
6

Metropolis–Hastings Algorithms

“How absurdly simple!”, I cried.
“Quite so!”, said he, a little nettled. “Every problem becomes very
childish when once it is explained to you.”

Arthur Conan Doyle
The Adventure of the Dancing Men

Reader’s guide

This chapter is the first of a series of two on simulation methods based on Markov
chains. Although the Metropolis–Hastings algorithm can be seen as one of the
most general Markov chain Monte Carlo (MCMC) algorithms, it is also one of the
simplest both to understand and explain, making it an ideal algorithm to start
with.

This chapter begins with a quick refresher on Markov chains, just the ba-
sics needed to understand the algorithms. Then we define the Metropolis–
Hastings algorithm, focusing on the most common versions of the algorithm.
We end up discussing the calibration of the algorithm via its acceptance rate in
Section 6.5.

C.P. Robert, G. Casella, Introducing Monte Carlo Methods with R, Use R,
DOI 10.1007/978-1-4419-1576-4_6, © Springer Science+Business Media, LLC 2010

168 6 Metropolis–Hastings Algorithms

6.1 Introduction

For reasons that will become clearer as we proceed, we now make a fundamen-
tal shift in the choice of our simulation strategy. Up to now we have typically
generated iid variables directly from the density of interest f or indirectly
in the case of importance sampling. The Metropolis–Hastings algorithm in-
troduced below instead generates correlated variables from a Markov chain.
The reason why we opt for such a radical change is that Markov chains carry
different convergence properties that can be exploited to provide easier pro-
posals in cases where generic importance sampling does not readily apply. For
one thing, the requirements on the target f are quite minimal, which allows
for settings where very little is known about f . Another reason, as illustrated
in the next chapter, is that this Markov perspective leads to efficient decom-
positions of high-dimensional problems in a sequence of smaller problems that
are much easier to solve.

Thus, be warned that this is a pivotal chapter in that we now introduce a
totally new perspective on the generation of random variables, one that has
had a profound effect on research and has expanded the application of statis-
tical methods to solve more difficult and more relevant problems in the last
twenty years, even though the origins of those techniques are tied with those
of the Monte Carlo method in the remote research center of Los Alamos dur-
ing the Second World War. Nonetheless, despite the recourse to Markov chain
principles that are briefly detailed in the next section, the implementation of
these new methods is not harder than those of earlier chapters, and there is
no need to delve any further into Markov chain theory, as you will soon dis-
cover. (Most of your time and energy will be spent in designing and assessing
your MCMC algorithms, just as for the earlier chapters, not in establishing
convergence theorems, so take it easy!)

6.2 A peek at Markov chain theory

� This section is intended as a minimalist refresher on Markov chains in or-
der to define the vocabulary of Markov chains, nothing more. In case you
have doubts or want more details about these notions, you are strongly
advised to check a more thorough treatment such as Robert and Casella
(2004, Chapter 6) or Meyn and Tweedie (1993) since no theory of con-
vergence is provided in the present book.

A Markov chain {X(t)} is a sequence of dependent random variables

X(0), X(1), X(2), . . . , X(t), . . .

such that the probability distribution of X(t) given the past variables depends
only on X(t−1). This conditional probability distribution is called a transition
kernel or a Markov kernel K; that is,

6.2 A peek at Markov chain theory 169

X(t+1) | X(0), X(1), X(2), . . . , X(t) ∼ K(X(t), X(t+1)) .

For example, a simple random walk Markov chain satisfies

X(t+1) = X(t) + εt ,

where εt ∼ N (0, 1), independently of X(t); therefore, the Markov kernel
K(X(t), X(t+1)) corresponds to a N (X(t), 1) density.

For the most part, the Markov chains encountered in Markov chain Monte
Carlo (MCMC) settings enjoy a very strong stability property. Indeed, a sta-
tionary probability distribution exists by construction for those chains; that is,
there exists a probability distribution f such that ifX(t) ∼ f , thenX(t+1) ∼ f .
Therefore, formally, the kernel and stationary distribution satisfy the equation

(6.1)
∫
X
K(x, y)f(x)dx = f(y).

The existence of a stationary distribution (or stationarity) imposes a pre-
liminary constraint on K called irreducibility in the theory of Markov chains,
which is that the kernel K allows for free moves all over the stater-space,
namely that, no matter the starting value X(0), the sequence {X(t)} has a
positive probability of eventually reaching any region of the state-space. (A
sufficient condition is that K(x, ·) > 0 everywhere.) The existence of a station-
ary distribution has major consequences on the behavior of the chain {X(t)},
one of which being that most of the chains involved in MCMC algorithms
are recurrent, that is, they will return to any arbitrary nonnegligible set an
infinite number of times.

Exercise 6.1 Consider the Markov chain defined by X(t+1) = %X(t) +εt, where
εt ∼ N (0, 1). Simulating X(0) ∼ N (0, 1), plot the histogram of a sample of X(t)

for t ≤ 104 and % = .9. Check the potential fit of the stationary distribution
N (0, 1/(1− %2)).

In the case of recurrent chains, the stationary distribution is also a limiting
distribution in the sense that the limiting distribution of X(t) is f for almost
any initial value X(0). This property is also called ergodicity, and it obviously
has major consequences from a simulation point of view in that, if a given
kernel K produces an ergodic Markov chain with stationary distribution f ,
generating a chain from this kernel K will eventually produce simulations
from f . In particular, for integrable functions h, the standard average

(6.2)
1
T

T∑
t=1

h(X(t)) −→ Ef [h(X)] ,

which means that the Law of Large Numbers that lies at the basis of Monte
Carlo methods (Section 3.2) can also be applied in MCMC settings. (It is then
sometimes called the Ergodic Theorem.)

170 6 Metropolis–Hastings Algorithms

We won’t dabble any further into the theory of convergence of MCMC
algorithms, relying instead on the guarantee that standard versions of these
algorithms such as the Metropolis–Hastings algorithm or the Gibbs sampler
are almost always theoretically convergent. Indeed, the real issue with MCMC
algorithms is that, despite those convergence guarantees, the practical imple-
mentation of those principles may imply a very lengthy convergence time or,
worse, may give an impression of convergence while missing some important
aspects of f , as discussed in Chapter 8.

There is, however, one case where convergence never occurs, namely when,
in a Bayesian setting, the posterior distribution is not proper (Robert, 2001)
since the chain cannot be recurrent. With the use of improper priors f(x)
being quite common in complex models, there is a possibility that the prod-
uct likelihood × prior, `(x) × f(x), is not integrable and that this problem
goes undetected because of the inherent complexity. In such cases, Markov
chains can be simulated in conjunction with the target `(x)×f(x) but cannot
converge. In the best cases, the resulting Markov chains will quickly exhibit
divergent behavior, which signals there is a problem. Unfortunately, in the
worst cases, these Markov chains present all the outer signs of stability and
thus fail to indicate the difficulty. More details about this issue are discussed
in Section 7.6.4 of the next chapter.

Exercise 6.2 Show that the random walk has no stationary distribution. Give
the distribution of X(t) for t = 104 and t = 106 when X(0) = 0, and deduce that
X(t) has no limiting distribution.

