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Sequences, Continuity, and Limits

In this chapter, we introduce the fundamental notions of continuity and limit
of a real-valued function of two variables. As in ACICARA, the definitions as
well as proofs of basic results will be given using sequences. There are, actually,
two possible generalizations of real sequences that seem natural in the setting
of two variables. First, functions defined on N with values in R2, and second,
functions defined on N2 with values in R. As we shall see, for developing the
notions of continuity and limit of a function of two variables, only the former
is relevant, and it is studied in this chapter. The study of the latter will be
taken up in Chapter 7.

This chapter is organized as follows. Sequences in R2 are introduced in
Section 2.1 below and their fundamental properties, including the Bolzano–
Weierstrass Theorem and the Cauchy Criterion, are derived from the corre-
sponding results for sequences in R. We also use the notion of sequence to
introduce basic topological notions of closed and open sets, boundary points,
and interior points, and also the closure and the interior of subsets of R2.
Section 2.2 deals with the notion of continuity, and it is shown here that con-
tinuous functions on path-connected subsets of R2 or on closed and bounded
subsets of R2 possess several nice properties. An important result known as
the Implicit Function Theorem is also proved in this section. Finally, in Sec-
tion 2.3 we introduce limits of functions of two variables. The definition is
given using sequences, while most of the basic properties are proved using
a simple observation that the existence of limit of a function at a point is
equivalent to the continuity of an associated function at that point.

2.1 Sequences in R2

A sequence in R2 is a function from N to R2. Typically, a sequence in R2 is
denoted by

(
(xn, yn)

)
,
(
(un, vn)

)
, etc. The value of a sequence

(
(xn, yn)

)
at

n ∈ N is given by the element (xn, yn) of R2, and this element is called the
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nth term of that sequence. In case the terms of a sequence
(
(xn, yn)

)
lie in a

subset D of R2, then we say that
(
(xn, yn)

)
is a sequence in D.

The notions of boundedness and convergence extend readily from the set-
ting of sequences in R to sequences in R2. Let

(
(xn, yn)

)
be a sequence in R2.

We say that
(
(xn, yn)

)
is bounded if there is α ∈ R such that |(xn, yn)| ≤ α

for all n ∈ N. The sequence
(
(xn, yn)

)
is said to be convergent if there is

(x0, y0) ∈ R2 that satisfies the following condition: For every ǫ > 0 there is
n0 ∈ N such that (xn, yn) ∈ Sǫ(x0, y0) for all n ≥ n0, that is,

|xn − x0| < ǫ and |yn − y0| < ǫ for all n ≥ n0.

In this case, we say that
(
(xn, yn)

)
converges to (x0, y0) or that (x0, y0) is

a limit of
(
(xn, yn)

)
, and write (xn, yn) → (x0, y0). If

(
(xn, yn)

)
does not

converge to (x0, y0), then we write (xn, yn) 6→ (x0, y0); if
(
(xn, yn)

)
is not

convergent, then it is said to be divergent.
A sequence

(
(xn, yn)

)
in R2 gives rise to two sequences (xn) and (yn) in R,

and vice versa. It turns out that the properties of
(
(xn, yn)

)
can be completely

understood in terms of the properties of the sequences (xn) and (yn) in R.

Proposition 2.1. Given a sequence
(
(xn, yn)

)
in R2, we have the following.

(i) If
(
(xn, yn)

)
is convergent, then it has a unique limit.

(ii)
(
(xn, yn)

)
is bounded ⇐⇒ both (xn) and (yn) are bounded.

(iii)
(
(xn, yn)

)
is convergent ⇐⇒ both (xn) and (yn) are convergent. In fact,

for (x0, y0) ∈ R2, we have (xn, yn) → (x0, y0) ⇐⇒ xn → x0 and yn → y0.

Proof. Each of (i), (ii), and (iii) is immediate from the definitions. ⊓⊔

As noted in part (i) of Proposition 2.1, if
(
(xn, yn)

)
is a convergent se-

quence in R2, then it has a unique limit in R2. The limit of
(
(xn, yn)

)
is

sometimes written as limn→∞(xn, yn) or as lim
n→∞

(xn, yn).

Examples 2.2. (i) If
(
(xn, yn)

)
is a constant sequence in R2, that is, if

there is (x0, y0) ∈ R2 such that (xn, yn) = (x0, y0) for all n ∈ N, then
clearly,

(
(xn, yn)

)
is convergent and (xn, yn) → (x0, y0).

(ii) If
(
(xn, yn)

)
is the sequence in R2 defined by (xn, yn) := (1/n,−1/n) for

all n ∈ N, then clearly,
(
(xn, yn)

)
is convergent and (xn, yn) → (0, 0).

(iii) The sequence
(
(xn, yn)

)
in R2 defined by (xn, yn) := (1/n, (−1)n) for all

n ∈ N is divergent, since the sequence ((−1)n) in R is divergent. 3

Basic properties of sequences in R2 readily follow from the corresponding
properties of sequences in R. For ease of reference, we recall the relevant results
for sequences in R. For proofs, one may refer to pages 45–47 of ACICARA.

Fact 2.3. Let (an) and (bn) be sequences in R, and let a, b, α, β ∈ R.

