridization, clonality) and extensive neutral and adaptive
genetic variation make it a unique model organism for basic and applied genetic
research.

2. The outstanding genetic and genomic resources created over the last two decades
have set the stage for a breakthrough in our understanding of the phylogenet-
ics, population genetics, and molecular underpinnings of adaptation within and
among species of Populus.
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