6.3 Basic Metropolis–Hastings algorithms

The working principle of Markov chain Monte Carlo methods is quite straight-
forward to describe. Given a target density f , we build a Markov kernel K
with stationary distribution f and then generate a Markov chain (X(t)) using
this kernel so that the limiting distribution of (X(t)) is f and integrals can be
approximated according to the Ergodic Theorem (6.2). The difficulty should
thus be in constructing a kernel K that is associated with an arbitrary density
f . But, quite miraculously, there exist methods for deriving such kernels that
are universal in that they are theoretically valid for any density f !

The Metropolis–Hastings algorithm is an example of those methods.
(Gibbs sampling, described in Chapter 7, is another example with equally uni-
versal potential.) Given the target density f , it is associated with a working
conditional density q(y|x) that, in practice, is easy to simulate. In addition, q
can be almost arbitrary in that the only theoretical requirements are that the
ratio f(y)/q(y|x) is known up to a constant independent of x and that q(·|x)
has enough dispersion to lead to an exploration of the entire support of f . Once

6.3 Basic Metropolis–Hastings algorithms 171

again, we stress the incredible feature of the Metropolis–Hastings algorithm
that, for every given q, we can then construct a Metropolis–Hastings kernel
such that f is its stationary distribution.

6.3.1 A generic Markov chain Monte Carlo algorithm

The Metropolis–Hastings algorithm associated with the objective (target)
density f and the conditional density q produces a Markov chain (X(t))
through the following transition kernel:

Algorithm 4 Metropolis–Hastings
Given x(t),

1. Generate Yt ∼ q(y|x(t)).
2. Take

X(t+1) =

{
Yt with probability ρ(x(t), Yt),
x(t) with probability 1− ρ(x(t), Yt),

where

ρ(x, y) = min
{
f(y)
f(x)

q(x|y)
q(y|x)

, 1
}
.

A generic R implementation is straightforward, assuming a generator for
q(y|x) is available as geneq(x). If x[t] denotes the value of X(t),

> y=geneq(x[t])
> if (runif(1)<f(y)*q(y,x[t])/(f(x[t])*q(x[t],y))){
+ x[t+1]=y
+ }else{
+ x[t+1]=x[t]
+ }

since the value y is always accepted when the ratio is larger than one.
The distribution q is called the instrumental (or proposal or candidate)

distribution and the probability ρ(x, y) the Metropolis–Hastings acceptance
probability. It is to be distinguished from the acceptance rate, which is the
average of the acceptance probability over iterations,

ρ = lim
T→∞

1
T

T∑
t=0

ρ(X(t), Yt) =
∫
ρ(x, y)f(x)q(y|x) dydx.

This quantity allows an evaluation of the performance of the algorithm, as
discussed in Section 6.5.

172 6 Metropolis–Hastings Algorithms

While, at first glance, Algorithm 4 does not seem to differ from Algorithm
2, except for the notation, there are two fundamental differences between the
two algorithms. The first difference is in their use since Algorithm 2 aims at
maximizing a function h(x), while the goal of Algorithm 4 is to explore the
support of the density f according to its probability. The second difference
is in their convergence properties. With the proper choice of a temperature
schedule Tt in Algorithm 2, the simulated annealing algorithm converges to
the maxima of the function h, while the Metropolis–Hastings algorithm is
converging to the distribution f itself. Finally, modifying the proposal q along
iterations may have drastic consequences on the convergence pattern of this
algorithm, as discussed in Section 8.5.

Algorithm 4 satisfies the so-called detailed balance condition,

(6.3) f(x)K(y|x) = f(y)K(x|y) ,

from which we can deduce that f is the stationary distribution of the chain
{X(t)} by integrating each side of the equality in x (see Exercise 6.8).

That Algorithm 4 is naturally associated with f as its stationary distribu-
tion thus comes quite easily as a consequence of the detailed balance condition
for an arbitrary choice of the pair (f, q). In practice, the performance of the
algorithm will obviously strongly depend on this choice of q, but consider
first a straightforward example where Algorithm 4 can be compared with iid
sampling.

Example 6.1. Recall Example 2.7, where we used an Accept–Reject algo-
rithm to simulate a beta distribution. We can just as well use a Metropolis–
Hastings algorithm, where the target density f is the Be(2.7, 6.3) density and the
candidate q is uniform over [0, 1], which means that it does not depend on the
previous value of the chain. A Metropolis–Hastings sample is then generated with
the following R code:

> a=2.7; b=6.3; c=2.669 # initial values
> Nsim=5000
> X=rep(runif(1),Nsim) # initialize the chain
> for (i in 2:Nsim){
+ Y=runif(1)
+ rho=dbeta(Y,a,b)/dbeta(X[i-1],a,b)
+ X[i]=X[i-1] + (Y-X[i-1])*(runif(1)<rho)
+ }

A representation of the sequence (X(t)) by plot does not produce any pattern
in the simulation since the chain explores the same range at different periods. If
we zoom in on the final period, for 4500 ≤ t ≤ 4800, Figure 6.1 exhibits some
characteristic features of Metropolis–Hastings sequences, namely that, for some
intervals of time, the sequence (X(t)) does not change because all corresponding

6.3 Basic Metropolis–Hastings algorithms 173

Fig. 6.1. Sequence X(t) for t = 4500, . . . , 4800, when simulated from the
Metropolis–Hastings algorithm with uniform proposal and Be(2.7, 6.3) target.

Yt’s are rejected. Note that those multiple occurrences of the same numerical value
must be kept in the sample as such; otherwise, the validity of the approximation
of f is lost! Indeed, when considering the entire chain as a sample, its histogram
properly approximates the Be(2.7, 6.3) target. Figure 6.2 shows histograms and
overlaid densities both for this Metropolis–Hastings sample and for an (exact) iid
sample drawn using the rbeta command. The fits are quite similar, and this can
be checked even further using a Kolmogorov–Smirnov test of equality between
the two samples:

> ks.test(jitter(X),rbeta(5000,a,b))

Two-sample Kolmogorov-Smirnov test

data: jitter(X) and rbeta(5000,a,b)
D = 0.0202, p-value = 0.2594
alternative hypothesis: two-sided

which states that both samples are compatible with the same distribution. An
additional (if mild) check of agreement is provided by the moments. For instance,
since the mean and variance of a Be(a, b) distribution are a/(a+ b) and ab/(a+
b)2(a+ b+ 1), respectively, we can compare

X̄ = .301 , S2 = .0205 ,

with the theoretical values of .3 for the mean and .021 for the variance. J

While the MCMC and exact sampling outcomes look identical in Figure
6.2, it is important to remember that the Markov chain Monte Carlo sample
has correlation, while the iid sample does not. This means that the quality
of the sample is necessarily degraded or, in other words, that we need more

174 6 Metropolis–Hastings Algorithms

Fig. 6.2. Histograms of beta Be(2.7, 6.3) random variables with density func-
tion overlaid. In the left panel, the variables were generated from a Metropolis–
Hastings algorithm with a uniform candidate, and in the right panel the random
variables were directly generated using rbeta(n,2.7,6.3).

simulations to achieve the same precision. This issue is formalized through
the notion of effective sample size for Markov chains (Section 8.4.3).