(i) If an → a and bn → b, then an + bn → a+ b and anbn → ab.
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(ii) If an → a, then for any r ∈ R, we have ran → ra.
(iii) If a 6= 0 and an 6= 0 for all n ∈ N, then (1/an) → (1/a).
(iv) Let an → a. If there is ℓ ∈ N such that an ≥ α for all n ≥ ℓ, then a ≥ α.

Likewise, if there is m ∈ N such that an ≤ β for all n ≥ m, then a ≤ β.

(v) If an → a and an ≥ 0 for all n ∈ N, then a
1/k
n → a1/k for any k ∈ N.

(vi) (Sandwich Theorem in R) If (bn) and (cn) are sequences such that
bn → a and cn → a, and if there is m ∈ N such that bn ≤ an ≤ cn for all
n ≥ m, then an → a.

A few of these facts yield the result that sums, dot products, and scalar
multiples of sequences in R2 converge, respectively, to the sums, dot products,
and scalar multiples of the corresponding limits.

Proposition 2.4. Let
(
(xn, yn)

)
and

(
(un, vn)

)
be sequences in R2, and let

(x0, y0), (u0, v0) ∈ R2.

(i) If (xn, yn) → (x0, y0) and (un, vn) → (u0, v0), then (xn, yn)+(un, vn) →
(x0, y0) + (u0, v0) and (xn, yn) · (un, vn) → (x0, y0) · (u0, v0).

(ii) If (xn, yn) → (x0, y0), then for any r ∈ R, r(xn, yn) → r(x0, y0).

Proof. Immediate consequence of part (iii) of Proposition 2.1 together with
parts (i) and (ii) of Fact 2.3. ⊓⊔

Analogues of properties of sequences in R that depend on order relations,
are considered in Exercise 2.

Subsequences and Cauchy Sequences

Let
(
(xn, yn)

)
be a sequence in R2. If n1, n2, . . . are positive integers such that

nk < nk+1 for each k ∈ N, then the sequence
(
(xnk

, ynk
)
)
, whose terms are

(xn1
, yn1

), (xn2
, yn2

), . . . , is called a subsequence of
(
(xn, yn)

)
. The sequence(

(xn, yn)
)

is said to be Cauchy if for every ǫ > 0 there is n0 ∈ N such that

|xn − xm| < ǫ and |yn − ym| < ǫ for all n,m ≥ n0. It is clear that
(
(xn, yn)

)

is Cauchy if and only if both (xn) and (yn) are Cauchy sequences in R.
Let us recall the following basic facts about sequences in R. For proofs,

one may refer to pages 45, 56, and 58 of ACICARA.

Fact 2.5. Let (an) be a sequence in R. Then we have the following.

(i) (an) is convergent =⇒ (an) is bounded.
(ii) (Bolzano–Weierstrass Theorem in R) If (an) is bounded, then (an)

has a convergent subsequence.
(iii) (an) is convergent ⇐⇒ (an) is bounded and every convergent subsequence

of (an) has the same limit.
(iv) (Cauchy Criterion in R) (an) is Cauchy ⇐⇒ (an) is convergent.

These facts, in turn, lead to the following results.
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Proposition 2.6. Given a sequence
(
(xn, yn)

)
in R2, we have the following.

(i)
(
(xn, yn)

)
is convergent =⇒

(
(xn, yn)

)
is bounded.

(ii) (Bolzano–Weierstrass Theorem) If
(
(xn, yn)

)
is a bounded sequence,

then
(
(xn, yn)

)
has a convergent subsequence.

(iii)
(
(xn, yn)

)
is convergent ⇐⇒

(
(xn, yn)

)
is bounded and every convergent

subsequence of
(
(xn, yn)

)
has the same limit.

(iv) (Cauchy Criterion)
(
(xn, yn)

)
is Cauchy ⇐⇒

(
(xn, yn)

)
is convergent.

Proof. Clearly, (i) is an immediate consequence of parts (ii) and (iii) of
Proposition 2.1 and part (i) of Fact 2.5. To prove (ii), suppose

(
(xn, yn)

)

is bounded. Then (xn) is a bounded sequence in R and hence by part (ii)
of Fact 2.5, (xn) has a convergent subsequence, say (xnk

). Now, (yn) is a
bounded sequence in R and hence so is (ynk

). So, by part (ii) of Fact 2.5,
(ynk

) has a convergent subsequence, say
(
ynkj

)
. Clearly,

(
(xnkj

, ynkj
)
)

is a

convergent subsequence of
(
(xn, yn)

)
. This proves (ii). Next, if

(
(xn, yn)

)
is

convergent, then it is clear that it is bounded and every convergent sub-
sequence of

(
(xn, yn)

)
has the same limit. To prove the converse, suppose(

(xn, yn)
)

is bounded. By (ii),
(
(xn, yn)

)
has a convergent subsequence. Sup-

pose (x0, y0) is the (same) limit for every convergent subsequence of
(
(xn, yn)

)
.

