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Sequences, Continuity, and Limits

In this chapter, we introduce the fundamental notions of continuity and limit
of a real-valued function of two variables. As in ACICARA, the definitions as
well as proofs of basic results will be given using sequences. There are, actually,
two possible generalizations of real sequences that seem natural in the setting
of two variables. First, functions defined on N with values in R?, and second,
functions defined on N? with values in R. As we shall see, for developing the
notions of continuity and limit of a function of two variables, only the former
is relevant, and it is studied in this chapter. The study of the latter will be
taken up in Chapter 7.

This chapter is organized as follows. Sequences in R? are introduced in
Section 2.1 below and their fundamental properties, including the Bolzano—
Weierstrass Theorem and the Cauchy Criterion, are derived from the corre-
sponding results for sequences in R. We also use the notion of sequence to
introduce basic topological notions of closed and open sets, boundary points,
and interior points, and also the closure and the interior of subsets of R2.
Section 2.2 deals with the notion of continuity, and it is shown here that con-
tinuous functions on path-connected subsets of R? or on closed and bounded
subsets of R? possess several nice properties. An important result known as
the Implicit Function Theorem is also proved in this section. Finally, in Sec-
tion 2.3 we introduce limits of functions of two variables. The definition is
given using sequences, while most of the basic properties are proved using
a simple observation that the existence of limit of a function at a point is
equivalent to the continuity of an associated function at that point.

2.1 Sequences in R?

A sequence in R? is a function from N to R2. Typically, a sequence in R? is
denoted by ((acn,yn)), ((un,vn)), ete. The value of a sequence ((acn,yn)) at
n € N is given by the element (x,,%,) of R?, and this element is called the
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44 2 Sequences, Continuity, and Limits

nth term of that sequence. In case the terms of a sequence ((a:n, yn)) lie in a
subset D of R?, then we say that ((xn, yn)) is a sequence in D.

The notions of boundedness and convergence extend readily from the set-
ting of sequences in R to sequences in R?. Let ((acn, yn)) be a sequence in R?.
We say that ((2,,yn)) is bounded if there is & € R such that |(zy, yn)| < @
for all n € N. The sequence ((acn,yn)) is said to be convergent if there is
(70,%0) € R? that satisfies the following condition: For every ¢ > 0 there is
ng € N such that (z,,y,) € Se(xo,yo) for all n > ng, that is,

|2y — 20| < € and |y, — yo| < € for all n > ng.

In this case, we say that ((xn,yn)) converges to (xo,yo) or that (zo,yo) is
a limit of ((xn,yn)), and write (,,yn) — (xo,Yo0)- ( T, Yn ) does not
converge to (xo,yo), then we write (z,,yn) # (2o,y0); if ((acn,yn)) is not
convergent, then it is said to be divergent.

A sequence ((zn,yn)) in R? gives rise to two sequences (z,,) and (y,) in R,
and vice versa. It turns out that the properties of ((xn, yn)) can be completely
understood in terms of the properties of the sequences (z,,) and (y,) in R.

Proposition 2.1. Given a sequence ((acn,yn)) in R?, we have the following.

(i) If ((acn,yn)) is convergent, then it has a unique limit.
(ii) ((2n,yn)) is bounded <= both (xy,) and (yn) are bounded.
(iii) ((zn,yn)) is convergent <= both (z,) and (yn) are convergent. In fact,
for (z0,y0) € R?, we have (zn,yn) — (20,Y0) <= @n — To and yn — Yo.

Proof. Each of (i), (ii), and (iii) is immediate from the definitions. O

As noted in part (i) of Proposition 2.1, if ((xn,yn)) is a convergent se-
quence in R2, then it has a unique limit in R2. The limit of ((xn,yn)) is
sometimes written as lim, o (Zn, yn) or as lim (z,, yn).

n—oo

Examples 2.2. (i) If ((z,,y,)) is a constant sequence in R?, that is, if
there is (w9,90) € R? such that (z,,yn) = (z0,y0) for all n € N, then
clearly, ((xn,yn)) is convergent and (2, yn) — (o, Yo)-

(i) If ((#n,yn)) is the sequence in R? defined by (25, yn) := (1/n,—1/n) for
all n € N, then clearly, ((zn,yn)) is convergent and (zy,yn) — (0,0).
(iii) The sequence ((zn,y,)) in R? defined by (zy,y,) := (1/n,(—1)") for all

n € N is divergent, since the sequence ((—1)") in R is divergent. &

Basic properties of sequences in R? readily follow from the corresponding
properties of sequences in R. For ease of reference, we recall the relevant results
for sequences in R. For proofs, one may refer to pages 45-47 of ACICARA.

Fact 2.3. Let (ay) and (b,) be sequences in R, and let a,b, o, B € R.
(i) If an, — a and b, — b, then a,, + b, — a+b and a,b, — ab.
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(i) If a,, — a, then for any r € R, we have ra, — ra.

(i) If a # 0 and a, # 0 for alln € N, then (1/a,) — (1/a).

(iv) Let ay, — a. If there is £ € N such that a, > « for all n > £, then a > «.
Likewise, if there is m € N such that a,, < § for all n > m, then a < f3.

(v) If ap, — a and a, > 0 for all n € N, then at/* — ql/k for any k € N.

(vi) (Sandwich Theorem in R) If (b,) and (c,) are sequences such that
b, — a and ¢, — a, and if there is m € N such that b, < a,, < ¢, for all
n > m, then a, — a.

A few of these facts yield the result that sums, dot products, and scalar
multiples of sequences in R? converge, respectively, to the sums, dot products,
and scalar multiples of the corresponding limits.

Proposition 2.4. Let ((zn,yn)) and ((un,vy)) be sequences in R?, and let
(xoayo)’ (anUO) S R2.

(1) If (xnv yN) - (3507?/0) and (un» vn) - (’LL(),’U()), then (xn» yn)+(un» vn) -
(w0, yo) + (uo, vo) and (T, Yn) - (Un, va) — (20, Yo) - (uo, o).
(ﬁ) If (xna yn) - (370’ yO): then for any r € R, 7‘(1‘n, yn) - T(x0> yo)-

Proof. Tmmediate consequence of part (iii) of Proposition 2.1 together with
parts (i) and (ii) of Fact 2.3. O

Analogues of properties of sequences in R that depend on order relations,
are considered in Exercise 2.

Subsequences and Cauchy Sequences

Let ((xn, yn)) be a sequence in R2. If ny,ng, . .. are positive integers such that
ny < niy1 for each k € N, then the sequence ((acnk,ynk)), whose terms are
(Zny s Yni)s (Tng, Yna)s - - -, is called a subsequence of (2, yn)). The sequence
((acn,yn)) is said to be Cauchy if for every ¢ > 0 there is ng € N such that
|2y — 2| < € and |y, — ym| < € for all n,m > ng. It is clear that ((xn,yn))
is Cauchy if and only if both (z,) and (y,) are Cauchy sequences in R.

Let us recall the following basic facts about sequences in R. For proofs,
one may refer to pages 45, 56, and 58 of ACICARA.

Fact 2.5. Let (ay,) be a sequence in R. Then we have the following.

(i) (an) is convergent = (ay,) is bounded.
(ii) (Bolzano—Weierstrass Theorem in R) If (ay) is bounded, then (a,)
has a convergent subsequence.
(iil) (an) is convergent <= (ay) is bounded and every convergent subsequence
of (ay) has the same limit.
(iv) (Cauchy Criterion in R) (a,) is Cauchy <= (a,) is convergent.

These facts, in turn, lead to the following results.
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Proposition 2.6. Given a sequence ((xn,y")) in R?, we have the following.

(1) ((xn,yn)) is convergent = ((x",y")) 15 bounded.
(ii) (Bolzano—Weierstrass Theorem) If ((z,yn)) is a bounded sequence,
then ((xn,yn)) has a convergent subsequence.
(iii) ((xn,yn)) is convergent <= ((xn,yn)) is bounded and every convergent
subsequence of ((xn,yn)) has the same limit.
(iv) (Cauchy Criterion) ((zn,yn)) is Cauchy <= ((zn,yn)) is convergent.

Proof. Clearly, (i) is an immediate consequence of parts (ii) and (iii) of
Proposition 2.1 and part (i) of Fact 2.5. To prove (ii), suppose ((x",yn))
is bounded. Then (z,) is a bounded sequence in R and hence by part (ii)
of Fact 2.5, (x,) has a convergent subsequence, say (z,,). Now, (y,) is a
bounded sequence in R and hence so is (yn,). So, by part (ii) of Fact 2.5,
(yn, ) has a convergent subsequence, say (ynkJ) Clearly, ((xnkJ ,ynkj)) is a
convergent subsequence of ((#y,yn)). This proves (ii). Next, if ((zn,yn)) is
convergent, then it is clear that it is bounded and every convergent sub-
sequence of ((a:,,,,y,,,)) has the same limit. To prove the converse, suppose
((xn,yn)) is bounded. By (ii), ((xn,yn)) has a convergent subsequence. Sup-
pose (xo, yo) is the (same) limit for every convergent subsequence of ((xn, yn)) .
If (n, yn) # (z0,y0), then there are € > 0 and positive integers n; < ng < ---
such that max{|z,, — zol, [Yn, — vo|} > € for all k € N. Now, ((zn,,Yn,)) is
bounded and hence by (ii), it has a convergent subsequence. Moreover, this
subsequence must converge to (zg, o). This is a contradiction. Thus (iii) is
proved. Finally, (iv) follows from part (iii) of Proposition 2.1, part (iv) of Fact
2.5, and our earlier observation that ((xn, yn)) is Cauchy if and only if both
() and (yn) are Cauchy sequences in R. O

The result in part (iv) of Proposition 2.6 is sometimes referred to as the
Cauchy completeness of R%. A similar result holds for R™.

Closure, Boundary, and Interior

Let D C R2 We say that D is closed if every convergent sequence in D
converges to a point of D. The set of all points in R? that are limits of
convergent sequences in D is called the closure of D and is denoted by D.
It is clear that D is closed if and only if D = D. A point of R? is said to be
a boundary point of D if there is a sequence in D that converges to it and
also a sequence in R?\ D that converges to it. The set of all boundary points
of D in R? is called the boundary of D (in R?), and is denoted by dD. It
is easy to see that 9D = 9(R? \ D), that is, the boundary of a set coincides
with the boundary of its complement. A relation between the closure and the
boundary is described by the following.

Proposition 2.7. Given any D C R?, we have D = D U 0D.
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Proof. Let (z,y) € D. Then there is a sequence in D converging to (z,y).
Further, if (x,y) € D, then the constant sequence ((xn,yn)) defined by
(Tn,yn) = (z,y) for all n € N gives a sequence in R? \ D converging to
(x,y), and so in this case, (x,y) € 9D. It follows that D C D U dD. On
the other hand, if (z,y) € D U dD, then it is clear, using either a constant
sequence or the definition of D, that (z,y) € D, and so D UJD C D. |

Proposition 2.8. Let D be a nonempty subset of R? such that D # R?. Then
0D is nonempty.

Proof. Since D is nonempty, there is some (x¢,%0) € D, and since D # R?,
there is some (z1,71) € R? \ D. Consider the line segment joining these two
points, that is, consider L := {t € [0,1] : (1 — t)(xo,y0) + t(x1,y1) € D}.
Then L is a nonempty subset of R bounded above by 1. Let ¢* := sup L and
(", y*) := (1 —t*)(xo,y0) + t*(x1,y1). We claim that (z*,y*) is a boundary
point of D. To see this, let (t,) be a sequence in L such that ¢, — t*. Let
(xn»yn) = (1 - tn)(xO»yO) + tn(xhyl) for n € N. Clearly ((xn»yn)) is a
sequence in D that converges to (x*,y*). Further, if t* < 1, then we can
find s, € R for n € N such that s, — t* and t* < s, < 1, and we let
(Un,vn) = (1 — sp)(T0,%0) + sn(x1,y1) for n € N, whereas if t* = 1, then
we let (up,vy) := (z1,y1) for n € N. In any case, we see that ((un,v,)) is a
sequence in R?\ D that converges to (z*,y*). This proves the claim. O

Let D be a subset of R? and let (z0,70) be any point of R2. We say
that (20, o) is an interior point of D if (z¢,y0) € D and (xo,y0) is not a
boundary point of D. It is easy to see that (xo,yo) is an interior point of D
if and only if there is 7 > 0 such that S,(zo,y0) € D. The interior of D is
defined to be the set of all interior points of D. Clearly, the interior of D is a
subset of D. We say that D is open if every point of D is an interior point
of D. The following proposition shows the connection between the notions of
an open set and a closed set.

Proposition 2.9. Let D C R2. Then D is closed if and only if R?\ D is open.

Proof. First, suppose D is a closed set. Let (zg,y0) € R%\ D. If (x0,0) is
not an interior point of R? \ D, then there is a sequence ((#,,y,)) in the
complement of R? \ D, that is, in D, such that (z,,y,) — (z0,0), and so
(z0,90) € D = D, which is a contradiction. This proves that R? \ D is an
open set. Conversely, suppose R? \ D is open. Let ((xn, yn)) be any sequence
in D such that (z,,yn) — (z0,y0) for some (z9,y0) € R% Then (z,yo)
cannot be an interior point of R?\ D. But since R?\ D is open, it follows that
(w0,90) € R?\ D, that is, (9, y0) € D. This proves that D is closed. O

Example 2.10. Let o, 8 € R with @ > 0 and 8 > 0. Consider the sets D :=
{(z,y) € R?: |z[ < aand |y| < 8}, D2 := {(z,y) € R?: |z[ < a and |y| < B},
D3 = {(z,y) € R? : |z| < a and |y| < B}, and Dy = {(z,y) € R? : |z| <
a and |y| < G}. In view of part (iv) of Fact 2.3, we readily see that Dy is
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closed, D, is open, whereas Dy and D3 are neither closed nor open. Further,
for each i = 1,2, 3,4, the closure of D; is D1, the interior of D; is Dy4, and the
boundary of D; is the set {(z,y) € R? : |z| = a and |y| = §}. <&

Remark 2.11. The notions discussed in this section concerning sequences in
R2, closed sets, closure, boundary points, boundary, interior points, interior,
and open sets admit a straightforward extension to R? and more generally, to
R™ for any n € N. To avoid a notational conflict, one may denote a sequence
in R™ by (xg), where the parameter k runs through N and x; € R™ for each
k € N. It may be instructive to formulate precise analogues of the notions and
results in this section for R™ and write down proofs of analogous results in
the general case. This may also be a good opportunity to review the results
in this section. <&

2.2 Continuity

Let D be a subset of R? and let (zg,%0) be any point in D. A function
[+ D — Ris said to be continuous at (zo, yo) if for every sequence ((z,,yn))
in D such that (x,,yn) — (20, Y0), we have f(xn,yn) — f(z0,y0). If f is not
continuous at (xg,yo), then we say that f is discontinuous at (z, yo). When
f is continuous at every (zg,y0) € D, we say that f is continuous on D.