In the symmetric case (that is, when q(x|y) = q(y|x)), the acceptance prob-
ability ρ(xt, yt) is driven by the objective ratio f(yt)/f(x(t)) and thus even the
acceptance probability is independent from q. (This special case is detailed in
Section 6.4.1.) Again, Metropolis–Hastings algorithms share the same feature
as the stochastic optimization Algorithm 2 (see Section 5.5), namely that they
always accept values of yt such that the ratio f(yt)/q(yt|x(t)) is increased com-
pared with the “previous” value f(x(t))/q(x(t)|yt). Some values yt such that
the ratio is decreased may also be accepted, depending on the ratio of the

6.3 Basic Metropolis–Hastings algorithms 175

ratios, but if the decrease is too sharp, the proposed value yt will almost al-
ways be rejected. This property indicates how the choice of q can impact the
performance of the Metropolis–Hastings algorithm. If the domain explored by
q (its support) is too small, compared with the range of f , the Markov chain
will have difficulties in exploring this range and thus will converge very slowly
(if at all for practical purposes).

Another interesting property of the Metropolis–Hastings algorithm that
adds to its appeal is that it only depends on the ratios

f(yt)/f(x(t)) and q(x(t)|yt)/q(yt|x(t)) .

It is therefore independent of normalizing constants. Moreover, since all that
matters is the ability to (a) simulate from q and (b) compute the ratio
f(yt)/q(yt|x(t)), q may be chosen in such a way that the intractable parts
of f are eliminated in the ratio.

� Since q(y|x) is a conditional density, it integrates to one in y and, as
such, involves a functional term that depends on both y and x as well
as a normalizing term that depends on x, namely q(y|x) = C(x)q̃(x, y).
When noting above that the Metropolis–Hastings acceptance probability
does not depend on normalizing constants, terms like C(x) are obviously
excluded from this remark since they must appear in the acceptance prob-
ability, lest it jeopardize the stationary distribution of the chain.

6.3.2 The independent Metropolis–Hastings algorithm

The Metropolis–Hastings algorithm of Section 6.3.1 allows a candidate distri-
bution q that only depends on the present state of the chain. If we now require
the candidate q to be independent of this present state of the chain (that is,
q(y|x) = g(y)), we do get a special case of the original algorithm:

Algorithm 5 Independent Metropolis–Hastings
Given x(t)

1. Generate Yt ∼ g(y).
2. Take

X(t+1) =

Yt with probability min
{
f(Yt) g(x(t))
f(x(t)) g(Yt)

, 1
}

x(t) otherwise.

176 6 Metropolis–Hastings Algorithms

This method then appears as a straightforward generalization of the
Accept–Reject method in the sense that the instrumental distribution is the
same density g as in the Accept–Reject method. Thus, the proposed values
Yt are the same, if not the accepted ones.

Metropolis–Hastings algorithms and Accept–Reject methods (Section 2.3),
both being generic simulation methods, have similarities between them that
allow comparison, even though it is rather rare to consider using a Metropolis–
Hastings solution when an Accept–Reject algorithm is available. In particular,
consider that

a. The Accept–Reject sample is iid, while the Metropolis–Hastings sample is
not. Although the Yt’s are generated independently, the resulting sample
is not iid, if only because the probability of acceptance of Yt depends on
X(t) (except in the trivial case when f = g).

b. The Metropolis–Hastings sample will involve repeated occurrences of the
same value since rejection of Yt leads to repetition of X(t) at time t + 1.
This will have an impact on tests like ks.test that do not accept ties.

c. The Accept–Reject acceptance step requires the calculation of the upper
bound M ≥ supx f(x)/g(x), which is not required by the Metropolis–
Hastings algorithm. This is an appealing feature of Metropolis–Hastings if
computing M is time-consuming or if the existing M is inaccurate and
thus induces a waste of simulations.

Exercise 6.3 Compute the acceptance probability ρ(x, y) in the case q(y|x) =
g(y). Deduce that, for a given value x(t), the Metropolis–Hastings algorithm
associated with the same pair (f, g) as an Accept–Reject algorithm accepts the
proposed value Yt more often than the Accept–Reject algorithm.

The following exercise gives a first comparison of Metropolis–Hastings with
an Accept–Reject algorithm already used in Exercise 2.20 when both algo-
rithms are based on the same candidate.

Exercise 6.4 Consider the target as the G(α, β) distribution and the candidate
as the gamma G([α], b) distribution (where [a] denotes the integer part of a).

a. Derive the corresponding Accept–Reject method and show that, when β = 1,
the optimal choice of b is b = [α]/α.

b. Generate 5000 G(4, 4/4.85) random variables to derive a G(4.85, 1) sample
(note that you will get less than 5000 random variables).

c. Use the same sample in the corresponding Metropolis–Hastings algorithm to
generate 5000 G(4.85, 1) random variables.

d. Compare the algorithms using (i) their acceptance rates and (ii) the estimates
of the mean and variance of the G(4.85, 1) along with their errors. (Hint:
Examine the correlation in both samples.)

6.3 Basic Metropolis–Hastings algorithms 177

Fig. 6.3. Histograms and autocovariance functions from a gamma Accept–
Reject algorithm (left panels) and a gamma Metropolis–Hastings algorithm (right
panels). The target is a G(4.85, 1) distribution and the candidate is a G(4, 4/4.85)
distribution. The autocovariance function is calculated with the R function acf.

Figure 6.3 illustrates Exercise 6.4 by comparing both Accept–Reject and
Metropolis–Hastings samples. In this setting, operationally, the indepen-
dent Metropolis–Hastings algorithm performs very similarly to the Accept–
Reject algorithm, which in fact generates perfect and independent random
variables.

Theoretically, it is also feasible to use a pair (f, g) such that a bound M on
f/g does not exist and thus to use Metropolis–Hastings when Accept–Reject is
not possible. However, as detailed in Robert and Casella (2004) and illus-
trated in the following formal example, the performance of the Metropolis–
Hastings algorithm is then very poor, while it is very strong as long as
sup f/g = M <∞.

178 6 Metropolis–Hastings Algorithms

Example 6.2. To generate a Cauchy random variable (that is, when f corre-
sponds to a C(0, 1) density), formally it is possible to use a N (0, 1) candidate
within a Metropolis–Hastings algorithm. The following R code will do it:

> Nsim=10^4
> X=c(rt(1,1)) # initialize the chain from the stationary
> for (t in 2:Nsim){
+ Y=rnorm(1) # candidate normal
+ rho=dt(Y,1)*dnorm(X[t-1])/(dt(X[t-1],1)*dnorm(Y))
+ X[t]=X[t-1] + (Y-X[t-1])*(runif(1)<rho)
+ }

When executing this code, you may sometimes start with a large value for X(0),
12.788 say. In this case, dnorm(X[t-1]) is equal to 0 because, while 12.788
can formally be a realization from a normal N (0, 1), it induces computational
underflow problems

> pnorm(12.78,log=T,low=F)/log(10)
[1] -36.97455

(meaning the probability of exceeding 12.78 is 10−37) and the Markov chain
remains constant for the 104 iterations! If the chain starts from a more central
value, the outcome will resemble a normal sample much more than a Cauchy
sample, as shown by Figure 6.4 (center right). In addition, very large values of
the sequence will be heavily weighted, resulting in long strings where the chain
remains constant, as shown by Figure 6.4, the isolated peak in the histogram
being representative of such an occurrence. If instead we use for the independent
proposal g a Student’s t distribution with .5 degrees of freedom (that is, if we
replace Y=rnorm(1) with Y=rt(1,.5) in the code above), the behavior of the
chain is quite different. Very large values of Yt may occur from time to time (as
shown in Figure 6.4 (upper left)), the histogram fit is quite good (center left),
and the sequence exhibits no visible correlation (lower left). If we consider the
approximation of a quantity like Pr(X < 3), for which the exact value is pt(3,1)
(that is, 0.896), the difference between the two choices of g is crystal clear in
Figure 6.5, obtained by

> plot(cumsum(X<3)/(1:Nsim),lwd=2,ty="l",ylim=c(.85,1)).