If (xn, yn) 6→ (x0, y0), then there are ǫ > 0 and positive integers n1 < n2 < · · ·
such that max{|xnk

− x0|, |ynk
− y0|} ≥ ǫ for all k ∈ N. Now,

(
(xnk

, ynk
)
)

is
bounded and hence by (ii), it has a convergent subsequence. Moreover, this
subsequence must converge to (x0, y0). This is a contradiction. Thus (iii) is
proved. Finally, (iv) follows from part (iii) of Proposition 2.1, part (iv) of Fact
2.5, and our earlier observation that

(
(xn, yn)

)
is Cauchy if and only if both

(xn) and (yn) are Cauchy sequences in R. ⊓⊔

The result in part (iv) of Proposition 2.6 is sometimes referred to as the
Cauchy completeness of R2. A similar result holds for Rn.

Closure, Boundary, and Interior

Let D ⊆ R2. We say that D is closed if every convergent sequence in D
converges to a point of D. The set of all points in R2 that are limits of
convergent sequences in D is called the closure of D and is denoted by D.
It is clear that D is closed if and only if D = D. A point of R2 is said to be
a boundary point of D if there is a sequence in D that converges to it and
also a sequence in R2 \D that converges to it. The set of all boundary points
of D in R2 is called the boundary of D (in R2), and is denoted by ∂D. It
is easy to see that ∂D = ∂(R2 \D), that is, the boundary of a set coincides
with the boundary of its complement. A relation between the closure and the
boundary is described by the following.

Proposition 2.7. Given any D ⊆ R2, we have D = D ∪ ∂D.
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Proof. Let (x, y) ∈ D. Then there is a sequence in D converging to (x, y).
Further, if (x, y) 6∈ D, then the constant sequence

(
(xn, yn)

)
defined by

(xn, yn) = (x, y) for all n ∈ N gives a sequence in R2 \ D converging to
(x, y), and so in this case, (x, y) ∈ ∂D. It follows that D ⊆ D ∪ ∂D. On
the other hand, if (x, y) ∈ D ∪ ∂D, then it is clear, using either a constant
sequence or the definition of ∂D, that (x, y) ∈ D, and so D ∪ ∂D ⊆ D. ⊓⊔

Proposition 2.8. Let D be a nonempty subset of R2 such that D 6= R2. Then
∂D is nonempty.

Proof. Since D is nonempty, there is some (x0, y0) ∈ D, and since D 6= R2,
there is some (x1, y1) ∈ R2 \D. Consider the line segment joining these two
points, that is, consider L := {t ∈ [0, 1] : (1 − t)(x0, y0) + t(x1, y1) ∈ D}.
Then L is a nonempty subset of R bounded above by 1. Let t∗ := supL and
(x∗, y∗) := (1 − t∗)(x0, y0) + t∗(x1, y1). We claim that (x∗, y∗) is a boundary
point of D. To see this, let (tn) be a sequence in L such that tn → t∗. Let
(xn, yn) := (1 − tn)(x0, y0) + tn(x1, y1) for n ∈ N. Clearly

(
(xn, yn)

)
is a

sequence in D that converges to (x∗, y∗). Further, if t∗ < 1, then we can
find sn ∈ R for n ∈ N such that sn → t∗ and t∗ < sn ≤ 1, and we let
(un, vn) := (1 − sn)(x0, y0) + sn(x1, y1) for n ∈ N, whereas if t∗ = 1, then
we let (un, vn) := (x1, y1) for n ∈ N. In any case, we see that

(
(un, vn)

)
is a

sequence in R2 \D that converges to (x∗, y∗). This proves the claim. ⊓⊔

Let D be a subset of R2 and let (x0, y0) be any point of R2. We say
that (x0, y0) is an interior point of D if (x0, y0) ∈ D and (x0, y0) is not a
boundary point of D. It is easy to see that (x0, y0) is an interior point of D
if and only if there is r > 0 such that Sr(x0, y0) ⊆ D. The interior of D is
defined to be the set of all interior points of D. Clearly, the interior of D is a
subset of D. We say that D is open if every point of D is an interior point
of D. The following proposition shows the connection between the notions of
an open set and a closed set.

Proposition 2.9. Let D ⊆ R2. Then D is closed if and only if R2\D is open.

Proof. First, suppose D is a closed set. Let (x0, y0) ∈ R2 \ D. If (x0, y0) is
not an interior point of R2 \ D, then there is a sequence

(
(xn, yn)

)
in the

complement of R2 \ D, that is, in D, such that (xn, yn) → (x0, y0), and so
(x0, y0) ∈ D = D, which is a contradiction. This proves that R2 \ D is an
open set. Conversely, suppose R2 \D is open. Let

(
(xn, yn)

)
be any sequence

in D such that (xn, yn) → (x0, y0) for some (x0, y0) ∈ R2. Then (x0, y0)
cannot be an interior point of R2 \D. But since R2 \D is open, it follows that
(x0, y0) 6∈ R2 \D, that is, (x0, y0) ∈ D. This proves that D is closed. ⊓⊔