Examples 2.12. (i) If D is any subset of R? and f : D — R is a constant
function on D, that is, if there is ¢ € R such that f(z,y) = ¢ for all
(z,y) € D, then clearly, f is continuous on D.

(i) If f : R? — R is the norm function given by f(z,y) := /22 +y?2 for
(x,y) € R?, then f is continuous on R2. To see this, let (zg,70) € R be any
point and let ((xn, yn)) be a sequence in R? such that (2, y,) — (70, %0)-
Then by part (iii) of Proposition 2.1, the sequences (z,) and (y,) in R
are such that x, — z¢ and y,, — yo. Hence, by parts (i) and (v) of Fact
2.3, we see that /22 +y2 — /22 + y2. Thus f is continuous on R2,

(iii) Consider the coordinate functions p1, ps : R? — R defined by py(z,y) :=
x and py(z,y) ==y for (z,y) € R% Then by part (iii) of Proposition 2.1,
we immediately see that p; and py are continuous on R2.

(iv) Let D C R? and let us fix (zg,y0) € D. Consider

Dy :={zeR:(z,y0) € D} and Dy:={yeR:(z9,y) € D}.

Notice that the set Dy depends on yg, whereas Do depends on xy. Given
any f: D — R, let ¢ : Dy — R and ¢ : Dy — R be functions of one
variable defined by

o(r) = f(x,yo) forze Dy and ¢(y):= f(zo,y) fory e Ds.

These functions will play a useful role in the study of the function f of
two variables around the point (zg, yo). If f is continuous at (zo, yo), then
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¢ is continuous at zp and v is continuous at yo. To see this, let (z,) be
a sequence in Dp such that z, — xg. Then (z,,vy0) — (20, yo) and hence
f(zn,y0) — f(zo,0), that is, ¢(x,,) — ¢(xo). Thus ¢ is continuous at .
Similarly, 1 is continuous at yg. O

Let us recall that the sign of a continuous function of one variable is pre-
served in a neighborhood of that point. More precisely, we have the following.
For a proof, one may refer to page 68 of ACICARA.

Fact 2.13. Let E C R, ¢ € E, and let ¢ : E — R be continuous at c. If
¢(c) > 0, then there is § > 0 such that ¢(x) > 0 for all z € EN (¢ —6,¢c+
0). Likewise, if ¢(c) < 0, then there is 6 > 0 such that ¢p(z) < 0 for all
xe€EN(c—0d,c+0).

A similar result holds for functions of two variables.

Lemma 2.14. Let D C R?, (xg,90) € D, and let f : D — R be a function
that is continuous at (zo,yo). If f(xo,y0) > 0, then there is 6 > 0 such that
f(z,y) > 0 for all (x,y) € D N Ss(xo,yo). Likewise, if f(xo,yo) < 0, then
there is § > 0 such that f(xz,y) <0 for all (z,y) € D N Ss(x0,Yo)-

Proof. First, suppose f(xg,y0) > 0. If there is no § > 0 with the desired
property, then for each n € N, we can find (2, y,) € DNS; (w0, yo) such that
f(@n,yn) < 0. Now (z,,yn) — (20,Y0), and since f is continuous at (xo,yo),
we have f(zn,yn) — f(x0,y0). Hence, by part (iv) of Fact 2.3, f(xo,y0) <0,
which is a contradiction. The proof when f(zg, o) < 0 is similar. |

Proposition 2.15. Let D C R?, (xg,90) € D, 7 € R, and let f,g: D — R be
continuous at (xo,yo). Then f+ g, rf, and fg are continuous at (xo,yo). In
case f(xo,y0) # 0, there is § > 0 such that f(x,y) # 0 for all (z,y) € D N
Ss(xo, yo), and the function 1/ f : DN Ss(xo,yo) — R is continuous at (xo, yo).
In case there is § > 0 such that f(z,y) > 0 for all (z,y) € DN Ss(xo,y0), the
function fY* . DN Ss(xo,y0) — R is continuous at (xo,yo) for every k € N,

Proof. The continuity of f+g, rf, and fg at (zo, yo) follows readily from parts
(i) and (ii) of Fact 2.3. In case f(zo,y0) # 0, we have either f(zg,y0) > 0
or f(xo,y0) < 0. Thus, by Lemma 2.14, there is 6 > 0 such that f(z,y) # 0
for all (z,y) € D N Ss(xo,y0). Now, by part (iii) of Fact 2.3, we see that
the function 1/f : D N Ss(x,y0) — R is continuous at (xg,yo). Finally, the
assertion about the continuity of f1/* at (x,40) is a direct consequence of
part (v) of Fact 2.3. O

As in the case of functions of one variable, we can easily deduce from
Proposition 2.15 the following. Suppose D C R? and f,g : D — R are con-
tinuous at (zo,yo) € D. Then the difference f — g is continuous at (xo, o).
Also, if g(zo,yo) # 0, then the quotient f/g is continuous at (o, yo). Further,
if there is 0 > 0 such that f(x) > 0 for all z € D N Ss(xo,yo), then for every
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positive rational number 7, the function f” is continuous at (xo, yo). Similarly,
if f(zo,y0) > 0, then for every negative rational number r the function f7 is
continuous at (zg, yo)-

Examples 2.16. (i) Using Proposition 2.15 and the above remarks, we see
that every polynomial function on R? is continuous and every rational
function is continuous wherever it is defined, that is, if p(z,y) and ¢(z,y)
are polynomials in two variables and if D := {(z,y) € R? : g(x,y) # 0},
then the rational function f : D — R defined by f(x,y) := p(x,y)/q(x,y)
for (z,y) € D is continuous on D. Moreover, if £ = {(x,y) € R? :
p(z,y) > 0 and ¢(z,y) > 0}, then for any m,n € N, the algebraic function
g : E — R defined by g(x,y) := p(z, )™ /q(z,y)"/" for (z,y) € E, is
continuous on E.

(ii) Consider f:R? — R defined as follows.

fog) o dsotge @D F 00,
o if (2,) = (0,0).

Then f is not continuous at (0,0). To see this, consider a sequence in
R? approaching (0,0) along the line y = x; for example, the sequence
((1/n,1/n)). Then (1/n,1/n) — (0,0), but f(1/n,1/n) — 1/2 % f(0,0).
(iii) Consider a variant of the function in (ii), namely, f : R? — R given by
2

fz,y) = x2x+yy2 if (z,y) # (0,0),

0 if (z,y) = (0,0).

Then f is continuous at (0,0). To see this, note that for any (x,y) € R?,
we have 22 < 22 +y? and consequently, |f(x,y)| < |y|. Hence if ((xn, yn))
is any sequence in R? with (z,,,,) — (0,0), then y,, — 0, and as a result,
f(@n,yn) — 0= f(0,0).

(iv) Consider a variant of the function in (iii), namely, f : R? — R given by

2
fz,y) = x4x+yy2 if (z,y) # (0,0),

0 if (z,y) = (0,0).

Then f(x,y) approaches 0 along every line passing through the origin
[indeed, f(0,y) = 0 and f(z,mz) = mz/(z> + m?) — 0 as z — 0].
However, f is not continuous at (0,0). To see this, consider a sequence
in R? approaching (0,0) along the parabola y = z?; for example, the
sequence ((1/n,1/n?)). Then (1/n,1/n?) — (0,0), but f(1/n,1/n%) —
1/2 # £(0,0).

(v) Consider a variant of the function in (iv), namely, f : R? — R given by
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3
Fla,y) = xf—l—yy? if (z,) # (0,0),

0 if (z,y) = (0,0).

Then f is continuous at (0,0). To see this, use the A.M.-G.M. Inequality
(given, for example, on page 12 of ACICARA) to obtain 2|z2y| < a* + 42,
and hence |f(z,y)| < |#]/2 for all (z,y) € R? Thus, if ((zn,yn)) is any
sequence in R? with (z,,,y,) — (0,0), then we see that z,, — 0 and as a
result, f(zn,yn) — 0= f(0,0). <&

Composition of Continuous Functions

We now show that the composition of continuous functions is continuous. It
may be noted that for functions of two variables, three types of composites
are possible. Thus, the following result is stated in three parts.

Proposition 2.17. Let D C R?, (x0,v0) € D, and let f : D — R be continu-
ous at (xo,yo)-

(i) Suppose E C R is such that f(D) C E. If g : E — R is continuous at
f(xo,y0), then go f: D — R is continuous at (xo,yo)-

(i) Suppose E C R, to € E, and z,y : E — R are such that (x(t),y(t)) € D
for all t € E and (x(to),y(to)) = (xo,y0). If x,y are continuous at to,
then F: E — R defined by F(t) := f(x(t),y(t)) is continuous at ty.

(iii) Suppose E C R2, (ug,v9) € E, and x,y : E — R are such that
(x(u,v),y(u,v)) € D for all (u,v) € E and (x(ug,vo),y(uo,v0)) =
(zo,y0). If x,y are continuous at (ug,vp), then F : E — R defined by
F(u,v) := f(z(u,v),y(u,v)) is continuous at (ug,vg).

Proof. (i) Suppose E and g satisfy the hypotheses in (i). Let ((xn,yn)) be
a sequence in D such that (x,,y,) — (xo,y0). By the continuity of f at
(x0,Y0), we obtain f(xn,yn) — f(z0,%0). Now (f(xn,yn)) is a sequence in
f(D), and hence by the continuity of g at f(xo,yo), we obtain g (f(zn,yn)) —
g (f(zo,y0)). So go f: D — R is continuous at (zg, yo)-

(ii) Suppose E, tg, and the functions z,y satisfy the hypotheses in (ii),
and F is as defined in (ii). Let (¢,) be a sequence in E such that ¢, — to. By
the continuity of = and y at ¢y, we obtain x(t,) — x(to) and y(t,) — y(to).
Thus, by part (iii) of Proposition 2.1, (x(tn),y(tn)) is a sequence in D that
converges to (zo,yo). Hence by the continuity of f at (zo,yo), we obtain
flz(tn),y(tn)) — f(zo,yo0), that is, F(t,) — F(to). So F is continuous at ¢.

(iii) Suppose E, (ug,vp), and the functions z,y satisfy the hypotheses
in (iii), and F' is as defined in (iii). Let (u,,v,) be a sequence in E such
that (un,vn) — (ug,vo). By the continuity of x and y at (ug,vo), we obtain
(U, vn) — x(u0,v0) and y(uy, vy) — y(uo, vo). Thus, by part (iii) of Propo-
sition 2.1, (2(un, vy), y(un, vy)) is a sequence in D that converges to (2o, yo)-
Hence by the continuity of f at (zo,y0), we obtain f(z(wn, vn), y(tn,vy)) —
f(zo,yo), that is, F(un,v,) — F(ug,vo). So F is continuous at (ug,vp). O
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Examples 2.18. (i) By part (i) of Proposition 2.17, f : R> — R defined by
f(x,y) = sin(zy) is continuous at each (zg,yo) € R?, and g : R?> — R
defined by g(z,y) := cos(z + y) is continuous at each (zg,%0) € R?.

(ii) By part (ii) of Proposition 2.17, if f(z,y) is any polynomial in two vari-
ables, then F': R — R defined by F'(t) := f(e',sint) for t € R is continu-
ous at every tg € R.

(iil) By part (iii) of Proposition 2.17, if f(x,y) is any polynomial in two vari-
ables, then F : R? — R defined by F(u,v) := f(sin(uv),cos(u + v)) for
(u,v) € R? is continuous at every (ug,vo) € R2.

(iv) Consider the functions that give the polar coordinates of a point in R?
other than the origin. (See Section 1.3 and, in particular, Fact 1.26.) More
precisely, consider 7 : R? — R and 6 : R? \ {(0,0)} — R defined by

cos_1< . ) if y >0,
r(z,y)

—cosl< v ) if y < 0.
r(z,y)

Then, as seen already in Example 2.12 (ii), the function r is continuous
on R2. Also, we know that cos™' : [~1,1] — R is a continuous function
of one variable. (See, for example, page 252 of ACICARA.) Consequently,
by Proposition 2.15 and part (i) of Proposition 2.17, we see that the
function 6 is continuous at every (zg,%0) € R? for which yo # 0. Also, 6
is continuous on the positive z-axis. To see this, note that if (zg,0) € R?
with zg > 0 and if ((@n,ys)) is any sequence in R? \ {(0,0)} converging

to (o, 0), then
cos ! on
N

and hence 6(z,,y,) — 0. However, at points on the negative z-axis, the
function 6 is discontinuous. To see this, fix (x9,0) € R? with zg < 0.
Clearly, we can find sequences ((x,,y,)) and ((un,v,)) in R?\ {(0,0)}
converging to (z,0) such that y, > 0 and v,, < 0 for all n € N. Now,

_ X _ Zo _
0(zy, =cos™! " — Cos 1( ):cosl—l =,
o) <¢xa+yz> oo Y

whereas

O(tn,vn) = —cos_1< tn ) — —cos_1< o ) =—cos '(-1) = —7.

Vu2 42 |0l

Thus, € is discontinuous at every point of {(z,y) € R? : < 0 and y = 0}.
In fact, given any zg < 0, we can take x,, = u, = xg for all n € N in

r(z,y) = \/x2 + 92 and 6(z,y) =

0(zn, yn)| =

cos1< o )’ = | cosH(1)] = 0,

o]
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the above argument, and this shows that the function from (—o0,0] to
R given by y — 6(xzo,y) is discontinuous at 0. On the other hand, the
functions that give the rectangular coordinates of a point in the (polar)
plane are continuous. More precisely, the functions z,y : R?> — R defined
by x(r,0) := rcosf and y(r,0) := rsind are continuous on R2. <&

Piecing Continuous Functions on Overlapping Subsets

An effective way to construct continuous functions of one variable is to piece
together two continuous function defined on overlapping subsets that intersect
at a single point, provided their values agree at the common point of intersec-
tion. (See, for example, Proposition 3.5 of ACICARA.) We now obtain a similar
result for functions of two variables. A precise statement is given below, and
the key hypothesis in this result is illustrated in Figure 2.1.

Proposition 2.19. Let D; and D be subsets of R? and let fi : D1 — R
and fo : Dy — R be continuous functions such that f1(x,y) = fa(z,y) for all
(z,y) € D1 N Dy. Let D := D1 U D3 and let f: D — R be defined by

T - fi(z,y) if (z,y) € D,
Ty {f2($»y) if (x,y) € Da.