The chain based on the normal proposal is consistently off the true value, while
the chain based on the t distribution with .5 degrees of freedom converges quite
quickly to this value. Note that, from a theoretical point of view, the Metropolis–
Hastings algorithm associated with the normal proposal still converges, but the
convergence is so slow as to be useless. J

We now look at a somewhat more realistic statistical example that corre-
sponds to the general setting when an independent proposal is derived from
a preliminary estimation of the parameters of the model. For instance, when
simulating from a posterior distribution π(θ|x) ∝ π(θ)f(x|θ), this independent

6.3 Basic Metropolis–Hastings algorithms 179

Fig. 6.4. Comparison of two Metropolis–Hastings schemes for a Cauchy target
when generating (left) from a N (0, 1) proposal and (right) from a T1/2 proposal

based on 105 simulations. (top) Excerpt from the chains (X(t)); (center) histograms
of the samples; (bottom) autocorrelation graphs obtained by acf.

proposal could be a normal or a t distribution centered at the MLE θ̂ and with
variance-covariance matrix equal to the inverse of Fisher’s information matrix.

Example 6.3. The cars dataset relates braking distance (y) to speed (x) in a
sample of cars. Figure 6.6 shows the data along with a fitted quadratic curve that
is given by the R function lm. The model posited for this dataset is a quadratic
model

yij = a+ bxi + cx2
i + εij , i = 1, . . . , k, j = 1, . . . ni,

where we assume that εij ∼ N(0, σ2) and independent. The likelihood function
is then proportional to

180 6 Metropolis–Hastings Algorithms

Fig. 6.5. Example 6.2: cumulative coverage plot of a Cauchy sequence generated
by a Metropolis–Hastings algorithm based on a N (0, 1) proposal (upper lines) and
one generated by a Metropolis–Hastings algorithm based on a T1/2 proposal (lower
lines). After 105 iterations, the Metropolis–Hastings algorithm based on the normal
proposal has not yet converged.

(
1
σ2

)N/2
exp

 −1
2σ2

∑
ij

(yij − a− bxi − cx2
i)

2

 ,

where N =
∑
i ni is the total number of observations. We can view this likelihood

function as a posterior distribution on a, b, c, and σ2 (for instance based on a flat
prior), and, as a toy problem, we can try to sample from this distribution with a
Metropolis–Hastings algorithm (since this standard distribution can be simulated
directly; see Exercise 6.12). To start with, we can get a candidate by generating
coefficients according to their fitted sampling distribution. That is, we can use
the R command

> x2=x^2
> summary(lm(y∼x+x2))

to get the output

6.3 Basic Metropolis–Hastings algorithms 181

Fig. 6.6. Braking data with quadratic curve (dark) fitted with the least squares
function lm. The grey curves represent the Monte Carlo sample (a(i), b(i), c(i)) and
show the variability in the fitted lines based on the last 500 iterations of 4000
simulations.

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 2.63328 14.80693 0.178 0.860
x 0.88770 2.03282 0.437 0.664
x2 0.10068 0.06592 1.527 0.133
Residual standard error: 15.17 on 47 degrees of freedom

As suggested above, we can use the candidate normal distribution centered at the
MLEs,

a ∼ N (2.63, (14.8)2), b ∼ N (.887, (2.03)2), c ∼ N (.100, (0.065)2),

σ−2 ∼ G(n/2, (n− 3)(15.17)2),

in a Metropolis–Hastings algorithm to generate samples (a(i), b(i), c(i)). Figure
6.6 illustrates the variability of the curves associated with the outcome of this
simulation. J

182 6 Metropolis–Hastings Algorithms

6.4 A selection of candidates

The study of independent Metropolis–Hastings algorithms is certainly inter-
esting, but their practical implementation is more problematic in that they
are delicate to use in complex settings because the construction of the pro-
posal is complicated—if we are using simulation, it is often because deriving
estimates like MLEs is difficult—and because the choice of the proposal is
highly influential on the performance of the algorithm. Rather than building
a proposal from scratch or suggesting a non-parametric approximation based
on a preliminary run—because it is unlikely to work for moderate to high
dimensions—it is therefore more realistic to gather information about the
target stepwise, that is, by exploring the neighborhood of the current value
of the chain. If the exploration mechanism has enough energy to reach as far
as the boundaries of the support of the target f , the method will eventually
uncover the complexity of the target. (This is fundamentally the same intu-
ition at work in the simulated annealing algorithm of Section 5.3.3 and the
stochastic gradient method of Section 5.3.2.)

6.4.1 Random walks

A more natural approach for the practical construction of a Metropolis–
Hastings proposal is thus to take into account the value previously simulated
to generate the following value; that is, to consider a local exploration of the
neighborhood of the current value of the Markov chain.

The implementation of this idea is to simulate Yt according to

Yt = X(t) + εt,

where εt is a random perturbation with distribution g independent of X(t),
for instance a uniform distribution or a normal distribution, meaning that
Yt ∼ U(X(t) − δ,X(t) + δ) or Yt ∼ N (X(t), τ2) in unidimensional settings.
In terms of the general Metropolis–Hastings algorithm, the proposal density
q(y|x) is now of the form g(y − x). The Markov chain associated with q is
a random walk (as described in Section 6.2) when the density g is symmet-
ric around zero; that is, satisfying g(−t) = g(t). But, due to the additional
Metropolis–Hastings acceptance step, the Metropolis–Hastings Markov chain
{X(t)} is not a random walk. This approach leads to the following Metropolis–
Hastings algorithm, which also happens to be the original one proposed by
Metropolis et al. (1953).

Algorithm 6 Random walk Metropolis–Hastings
Given x(t),

1. Generate Yt ∼ g(y − x(t)).

6.4 A selection of candidates 183

2. Take

X(t+1) =

{
Yt with probability min

{
1, f(Yt)

/
f(x(t))

}
,

x(t) otherwise.

As noted above, the acceptance probability does not depend on g. This
means that, for a given pair (x(t), yt), the probability of acceptance is the
same whether yt is generated from a normal or from a Cauchy distribution.
Obviously, changing g will result in different ranges of values for the Yt’s and
a different acceptance rate, so this is not to say that the choice of g has no
impact whatsoever on the behavior of the algorithm, but this invariance of
the acceptance probability is worth noting. It is actually linked to the fact
that, for any (symmetric) density g, the invariant measure associated with
the random walk is the Lebesgue measure on the corresponding space (see
Meyn and Tweedie, 1993).