Example 2.10. Let α, β ∈ R with α > 0 and β > 0. Consider the sets D1 :=
{(x, y) ∈ R2 : |x| ≤ α and |y| ≤ β},D2 := {(x, y) ∈ R2 : |x| < α and |y| ≤ β},
D3 := {(x, y) ∈ R2 : |x| ≤ α and |y| < β}, and D4 := {(x, y) ∈ R2 : |x| <
α and |y| < β}. In view of part (iv) of Fact 2.3, we readily see that D1 is
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closed, D4 is open, whereas D2 and D3 are neither closed nor open. Further,
for each i = 1, 2, 3, 4, the closure of Di is D1, the interior of Di is D4, and the
boundary of Di is the set {(x, y) ∈ R2 : |x| = α and |y| = β}. 3

Remark 2.11. The notions discussed in this section concerning sequences in
R2, closed sets, closure, boundary points, boundary, interior points, interior,
and open sets admit a straightforward extension to R3 and more generally, to
Rn for any n ∈ N. To avoid a notational conflict, one may denote a sequence
in Rn by (xk), where the parameter k runs through N and xk ∈ Rn for each
k ∈ N. It may be instructive to formulate precise analogues of the notions and
results in this section for Rn and write down proofs of analogous results in
the general case. This may also be a good opportunity to review the results
in this section. 3

2.2 Continuity

Let D be a subset of R2 and let (x0, y0) be any point in D. A function
f : D → R is said to be continuous at (x0, y0) if for every sequence

(
(xn, yn)

)

in D such that (xn, yn) → (x0, y0), we have f(xn, yn) → f(x0, y0). If f is not
continuous at (x0, y0), then we say that f is discontinuous at (x0, y0). When
f is continuous at every (x0, y0) ∈ D, we say that f is continuous on D.

Examples 2.12. (i) If D is any subset of R2 and f : D → R is a constant
function on D, that is, if there is c ∈ R such that f(x, y) = c for all
(x, y) ∈ D, then clearly, f is continuous on D.

(ii) If f : R2 → R is the norm function given by f(x, y) :=
√
x2 + y2 for

(x, y) ∈ R2, then f is continuous on R2. To see this, let (x0, y0) ∈ R be any
point and let

(
(xn, yn)

)
be a sequence in R2 such that (xn, yn) → (x0, y0).

Then by part (iii) of Proposition 2.1, the sequences (xn) and (yn) in R

are such that xn → x0 and yn → y0. Hence, by parts (i) and (v) of Fact
2.3, we see that

√
x2
n + y2

n →
√
x2

0 + y2
0 . Thus f is continuous on R2.

(iii) Consider the coordinate functions p1, p2 : R2 → R defined by p1(x, y) :=
x and p2(x, y) := y for (x, y) ∈ R2. Then by part (iii) of Proposition 2.1,
we immediately see that p1 and p2 are continuous on R2.

(iv) Let D ⊆ R2 and let us fix (x0, y0) ∈ D. Consider

D1 := {x ∈ R : (x, y0) ∈ D} and D2 := {y ∈ R : (x0, y) ∈ D}.

Notice that the set D1 depends on y0, whereas D2 depends on x0. Given
any f : D → R, let φ : D1 → R and ψ : D2 → R be functions of one
variable defined by

φ(x) := f(x, y0) for x ∈ D1 and ψ(y) := f(x0, y) for y ∈ D2.

These functions will play a useful role in the study of the function f of
two variables around the point (x0, y0). If f is continuous at (x0, y0), then
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φ is continuous at x0 and ψ is continuous at y0. To see this, let (xn) be
a sequence in D1 such that xn → x0. Then (xn, y0) → (x0, y0) and hence
f(xn, y0) → f(x0, y0), that is, φ(xn) → φ(x0). Thus φ is continuous at x0.
Similarly, ψ is continuous at y0. 3

Let us recall that the sign of a continuous function of one variable is pre-
served in a neighborhood of that point. More precisely, we have the following.
For a proof, one may refer to page 68 of ACICARA.

Fact 2.13. Let E ⊆ R, c ∈ E, and let φ : E → R be continuous at c. If
φ(c) > 0, then there is δ > 0 such that φ(x) > 0 for all x ∈ E ∩ (c − δ, c +
δ). Likewise, if φ(c) < 0, then there is δ > 0 such that φ(x) < 0 for all
x ∈ E ∩ (c− δ, c+ δ).

A similar result holds for functions of two variables.

Lemma 2.14. Let D ⊆ R2, (x0, y0) ∈ D, and let f : D → R be a function
that is continuous at (x0, y0). If f(x0, y0) > 0, then there is δ > 0 such that
f(x, y) > 0 for all (x, y) ∈ D ∩ Sδ(x0, y0). Likewise, if f(x0, y0) < 0, then
there is δ > 0 such that f(x, y) < 0 for all (x, y) ∈ D ∩ Sδ(x0, y0).

Proof. First, suppose f(x0, y0) > 0. If there is no δ > 0 with the desired
property, then for each n ∈ N, we can find (xn, yn) ∈ D∩S1/n(x0, y0) such that
f(xn, yn) ≤ 0. Now (xn, yn) → (x0, y0), and since f is continuous at (x0, y0),
we have f(xn, yn) → f(x0, y0). Hence, by part (iv) of Fact 2.3, f(x0, y0) ≤ 0,
which is a contradiction. The proof when f(x0, y0) < 0 is similar. ⊓⊔

Proposition 2.15. Let D ⊆ R2, (x0, y0) ∈ D, r ∈ R, and let f, g : D → R be
continuous at (x0, y0). Then f + g, rf , and fg are continuous at (x0, y0). In
case f(x0, y0) 6= 0, there is δ > 0 such that f(x, y) 6= 0 for all (x, y) ∈ D ∩
Sδ(x0, y0), and the function 1/f : D ∩ Sδ(x0, y0) → R is continuous at (x0, y0).
In case there is δ > 0 such that f(x, y) ≥ 0 for all (x, y) ∈ D ∩ Sδ(x0, y0), the
function f1/k : D ∩ Sδ(x0, y0) → R is continuous at (x0, y0) for every k ∈ N.