If D; is closed in D, that is, D; N D = D; for i = 1,2, then f is continuous.

Proof. Since fi; and fo agree on D1 N Dag, it is clear that f is well defined.
Assume now that each D; is closed in D for i = 1,2. Fix (zo,y0) € D. Let
((zn,yn)) be a sequence in D such that (zy,yn) — (20,%0). In case there is
ny € N such that (x,,y,) € Dy for all n > nq, then (xo,y0) € D; since Dy
is closed in D; further, by the continuity of f; on D1, we obtain f(z,,y,) =
f1(xn,yn) — f1(xo,y0) = f(xo,y0). Similarly, in case there is no € N such that
(Tn,yn) € Do for all n > ng, then (o, yo) € D2 and f(x4n,yn) — f(x0,y0). In
the remaining case, there are two subsequences ((ze,, e, )) and (T, Ymy))
of ((2n,yn)) such that (z¢,,ye,) € D1 and (@, , Ym,) € D2 for all k € N, and
moreover, N = {{1,0s,...} U{my,mo,...}. Clearly, (z¢,,ve,) — (vo,y0) and
(Tmy» Ymy) — (20, Y0). Now, since each D; is closed in D, we have (xq,yo) €
Dy N Dy; further, since each f; is continuous at (o, yo), we have f (x¢,,ye,) =
f1(@e,ye,) — fi(zo,y0) = f(zo,90) and f (Tmy, Ymy) = f2 (Tmy, Ym,,) —
fa(xo,y0) = f(20,y0). Since N = {l1,0o,...} U{mq,ma,...}, it follows that
f(@n,yn) — f(x0,y0). This proves that f is continuous at (xq,yo)- O

Examples 2.20. (i) Consider the semiopen rectangles Dy := (0,1] x [—1,1]
and Dy := [1,2) x [—1, 1]. (See Figure 2.1.) Note that neither Dy nor Dy is
closed in R?, but each D; is closed in D := D; U D for ¢ = 1, 2. Thus the
hypothesis of Proposition 2.19 is satisfied, and continuous functions on
D; and D5 that agree on Dy N Dy = {1} x [—1, 1] extend to a continuous
function on D.
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Fig. 2.1. Illustration of the conditions D1 N D = D; and D2 N D = D3 in Proposi-
tion 2.19 that are satisfied in Example 2.20(i) and violated in Example 2.20(ii).

(ii) Let Dy be the open disk By (0,0) and let D5 the closure of the disk B, (2, 0),
that is, D1 = {(z,y) € R? : 22 + ¢?> < 1} and Dy = {(x,y) € R? :
(x —2)% 4+ y% < 1}. (See Figure 2.1 (ii).) Consider f; : D; — R and f5 :
Dy — R defined by f1(z,y) := 0 for all (z,y) € Dy and fa(x,y) := 1 for all
(z,y) € Dy. Clearly, f; and f2 are continuous. Moreover, D1 N Dy = () and
hence f: D1 UDs — R as given in Proposition 2.19 is well defined. But f
is not continuous at (1,0), since (z,y,) := (1— 1, 0) — (1,0), whereas
f(@n,yn) = fi(zn,yn) = 0foralln € N, and thus f(2n,yn) /1= f(1,0).
This shows that the hypothesis D; N D = D; for ¢ = 1,2 in Proposition
2.19 cannot be dropped. <

An easy inductive argument shows that the result in Proposition 2.19 can
be extended to piece together continuous functions not just on two overlapping
sets, but on any finite number of sets, provided they agree on all pairwise
intersections and each of the sets is closed in the union of all the sets. For our
purpose, it will suffice to record the following special case of partitioning a set
into four quadrants at a given point.

Corollary 2.21. Let D C R and let f : D — R be a function. Given any
(x0,90) € D, let Dy :={(x,y) € D:x>x¢ andy > yo}, D2 :={(x,y) € D :
x<wxoandy>yo}, D3 :={(x,y) €D :x <xg and y < yo}, Dy :={(x,y) €
D:xz>wx0 andy < yo}, and f; = fip, fori=1,...,4. Then f is continuous
if and only if f; is continuous for each i =1,...,4.

Proof. If f is continuous, then clearly f; is continuous for each ¢ = 1,...,4.
To prove the converse, consider Fy := D1 U Dy and Es := D3 U Dy, and also
gi = fig, for i = 1,2. Using Proposition 2.19, we see that the continuity of fi
and fo implies the continuity of g1, while the continuity of f3 and f; implies
the continuity of go. Further, the continuity of f follows from the continuity
of g1 and go using Proposition 2.19 again. O



2.2 Continuity 55
Characterizations of Continuity

We have chosen to define continuity of a function at a point using sequences.
Alternative definitions are possible, as is shown by the result below.

Proposition 2.22. Let D C R?, (x9,90) € D, and let f : D — R be any
function. Then the following are equivalent.

(i) f is continuous at (o, yo), that is, for every sequence ((Tn,yn)) in D such
that (Xn,yn) — (xo,y0), we have f(xn,yn) — f(xo,Yo0)-
(ii) For every € > 0, there is § > 0 such that |f(z,y) — f(xo,y0)| < € for all
(z,y) € DN Ss(xo,y0)-
(iii) For every open subset V' of R containing f(xo,yo), there is an open subset
U of R? containing (xo,yo) such that f(UN D) CV, that is, f(x,y) €V
for all (z,y) e UND.

Proof. Assume that (i) holds. If (ii) does not hold, then there is € > 0 such
that for every § > 0, there is (z,y) in D N Ss(xo,yo) with the property that
|f(xz,y) — f(zo,y0)] > e. Consequently, for each n € N, there is (z,,y,) in
D NSy (x0,y0) such that |f(z,,yn) — f(zo,y0)| > €. But then (z,,yn) —
(x0,90) and f(zn,yn)# f(x0,y0). This contradicts (i). Thus, (i) = (ii).

Next, assume that (i) holds. Let V' be an open subset of R containing
f(xo,y0). Then there is € > 0 such that (f(zo,y0) — ¢, f(xo,y0) +€) C V.
By (ii), we can find ¢ > 0 such that |f(z,y) — f(xo,v0)| < € for all (z,y) €
DN Ss(z0,y0). Thus, if we let U = Ss(x0,90), then U is an open subset of R?
containing (o, yo) such that f(U N D) C V. Thus, (ii) = (iii).

Finally, assume that (iii) holds. Let ((#,%s)) be any sequence in D such
that (xn,yn) — (z0,%0). Given any ¢ > 0, take V' to be the open interval
(f(x0,v0) — €, f(x0,v0) + €) in R. By (iii), there is an open subset U of R?
containing (zg, yo) such that f(U N D) C V. Since U is open, there is 6 > 0
such that Ss(zo,y0) C U. Further, since (z,,y,) — (xo,¥0), there is ng € N
such that (2,,yn) € Ss(xo,y0) for all n > ng. Consequently, f(x,,y,) is in
(f(xo,y0) — €, f(z0,y0) +€), that is, | f(zn, yn) — f(z0,y0)| < € for all n > ny.
Thus, f(zn,yn) — f(x0,%0), and so (iii) = (i).

This proves the equivalence of (i), (ii), and (iii). O

Corollary 2.23. Let D C R? be open in R? and let f : D — R be any
function. Then f is continuous on D if and only if for every open subset V/
of R, the set f~2(V) :={(z,y) € D: f(z,y) € V} is open in R?.

Proof. Follows easily from Proposition 2.22. O

Example 2.24. Clearly, the intervals (0, 00), (—o00,0) and the set R\ {0} are
open subsets of R. Thus, as a consequence of Corollary 2.23, we see that if
f : R? — R is continuous, then each of the sets {(z,y) € R? : f(z,y) > 0},
{(z,y) € R? : f(z,y) <0}, and {(z,y) € R? : f(x,y) # 0} is open in R%. &
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Continuity and Boundedness

A bounded function need not be continuous. Consider, for example, the func-
tion f: R? — R defined by

1 if both = and y are rational,

0 otherwise.

f(x,y) = {

Clearly, f is bounded but f is not continuous at any point of R2. Also, a
continuous function need not be bounded. For example, ¢ : R? — R and
h:(0,1) x (0,1) — R defined by

gz, y) :==x+y and  h(z,y):=1/(z+y)

are both continuous, but neither g nor h is a bounded function. It may be
noted that the domain of ¢ is closed, but not bounded, whereas the domain
of h is bounded, but not closed. The following result shows that the situation
is nicer if the domain is closed as well as bounded.

Proposition 2.25. Let D C R? be closed and bounded, and let f : D — R be
continuous. Then f is bounded, that is, f(D) := {f(z,y) : (z,y) € D} is a
bounded subset of R. Also, f(D) is a closed subset of R. As a consequence, if

D is nonempty, then f attains its bounds, that is, there are (a,b),(c,d) € D
such that f(a,b) =sup f(D) and f(c,d) = inf f(D).

Proof. Suppose f is not bounded above. Then for each n € N, there is
(zn,yn) € D such that f(x,,y,) > n. Since D is bounded, by the Bolzano—
Weierstrass Theorem (part (i) of Proposition 2.6), the sequence ((@n,yn))
has a convergent subsequence, say ((xnk , ynk)) Suppose (Zn,, s Yn,,) — (T0,Y0)-
Then (zo,y0) € D, since D is closed, and f(xn,,Yn,) — f(xo,y0), since f is
continuous. On the other hand, f(xy, ,yn,) > ni for each k € N, and njy — oo
as k — oo, which leads to a contradiction. Hence f must be bounded above.
Similarly, it can be seen that f is bounded below. Thus f(D) is bounded.
Next, suppose (z,) is a sequence in f(D) such that z, — r for some r € R.
Write z, = f(xn, yn), where (z,,y,) € D for n € N. As before, ((xn, yn)) has
a convergent subsequence, say ((xnk,ynk)), which must converge to a point
(x0,90) of D. Since f is continuous at (zo,Y0), 2n, = f(Tny, Ynr) — f(To,Y0),
and hence r = f(zo, o), which shows that r € f(D). Thus f(D) is closed.
Finally, if D is nonempty, then f(D) is a nonempty bounded subset of R and
thus M := sup f(D) and m := inf f(D) are well defined. By the definition
of supremum and infimum, for each n € N, we can find (ay,by), (¢n,dn) € D
such that M — 711 < flan,bn) < M and m < f(cp,dn) <m+ 711 Consequently,
flan,bp) — M and f(cp,dyn) — m. Since f(D) is closed, M, m € f(D), that
is, f(a,b) =sup f(D) and f(c,d) = inf f(D) for some (a,b), (¢,d) € D. O
Remark 2.26. Subsets of R? (and more generally, of R™) that are both closed
and bounded are often referred to as compact sets. Thus, the above proposition

says that the continuous image of a compact set is compact. For more on
compactness, see Exercise 17. O
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Continuity and Monotonicity

For functions of one variable, there is no direct relationship between continu-
ity and monotonicity. Indeed, it suffices to consider the integer part function
x — [z] and the absolute value function z — |z| to conclude that a mono-
tonic function need not be continuous and a continuous function need not be
monotonic. For functions of two variables, a similar situation prevails. In fact,
using the product order on R?, we have introduced in Chapter 1 two distinct
notions: monotonicity and bimonotonicity. We will show below that neither
of these implies or is implied by continuity.

Examples 2.27. (i) Consider f : [-1,1] x [-1,1] — R defined by f(z,y) :=
xy. Clearly, f is continuous but not monotonic on [—1,1] x [—1,1]. Note,
however, that f is bimonotonically increasing on [—1, 1] x [—1, 1], since we have
Toys + T1y1 — T2y — T1y2 = (v2 — x1)(y2 — y1) for all (x1,y1), (v2,y2) € R

(ii) Conmsider f : [~1,1] x [~1,1] — R defined by f(x,y) = (x + y)3.
Clearly, f is continuous. However, f is not bimonotonic on [—1,1] x [—1,1].
To see this, observe that (z1,y1) := (0,0) and (z2,y2) := (1,1) are points of
[—1,1] x [-1,1] satisfying (z1,y1) < (22,y2) and

f@y) + f(@2,y2) — f(21,92) — fla2,91) =04+8-1-1=6>0,
whereas (u1,v1) := (=1, —1) and (ug, v2) := (0, 0) are points of [-1, 1] x[—1, 1]
satisfying (u1,v1) < (ug2,v2) and

flur,v1) + fluz,v2) — f(ur,v2) — flug,v1) ==8+0+1+1=-6<0.
(iii) Consider f: [—1,1] x [-1,1] — R defined by

1 ifz>0andy >0,
0 otherwise.

It is easy to see that f is monotonically as well as bimonotonically increasing,
but not continuous on [—1,1] x [—1,1]. <&

Continuity, Bounded Variation, and Bounded Bivariation

In general, a function of bounded variation need not be continuous. Likewise
for a function of bounded bivariation. In fact, Example 2.27 (iii) provides
a common counterexample. We have seen earlier that a continuous function
need not be monotonic or bimonotonic. The following example shows that it
need not even be of bounded variation or of bounded bivariation.

Example 2.28. Consider f :[0,1] x [0,1] — R defined by

xycos(m/2x) if x#0,

fz,y) = {0 if = 0.
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Clearly, f is continuous on (0, 1] x [0, 1]. Moreover, since |f(z,y)| < |xy| for
all (z,y) € [0,1] x [0,1], it is readily seen that f is continuous at (0,y) for
each y € [0,1]. Thus, f is continuous on [0, 1] x [0, 1]. Next, given any even
positive integer n, say n = 2k for some k € N, if we consider the points

1
ro=0=9yo and x;:= cand y;=1fori=1,...,n,
n+1-—1
then we have (0,0) = (xo,y0) < (x1,y1) < -+ < (2n,yn) = (1,1) and more-
over, f(z;,y;) = 01if i is even and f(x;,y;) = £x; if 7 is odd. Thus

7
i=1

’ 111 1 11 &K
;If(x“yz) finyia)l =+ 4+ + tod g, =0
Since the set {Zle(l/z) : k € N} is not bounded above (as is shown, for
example, on page 51 of ACICARA), it follows that f is not of bounded variation
on [0,1] x [0,1].