Example 6.4. The historical example of Hastings (1970) considers the formal
problem of generating the normal distribution N (0, 1) based on a random walk
proposal equal to the uniform distribution on [−δ, δ]. The probability of acceptance
is then

ρ(x(t), yt) = exp{(x(t)2 − y2
t)/2} ∧ 1.

Figure 6.7 describes three samples of 5000 points produced by this method for
δ = 0.1, 1, and 10 and clearly shows the difference in the produced chains: Too
narrow or too wide a candidate (that is, a smaller or a larger value of δ) results
in higher autocovariance and slower convergence. Note the distinct patterns for
δ = 0.1 and δ = 10 in the upper graphs: In the former case, the Markov chain
moves at each iteration but very slowly, while in the latter it remains constant
over long periods of time. J

As noted in this formal example, calibrating the scale δ of the random walk
is crucial to achieving a good approximation to the target distribution in a
reasonable number of iterations. In more realistic situations, this calibration
becomes a challenging issue, partly tackled in Section 6.5 and reconsidered in
further detail in Chapter 8.

Example 6.5. The mixture example detailed in Example 5.2 from the perspec-
tive of a maximum likelihood estimation can also be considered from a Bayesian
point of view using for instance a uniform prior U(−2, 5) on both µ1 and µ2. The
posterior distribution we are interested in is then proportional to the likelihood.
Implementing Algorithm 6 in this example is surprisingly easy in that we can re-
cycle most of the implementation of the simulated annealing Algorithm 2, already

184 6 Metropolis–Hastings Algorithms

Fig. 6.7. Outcomes of random walk Metropolis–Hastings algorithms for Example
6.4. The left panel has a U(−.1, .1) candidate, the middle panel has U(−1, 1), and
the right panel has U(−10, 10). The upper graphs represent the last 500 iterations
of the chains, the middle graphs indicate how the histograms fit the target, and the
lower graphs give the respective autocovariance functions.

programmed in Example 5.2. Indeed, the core of the R code is very similar except
for the increase in temperature, which obviously is not necessary here:

> scale=1
> the=matrix(runif(2,-2,5),ncol=2)
> curlike=hval=like(x)
> Niter=10^4
> for (iter in (1:Niter)){
+ prop=the[iter,]+rnorm(2)*scale
+ if ((max(-prop)>2)||(max(prop)>5)||
+ (log(runif(1))>like(prop)-curlike)) prop=the[iter,]

6.4 A selection of candidates 185

Fig. 6.8. Impact of the scale of the random walk on the exploration of the modes
in the mixture model: representation of the Markov chain (µ

(t)
1 , µ

(t)
2) on top of the

log-posterior surface with (left and center) scale equal to 1 and (right) scale equal
to 2 based on 104 simulations and 500 simulated observations.

+ curlike=like(prop)
+ hval=c(hval,curlike)
+ the=rbind(the,prop)}

Since the main problem of this target is the existence of two modes, one of which
is smaller than the other, we can compare the impact of different choices of
scale on the behavior of the chain in terms of exploration of both modes and the
attraction therein. When the scale is 1, the modes are highly attractive and, out
of 104 iterations, it is not uncommon to explore only one mode neighborhood,
as shown in Figure 6.8 (left and center) for both modes. If the scale increases to
2, the proposal is diverse enough to reach both modes but at a cost. Out of 104

iterations, the chain only changes values 23 times! For the smaller scale 1, the
number of changes is closer to 100, still a very low acceptance rate. J

An issue that often arises when using random walks on constrained do-
mains is whether or not the random walk should be constrained as well. The
answer to this question is no in that using constraints in the proposal modi-
fies the function g and thus jeopardizes the validity of the ratio of the targets
found in Algorithm 6. When values yt outside the range of f are proposed
(that is, when f(yt) = 0), the proposed value is rejected and the current value
X(t) is duplicated. Obviously, picking a random walk density that often ends
up outside the domain of f is a poor idea in that the chain will be stuck most
of the time! But it is formally correct.

6.4.2 Alternative candidates

While the independent Metropolis–Hastings algorithm only applies in specific
situations, the random walk Metropolis–Hastings algorithm often appears as a
generic Metropolis–Hastings algorithm that caters to most cases. Nonetheless,

186 6 Metropolis–Hastings Algorithms

the random walk solution is not necessarily the most efficient choice in that
(a) it requires many iterations to overcome difficulties such as low-probability
regions between modal regions of f and (b) because of its symmetric features,
it spends roughly half the simulation time revisiting regions it has already
explored. There exist alternatives that bypass the perfect symmetry in the
random walk proposal to gain in efficiency, although they are not always easy
to implement (see, for example, Robert and Casella, 2004).

One of those alternatives is the Langevin algorithm of Roberts and Rosen-
thal (1998) that tries to favor moves toward higher values of the target f by
including a gradient in the proposal,

Yt = X(t) +
σ2

2
∇ log f(X(t)) + σεt , εt ∼ g(ε) ,

the parameter σ being the scale factor of the proposal. When Yt is constructed
this way, the Metropolis–Hastings acceptance probability is equal to

ρ(x, y) = min
{
f(y)
f(x)

g [(x− y)/σ − σ∇ log f(y)/2]
g [(y − x)/σ − σ∇ log f(x)/2]

, 1
}
.

While this scheme may remind you of the stochastic gradient techniques
of Section 5.3.2, it differs from those for two reasons. One is that the scale σ
is fixed in the Langevin algorithm, as opposed to decreasing in the stochastic
gradient method. Another is that the proposed move to Yt is not necessarily
accepted for the Langevin algorithm, ensuring the stationarity of f for the
resulting chain.

Example 6.6. Based on the same probit model of the now well-known Pima.tr
dataset as in Example 3.10, we can use the likelihood function like already
defined on page 85 and compute the gradient in closed form as

grad=function(a,b){
don=pnorm(q=a+outer(X=b,Y=da[,2],FUN="*"))
x1=sum((dnorm(x=a+outer(X=b,Y=da[,2],FUN="*"))/don)*da[,1]-

(dnorm(x=-a-outer(X=b,Y=da[,2],FUN="*"))/
(1-don))*(1-da[,1]))

x2=sum(da[,2]*(
(dnorm(x=a+outer(X=b,Y=da[,2],FUN="*"))/don)*da[,1]-
(dnorm(x=-a-outer(X=b,Y=da[,2],FUN="*"))/

(1-don))*(1-da[,1])))
return(c(x1,x2))
}

When implementing the basic iteration of the Langevin algorithm

> prop=curmean+scale*rnorm(2)
> propmean=prop+0.5*scale^2*grad(prop[1],prop[2])

6.4 A selection of candidates 187

> if (log(runif(1))>like(prop[1],prop[2])-likecur-
+ sum(dnorm(prop,mean=curmean,sd=scale,lo=T))+
+ sum(dnorm(the[t-1,],mean=propmean,sd=scale,lo=T))){
+ prop=the[t-1,];propmean=curmean}

we need to select scale small enough because otherwise grad(prop) returns NaN
given that pnorm(q=a+outer(X=b,Y=da[,2],FUN="*")) is then either 1 or 0.
With a scale equal to 0.01, the chain correctly explores the posterior distribution,
as shown in Figure 6.9, even though it moves very slowly. J

Fig. 6.9. Repartition of the Langevin sample corresponding to the probit posterior
defined in Example 3.10 based on 20 observations from Pima.tr and 5×104 iterations.