Proof. The continuity of f+g, rf , and fg at (x0, y0) follows readily from parts
(i) and (ii) of Fact 2.3. In case f(x0, y0) 6= 0, we have either f(x0, y0) > 0
or f(x0, y0) < 0. Thus, by Lemma 2.14, there is δ > 0 such that f(x, y) 6= 0
for all (x, y) ∈ D ∩ Sδ(x0, y0). Now, by part (iii) of Fact 2.3, we see that
the function 1/f : D ∩ Sδ(x0, y0) → R is continuous at (x0, y0). Finally, the
assertion about the continuity of f1/k at (x0, y0) is a direct consequence of
part (v) of Fact 2.3. ⊓⊔

As in the case of functions of one variable, we can easily deduce from
Proposition 2.15 the following. Suppose D ⊆ R2 and f, g : D → R are con-
tinuous at (x0, y0) ∈ D. Then the difference f − g is continuous at (x0, y0).
Also, if g(x0, y0) 6= 0, then the quotient f/g is continuous at (x0, y0). Further,
if there is δ > 0 such that f(x) ≥ 0 for all x ∈ D ∩ Sδ(x0, y0), then for every
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positive rational number r, the function f r is continuous at (x0, y0). Similarly,
if f(x0, y0) > 0, then for every negative rational number r the function f r is
continuous at (x0, y0).

Examples 2.16. (i) Using Proposition 2.15 and the above remarks, we see
that every polynomial function on R2 is continuous and every rational
function is continuous wherever it is defined, that is, if p(x, y) and q(x, y)
are polynomials in two variables and if D := {(x, y) ∈ R2 : q(x, y) 6= 0},
then the rational function f : D → R defined by f(x, y) := p(x, y)/q(x, y)
for (x, y) ∈ D is continuous on D. Moreover, if E = {(x, y) ∈ R2 :
p(x, y) ≥ 0 and q(x, y) > 0}, then for any m,n ∈ N, the algebraic function
g : E → R defined by g(x, y) := p(x, y)1/m/q(x, y)1/n for (x, y) ∈ E, is
continuous on E.

(ii) Consider f : R2 → R defined as follows.

f(x, y) :=





xy

x2 + y2
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

Then f is not continuous at (0, 0). To see this, consider a sequence in
R2 approaching (0, 0) along the line y = x; for example, the sequence(
(1/n, 1/n)

)
. Then (1/n, 1/n) → (0, 0), but f(1/n, 1/n) → 1/2 6= f(0, 0).

(iii) Consider a variant of the function in (ii), namely, f : R2 → R given by

f(x, y) :=





x2y

x2 + y2
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

Then f is continuous at (0, 0). To see this, note that for any (x, y) ∈ R2,
we have x2 ≤ x2 +y2 and consequently, |f(x, y)| ≤ |y|. Hence if

(
(xn, yn)

)

is any sequence in R2 with (xn, yn) → (0, 0), then yn → 0, and as a result,
f(xn, yn) → 0 = f(0, 0).

(iv) Consider a variant of the function in (iii), namely, f : R2 → R given by

f(x, y) :=





x2y

x4 + y2
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

Then f(x, y) approaches 0 along every line passing through the origin
[indeed, f(0, y) = 0 and f(x,mx) = mx/(x2 + m2) → 0 as x → 0].
However, f is not continuous at (0, 0). To see this, consider a sequence
in R2 approaching (0, 0) along the parabola y = x2; for example, the
sequence

(
(1/n, 1/n2)

)
. Then (1/n, 1/n2) → (0, 0), but f(1/n, 1/n2) →

1/2 6= f(0, 0).
(v) Consider a variant of the function in (iv), namely, f : R2 → R given by
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f(x, y) :=





x3y

x4 + y2
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

Then f is continuous at (0, 0). To see this, use the A.M.-G.M. Inequality
(given, for example, on page 12 of ACICARA) to obtain 2|x2y| ≤ x4 + y2,
and hence |f(x, y)| ≤ |x|/2 for all (x, y) ∈ R2. Thus, if

(
(xn, yn)

)
is any

sequence in R2 with (xn, yn) → (0, 0), then we see that xn → 0 and as a
result, f(xn, yn) → 0 = f(0, 0). 3

Composition of Continuous Functions

We now show that the composition of continuous functions is continuous. It
may be noted that for functions of two variables, three types of composites
are possible. Thus, the following result is stated in three parts.

Proposition 2.17. Let D ⊆ R2, (x0, y0) ∈ D, and let f : D → R be continu-
ous at (x0, y0).