Furthermore, if we let n = 2k and zg,z1,...,z, be as above, but take
m=1y =0,and y; = 1, then 0 = 20 < ;7 < -+ < z, = 1 and
0 = yo < y1 = 1, and moreover, for any ¢ > 0, we have f(x;,0) = 0, whereas
f(zi, 1) =0if i is even and f(x;,1) = £, if ¢ is odd, and thus

ZZ |f(@isyi) + f(xim1,y5-1) — f(@i, y5-1) — f(@io1,95)]

i=1 j=1 i=1

M?r
=

It follows, therefore, that f is not of bounded bivariation on [0,1] x [0,1]. <

Remark 2.29. Using Exercise 38, a refined version of the Jordan decompo-
sition (Propositions 1.12 and 1.17) can be obtained for continuous functions.
Namely, a continuous function of bounded variation is a difference of contin-
uous monotonic functions, whereas a continuous function of bounded bivari-
ation is a difference of continuous bimonotonic functions. <&

Continuity and Convexity

In general, a continuous function is neither convex nor concave. For example,

consider D := [~1,1] x [-1,1] and f : D — R defined by f(z,y) := 23 + 5.
Clearly, f is continuous. But f is neither convex nor concave. To see this,
observe that (—3,—1) = 2(=1,—1)+ 1(0,0) and (3,3) = (1,1) + (0,0),

but f(=3,-3) = —1 > -1=1f(-1,-1) + 1 £(0,0), and f(2,2) =1<
1=1f(1,1)+ }f(0,0). Moreover, a convex function need not be continuous.
For example, if D := {(z,y) € R? : 2% + y? < 1} is the closed unit disk and
f+D — Ris a variant of the norm function defined by

Vaz+y? if 2?9 <1,
f(z,y) = e o o
2 if 2 +y* =1,
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then f is convex on D, but not continuous on D. Here, the continuity of f
fails precisely at the boundary points of D. In fact, we will show that a convex
function is always continuous at the interior points of its domain. First, we
prove a couple of auxiliary results, which may also be of independent interest.

Lemma 2.30. Let a,b,c,d € R with a < b and ¢ < d. Then every real-valued
convex function on the closed rectangle [a,b] x [c,d] in R? is bounded.

Proof. Let D := [a,b] X [e,d] and let f : D — R be any convex function.
Define M := max{f(a,c), f(a,d), f(b,c), f(b,d)}. Let (x,y) € D. Then there
is s in [0, 1] such that = (1 — s)a + sb. Using the convexity of f on D, we see
that f(z,y) < (1 —s)f(a,y) + sf(b,y). Further, there is ¢ € [0, 1] such that
y = (1 —t)c+ td. Again, using the convexity of f on D, we obtain

flay) <A =s)[1=t)f(a,c) +tf(a,d)] +s[(1—1)f(bc)+1f(bd)]
<(1=s)[(1—t)M+tM]+s[(1—t)M +tM] = M.

It follows that M is an upper bound for f. Next, consider the center point
(p,q) == (“3°, 3%) of D and let (u,v) := (a +b— =, c+d — y). Clearly,
(u,v) € D and (p,q) = é(m,y) + %(u,v). Hence using the convexity of f, we
obtain f(p,q) < 5f(z,y) + 5 f(u,v) < §f(x,y) + M, that is, f(z,y) > m,
where m := 2 (f(p,q) — M). It follows that m is a lower bound for f. O

Lemma 2.31. Let D be convezx and open in R?, and let f : D — R be convez.
Also, let [a,b] X [c,d] be a closed rectangle contained in D, where a,b,c,d € R
with a < b and ¢ < d. Then there is K € R such that

[f(2,y) = f(u,0)| <K (Jz —ul+ |y =) for all (z,y), (u,v) € [a,b]x[c, d].

Proof. Since D is open, there is ¢ > 0 such that [a—3,b+d] x [c—9,d+] C D.
By Lemma 2.30, there are m, M € R such that m < f(z,w) < M for all
(z,w) € [a—0,b+ 0] x [c — d,d+ d]. Now, fix any (z,y), (u,v) € [a,b] X [c,d].
The case (z,y) = (u,v) is trivial, and so we will assume that (z,y) # (u,v).
Then ¢ := |x —u| + |y — v| > 0, and we can consider z := u + g(u — )
and w = v+ g(v —y). Since |u — x| < £, that is, —¢ < u —z < ¢, we have
u—0 <z <wu+9J, and hence z € [a — J,b+ §]. Similarly, w € [c — J,d+ d]. In
particular, (z,w) € D. Moreover, it can be easily verified that

b e Ot
R R S AT
Thus (u,v) = (1 —t)(z,y) + t(z,w), where t := £/(£ + §). Since 0 < t < 1,

using the convexity of f on D, we obtain f(u,v) < (1 —1t)f(z,y) + tf(z,w).
Further, since 0 < t < £/0, we see that

u

l
Fl,0) = F(o) < H(w) = Gy < § M —m] = K (jz — ul +]y o).
where K := (M — m)/d. Similarly, f(z,y) — f(u,v) < K (|z —u| + |y — v]).
This proves the desired inequality for |f(u,v) — f(z,y)|. O
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We are now ready to show that a convex function is continuous at all the
interior points of its domain. This is an immediate consequence of the above
lemma. (See also Exercise 10.)

Proposition 2.32. Let D be a convex subset of R? and let f : D — R be
a convez function. Then f is continuous at every interior point of D. In
particular, if D is also open in R?, then f is continuous on D.

Proof. Let (xo,yo) be an interior point of D. Then there is r > 0 such that
R := [xg—7r,20+7] X [yo—7,yo+7] is contained in D. By Lemma 2.31, there is
K € R such that |f(z,y) — f(zo,v0)| < K (|Jx — x0| + |y — yol) for (z,y) € R.
This implies that if ((zn, yn)) is a sequence in D such that (zy, yn) — (x0,%0),
then f(xn,yn) — f(z0,y0). Thus, f is continuous at (zg, yo). O

Continuity and Intermediate Value Property

A result of fundamental importance in one-variable calculus is that continuous
functions possess the intermediate value property (IVP). For ease of reference,
we state this result below; see, for example, Proposition 3.13 of ACICARA.

Fact 2.33. (Intermediate Value Theorem) Let D be a subset of R and let
¢ : D — R be a continuous function. Then ¢ has the IVP on every interval
I C D, that is, if a,b € I with a < b andr € R is between ¢(a) and ¢(b), then
there is ¢ € [a,b] such that ¢(c) = r; in particular, ¢p(I) is an interval in R.

The following result may be viewed as an analogue of Fact 2.33 for real-
valued continuous functions of two variables.

Proposition 2.34 (Bivariate Intermediate Value Theorem). Let D be
a subset of R? and let f : D — R be a continuous function. Then f(E) is an
interval in R for every path-connected subset E of D. In particular, f has the
IVP on every 2-interval in D.

Proof. Suppose E C D is path-connected. Let 21,20 € f(F) and let r be any
real number between z; and z9. Then 21 = f(z1,y1) and 2o = f(x2,y2) for
some (z1, 1), (x2,y2) € E. Since E is path-connected, there is a path I” joining
(21,91) to (z2,y2) that liesin E. Let x,y : [o, 5] — R be continuous functions
such that I" is given by (z(¢),y(t)), t € [, 8]. Consider F : [a, ] — R defined
by F(t) := f(x(t),y(t)). By part (ii) of Proposition 2.17, F' is continuous, and
by Fact 2.33, F has the IVP on [a, 8]. It follows that r = F(tg) for some
to € [a, 5], and hence r € f(E). This proves that f(E) is an interval in R.
Finally, every 2-interval is path-connected (Example 1.5 (iv)), and so in view
of Proposition 1.25, we see that f has the IVP on every 2-interval in D. 0O

The following example shows that the converse of the above result is not
true, that is, the IVP does not imply continuity.
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Example 2.35. Consider f :[0,1] x [0,1] — R defined by

_ feos(t/y) ity o,
foy) = {0 if y = 0.

Then f is not continuous on [0, 1] x [0, 1], because, for example, (0, 1/n7w) —
(0,0), but f(0, 1/nw) = (—=1)" 4 f(0,0) = 0. Note, however, that f is contin-
uous on [0,1] x (0,1]. We show that f has the IVP on [0,1] x [0,1]. Let r € R
be an intermediate value of f, that is, r is between f(z1,y1) and f(z2,y2)
for some (z1,41), (x2,y2) € [0,1] x [0,1]. If y3 > 0 and y2 > 0, then by the
continuity of f on [0,1] x (0,1] and Proposition 2.34, we see that r = f(z,y)
for some (z,y) € I(z, y1),(2sy0)- 1 =y2 =0, then f(z1,y1) = f(w2,92) =0
and there is nothing to prove. Thus we may assume, without loss of gener-
ality, that y1 = 0 and yo > 0. Choose k& € N such that (1/k7) < y2. Now
y1 < (1/(k+2)m) < (1/km) < y2, and therefore cos(1/y) assumes every value
between —1 and 1 as y varies from y; to yo. It follows that r = f(x1,y) for
some y € [y1,y2]. Thus f has the IVP on [0,1] x [0, 1]. O

Corollary 2.36. Let D be a nonempty, path-connected, closed, and bounded
subset of R? and let f : D — R be a continuous function. Then the range
f(D) of f is a closed and bounded interval in R.

Proof. First, note that since D is nonempty, so is f(D). By Proposition 2.25,
f(D) is bounded, and moreover, if m := inf f(D) and M := sup f(D), then
f(D) C [m,M] and m, M € f(D). Further, by Proposition 2.34, f(D) is an
interval in R. It follows that f(D) = [m, M]. ]

Uniform Continuity

The notion of uniform continuity for functions of one variable can be easily
extended to functions of two variables. Let D be a subset of R?. A function
f D — R is said to be uniformly continuous on D if for any sequences
((a:n,yn)) and ((un,vn)) in D such that [(2n,¥Yn) — (tn,vn)| — 0, we have
|f(@n,yn) = f(tn, vn)| — 0.

Specializing one of the two sequences to a constant sequence, we readily see
that a uniformly continuous function is continuous. As in the case of functions
of one variable, the converse is true if the domain is closed and bounded.

Proposition 2.37. Let D C R? be a closed and bounded set. Then every
continuous function on D is uniformly continuous on D.

Proof. Suppose f : D — R is continuous but not uniformly continuous
on D. Then there are sequences ((xn,yn)) and ((un,vn)) in D such that
[(n, yn) — (un,vn)| — 0, but |f(zn,yn) — f(un,vs)| # 0. The latter im-
plies that there are ¢ > 0 and positive integers n; < no < --- such that
| (2 Yny) = f (tny, v, )| > € for all k € N. Now, by the Bolzano-Weierstrass
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Theorem (part (ii) of Proposition 2.6), ((x"k,y"k)) has a convergent sub-

sequence, say ((xnkj,ynkj)). If (xnkj,ynkj) — (z0,90), then (u"kj,vnkj) —
(x0,Y0), because |(xyn,Yn) — (tn,vy)| — 0. Since f is continuous on D, we see

that ‘f(xnkj7ynkj) - f(u"kj7vnkj )' — |f(x0,90) — f(x0,y0)| = 0. But this is

a contradiction, since |f(xnkj,ynkj) — f(unkj,vnkj)| >eforall j e N O

Examples 2.38. (i) Consider f : R? — R defined by f(z,y) :=  + y. Then
it is clear that f is uniformly continuous on R2.

(i) If D C R? and f : D — R is uniformly continuous, then for every fixed
(z0,y0) € D, the functions ¢ : D; — R and ¥ : Dy — R, defined as in
Example 2.12(iv), are uniformly continuous. This follows from the defi-
nition of uniform continuity by specializing one of the coordinates in the
two sequences to a constant sequence.

(iii) Consider D C R? and f : D — R given by
1

D :={(z,y) € R? : z,y € [0,1] and (z,y) # (0,0)} and f(z,y) := r+y

Then f is continuous on D but not uniformly continuous on D. To see
the latter, consider the sequences ((zn,yn)) and ((un,v,)) in D given
by (Zn,yn) = (1/n,0) and (up,v,) := (1/(n + 1), 0) for n € N. We
have |(zn,yn) — (un,vn)| = 1/n(n+1) — 0, but | f(zn, yn) — f(tn, va)| =
[n — (n+1)| =14 0. Alternatively, we could use (ii) above and the fact
that ¢ : (0,1] — R defined by ¢(x) = f(x,0) = 1/z is not uniformly
continuous on (0,1]. (See Example 3.18 (ii) on page 80 of ACICARA.) It
may be noted here that the domain of f is bounded but not closed.

(iv) Consider f : R? — R defined by f(z,y) := 2? + y2. Then f is continuous
on R2, but not uniformly continuous on R2. To see the latter, consider the
sequences ((xn,yn)) and ((un,vn)) in D given by (z,,yn) := (n, 0) and
(Un,vn) = (n—(1/n), 0) for n € N. We have |(n, yn) — (un,vn)| = 1/n —
0, but | £ (s ) — £ (s va)| = |n? — [0 — 2+ (1/n?)]| = 2—(1/n2) /> 0.
Alternatively, we could use (ii) above and the fact that ¢ : R — R defined
by ¢(z) = f(z,0) = 22 is not uniformly continuous on R. (See Example
3.18 (iii) on page 80 of ACICARA.) It may be noted here that the domain
of f is closed but not bounded. On the other hand, the restriction of f to
any bounded subset of R? is uniformly continuous. <&

A criterion for the uniform continuity of a function of two variables that
does not involve convergence of sequences can be given as follows. The result
below may be compared with Proposition 2.22.

Proposition 2.39. Let D C R?. Consider a function f : D — R. Then f is
uniformly continuous on D if and only if it satisfies the following -0 condition:
For every e > 0, there is 6 > 0 such that

(x7y)7(u7v) €D and |($7y) - (U,U)| <0 = If(as,y) _f(uav)| <e€
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Proof. Assume that f is uniformly continuous on D. Suppose the e-J condi-
tion does not hold. Then there is € > 0 such that for any § > 0, we can find
(x,y), (u,v) € D for which |(x,y) — (u,v)| < d, but | f(z,y)—f(u,v)| > e. Con-
sidering 6 := 1/nfor n € N, we obtain sequences ((z,yy)) and ((un,vy)) in D
such that |(zn, yn) — (n,vn)| < |} and | f (2, yn)— f (un, vn)| > eforalln € N.
Consequently, |(2n, Yn) — (tn, vpn)| — 0, but | f(zn, Yn) — f(tn,vn)| + 0. This
contradicts the assumption that f is uniformly continuous on D.