The modification of the random walk proposal may, however, further hin-
der the mobility of the Markov chain by reinforcing the polarization around
local modes. For instance, when the target is the posterior distribution of the
mixture model studied in Example 6.5, the bimodal structure of the target
is a hindrance for the implementation of the Langevin algorithm in that the
local mode becomes even more attractive.

188 6 Metropolis–Hastings Algorithms

Example 6.7. (Continuation of Example 6.5) The modification of the
random walk Metropolis–Hastings algorithm is straightforward in that we simply
have to add the gradient drift in the R code. Defining the gradient function

gradlike=function(mu){
deno=.2*dnorm(da-mu[1])+.8*dnorm(da-mu[2])
gra=sum(.2*(da-mu[1])*dnorm(da-mu[1])/deno)
grb=sum(.8*(da-mu[2])*dnorm(da-mu[2])/deno)
return(c(gra,grb))
}

the simulation of the Markov chain involves

> prop=curmean+rnorm(2)*scale
> meanprop=prop+.5*scale^2*gradlike(prop)
> if ((max(-prop)>2)||(max(prop)>5)||(log(runif(1))>like(prop)
+ -curlike-sum(dnorm(prop,curmean,lo=T))+
+ sum(dnorm(the[iter,],meanprop,lo=T)))){
+ prop=the[iter,]
+ meanprop=curmean
+ }
> curlike=like(prop)
> curmean=meanprop

When running this Langevin alternative on the same dataset as in Example 6.5,
the scale needs to be reduced quite a lot for the chain to move. For instance,
using scale=.2 was not small enough for this purpose and we had to lower
it to scale=.1 to start seeing high enough acceptance rates. Figure 6.10 is
representative of the impact of the starting point on the convergence of the chain
since starting near the wrong mode leads to a sample concentrated on this very
mode. The reason for this difficulty is that, with 500 observations, the likelihood
is very peaked and so is the gradient. J

Both examples above show how delicate the tuning of the Langevin al-
gorithm can be. This may explain why it is not widely implemented, even
though it is an easy enough modification of the basic random walk code.

Random walk Metropolis–Hastings algorithms also apply to discrete sup-
port targets. While this sounds more like a combinatoric or an image-
processing setting, since most statistical problems involve continuous parame-
ter spaces, an exception is the case of model choice (see, for example, Robert,
2001, Chapter 7), where the index of the model to be selected is the “param-
eter” of interest.

Example 6.8. Given an ordinary linear regression with n observations,

y|β, σ2, X ∼ Nn(Xβ, σ2In) ,

where X is a (n, p) matrix, the likelihood is

6.4 A selection of candidates 189

Fig. 6.10. Exploration of the modes in the mixture model by a Langevin algorithm:
representation of two Markov chains (µ

(t)
1 , µ

(t)
2) on top of the log-posterior surface

with a scale equal to .1 based on 104 simulations and a simulated dataset of 500
observations.

190 6 Metropolis–Hastings Algorithms

`
(
β, σ2|y, X

)
=
(
2πσ2

)−n/2
exp

[
− 1

2σ2
(y −Xβ)T(y −Xβ)

]
and, under the so-called g-prior of Zellner (1986),

β|σ2, X ∼ Nk+1(β̃, nσ2(XTX)−1) and π(σ2|X) ∝ σ−2

(where the constant g is chosen equal to n), the marginal distribution of y is a
multivariate t distribution,

m(y|X) = (n+ 1)−(k+1)/2π−n/2Γ (n/2)
[
yTy − n

n+ 1
yTX(XTX)−1XTy

− 1
n+ 1

β̃TXTXβ̃

]−n/2
.

As an illustration, we consider the swiss dataset, where the logarithm of the
fertility in 47 districts of Switzerland around 1888 is the variable y to be explained
by some socioeconomic indicators,

> y=log(as.vector(swiss[,1]))
> X=as.matrix(swiss[,2:6])

The covariate matrix X involves five explanatory variables

> names(swiss)
[1] "Fertility" "Agriculture" "Examination" "Education"
[5] "Catholic" "Infant.Mortality"

(that are explained by ?swiss) and we want to compare the 25 models corre-
sponding to all possible subsets of covariates. (In this toy example, the number
of models is small enough to allow for the computation of all marginals and
therefore the true probabilities of all models under comparison.) Following Marin
and Robert (2007), we index all models by vectors γ of binary indicators where
γi = 0 indicates that the corresponding column of X is used in the regression.
(Note that, adopting Marin and Robert’s, 2007, convention, we always include
the intercept in a model.) Using the fast inverse matrix function

inv=function(X){
EV=eigen(X)
EV$vector%*%diag(1/EV$values)%*%t(EV$vector)
}

we then compute the log marginal density corresponding to the model γ, now
denoted as m(y|X, γ), as

lpostw=function(gam,y,X,beta){
n=length(y)
qgam=sum(gam)
Xt1=cbind(rep(1,n),X[,which(gam==1)])

6.4 A selection of candidates 191

if (qgam!=0) P1=Xt1%*%inv(t(Xt1)%*%Xt1)%*%t(Xt1) else{
P1=matrix(0,n,n)}
-(qgam+1)/2*log(n+1)-n/2*log(t(y)%*%y-n/(n+1)*
t(y)%*%P1%*%y-1/(n+1)*t(beta)%*%t(cbind(rep(1,n),
X))%*%P1%*%cbind(rep(1,n),X)%*%beta)

}

The exploration of the space of models can result from a Metropolis–Hastings al-
gorithm that moves around models by changing one model indicator at a time;
that is, given the current indicator vector γ(t), the Metropolis–Hastings proposal

picks one of the p coordinates, say i, and chooses between keeping γ
(t)
i and

switching to 1− γ(t)
i with probabilities proportional to the associated marginals.

The Metropolis–Hastings acceptance probability of the proposed model γ? is then
equal to

min
{
m(y|X, γ?)
m(y|X, γ(t))

m(y|X, γ(t))
m(y|X, γ?)

, 1
}

= 1

since the normalising constants cancel. This means that we do not have to consider
rejecting the proposed model γ? because it is always accepted at the Metropolis–
Hastings step! Running the R function

gocho=function(niter,y,X){
lga=dim(X)[2]
beta=lm(y∼X)$coeff
gamma=matrix(0,nrow=niter,ncol=lga)
gamma[1,]=sample(c(0,1),lga,rep=T)
for (t in 1:(niter-1)){
j=sample(1:lga,1)
gam0=gam1=gamma[t,];gam1[j]=1-gam0[j]
pr=lpostw(gam0,y,X,beta)
pr=c(pr,lpostw(gam1,y,X,beta))
pr=exp(pr-max(pr))
gamma[t+1,]=gam0
if (sample(c(0,1),1,prob=pr))

gamma[t+1,]=gam1}
gamma
}

then produces a sample (approximately) distributed from the posterior distribution
on the set of indicators; that is, on the collection of possible submodels. Based
on the outcome

> out=gocho(10^5,y,X)

the most likely model corresponds to the exclusion of the Agriculture variable
(that is, γ = (1, 0, 1, 1, 1)), with estimated probability 0.4995, while the true
probability is 0.4997. (This model is also the one indicated by lm(y∼X).) Similarly,

192 6 Metropolis–Hastings Algorithms

the second most likely model is γ = (0, 0, 1, 1, 1), with an estimated probability
of 0.237 versus a true probability of 0.234. The probability that each variable is
included within the model is also provided by

> apply(out,2,mean)
[1] 0.66592 0.17978 0.99993 0.91664 0.94499

which, again, indicates that the last three variables of swiss are the most signif-
icant in this analysis. J

The fact that the acceptance probability is always equal to 1 in Example
6.8 is due to the use of the true target probability on a subset of the possible
values of the model indicator.