(i) Suppose E ⊆ R is such that f(D) ⊆ E. If g : E → R is continuous at
f(x0, y0), then g ◦ f : D → R is continuous at (x0, y0).

(ii) Suppose E ⊆ R, t0 ∈ E, and x, y : E → R are such that (x(t), y(t)) ∈ D
for all t ∈ E and (x(t0), y(t0)) = (x0, y0). If x, y are continuous at t0,
then F : E → R defined by F (t) := f(x(t), y(t)) is continuous at t0.

(iii) Suppose E ⊆ R2, (u0, v0) ∈ E, and x, y : E → R are such that
(x(u, v), y(u, v)) ∈ D for all (u, v) ∈ E and (x(u0, v0), y(u0, v0)) =
(x0, y0). If x, y are continuous at (u0, v0), then F : E → R defined by
F (u, v) := f(x(u, v), y(u, v)) is continuous at (u0, v0).

Proof. (i) Suppose E and g satisfy the hypotheses in (i). Let
(
(xn, yn)

)
be

a sequence in D such that (xn, yn) → (x0, y0). By the continuity of f at
(x0, y0), we obtain f(xn, yn) → f(x0, y0). Now (f(xn, yn)) is a sequence in
f(D), and hence by the continuity of g at f(x0, y0), we obtain g (f(xn, yn)) →
g (f(x0, y0)). So g ◦ f : D → R is continuous at (x0, y0).

(ii) Suppose E, t0, and the functions x, y satisfy the hypotheses in (ii),
and F is as defined in (ii). Let (tn) be a sequence in E such that tn → t0. By
the continuity of x and y at t0, we obtain x(tn) → x(t0) and y(tn) → y(t0).
Thus, by part (iii) of Proposition 2.1,

(
x(tn), y(tn)

)
is a sequence in D that

converges to (x0, y0). Hence by the continuity of f at (x0, y0), we obtain
f(x(tn), y(tn)) → f(x0, y0), that is, F (tn) → F (t0). So F is continuous at t0.

(iii) Suppose E, (u0, v0), and the functions x, y satisfy the hypotheses
in (iii), and F is as defined in (iii). Let (un, vn) be a sequence in E such
that (un, vn) → (u0, v0). By the continuity of x and y at (u0, v0), we obtain
x(un, vn) → x(u0, v0) and y(un, vn) → y(u0, v0). Thus, by part (iii) of Propo-
sition 2.1,

(
x(un, vn), y(un, vn)

)
is a sequence in D that converges to (x0, y0).

Hence by the continuity of f at (x0, y0), we obtain f(x(un, vn), y(un, vn)) →
f(x0, y0), that is, F (un, vn) → F (u0, v0). So F is continuous at (u0, v0). ⊓⊔
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Examples 2.18. (i) By part (i) of Proposition 2.17, f : R2 → R defined by
f(x, y) := sin(xy) is continuous at each (x0, y0) ∈ R2, and g : R2 → R

defined by g(x, y) := cos(x+ y) is continuous at each (x0, y0) ∈ R2.
(ii) By part (ii) of Proposition 2.17, if f(x, y) is any polynomial in two vari-

ables, then F : R → R defined by F (t) := f(et, sin t) for t ∈ R is continu-
ous at every t0 ∈ R.

(iii) By part (iii) of Proposition 2.17, if f(x, y) is any polynomial in two vari-
ables, then F : R2 → R defined by F (u, v) := f(sin(uv), cos(u + v)) for
(u, v) ∈ R2 is continuous at every (u0, v0) ∈ R2.

(iv) Consider the functions that give the polar coordinates of a point in R2

other than the origin. (See Section 1.3 and, in particular, Fact 1.26.) More
precisely, consider r : R2 → R and θ : R2 \ {(0, 0)} → R defined by

r(x, y) :=
√
x2 + y2 and θ(x, y) :=





cos−1

(
x

r(x, y)

)
if y ≥ 0,

− cos−1

(
x

r(x, y)

)
if y < 0.

Then, as seen already in Example 2.12 (ii), the function r is continuous
on R2. Also, we know that cos−1 : [−1, 1] → R is a continuous function
of one variable. (See, for example, page 252 of ACICARA.) Consequently,
by Proposition 2.15 and part (i) of Proposition 2.17, we see that the
function θ is continuous at every (x0, y0) ∈ R2 for which y0 6= 0. Also, θ
is continuous on the positive x-axis. To see this, note that if (x0, 0) ∈ R2

with x0 > 0 and if
(
(xn, yn)

)
is any sequence in R2 \ {(0, 0)} converging

to (x0, 0), then

|θ(xn, yn)| =

∣∣∣∣∣ cos−1

(
xn√
x2
n + y2

n

)∣∣∣∣∣→
∣∣∣∣ cos−1

(
x0

|x0|

)∣∣∣∣ =
∣∣ cos−1(1)

∣∣ = 0,

and hence θ(xn, yn) → 0. However, at points on the negative x-axis, the
function θ is discontinuous. To see this, fix (x0, 0) ∈ R2 with x0 < 0.
Clearly, we can find sequences

(
(xn, yn)

)
and

(
(un, vn)

)
in R2 \ {(0, 0)}

converging to (x0, 0) such that yn ≥ 0 and vn < 0 for all n ∈ N. Now,

θ(xn, yn) = cos−1

(
xn√
x2
n + y2

n

)
→ cos−1

(
x0

|x0|

)
= cos−1(−1) = π,

whereas

θ(un, vn) = − cos−1

(
un√
u2
n + v2

n

)
→ − cos−1

(
x0

|x0|

)
= − cos−1(−1) = −π.