Conversely, assume that the e-§ condition is satisfied. Suppose ((xn,yn))
and ((un,vn)) are any sequences in D such that |(z,,yn) — (un,v,)| — O.
Let € > 0 be given. Then there is 6 > 0 such that if (z,y), (u,v) € D satisfy
|(z,y) — (u,v)| <6, then |f(x,y) — f(u,v)| < e. Now, for this § > 0, we can
find ng € N such that [(2n,yn) — (Un,vn)| < d for all n > ng. Consequently,
|f(zn,yn) — f(un,vn)| < € for all n > ng. Thus |f(@n, yn) — f(tn,vn)] — 0.
This proves the uniform continuity of f on D. O

Implicit Function Theorem

In the study of functions of one variable, one considers the so-called implicitly
defined curves, that is, curves given by equations of the form f(z,y) = 0,
(x,y) € D, where f : D — R is a real-valued function of two variables.
Heuristically, such an equation defines one of the variables as a function of
the other; for example, it may define y as a function of x. In other words,
from the equation f(z,y) = 0, we may be able to solve for y in terms of z. In
fact, this is tacitly assumed when one does implicit differentiation in calculus
of functions of one variable. The following result asserts that it is possible
to solve the equation f(z,y) = 0 locally, around a point (xg,yp) satisfying
f(zo,y0) = 0, provided f is continuous in each variable and is either a strictly
increasing or a strictly decreasing function of y, for each fixed x. Moreover,
the solution y = n(x) is unique and it is a continuous function of z.

Proposition 2.40 (Implicit Function Theorem). Let D C R? and (o, yo)
be an interior point of D, and let f : D — R satisfy f(xo,y0) = 0. Assume
that there is r > 0 with S, (xo,y0) C D such that the following conditions hold.

(a) Given any x € (xg—r,x0+71), the function i : (yo—r,yo+7) — R defined
by Y(y) = f(x,y) is continuous. Also, given any y € (yo — 7,90 + 1), the
function ¢ : (xo —r,xo + 1) — R defined by ¢(x) := f(x,y) is continuous.

(b) Given any x € (xg—1,20+7), the function 1y : (yo—7r,y0+7r) — R defined
by Y¥(y) := f(x,y) is strictly monotonic.

Then there are 6 > 0 and a unique continuous functionn : (xo—3d,x0+0) — R
with n(xo) = yo such that (x,n(x)) € S.(xo,y0) and f(x,n(z)) = 0 for all
x € (xg — 0,x0 +9).

Proof. In view of (b), let us first suppose that ¢ : (yo — 7, yo+7) — R defined
by ¥o(y) := f(xo,y) is strictly increasing on (yo — r,yo + 7).
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Yo+t
Y2 1

Yo 1

Y11

Yo — T

) To T xo+0

Fig. 2.2. Illustration of the proof of the Implicit Function Theorem.

Choose any y1 € (yo — r,y0) and y2 € (Yo, yo + 7). Since f(zo,yo) = 0
and the function vy is strictly increasing on (yo — 7,y0 + 7), we see that
f(zo,y1) < 0 and f(xo,y2) > 0. By continuity, the sign of f is preserved on
small horizontal segments of the lines y = y; and y = y2. (See Figure 2.2.)
More precisely, using (a), we see that the function defined by = —— f(x,y1) is
continuous on (zg —r, g +7r), and hence it follows from Fact 2.13 that there is
01 > 0 with 61 < r such that f(z,y1) < 0forall x € (xg—0d1,xo+0d1). Similarly,
there is do > 0 with d2 < 7 such that f(z,y2) > 0 for all x € (xg — d2, xo + d2).
Let § := min{dy, d2}. Then

flzyy1) <0< f(x,y2) forall z € (g —d, 20 + ).

Thus, given any = € (zg — 6§,z + 9), the function ¢ : (yo — r,50 +r) — R
defined by ¥(y) := f(z,y) satisfies ¥(y1) < 0 < 9(y2). Also by (a), w
continuous. Hence by the IVP of v, there is y € (y1,y2) such that ¢ (y)
that is, f(z,y) = 0. Moreover, since ¥(y1) < ¥(y2), it follows from (b) that w
is strictly increasing on (yo — 7, yo +7), and hence y is uniquely determined by
x. Thus if we write y = n(x), then we obtain a unique function 7 : (o —J, zo+
0) — R such that n(z) € (y1,y2) and f(z,n(x)) =0 for all z € (xg— 4, xo+9).
In particular, since f(zo,y0) = 0 and yo € (y1,y2), we have n(xo) = yo-

To prove the continuity of n, fix any z* € (zg — d,20 + ¢) and let (x,,) be
a sequence in (xg — d, ¢ + 0) such that x,, — z*. We have seen above that
for any = € (zg — §, 29 + 0), the function ¢ : (yo — r,y0 + ) — R defined
by ¥(y) = f(z,y) is strictly increasing. Fix y1,y2 € (yo — 7,0 + ) as above,
so that y1 < n(z) < yo for all x € (xg — 0,20 + J). Let € > 0 be given and
let us suppose € is so small that y; < n(z*) —e < n(x*) + € < yo, that is,
0 < e <min{n(z*) —y1, y2 — n(z*)}. Using (a) and (b), we see that

f(@n,m(a?)—€) — f(a”,n(z")—€) and  f(z",n(z")—€) < f(z”,n(z")) = 0.
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Hence there is n1 € N such that f(z,,n(z*) —¢) <0 for all n > ny. Similarly,
flzn,n(x*) +€) = flz*,n(x*) +¢€) > f(a*,n(z*)) = 0, and hence there is
ng € N such that f(z,,n(z*) +¢€) > 0 for all n > na. Let ng = max{ny,na}.
Then f(zn,n(a*) —e€) < 0 < f(an,n(a*) + €) for all n > ny. But since
f(zn,n(zy)) =0, it follows from (b) that n(z*) — e < n(z,) < n(z*) + ¢, that
is, [n(xzn) — n(x*)| < e for all n > ng. Thus, n(x,) — n(x*). This proves that
7 is continuous on (xg — d, g + 9).

The case in which ¢ : (yo — 7,90 +r) — R defined by ¥o(y) := f(x0,y)
is strictly decreasing on (yo — r,y0 + r) is proved similarly. Alternatively, it
follows from applying the result proved above to — f. O

Example 2.41. Consider f : R? — R defined by f(x,y) = 22 + 3% — 1. Then
C = {(z,y) € R? : f(z,y) = 0} is the unit circle in R?. If (zg,y0) € C and
yo # 0, then we can easily see that the hypotheses of the Implicit Function
Theorem are satisfied, and the “solution” is given by n(z) := v/1 — 22 or by
n(x) := —v/1 — 22 according as yo > 0 or yo < 0. &

Remark 2.42. We have a straightforward analogue of the Implicit Function
Theorem for solving f(z,y) = 0 for x in terms of y. In this situation, condition
(a) in Proposition 2.40 remains the same, while (b) is replaced by the condition
that for any y € (yo — 7,90 + r), the function ¢ : (xg — r,zo +7) — R
defined by ¢(z) := f(x,y) is strictly monotonic. The conclusion would be
that there are 6 > 0 and a unique continuous function £ : (yo — d,y0+9) — R
with £(yo) = xo such that (£(y),y) € S,(xo,y0) and f(£(y),y) = 0 for all
y € (yo — 0,y0 + 6). This can be proved in a manner similar to the proof of
Proposition 2.40. Alternatively, it follows from applying Proposition 2.40 to
the function (z,y) — f(y,x) and the point (yo, xo). <&

An important consequence of the Implicit Function Theorem is that a
continuous real-valued function of one variable that is strictly monotonic in
an interval about a point admits a continuous (and strictly monotonic) inverse,
locally. A more precise statement appears below. This result may be viewed
as a special case of the so-called Inverse Function Theorem.

Proposition 2.43. Let I be an interval in R and x¢ € I. Suppose f: I — R
is continuous and strictly monotonic on Iy := (xg — r,xo + 1) NI for some
r > 0. Let yo == f(xo), J := f(I), and Jy := f(I1). Then there are 6 > 0 and
a unique continuous function & : (yo — d,yo +0) NJ — R such that £(yo) = o
and f(&(y)) =y for all y € (yo — 8,y0 + &) N J. In particular, f~':Jy — R
18 continuous at yo.

Proof. First, let us consider the case in which x( is an interior point of I.
Then we may choose r > 0 such that (vg — 7,20 + r) C I, and therefore
I = (zo—r,zo+7). Consider h : S, (xg,y0) — R defined by h(z,y) := f(x)—y.
Then h is continuous, h(zg,yo) = 0, and given any y € (yo — 7,90 + 1), the
function from I; to R given by x — h(z,y) is strictly monotonic. Hence by
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the Implicit Function Theorem (Proposition 2.40 and Remark 2.42), there are
0 > 0 and a unique continuous function ¢ : (yo—d, yo+0) — R with {(yo) = xo
such that (£(y),y) € S, (xo,y0) and h(£(y),y) = 0 for all y € (yo — 5,y + 9).
Consequently, f(&(y)) =y for all y € (yo — 6,90 + ) N J and, in particular,
(yo — d,y0 + &) C J. Since f is continuous and strictly monotonic on Iy =
(xo — ryxo + 1) C 1, it follows that yo is an interior point of J; := f(I1) and
f~'=¢on J;. Hence f~!:J; — R is continuous at yq.

In case xg is an endpoint of I, we can extend f to a continuous, strictly
monotonic function f* on a larger interval I* such that x( is an interior point
of I*. For example, if f is strictly increasing and I = [x¢, b), then we may take
I* :=[xo — 1,b) and f*(x) := f(z) if © € [x0,b) and f*(x) := (x — x0) + yo if
x € [rg — 1,20). Applying the arguments in the previous paragraph to f*, we
obtain the desired result. O

As an immediate corollary of Proposition 2.43, we obtain an alternative
proof of the Continuous Inverse Theorem for functions of one variable (given,
for example, on page 78 of ACICARA), which asserts that a continuous one-one
function defined on an interval has a continuous inverse. To this end, we shall
use the following fact from the theory of functions of one variable, which is
completely elementary in the sense that neither the statement nor the proof
involves the notions of continuity or limits. For a proof of this fact and also
for some related results, one may refer to page 29 of ACICARA.

Fact 2.44. Let I be an interval in R. If f : I — R is one-one and has the
IVP on I, then f is strictly monotonic on I.

Corollary 2.45. Let I be an interval in R and let f : I — R be a one-one
continuous function. Then the inverse function f=': f(I) — R is continuous.

Proof. By part (i) of Fact 2.33, f has the IVP on I. So, by Fact 2.44, f is
strictly monotonic on I. Hence by Proposition 2.43, f~! is continuous. o

The notion of continuity can be extended to functions of three or more
variables in a completely analogous manner. Most results extend to this case
in a straightforward way. A result for which the extension to functions of three
variables may not be immediate is the Implicit Function Theorem (Proposition
2.40). Recall that the latter may be roughly stated by saying that if around a
point, f(z,y) is continuous in x as well as in y and strictly monotonic in y, then
we can solve the equation f(z,y) = 0 for y in terms of & around that point. It
turns out that for functions of three variables, in order to solve f(x,y,z) =0
for z in terms of x and y around a point, what we need apart from the strict
monotonicity in z is not just the continuity in each of the three variables, but
the continuity in the variable z and the (bivariate) continuity in « and y. In
effect, the statement as well as the proof of Proposition 2.40 generalize easily
if the variable x is replaced by two (or more) variables. For ease of reference,
we record below a precise statement of this result. Formulation of analogues
as in Remark 2.42 and a general result in the case of functions of n variables
is left to the reader.
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Proposition 2.46 (Trivariate Implicit Function Theorem). Let D C
R3, (20,v0,20) € D, and f : D — R be such that f(xo,vo,20) = 0. Assume
that there is r > 0 with S,(xo, Yo, 20) C D and the following conditions hold:

(a) Given any (z,y) € Sy(z0,Yo), the function 1 : (zg — 1,20 +7) — R defined
by ¥(z) = f(z,y, z) is continuous. Also, given any z € (zo — 1,20+ 1), the
function ¢ : Sy (xo,y0) — R defined by ¢(x,y) = f(x,y, z) is continuous.

(b) Given any (z,y) € Sy(x0,Y0), the function i : (zo —r,z0+1) — R defined
by ¥(z) = f(x,y, 2) is strictly monotonic.

Then there are 6 > 0 and a unique continuous function ¢ : Ss(zo, yo) — R with
C(xO»yO) = 20 such that (xvyv C(xvy)) € Sr(xmyOv ZO) and f(xvyv C(xvy)) =0
for all (x,y) € Ss(wo, yo)-

Proof. The proof is similar to that of Proposition 2.40 if we make appropriate
notational changes. O

2.3 Limits

Let D C R? and (9, y0) € R?. Assume that an open square of positive radius
centered at (x,yo), except possibly the center, is contained in D, that is,
Sr(zo,y0) \ {(z0,y0)} C D for some r > 0. Let f : D — R be any function. We
say that a limit of f as (x,y) tends to (x, yo) exists if there is a real number ¢
such that whenever a sequence ((#,,x)) in D\{(zo,y0)} converges to (z0,yo),
we have f(x,,yn) — £. We then write f(x,y) — £ as (z,y) — (2o, yo)- It may
be noted that there do exist sequences in D \ {(zo,y0)} that converge to
(0, Yo). For example,

r

7y0_n+1

r

(Tn, yn) == (xo—n+1 ) forn e N

defines one such sequence. Using this and the fact that the limit of a sequence
in R? is unique (part (i) of Proposition 2.1), we readily see that if a limit
of f as (z,y) tends to (xg,yo) exists, then it is unique. With this in view, if
flz,y) — L as (x,y) — (z0,y0), then we may refer to ¢ as the limit of f(z,y)

as (z,y) tends to (x,yo), and write

i fla,y) =L
Examples 2.47. (i) Consider f : R? — R defined by f(0,0) := 1 and
f(z,y) = sin(zy) for (z,y) € R?\ {(0,0)}. Then the limit of f as (x,y)
tends to (0, 0) exists and is equal to 0. Indeed, if ((xn, yn)) is a sequence in
R2\ {(0,0)} such that (z,,y,) — (0,0), then x,y, — 0, and by the con-
tinuity of the sine function, sin(z,y,) — sin 0 = 0, that is, f(zn,y,) — 0.
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(i) Consider f:R? — R defined by

x4y ifx#uy,
f(ﬂc,y)={1 . 7_é
ifx=uy.

Then the limit of f as (z,y) tends to (0,0) does not exist. This can
be seen by considering two sequences approaching (0,0), one along the
line y = z and another staying away from this line. For example, if
(n,yn) == (1/n,1/n) and (up,v,) = (=1/n,1/n) for n € N, then
(1, yn)) and ((un,vy,)) are sequences in R?\ {(0,0)} converging to (0, 0),
but f(zn,yn) — 1 and f(un,v,) — 0.