Exercise 6.5 Starting from the prior distribution

β|σ2, X ∼ Nk+1(β̃, nσ2(XTX)−1) :

a. Show that
Xβ|σ2, X ∼ Nn(Xβ̃, nσ2X(XTX)−1XT)

and that
y|σ2, X ∼ Nn(Xβ̃, σ2(In + nX(XTX)−1XT)) .

b. Show that integrating in σ2 with π(σ2) = 1/σ2 yields the marginal distribu-
tion of y above.

c. Compute the value of the marginal density of y for the swiss dataset.

6.5 Acceptance rates

There are infinite choices for the candidate distribution q in a Metropolis–
Hastings algorithm, and here we discuss the possibility of achieving an “op-
timal” choice. Most obviously, this is not a well-defined concept in that the
“optimal” choice of q is to take q = f , the target distribution, when reason-
ing in terms of speed of convergence. This is obviously a formal result that
has no relevance in practice! Instead, we need to adopt a practical criterion
that allows the comparison of proposal kernels in situations where (almost)
nothing is known about f . One such criterion is the acceptance rate of the
corresponding Metropolis–Hastings algorithm since it can be easily computed
when running this algorithm via the empirical frequency of acceptance. In
contrast to Chapter 2, where the calibration of an Accept–Reject algorithm
was based on the maximum acceptance rate, merely optimizing the accep-
tance rate will not necessarily result in the best algorithm in terms of mixing
and convergence.

6.5 Acceptance rates 193

Fig. 6.11. Cumulative mean plot (left) from a Metropolis–Hastings algorithm
used to generate a N (0, 1) random variable from a double-exponential proposal
distribution L(1) (lighter) and L(3) (black). The center and left panels show the
autocovariance for the L(1) and L(3) proposals, respectively.

Example 6.9. In an Accept–Reject algorithm generating a N (0, 1) sample from
a double-exponential distribution L(α) with density g(x|α) = (α/2) exp(−α|x|),
the choice α = 1 optimizes the acceptance rate (Exercise 2.19). We can use this
distribution as an independent candidate q in a Metropolis–Hastings algorithm.
Figure 6.11 compares the behavior of this L(1) candidate along with an L(3)
distribution, which, for this simulation, produces an inferior outcome in the sense
that it has larger autocovariances and, as a result of this, slower convergence.
Obviously, a deeper analysis would be necessary to validate this statement, but
our point here is that the acceptance rate (estimated) for α = 1 is twice as large,
0.83, as the acceptance rate (estimated) for α = 3, 0.47. J

While independent Metropolis–Hastings algorithms can indeed be opti-
mized or at least compared through their acceptance rate, because this reduces
the number of replicas in the chain {X(t)} and thus the correlation level in
the chain, this is not true for other types of Metropolis–Hastings algorithms,
first and foremost the random walk version.

Exercise 6.6 The inverse Gaussian distribution has the density

f(z|θ1, θ2) ∝ z−3/2 exp
{
−θ1z −

θ2
z

+ 2
√
θ1θ2 + log

√
2θ2

}
on R+ (θ1 > 0, θ2 > 0).

a. A candidate for a Metropolis–Hastings algorithm targeting f is the G(α, β)
distribution. Show that

194 6 Metropolis–Hastings Algorithms

f(x)
g(x)

∝ x−α−1/2 exp
{

(β − θ1)x− θ2
x

}
is maximized in x at

x∗β =
(α+ 1/2)−

√
(α+ 1/2)2 + 4θ2(θ1 − β)
2(β − θ1)

.

b. After maximizing in x, the goal would be to minimize the bound on f/g over
(α, β) for fixed (θ1, θ2). This is impossible analytically, but for chosen values
of (θ1, θ2) we can plot this function of (α, β). Do so using for instance persp.
Do any patterns emerge?

c. The mean of the inverse Gaussian distribution is
√
θ2/θ1, so taking α =

β
√
θ2/θ1 will make the means of the candidate and target coincide. For

θ1 = θ2, match means and find an “optimal” candidate in terms of the
acceptance rate.

The random walk version of the Metropolis–Hastings algorithm, intro-
duced in Section 6.4.1, does indeed require a different approach to acceptance
rates, given the dependence of the candidate distribution on the current state
of the chain. In fact, as already seen in Example 6.4, a high acceptance rate
does not necessarily indicate that the algorithm is behaving satisfactorily since
it may instead correspond to the fact that the chain is moving too slowly on
the surface of f . When x(t) and yt are close, in the sense that f(x(t)) and
f(yt) are approximately equal, the random walk Metropolis–Hastings algo-
rithm leads to the acceptance of yt with probability

min
(
f(yt)
f(x(t))

, 1
)
' 1.

A high acceptance rate may therefore signal a poor convergence pattern as
the moves on the support of f are more limited. Obviously, this is not al-
ways the case. For instance, when f is nearly flat, high acceptance rates are
not indicative of any wrong behavior! But, unless f is completely flat (that
is, it corresponds to a uniform target), there are parts of the domain to be
explored where f takes smaller values and hence where the acceptance prob-
abilities should be small. A high acceptance rate then indicates that those
parts of the domain are not often (or not at all!) explored by the Metropolis–
Hastings algorithm.

In contrast, if the average acceptance rate is low, the successive values of
f(yt) often are small when compared with f(x(t)), which corresponds to the
scenario where the random walk moves quickly on the surface of f since it
often reaches the “borders” of the support of f (or at least when the random
walk explores regions with low probability under f). Again, a low acceptance
rate does not mean that the chain explores the entire support of f . Even with

6.6 Additional exercises 195

a small acceptance rate, it may miss an important but isolated mode of f .
Nonetheless, a low acceptance rate is less of an issue, except from the com-
puting time point of view, because it explicitly indicates that a larger number
of simulations are necessary. Using the effective sample size as a convergence
indicator (see Section 8.4.3) would clearly signal this requirement.