Thus, θ is discontinuous at every point of {(x, y) ∈ R2 : x < 0 and y = 0}.
In fact, given any x0 < 0, we can take xn = un = x0 for all n ∈ N in
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the above argument, and this shows that the function from (−∞, 0] to
R given by y 7→ θ(x0, y) is discontinuous at 0. On the other hand, the
functions that give the rectangular coordinates of a point in the (polar)
plane are continuous. More precisely, the functions x, y : R2 → R defined
by x(r, θ) := r cos θ and y(r, θ) := r sin θ are continuous on R2. 3

Piecing Continuous Functions on Overlapping Subsets

An effective way to construct continuous functions of one variable is to piece
together two continuous function defined on overlapping subsets that intersect
at a single point, provided their values agree at the common point of intersec-
tion. (See, for example, Proposition 3.5 of ACICARA.) We now obtain a similar
result for functions of two variables. A precise statement is given below, and
the key hypothesis in this result is illustrated in Figure 2.1.

Proposition 2.19. Let D1 and D2 be subsets of R2 and let f1 : D1 → R

and f2 : D2 → R be continuous functions such that f1(x, y) = f2(x, y) for all
(x, y) ∈ D1 ∩D2. Let D := D1 ∪D2 and let f : D → R be defined by

f(x, y) :=

{
f1(x, y) if (x, y) ∈ D1,

f2(x, y) if (x, y) ∈ D2.

If Di is closed in D, that is, Di ∩D = Di for i = 1, 2, then f is continuous.

Proof. Since f1 and f2 agree on D1 ∩ D2, it is clear that f is well defined.
Assume now that each Di is closed in D for i = 1, 2. Fix (x0, y0) ∈ D. Let(
(xn, yn)

)
be a sequence in D such that (xn, yn) → (x0, y0). In case there is

n1 ∈ N such that (xn, yn) ∈ D1 for all n ≥ n1, then (x0, y0) ∈ D1 since D1

is closed in D; further, by the continuity of f1 on D1, we obtain f(xn, yn) =
f1(xn, yn) → f1(x0, y0) = f(x0, y0). Similarly, in case there is n2 ∈ N such that
(xn, yn) ∈ D2 for all n ≥ n2, then (x0, y0) ∈ D2 and f(xn, yn) → f(x0, y0). In
the remaining case, there are two subsequences

(
(xℓk , yℓk)

)
and

(
(xmk

, ymk
)
)

of
(
(xn, yn)

)
such that (xℓk , yℓk) ∈ D1 and (xmk

, ymk
) ∈ D2 for all k ∈ N, and

moreover, N = {ℓ1, ℓ2, . . . } ∪ {m1,m2, . . . }. Clearly, (xℓk , yℓk) → (x0, y0) and
(xmk

, ymk
) → (x0, y0). Now, since each Di is closed in D, we have (x0, y0) ∈

D1∩D2; further, since each fi is continuous at (x0, y0), we have f (xℓk , yℓk) =
f1 (xℓk , yℓk) → f1(x0, y0) = f(x0, y0) and f (xmk

, ymk
) = f2 (xmk

, ymk
) →

f2(x0, y0) = f(x0, y0). Since N = {ℓ1, ℓ2, . . . } ∪ {m1,m2, . . . }, it follows that
f(xn, yn) → f(x0, y0). This proves that f is continuous at (x0, y0). ⊓⊔

Examples 2.20. (i) Consider the semiopen rectangles D1 := (0, 1] × [−1, 1]
and D2 := [1, 2)× [−1, 1]. (See Figure 2.1.) Note that neither D1 nor D2 is
closed in R2, but each Di is closed in D := D1 ∪D2 for i = 1, 2. Thus the
hypothesis of Proposition 2.19 is satisfied, and continuous functions on
D1 and D2 that agree on D1 ∩D2 = {1}× [−1, 1] extend to a continuous
function on D.
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Fig. 2.1. Illustration of the conditions D1 ∩ D = D1 and D2 ∩ D = D2 in Proposi-
tion 2.19 that are satisfied in Example 2.20(i) and violated in Example 2.20(ii).

(ii) LetD1 be the open disk B1(0, 0) and let D2 the closure of the disk B1(2, 0),
that is, D1 := {(x, y) ∈ R2 : x2 + y2 < 1} and D2 := {(x, y) ∈ R2 :
(x − 2)2 + y2 ≤ 1}. (See Figure 2.1 (ii).) Consider f1 : D1 → R and f2 :
D2 → R defined by f1(x, y) := 0 for all (x, y) ∈ D1 and f2(x, y) := 1 for all
(x, y) ∈ D2. Clearly, f1 and f2 are continuous. Moreover,D1∩D2 = ∅ and
hence f : D1 ∪D2 → R as given in Proposition 2.19 is well defined. But f
is not continuous at (1, 0), since (xn, yn) :=

(
1 − 1

n , 0
)
→ (1, 0), whereas

f(xn, yn) = f1(xn, yn) = 0 for all n ∈ N, and thus f(xn, yn) 6→ 1 = f(1, 0).
This shows that the hypothesis Di ∩ D = Di for i = 1, 2 in Proposition
2.19 cannot be dropped. 3

An easy inductive argument shows that the result in Proposition 2.19 can
be extended to piece together continuous functions not just on two overlapping
sets, but on any finite number of sets, provided they agree on all pairwise
intersections and each of the sets is closed in the union of all the sets. For our
purpose, it will suffice to record the following special case of partitioning a set
into four quadrants at a given point.