(iii) Consider f : R2\ {(0,0)} — R given by f(z,y) = zy/(2® + y?) for
(z,y) € R? (x,y) # (0,0). Then the limit of f as (x,y) tends to (0,0)
does not exist. This can also be seen by considering two sequences ap-
proaching (0,0), along different lines through the origin. For example,
if (xp,yn) := (1/n,1/n) and (un,v,) := (1/n,2/n) for n € N, then
((#n,yn)) and ((un,vn)) are sequences in R?\ {(0,0)} converging to (0,0),
but f(zn,yn) — % and f(un,vn) — g %

Limits and Continuity

The concepts of continuity and limit are related in a similar way as in the
case of functions of one variable.

Proposition 2.48. Let D C R? and let (xo,y0) € R? be an interior point of
D, that is, S;(zo,y0) C D for somer > 0. Let f : D — R be any function.
Then f is continuous at (xo,yo) if and only if the limit of f as (x,y) tends to
(xo,y0) exists and is equal to f(xo,yo)-

Proof. Assume that f is continuous at (zg, yo). Let ((xn, yn)) be any sequence
in D such that (z,,y,) — (20, y0). By the continuity of f at (zq,y0), we see
that f(xn,yn) — f(xo,y0). It follows that the limit of f as (z,y) tends to
(0, yo) exists and is equal to f(z0,yo)-

To prove the converse, assume that the limit of f as (x,y) tends to (z¢, yo)
exists and is equal to f(xg,yo). Let ((xn, yn)) be any sequence in D such that
(Tn,yn) — (z0,y0). If there is ng € N such that (x,,yn) = (xo,yo) for all
n > mng, then it is clear that f(z,,yn) — f(xo0,y0). Otherwise, there are
positive integers ny,ng,... such that ny < ng < --- and {n € N: (x,,yn) #
(z0,y0)} = {nw : k € N}. Now, ((2n,,¥n,)) is a sequence in D\ {(z0,yo)} that
converges to (zo, yo), and therefore f(xn, ,yn,) — f(20,%0). Since f(zn,yn) =
f(zo,yo) for all n € N\ {ns, : k € N}, it follows that f(z,,yn) — f(x0,%0).
Hence f is continuous at (xg,yo)- O

As a consequence, we obtain a useful characterization for the existence of
the limit of a function in terms of the continuity of an associated function.
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Corollary 2.49. Let D C R? and (z0,y0) € R? be such that D contains
Sr(zo,y0) \ {(z0,y0)} for some r > 0. Given a function f: D — R and { € R,
let F': DU{(x0,y0)} — R be the function defined by

f(xvy) Zf ((E,y) €D \ {(x07y0)}»

F(z,y) = {£ if (z,y) = (20,%0)-

Then

lim f(x,y) exists and is equal to ¢ <= F is continuous at (o, Yyo)-
(z,y)—(w0,y0)

Proof. Since f(z,y) = F(z,y) for (z,y) € D\ {(zo,y0)}, it is clear that
lim 4y (z0,y0) f (2, y) exists if and only if im g ) (z.40) F(,y) exists, and
in this case the two limits are equal. Further, since (zg, yo) is an interior point
of DU {(zo,y0)} and F(zg,yo) = ¢, the desired result follows from applying
Proposition 2.48 to F. O

Examples 2.50. (i) In view of Proposition 2.48 and Example 2.16 (i), we
see that every rational function has a limit wherever it is defined, that is,
if p(z,y) and g(x,y) are polynomials in two variables and if (2o, o) € R?
is such that g(zo, yo) # 0, then

lim p(xay) — p(x07y0)

(@)= (owo) q(z,y)  q(x0,90)

On the other hand, if ¢(zo,yo) = 0, then the limit of p(z,y)/q(z,y) may
not exist, in general. For example, for any m, k € N, the rational function
flx,y) := 2™ /y* does not have a limit as (z,y) tends to (0,0). To see
this, it suffices to approach (0,0) along the parametric curve given by
(z(t),y(t)) = (at®, pt™), t € [~1, 1], where a, 3 are any nonzero constants.
For example, if (z,,y,) := (1/nF,1/n™) and (u,,v,) := (2/nF, 1/n™)
for n € N, then ((z,,y,)) and ((un,vy)) are sequences in R? \ {(0,0)}
converging to (0,0), but f(2n,ys) — 1 and f(un,v,) — 2™.

(i) Consider f : R?\ {(0,0)} — R defined by f(z,y) = 2%y/(x® + y?). Then
in view of Proposition 2.48 and Example 2.16 (i), we see that the limit of
f(z,y) as (z,y) tends to (0,0) exists and is equal to 0. <&

Thanks to Corollary 2.49, basic properties of limits of real-valued func-
tions of two variables can be deduced from the corresponding properties of
continuous functions.

Proposition 2.51. Let D C R? and (zo,y0) € R? be such that D contains
St(zo,y0) \ {(z0,y0)} for somet > 0. Let f,g: D — R, and let £{,m € R be
such that

lim z,y) =L and lim T,y) = m.
(a:,y)ﬂ(ajo,yo) f( y) (I,y)%(wo,yo) g( y)



70 2 Sequences, Continuity, and Limits

Then for any r € R, the limits of f +g, rf, and fg as (x,y) tends to (xo,yo)
ezist, and are equal to L +m, rl, and fm respectively. Moreover, if £ # 0, then
there is § > 0 such that f(z,y) # 0 for all (x,y) € DNSs(zo,y0) \ {(x0,%0)},
and the limit of 1/f : DNSs(x0,v0) \ {(x0,v0)} — R as (z,y) tends to (xo,yo)
exists, and is equal to 1/¢.

Proof. Let F,G : D U {(z9,y0)} — R be the functions defined by letting
F(z,y) = f(2,y) and G(z,) = g(z, ) for (z,5) € D\ {(zo, yo)} and setting
F(x0,y0) := ¢ and G(zo, yo) := m. By Corollary 2.49, F and G are continuous
at (20, o). So the assertion concerning the limits of f + g, rf, and fg follow
from Proposition 2.15 and Corollary 2.49. If ¢ # 0, then the desired existence
of 6 and the limit of 1/f follow from Lemma 2.14, Proposition 2.15, and
Corollary 2.49. a

As in the case of functions of one variable, if there are certain inequalities
among the values of real-valued functions of two variables, then the same
prevail when we pass to limits, provided the limits exist. But of course, strict
inequalities such as < can change to weak inequalities such as < when we pass
to the limit. (See Exercise 11.) On the other hand, strict inequalities on limits
yield strict inequalities on the values of the corresponding function around the
point where the limit is taken. (See Exercise 12.) Moreover, for nonnegative
functions, extraction of roots is preserved by passing to limits.

Proposition 2.52. Let D, (zo,y0),7, f,g,¢, and m be as in Proposition 2.51.

(i) If there is § > 0 with § < r such that f(x,y) < g(z,y) for all (z,y) in
Ss(x0,y0)\{(x0,y0)}, then £ < m. Conversely, if ¢ < m, then thereisd >0
such that § <r and f(x,y) < g(z,y) for all (z,y) € Ss(xo0,y0) \{(z0,y0)}-

(ii) If f(z,y) > 0 for all (x,y) € D, then £ > 0 and for each k € N, the limit
of f1% : D — R as (x,y) tends to (xg,yo) exists, and is equal to £*/*.

(iii) [Sandwich Theorem] If ¢ = m and if there is h : D — R such that
flx,y) < h(z,y) < g(x,y) for all (x,y) € D, then the limit of h as (z,vy)
tends to (xo,yo) exists, and is equal to L.

Proof. Consider H : DU{(x0,y0)} — R defined by H(z,y) := g(x,y)— f(z,y)
for (z,y) € D\ {(x0,y0)} and H(xg,y0) := m — £. By Corollary 2.49 and
Proposition 2.51, H is continuous at (xo, yo). If £ > m, then H(x¢,yo) < 0 and
hence by Lemma 2.14, there is 7 > 0 such that H(z,y) < 0, that is, f(z,y) >
g(x,y) for all (x,y) € DNS,(x0,yo). This contradicts the assumption on f and
g. Hence ¢ < m. Conversely, suppose £ < m. Then H (zq,yo) > 0, and hence by
Lemma 2.14, there is 6 > 0 such that H(z,y) > 0 for all (x,y) € DNSs(xo0, yo),
and so f(z,y) < g(z,y) for all (x,y) € D N Ss(xo,yo). This proves (i). Next,
if f(z,y) > 0 for all (x,y) € D, then by (i), we obtain ¢ > 0. Further, given
any k € N, the assertion about the limit of f/* follows from Proposition 2.15
and Corollary 2.49. Finally, (iii) is an immediate consequence of part (vi) of
Fact 2.3. O
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As in the case of functions of one variable, a criterion for the existence
of the limit of a real-valued function of two variables that does not involve
convergence of sequences can be given as follows.

Proposition 2.53. Let D C R? and (x9,v0) € R? be such that D contains
Sr(zo,y0) \ {(x0,90)} for some r >0 and let f : D — R be a function. Then
the limit of f(x,y) as (z,y) tends to (xo,yo) exists if and only if there is £ € R
satisfying the following €-§ condition: For every ¢ > 0, there is § > 0 such that

(z,y) € DN Ss(z0,90) and (x,y) # (z0,y0) = |f(z,y) — | <.

Proof. Given £ € R, let F' : D U {(z0,y0)} — R be the function associated
with f and ¢ as in Corollary 2.49. Using the equivalence of (i) and (ii) in
Proposition 2.22 together with Corollary 2.49, we obtain the desired result.

O

The above characterization yields the following analogue of the Cauchy
Criterion for sequences in R? (part (iv) of Proposition 2.6).

Proposition 2.54 (Cauchy Criterion for Limits of Functions). Sup-
pose D C R? and (z0,yo) € R? are such that D contains S,(xo,y0) \ {(z0,y0)}
for some v > 0. Let f : D — R be a function. Then im g y)_(zq,y0) f (T, Y)
exists if and only if for every e > 0, there is 6 > 0 such that

(z,y), (u,v) € DN Ss(zo,y0) \ {(z0,50)} = [f(z,9) — f(u,v)] <e

Proof. Assume that £ := lim, ) (z0,y0) f (2, y) exists. Let € > 0 be given. By
Proposition 2.53, there is 6 > 0 such that |f(z,y) — ¢| < €/2 for all (z,y) in
D1S5(x0, 90) \ { (0, yo)}. Hence for (z, ), (u, v) € DS (z0,0)\ {(z0, 30)}
we obtain |(z,9) — £(u,0)] < |f(@,4) — €+ |0 = f(u,v)] < (6/2)+ (e/2) = €.
as desired. The converse follows readily from the Cauchy Criterion for limits
of sequences in R (part (iv) of Fact 2.5). O

Limit from a Quadrant

An analogue of the notion of left(-hand) or right(-hand) limits for functions of
one variable is given by limits from any one of the four quadrants for functions
of two variables. These may be defined as follows.

Let D C R? and (z0,%0) € R? be such that (xg,z¢ +7) X (y0,90 +7) C D
for some r > 0. Given a function f : D — R, we say that a limit of f
from the first quadrant as (x,y) tends to (xo,yo) exists if there is a
real number ¢ such that whenever ((zn,yn)) is a sequence in D\ {(zo,0)}
satisfying (2, yn) > (z0,%0) for all n € N and (zy,,yn) — (%0, y0), we have
f(xn,yn) — L. Tt is easy to see that if such a limit exists, then it is unique. In
this case, we write

fla,y) = Las (z,y) — (xg,y5) or lim — f(z,y) =~
(5 v0) L g
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Similarly, we can define limits of f from the second, the third, and the fourth
quadrants. Obvious analogues of the above notation are then used.

Remark 2.55. For limits from a quadrant, Corollary 2.49 admits a straight-
forward analogue. More precisely, let D C R? and (x9,%0) € R? be such that
(xo, 20 + 1) X (Yo,y0 + r) C D for some r > 0. Consider Dy := {(z,y) € D :
x>x9and y > yo}t and Fy : Dy U{(x0,y0)} — R defined by

Fi(z,y) = fla,y) i (z,y) € Di\ {(zo, 90)},
R if (z,y) = (o, y0)-

Then

lim f(z,y) exists and is equal to ¢ <= F3 is continuous at (xg,yo).
()= (= yd)
This can be proved by a similar argument as in Corollary 2.49. Moreover, anal-
ogous results for limits from the second, the third, and the fourth quadrants
can be readily obtained. <&

Proposition 2.56. Let D C R? and (zo,y0) € R? be such that D contains
Sr(zo,y0) \ {(z0,y0)} for some r > 0. Let f : D — R be a function and let
E.E R. Then lim(Ly)H(mo,?o) f(x,y) = € if and only if hfn(x,y)ﬂ(m;’,ya') flz,y),
llm(x7y)_,(xg,y(;r) f(xv y)! llm(x7y)_,(xg7yg) f(xv y)! and 11m(3:7y)—>($g7y5) f(xv y)
exist and are all equal to L. If, in addition, (xo,y0) € D, then f is continuous
at (zo,yo) if and only if the limit of f from each of the four quadrants as (x,y)
tends to (zo,yo) exists and they are all equal to f(xo,yo).

Proof. If im ;) (z0,y0) f(z,y) = £, then it is clear that the limit of f from
each of the four quadrants as (z,y) tends to (zg,yo) exists and they are all
equal to ¢. To prove the converse, suppose the limit of f from each of the
four quadrants as (z,y) tends to (xg,yo) exists and they are all equal to ¢.
Consider F' : D U {(zo,y0)} — R defined by F(zo,yo) := £ and F(z,y) :=
f(z,y) for (x,y) € D with (x,y) # (z0,y0). Let Dy := {(x,y) € D : = >
xo and y > yo}, D2 = {(z,y) € D : xz < zg and y > yo}, D3 := {(x,y) €
D:x <zgandy < yo}, and Dy := {(x,y) € D : © > zpand y < yo}.
Also, let lNDZ = D; U{(x0,90)} and F; := F\E,; for i = 1,2,3,4. In view of
Remark 2.55, we see that Fj; is continuous at (xo,yo) for i = 1,2, 3, 4. Hence
by Corollary 2.21, F is continuous at (o, o), and therefore by Corollary 2.49,
limz,y)—(wop0) £ (2, 9) = L.