Example 6.10. (Continuation of Example 6.4) The three random walk
Metropolis–Hastings algorithms of Figure 6.7 have acceptance rates equal to

[1] 0.9832
[1] 0.7952
[1] 0.1512

respectively. Looking at the histogram fit, we see that the medium acceptance
rate does better but that the lowest acceptance rate still fares better than the
highest one. J

The question is then to decide on a golden acceptance rate against which to
calibrate random walk Metropolis–Hastings algorithms in order to avoid “too
high” as well as “too low” acceptance rates. Roberts et al. (1997) recommend
the use of instrumental distributions with acceptance rates close to 1/4 for
models of high dimension and equal to 1/2 for the models of dimension 1 or 2.
(This is the rule adopted in the adaptive amcmc package described in Section
8.5.2.) While this rule is not universal (in the sense that it was primarily
designed for a Gaussian environment), we advocate it as a default calibration
goal whenever it can be achieved (which is not always the case). For instance,
if we consider the Metropolis–Hastings algorithm in Example 6.8, there is no
acceptance rate since the acceptance probability is always equal to 1. However,
since the proposal includes the current value in its support, the chain {γ(t)}
has identical values in a row and thus an implicit acceptance (or renewal) rate.
It is equal to 0.1805, much below the 0.25 goal, and the algorithm cannot be
easily modified (for instance, by looking at more alternative moves around the
current model) to reach this token acceptance rate.

6.6 Additional exercises

Exercise 6.7 Referring to Example 2.7, consider a Be(2.7, 6.3) target density.

a. Generate Metropolis–Hastings samples from this density using a range of indepen-
dent beta candidates from a Be(1, 1) to a beta distribution with small variance.
(Note: Recall that the variance is ab/(a+ b)2(a+ b+ 1).) Compare the acceptance
rates of the algorithms.

b. Suppose that we want to generate a truncated beta Be(2.7, 6.3) restricted to
the interval (c, d) with c, d ∈ (0, 1). Compare the performance of a Metropolis–
Hastings algorithm based on a Be(2, 6) proposal with one based on a U(c, d) pro-
posal. Take c = .1, .25 and d = .9, .75.

196 6 Metropolis–Hastings Algorithms

Exercise 6.8 While q is a Markov kernel used in Algorithm 4, it is not the Markov
kernel K of the algorithm.

1. Show that the probability that X(t+1) = x(t) is

ρ(x(t)) =

Z n
1− ρ(x(t), y)

o
q(y|x(t)) dy .

2. Deduce that the kernel K can be written as

K(x(t), y) = ρ(x(t), y)q(y|x(t)) + ρ(x(t))δx(t)(y) .

3. Show that Algorithm 4 satisfies the detailed balance condition (6.3).

Exercise 6.9 Calculate the mean of a gamma G(4.3, 6.2) random variable using

a. Accept–Reject with a gamma G(4, 7) candidate;
b. Metropolis–Hastings with a gamma G(4, 7) candidate;
c. Metropolis–Hastings with a gamma G(5, 6) candidate.

In each case, monitor the convergence across iterations.

Exercise 6.10 Student’s t density with ν degrees of freedom, Tν , is given by

f(x|ν) =
Γ
`
ν+1

2

´
Γ
`
ν
2

´ 1√
νπ

`
1 + x2/ν

´−(ν+1)/2
.

Calculate the mean of a t distribution with ν = 4 degrees of freedom using a Metropolis–
Hastings algorithm with candidate density

a. N (0, 1);
b. t with ν = 2 degrees of freedom.

In each case monitor the convergence across iterations.

Exercise 6.11 Referring to Example 6.3:

1. Use the candidate given in this example to generate a sample (a(i), b(i), c(i)), i =
1, . . . , 500 with a Metropolis–Hastings algorithm. The data is from the dataset
cars.

2. Monitor convergence and check autocorrelations for each parameter across itera-
tions.

3. Make histograms of the posterior distributions of the coefficient estimates, and
provide 95% confidence intervals.

Exercise 6.12 Still in connection with Example 6.3, show that the posterior distribu-
tion on (a, b, c, σ−2) is a standard distribution made of a trivariate normal on (a, b, c)
conditional on σ and the data and a gamma distribution on σ−2 given the data. (Hint:
See Robert, 2001, or Marin and Robert, 2007, for details.)

Exercise 6.13 In 1986, the space shuttle Challenger exploded during takeoff, killing
the seven astronauts aboard. The explosion was the result of an O-ring failure, a splitting
of a ring of rubber that seals the parts of the ship together. The accident was believed to
have been caused by the unusually cold weather (31o F or 0o C) at the time of launch,
as there is reason to believe that the O-ring failure probabilities increase as temperature
decreases. Data on previous space shuttle launches and O-ring failures is given in the
dataset challenger provided with the mcsm package. The first column corresponds to
the failure indicators yi and the second column to the corresponding temperature xi
(1 ≤ i ≤ 24).

6.6 Additional exercises 197

1. Fit this dataset with a logistic regression, where

P (Yi = 1|xi) = p(xi) = exp(α+ βxi)
‹

1 + exp(α+ βxi) ,

using R glm function, as illustrated on page 21. Deduce the MLEs for α and β,
along with standard errors.

2. Set up a Metropolis–Hastings algorithm with the likelihood as target using an expo-
nential candidate for α and a Laplace (double-exponential) candidate for β. (Hint:
Choose the parameters of the candidates based on the MLEs derived in a.)

3. Generate 5000 iterations of the Markov chain and construct a picture similar to
Figure 6.6 to evaluate the variability of p(x) minus the observation dots.

4. Derive from this sample an estimate of the probability of failure at 60o, 50o, and
40o F along with a standard error.

Exercise 6.14 Referring to Example 6.4:

a. Reproduce the graphs in Figure 6.7 for difference values of δ. Explore both small
and large δ’s. Can you find an optimal choice in terms of autocovariance?

b. The random walk candidate can be based on other distributions. Consider generating
a N (0, 1) distribution using a random walk with a (i) Cauchy candidate, and a (ii)
Laplace candidate. Construct these Metropolis–Hastings algorithms and compare
them with each other and with the Metropolis–Hastings random walk with a uniform
candidate.

c. For each of these three random walk candidates, examine whether or not the ac-
ceptance rate can be brought close to 0.25 for the proper choice of parameters.

Exercise 6.15 Referring to Example 6.9:

a. Write a Metropolis–Hastings algorithm to produce Figure 6.11. Note that n L(a)
random variables can be generated at once with the R command

> ifelse(runif(n)>0.5, 1, -1) * rexp(n)/a

b. What is the acceptance rate for the Metropolis–Hastings algorithm with candidate
L(3)? Plot the curve of the acceptance rates for L(α) candidates when α varies
between 1 and 10. Comment.

c. Plot the curve of the acceptance rates for candidates L(0, ω) when ω varies between
.01 and 10. Compare it with those of the L(α) candidates.

d. Plot the curve of the acceptance rates when the proposal is based on a random walk,
Y = X(t) + ε, where ε ∼ L(α). Once again, compare it with the earlier proposals.

Exercise 6.16 In connection with Example 6.8, compare the current implementation
with an alternative where more values are considered at once according to the R code

> progam=matrix(gama[i,],ncol=lga,nrow=lga,byrow=T)

> probam=rep(0,lga)

> for (j in 1:lga){

+ progam[j,j]=1-gama[i,j]

+ probam[j]=lpostw(progam[j,],y,X,betatilde)}

> probam=exp(probam)

> sumam=sum(probam)

> probam=probam/sumam

> select=progam[sample(1:lga,1,prob=probam),]

a. Show that the acceptance probability is different from 1 and involves sumam.
b. Study the speed of convergence of the evaluation of the posterior probability of the

most likely model in comparison with the implementation on page 191.

http://www.springer.com/978-1-4419-1575-7