In case (xo,y0) € D, the assertion about the continuity of f at (xo,yo)
follows from what is proved above and Proposition 2.48. O

Approaching Infinity

Let D C R? be such that D contains a product of semi-infinite open intervals
of the form (a, c0) x (¢, 00), where a,c¢ € R. Given a function f: D — R, we
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say that a limit of f as (z,y) tends to (00, 00) exists if there is a real number
¢ satisfying the following property:

((xn,yn)) any sequence in D with z,, — oo and y, — 00 = f(@n,yn) — L.

In this case the real number ¢ is unique and it is sometimes denoted by
lim ;) (00,00) f(2,9). Similarly, we can define a limit of f as (z,y) —
(—00,00), or as (x,y) — (—o0,—0), or as (z,y) — (00, —00), provided of
course the domain D of f contains a product of semi-infinite open intervals
of the form (—o00,b) X (¢,0), (—00,b) X (—00,d), or (a,0) X (—c0,d), as the
case may be, for some a, b, ¢, d € R. An alternative definition that is analogous
to the e-0 characterization (Proposition 2.53) can be given for such limits. It
should suffice to consider the case of limits as (z,y) — (o0, 00). We leave a
formulation of the statement and proofs in the other three cases as an exercise.

Proposition 2.57. Let D C R? be such that D D (a,00) x (c,00) for some
a,c€R, and let f: D — R be a function. Then lim(, y)_(0o,00) [ (7, y) exists
if and only if there is ¢ € R satisfying the following e-(a, B3) condition: For
every € > 0, there are a, 3 € R such that

(z,y) € D with (z,y) = (a, f) = [f(z,y) — ] <€

Proof. Assume that lim(, ). (x,00) f(, ) exists and is equal to a real number
L. Suppose the e-(«, 5) condition is not satisfied. Then there is € > 0 such
that for every o, € R, we can find (z,y) € D with (z,y) > («, ), but
|f(x,y) — €] > €. Taking («,3) = (n,n), as n varies over N, we obtain a
sequence ((xn,yn)) in D such that z,, — oo and y,, — oo, but f(zn,yn) # L.
This contradicts lim, ) (c0,00) (2, %) = L.

Conversely, assume the e-(a, 3) condition. Let ((xn, yn)) be a sequence in
D such that z,, — oo and y,, — oco. Given any € > 0, find «a, 8 € R for which
a > a and B > c. Now, there is ng € N such that (z,,y,) > (o, 3) for all

n > ng, and hence | f(2n,yn) — €| < € for all n > ng. Thus f(zn, yn) — ¢, and
SO hm(a:’y)*}(oo’oo) f(],‘, y) = /. O

As in the case of functions of one variable, in some cases oo or —oo can
be regarded as a “limit” of a function of two variables. Let D C R? and
(z0,y0) € R? be such that D contains S,(xo,%0) \ {(20,%0)} for some r > 0
and let f: D — R be any function. We say that f(z,y) tends to co as (z,y)
tends to (zo, yo) if for every sequence ((2y,,yn)) in D\{(z0, o)} that converges
to (zo, o), we have f(x,,y,) — co. We then write

f(xvy) — 00 as (.’E,y) - (.’Eo,yo)~

Likewise, we say that f(x,y) tends to —oo as (x,y) tends to (zg,yo) if for
every sequence ((@,y,)) in D\ {(z0,40)} that converges to (zo,yo), we have
f(zn,yn) — —oo. We then write
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f(xay) — —00 as (1"7:'-/) - (anyo)'
For example,

1 1
22 4y — o0 as (z,y) — (0,0) and T2 — —o0 as (x,y) — (0,0).
We now give an analogue of Proposition 2.53 for a real-valued function of
two variables that tends to oo or to —oo.

Proposition 2.58. Let D C R? and (z0,y0) € R? be such that D contains
Sr(zo, y0) \ {(z0,y0)} for somer >0 and let f : D — R be any function. Then
flz,y) — o0 as (x,y) — (xo,y0) if and only if the following a-6 condition
holds: For every a € R, there is 6 > 0 such that

(z,y) € DNSs(z0,y0) and (z,y) # (v0,%0) = f(z,y) > .

Likewise, f(x,y) — —o0 as (z,y) — (xo,y0) if and only if the following B-6
condition holds: For every 3 € R, there is 6 > 0 such that

(z,y) € DNSs(xo,y0) and (x,y) # (x0,y0) = f(z,y) < .

Proof. Assume that f(z,y) — oo as (z,y) — (z0,y0). If the a-d condition
does not hold, then there exists a € R such that for every § > 0, there is
(x,y) € DNSs(xo,yo) with (z,y) # (zo,yo) and f(x,y) < . Taking 6 =1/n
as n varies over N, we obtain a sequence ((#n,¥n)) in D\ {(zo,y0)} such that
(Tny Yn) — (X0, Y0), but f(2n,yn) # co. This contradicts the assumption.

Conversely, assume the a-0 condition. Let ((xn,yn)) be a sequence in
D\ {(z0,y0)} such that (x,,y,) — (20,%0), and let « > 0 be given. Then
there is § > 0 such that f(x,y) > « for all (z,y) € DNS;s(xo, yo) with (x,y) #
(x0,y0). Further, there is ng € N such that (,,yn) € Ss(xo,y0) for n > ny.
Hence f(zn,yn) > a for n > ng. Thus f(z,y) — oo as (z,y) — (2o, Yo)-

The equivalence of the condition f(z,y) — —o0 as (z,y) — (xo,yo) with
the (-6 condition is proved similarly. O

Recall that we have defined the notion of a monotonically increasing func-
tion of two variables using the product order on R?. We show below that for
such functions, existence of a limit from the first or the third quadrant is
equivalent to boundedness properties.

Proposition 2.59. Let a,b,c,d € RU{—00, 00} with a <b and ¢ < d be such
that either a,c € R or a = ¢ = —o0, and either b,d € R or b =d = co. Let
f:(a,b) x (¢,d) — R be a monotonically increasing function. Then

(1) imy )y, a-) f(x,y) ewists if and only if f is bounded above; in this

case, lim(a:,y)ﬂ(b_,d_) f(xvy) = Sup{f(xvy) : (xvy) € (avb) X (Cv d)} Iff
is not bounded above, then f(x,y) — oo as (z,y) — (b~,d™).
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(ii) im g ) o+, oty f(,y) ewists if and only if f is bounded below; in this

case, 1irn(ac,y)—>(a+,c+) f(xay) = lnf{f(xay) : (1',:/./) € (a7b) X (Ca d)} Iff
is not bounded below, then f(x,y) — —oo as (z,y) — (a™,cT).

Proof. (i) Suppose f is bounded above. Let M := sup{f(z,y) : (z,y) €
(a,b) x (¢,d)}. Given any € > 0, there is (bg,do) € (a,b) x (¢,d) such that
M —e€ < f(bo,do) < M. Now, if ((zn,yn)) is any sequence in (a,b) x (¢, d) such
that (xn,yn) — (b,d), then there is ng € N such that (bg,dy) < (zn,yn) for
n > ng. Since f is monotonically increasing, we obtain M —e < f(x,,yn) < M
for n > ng. It follows that lim g ), 4-) f(7,y) exists and is equal to M.

On the other hand, suppose f is not bounded above. Let o € R. Then there
is (bo,do) € (a,b) x (c¢,d) such that f(bo,dy) > «. Since f is monotonically
increasing, we see that f(z,y) > « for all (x,y) € (bo,b) x (do,d). Now,
if ((zn,yn)) is any sequence in (a,b) x (c,d) such that (zn,yn) — (b,d),
then there is ng € N such that (bg,dp) < (zn,yn) for n > ng, and hence
f(zn,yn) > « for n > ng. Thus f(xn,yn) — o0 as (x,y) — (b~,d7). It
follows that f(z,y) — oo as (z,y) — (b—,d ™). This proves (i).

(ii) The proof of this part is similar to the proof of part (i) above. O

A result similar to the one above holds for monotonically decreasing func-
tions. (See Exercise 31.) Consequently, we see that if f : (a,b) X (¢,d) — R is
a monotonic function, then

lime, oy, a-) f(2,y) and img ) o+, o) f(2,y) exist <= [ is bounded.

However, for a bounded monotonic function, limits along the other two quad-
rants may not exist. For example, consider f : [-1,1] x [-1,1] — R defined
by
Fay) = {(x+2)(y+2) it w4y >0,
’ (z+1)(y+1) ifz+y<0.

We have noted in Example 1.8 (i) that f is monotonically increasing. Also, it
is clear that f is bounded and (consequently, or otherwise) the limits of f from
the first and the third quadrants as (z,y) tends to (0,0) exist. But the limits
of f from the second and the fourth quadrants as (z,y) tends to (0,0) do not
exist. To see this, consider the sequences in R? defined by (2, y,) = (=}, 2)
and (2),,y,,) == (-2, }) for n € N. Then

(Tn,yn) — 0 and (z),,y,) — 0, but f(z,,yn) — 4 and f(z,,y)) — 1.

Likewise, if (4, yn) := (2 _71;) and (2, yh) = (1 —3) for n € N, then

(Tn,yn) — 0 and (z),,9,) — 0, but f(x,,yn) — 4 and f(z,,y)) — 1.
Thus lim(, )0, 0+) f(7,y) and lim, )+, 0-) f(2,y) do not exist.

In Exercise 40 of Chapter 1, we introduced the notion of an antimonotonic
function. It can be seen that if f : (a,b) X (¢,d) — R is antimonotonic, then
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lime, oy (at,a—) f(2,y) and lime, oy - o) f(2,y) exist <= [ is bounded.
(See Exercise 35.)

Remark 2.60. The notion of limit of a real-valued function of two variables
admits a straightforward extension to real-valued functions of three or more
variables. Moreover, analogues of all the results in Section 2.3 concerning
limits can be easily formulated and proved in this case. <

Notes and Comments

For the local study around a point in R? (and more generally, in R™), there
are at least two natural analogues of the notion of an interval around a point
in R: open disks and open squares. These two are essentially equivalent, in
the sense that an open disk can be inscribed in an open square with the same
center, and vice versa. (See Exercise 3 of Chapter 1). In this book, we have
preferred to use open squares instead of open disks. This approach is slightly
unusual, but it pays off in several proofs that appear subsequently.

The development of topics discussed in this chapter proceeds along similar
lines as in ACICARA. Sequences in R? are introduced first and their basic prop-
erties are deriwed quickly from the corresponding properties of sequences in R.
The notion of continuity is defined using convergence of sequences, and basic
properties of continuous functions are proved using properties of sequences in
R2. These include a result on piecing together continuous functions on over-
lapping domains, which does not seem easy to locate in the literature. Standard
results about continuous functions on connected domains and on compact do-
mains are included, except that for pedagogical reasons, we have preferred the
terminology of path-connected sets and of closed and bounded sets. It may be
remarked that the more general notions of connectedness and compactness are
of fundamental importance in analysis and topology; for an introduction, we
refer to Exercises 17, 18, 19, 20 21, and also the books of Rudin [48] and
Munkres [40]. For a convex function of one variable, continuity at an interior
point was relegated to an exercise in ACICARA. A similar result holds for con-
vex functions of several variables, but proving it is a little more involved, and
we have chosen to give a detailed proof for functions of two variables, using
arguments similar to those in the book of Roberts and Varberg [47]. For an
alternative proof, one may consult the book of Fleming [19].

Following Hardy [29], we state and prove the Implicit Function Theorem
under a weak hypothesis of continuity in each of the two variables and strict
monotonicity in one of the variables. That this is possible appears to have been
first observed by Besicovitch. (See the footnote on p. 203 of [29].) This version
of the Implicit Function Theorem can be used to give an alternative proof of
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the Continuous Inverse Theorem. Also, it will pave the way for proving the
classical version of the Implicit Function Theorem in Chapter 3.

Limits of functions of two variables are defined using sequences. We have
deduced basic properties of limits from the corresponding properties of contin-
wous functions. Perhaps the only nonstandard notion introduced here is that
of a limit from a quadrant. This provides an interesting analogue of the notion
in one-variable calculus of left(-hand) and right(-hand) limits. In general, for
functions of n variables, the notion will have to deal with 2™ hyperoctants.

Exercises

Part A

1. Consider the sequence in R? whose nth term is defined by one of the
following. Determine whether it is convergent. If it is, then find its limit.
(i) (1/n, n?), (i) (n, 1/n?), (i) (1/n, 1/n2), (iv) (1/n, (=1)"/n),
() (U i gy b m), () (14 )" (1= 1))

2. A sequence ((xn, yn)) in R? is said to be

bounded above if there is (a1, a2) € R? such that (z,,, y,) < (a1, aa),
that is, =, < a1 and y,, < ay for all n € N,

bounded below if there is (31, 32) € R? such that (81, 82) < (0, Yn),
that is, 81 < x,, and (B <y, for all n € N,

monotonically increasing if (z,,,yn) < (Zn41,Ynt1) for all n € N|

monotonically decreasing if (z,,,yn) > (nt1,Yny1) for all n € N,
monotonic if it is monotonically increasing or decreasing.

Prove the following.

(i) A monotonically increasing sequence in R? is bounded above if and
only if it is convergent. Also, if ((xn, yn)) is monotonically increasing
and bounded above, then lim, o (Zpn, yn) = sup{(zn, yn) : n € N}.

(ii) A monotonically decreasing sequence in R? is bounded below if and
only if it is convergent. Also, if ((n,¥,)) is monotonically decreasing
and bounded below, then lim, o (zy, yn) = inf{(zn, yn) : n € N}.

(iii) A monotonic sequence in R? is convergent if and only if it is bounded.

3. Is it true that every sequence in R? has a monotonic subsequence? Justify
your answer. [Note: It may be remarked that every sequence in R has a
monotonic subsequence; see page 55 of ACICARA.]

4. Let (z0,y0) € R% We say that (zg,%0) is a cluster point of a sequence
((zn,yn)) in R? if there is a subsequence ((Zn,,¥Yn,)) of ((zn,yn)) such
that (zn,,Yn,) — (20,Y0). Show that if (z,,yn) — (0,v0), then (xo,yo)
is the only cluster point of ((xn, yn)) Also, show that the converse is not
true, that is, there is a sequence ((xn, yn)) in R? that has a unique cluster
point but is not convergent.

5. If a subset D of R? is bounded, then show that its closure D is also a
bounded subset of R2.
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. Find the closure, the boundary, and the interior of the following subsets
of R?. Also, determine whether these subsets are closed or open.
(i) {(z,y) eR*:0<z<land0<y<2} (i) {(x,2?): 2 € R},
(iii) any finite subset of R,  (iv) {(m,n) : m,n € N},
V) {(1/m,1/n):m,n e N}, (vi) {(r,s) :r,s € Q}.

. Let D C R2. Show that the closure of D is the smallest closed subset of
R? containing D and the interior of D is the largest open subset of D.

. Let f,g:[-1,1] x [-1,1] — R be the functions defined by

(x+y)? ifz+y>0,

—(r+y)? fx+y<0.
Show that both f and g are continuous on [—1, 1] x [—1, 1]. Further show
that f is bimonotonic but g is not bimonotonic on [—1, 1] x [-1,1].

. Consider f : R? — R defined by f(0,0) := 0 and for (z,y) # (0,0), by
one of the following. In each case, determine whether f is continuous.

f(z,y) = (x+1)?* and g(z,y):=

2

(1) 1'2 + yg I (11) 1'2 + y4 ) (111) 1'6 + y2 9 (IV) 1'2 + y2 )
3 4
2 2 . Y .. Yy
(v) zyln(z® 4+ y*), (vi) 22y (vii) 2y
o Ty — ayB . sin(z +y) sin?(z + y)

(vili) ~ 5 5 () ;o ()

z? +y |z| + |yl 2] + |y

Let D be convex and open in R?, and let f : D — R be a convex function.
If [a,b] % [c,d] is a closed rectangle contained in D, where a,b,c,d € R
with a < b and ¢ < d, then show that f satisfies a Lipschitz condition
on [a,b] X [c,d], that is, there is L € R such that

If(x,y) - f(uav)| <L |($,y) - (U,U)| for all (x’y)7 (U,U) € [a,b]x[c, d]

(Hint: Use Lemma 2.31, or give a proof similar to that of Lemma 2.31.)
Let D :=S;(0,0)\ {(0,0)} and let f,¢g: D — R be defined by f(z,y) :=
lz| + |y| and g(z,y) := 3 (Jz| + |y[). Show that f(z,y) < g(z,y) for all
(.’E, y) € D, but lirn(nc,y)—>(0,0) f(CC, y) = lim(ac,y)—>(0,0) g(ac, y)

Show that there is 6 > 0 such that sin(zy) < cos(xy) for all (z,y) €
S5(0,0). (Hint: Proposition 2.52.)

Consider f : R? — R defined by one of (i)-(iv) below. Determine whether
the two-variable limit lim(, ,)—(0,0) f(2,%) and the two iterated limits
limg_.q [limy_,o f(x,y)] and lim, g [hmx_,o f(x,y)] exist. If they do,
then find them.

x2y2
() F(ory) = aty, () floy) =4 a2 + (@ -y @97 00
0 if (2,y) = (0,0),
THY 1
(iii) f(z,y) =4~y ey, (iv) f(x,y) = L Yy ify #0,

0 if x =, 0 if y=0.
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14.

15.

16.

17.

18.

19.

20.

Part B

Show that a sequence in R? is convergent if and only if it is bounded
and all its convergent subsequences have the same limit. (Hint: Bolzano—
Weierstrass Theorem.)

Let m, n be nonnegative integers and let 7, 5 € N be even. Let f : R? - R

be defined by £(0,0) := 0 and f(x,y) := 2™y"/(2' +y?) for (x,y) #

(0,0). Show that f is continuous at (0,0) if and only if mj + ni > ij.

Let E C R be open in R and let ® = (x,y) be a pair of real-valued

functions z,y : F — R. Show that both x and y are continuous on E if

and only if the set @1 (V) := {t € E : (z(t),y(t)) € V} is open in R for
every open subset V of R2.

Let D C R2%. A family {U, : @ € A} indexed by an arbitrary set A is

called an open cover of D if each U, is open in R? and D is contained

in the union of U, as a varies over A. Such an open cover is said to have

a finite subcover if there are finitely many indices ag,...,a, € A such

that D C U,, U---UU,,, . The set D is said to be compact if every open

cover of D has a finite subcover. Prove the following.

(i) If D is finite, then D is compact.

(i) If D is compact and E C D is closed, then F is compact. (Hint: If {U, :
a € A} is an open cover of D, then consider {U, : « € A}U{D\ E}.)

(iii) If D is compact, then D is closed. (Hint: If (zq,y0) € D\ 9D, then the
set of open squares centered at (x,y) and of radius |(x, y) — (zo, yo)|/2,
as (x,y) varies over D, is an open cover of D.)

(iv) If D is compact, then D is bounded.

(v) If D = [a,b] X [e,d] is a closed rectangle, then D is compact. (Hint:
Use the midpoints (a + b)/2 and (¢ + d)/2 to subdivide D into four
smaller rectangles. If an open cover of D has no finite subcover, then
the same holds for one of the smaller rectangles. Continue this process
and look at the limiting situation.)

(vi) (Heine—Borel Theorem) D is compact <= D is closed and bounded.

Generalize the definition and the properties above to subsets of R™.

Let D C R2 and F C R. Prove the following.

(i) If D is compact and f : D — R is continuous, then the range f(D) is
closed and bounded.

(ii) If E is closed and bounded and z,y : E — R are continuous, then the
subset {(z(t),y(t)) : t € E} of R? is compact.

If D C R? is path-connected and f : D — R is a continuous function

such that the image f(D) is a finite set, then show that f is a constant

function. Is the conclusion valid if D is not path-connected? Justify your
answer. (Hint: If D has two points, take a path (z(t),y(t)) joining them.

Consider t — f (x(t),y(t)) and use Fact 2.33.)

If D C R? is path-connected, then show that D cannot be written as a

union of two disjoint, nonempty open subsets of D. (Hint: If it could, then

there would be a continuous function f: D — {0,1}. Use Exercise 19.)
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Let D be an open subset of R2. If D cannot be written as a union of two
disjoint, nonempty open subsets of D, then show that D is path-connected.
Let D be a bounded subset of R? and let D denote its closure. Suppose
f: D — R be a continuous function. Prove that f is uniformly continuous
on D if and only if there is a continuous function f : D — R such that
flo=f.

Let f:[0,1] x [0,1] — R be the bivariate Thomae function defined by

1 ifz=0andyeQnlo0,1],
1/q if 2,y € QN[0,1] and x = p/q for some

relatively prime positive integers p and q,
0  otherwise.

f(a?,y) =

Show that the set of discontinuities of f is {(x,y) € [0,1]x[0,1] : z,y € Q}.
(Duhamel’s Theorem) Let a,b € R with a < b and D := [a,b] X [a, b].
If f: D — R is continuous and ¢ : [a,b] — R is defined by ¢(x) := f(z,x)
for = € [a,b], then show that ¢ is Riemann integrable on [a,b]. Further,
show that given any e > 0, there is 6 > 0 such that for every partition
P :={zo,21,...,2,} of [a,b] with u(P) < ¢, and every ¢;, & € [xi—1, x4,
fori=1,...,n, we have

b n
/ $a)de — > flei, &) (v —2i1) | <e

a i=1

(Bliss’s Theorem) If ¢, ¢ : [a,b] — R are continuous, then show
that given any ¢ > 0, there is § > 0 such that for every partition
P :={zo,21,...,2,} of [a,b] with u(P) < ¢, and every ¢;, & € [xi—1, x4,
fori=1,...,n, we have

n

b
/ b)) dz — 3 ple) (@) (wi — 1) | < e

i=1

Let D C R and ¢y € R be such that D contains (to — r,to) U (to, to + 1)
for some r > 0. For each t € D, let f; : [a,b] — R be a Riemann inte-
grable function. Suppose f(z) := lim;_, fr(z) for « € [a,b], and f; — f
uniformly in the sense that for every e > 0, there is § > 0 such that

teD, 0<|t—ty] <0, x €la,b = |fe(x) — f(x)] <e.

Show that f : [a,b] — R is Riemann integrable. Further, show that
limy 4, ff fi(z)dz exists and is equal to f; f(x)dz. Deduce that if F :
[ev, B8] x [a,b] — R is continuous, then for each ty € [a, 5], we have

b b b
lim F(t,z)dx = / tlir? F(t,z)dx = / F(to, z)dz.
a 'TPO a

t—to a

Conclude that ¢ : [, 3] — R defined by ¢(t) := f; F(t,z)dx is continuous.
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27.

28.

29.

30.

31.

32.

Let D C R be such that D contains [c,00) for some ¢ € R. For each
t € D, let fi : [a,b] — R be a Riemann integrable function. Suppose
f(z) := limy_ fi(x) for x € [a,b], and f; — f uniformly in the sense
that for every € > 0, there is s € D such that |f;(z) — f(x)| < € for all
t € D with t > s and all © € [a,b]. Show that f : [a,b] — R is Riemann

integrable. Further, show that lim; .~ ff fi(x)dx exists and is equal to

J7 fl@)da.

Let D C R? and (w0,%0) € R? be such that D contains a punctured

square S, (g, yo)\{(zo,yo)} for some r > 0. Suppose f : D — R is such

that lim, ) (z0,y0) f(2,y) exists and is equal to £. Prove the following.

(1) If limy_.,, f(z,y) exists for every fixed = € (zg — 7, 20) U (x0, 20 + 1),
then the iterated limit lim, .., [lim,_, f(z,y)] exists and is equal
to £.

(ii) If limy 4, f(2,y) exists for every fixed y € (yo — 7,y0) U (Y0, Y0 + 1),
then the iterated limit lim, ., [lim,_,, f(z,y)] exists and is equal
to £.

Use Exercise 13 (ii) to show that even when both the iterated limits in (i)

and (ii) of Exercise 28 exist, they may not be equal. Also, use Exercise 13

(iv) to show that the existence of the two-variable limit does not imply

that the one-variable limits in (i) and (ii) of Exercise 28 exist.

Let D C R? be such that D contains (a,00) x (¢, 00) for some a,c € R.

Suppose f : D — R is such that lim(, ) (c0,00) f(, ) exists and is equal

to £.

(i) If limy oo f(x,y) exists for every fixed & > a, then prove that the
iterated limit lim,_. ., [hmy_,OQ f(x, y)] exists and is equal to /4.

(i) If limy oo f(x,y) exists for every fixed y > ¢, then prove that the
iterated limit lim, . [hm:,c_,oc f(x, y)] exists and is equal to /4.

Let a,b,c,d € R with a < b and ¢ < d, and let f : (a,b) X (¢,d) — R be a

monotonically decreasing function. Prove the following.

(1) limy ), a-) f(2,y) exists if and only if f is bounded below; in this
case, lim(, )b q-) f(x,y) = inf{f(z,y) : (x,y) € (a,b) x (c,d)}. If
f is not bounded below, then f(x,y) — —oc0 as (z,y) — (b=,d ™).

(ii) Hmy ) —(a+, ety f(2,y) exists if and only if f is bounded above; in this
case, 11m(z,y)~>(a+,c+) f(xvy) = Sup{f(x,y) : (SC,y) € (av b) X (Cv d)} It
f is not bounded above, then f(z,y) — oo as (x,y) — (a™,c").

Let a,b,¢,d € R with a < b and ¢ < d, and let f : (a,b) X (¢,d) — R

be a monotonically increasing function. Show that for every (zo,y0) €

(a,b) x (¢,d), both lim(%y)_)(xg’ya)f(x,y) and lim(:c,y)é(:cg,yg)f(x,y)

exist, and llm(x7y)_>(xg7y5) fz,y) < f(xo,y0) < llm(x7y)_>(x0+7y()+) f(z,y).

Also, show that if (z1,41) € (a,b) X (¢,d) with o < 21 and yo < y1, then

lim(ﬂ,y)é(ﬂg,yg) flz,yy) < lim(%y)_)(x;’yD f(x,y). Formulate and prove

an analogue of these properties for monotonically decreasing functions.
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36.

37.
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Let D C R? and (xo,y0) be any point of RZ. If there is a sequence
((#n,yn)) in D\ {(z0,y0)} such that (z,,yn) — (20,y0), then (zo,yo)
is called a limit point (or an accumulation point) of D.

(i) Show that (xo,yo) is a limit point of D if and only if for every r > 0,
there is (z,y) € D such that 0 < |(z,y) — (0, y0)| <.

(i) If (xo,y0) is a limit point of D, then show that for every r > 0,
the open disk B, (o, yo) as well as the open square S,.(xg, yo) contain
infinitely many points of the set D.

(iii) If D is a finite subset of R?, show that D has no limit point.

(iv) Determine all the limit points of D if D :=Nx N, or D :=Q x Q, or
D:={(},}):n,meN} orD:=(ab)x(c,d),orD:=[a,b)x(cd],
where a,b,c,d € R with a < b and ¢ < d.

(v) Let ((zn,yn)) be asequence in R? and suppose D = {(z,,yn) : n € N}
is the set of all its terms. Show that a limit point of D is a cluster
point of the sequence ((xn,yn)) Give an example to show that a
cluster point of ((acn, yn)) need not be a limit point of D.

Let D C R? and let (x9,y0) be a limit point of D. We say that a limit

of a function f: D — R as (x,y) tends to (zo,yo) exists if there is a real

number ¢ such that whenever ((z,,yx)) is any sequence in D\ {(zo, o)}

that converges to (xo,yo), we have f(x,,y,) — ¢; in this case ¢ is called

a limit of f as (z,y) tends to (z¢,yo). Show that if a limit of f as (z,y)

tends to (xo,yo) exists, then it must be unique. Also, prove analogues of

Propositions 2.48, 2.51, 2.52, 2.53, 2.54 and Corollary 2.49.

Let a,b,¢,d € R with a < b and ¢ < d, and let f : (a,b) X (¢,d) — R be

an antimonotonic function. Show that both lim(, ) (a+,4-) f(,y) and

lim, )b, ct) f(2,y) exist if and only if f is bounded. (Hint: Exercise

40 of Chapter 1)

Let a,b,¢,d € R with a < b and ¢ < d, and let D := (a,b] x (¢,d] and

f D — R be a bimonotonic function.

(i) Define F': D — R by F(z,y) := f(z,y) — f(z,d) — f(b,y) + f(b,d).
Show that either F'is monotonically increasing and bounded below,
or F' is monotonically decreasing and bounded above.

(ii) If the one-variable limits lim, ;- f(x,d) and lim, ;- f(b,y) exist,
then show that lim(, )., a-) f(2,y) exists.

Let a,b,¢,d € R with a < b and ¢ < d. State and prove results analogous

to those in Exercise 36 above for functions defined on [a, b) X [¢, d), [a, b) x

(¢,d], and (a,b] x [¢,d). (Hint: For [a,b) x (¢,d] and (a,b] x [¢,d), consider

the notion of antimonotonicity.)

Let a,b,c,d € R with a < b and ¢ < d, and let f : [a,b] X [¢,d] — R be

any function. Show that if f is of bounded variation and vy is continuous,

then f is continuous. On the other hand, give an example to show that
if f is of bounded bivariation and wy is continuous, then f need not be
continuous.
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