Corollary 2.21. Let D ⊆ R and let f : D → R be a function. Given any
(x0, y0) ∈ D, let D1 := {(x, y) ∈ D : x ≥ x0 and y ≥ y0}, D2 := {(x, y) ∈ D :
x ≤ x0 and y ≥ y0}, D3 := {(x, y) ∈ D : x ≤ x0 and y ≤ y0}, D4 := {(x, y) ∈
D : x ≥ x0 and y ≤ y0}, and fi = f|Di

for i = 1, . . . , 4. Then f is continuous
if and only if fi is continuous for each i = 1, . . . , 4.

Proof. If f is continuous, then clearly fi is continuous for each i = 1, . . . , 4.
To prove the converse, consider E1 := D1 ∪D2 and E2 := D3 ∪D4, and also
gi := f|Ei

for i = 1, 2. Using Proposition 2.19, we see that the continuity of f1
and f2 implies the continuity of g1, while the continuity of f3 and f4 implies
the continuity of g2. Further, the continuity of f follows from the continuity
of g1 and g2 using Proposition 2.19 again. ⊓⊔



2.2 Continuity 55

Characterizations of Continuity

We have chosen to define continuity of a function at a point using sequences.
Alternative definitions are possible, as is shown by the result below.

Proposition 2.22. Let D ⊆ R2, (x0, y0) ∈ D, and let f : D → R be any
function. Then the following are equivalent.

(i) f is continuous at (x0, y0), that is, for every sequence
(
(xn, yn)

)
in D such

that (xn, yn) → (x0, y0), we have f(xn, yn) → f(x0, y0).
(ii) For every ǫ > 0, there is δ > 0 such that |f(x, y) − f(x0, y0)| < ǫ for all

(x, y) ∈ D ∩ Sδ(x0, y0).
(iii) For every open subset V of R containing f(x0, y0), there is an open subset

U of R2 containing (x0, y0) such that f(U ∩D) ⊆ V , that is, f(x, y) ∈ V
for all (x, y) ∈ U ∩D.

Proof. Assume that (i) holds. If (ii) does not hold, then there is ǫ > 0 such
that for every δ > 0, there is (x, y) in D ∩ Sδ(x0, y0) with the property that
|f(x, y) − f(x0, y0)| ≥ ǫ. Consequently, for each n ∈ N, there is (xn, yn) in
D ∩ S1/n(x0, y0) such that |f(xn, yn) − f(x0, y0)| ≥ ǫ. But then (xn, yn) →
(x0, y0) and f(xn, yn)→/ f(x0, y0). This contradicts (i). Thus, (i) ⇒ (ii).

Next, assume that (ii) holds. Let V be an open subset of R containing
f(x0, y0). Then there is ǫ > 0 such that (f(x0, y0) − ǫ, f(x0, y0) + ǫ) ⊆ V .
By (ii), we can find δ > 0 such that |f(x, y) − f(x0, y0)| < ǫ for all (x, y) ∈
D ∩ Sδ(x0, y0). Thus, if we let U = Sδ(x0, y0), then U is an open subset of R2

containing (x0, y0) such that f(U ∩D) ⊆ V . Thus, (ii) ⇒ (iii).
Finally, assume that (iii) holds. Let

(
(xn, yn)

)
be any sequence in D such

that (xn, yn) → (x0, y0). Given any ǫ > 0, take V to be the open interval
(f(x0, y0) − ǫ, f(x0, y0) + ǫ) in R. By (iii), there is an open subset U of R2

containing (x0, y0) such that f(U ∩D) ⊆ V . Since U is open, there is δ > 0
such that Sδ(x0, y0) ⊆ U . Further, since (xn, yn) → (x0, y0), there is n0 ∈ N

such that (xn, yn) ∈ Sδ(x0, y0) for all n ≥ n0. Consequently, f(xn, yn) is in
(f(x0, y0)− ǫ, f(x0, y0) + ǫ), that is, |f(xn, yn)− f(x0, y0)| < ǫ for all n ≥ n0.
Thus, f(xn, yn) → f(x0, y0), and so (iii) ⇒ (i).

This proves the equivalence of (i), (ii), and (iii). ⊓⊔

Corollary 2.23. Let D ⊆ R2 be open in R2 and let f : D → R be any
function. Then f is continuous on D if and only if for every open subset V
of R, the set f−1(V ) := {(x, y) ∈ D : f(x, y) ∈ V } is open in R2.

Proof. Follows easily from Proposition 2.22. ⊓⊔

Example 2.24. Clearly, the intervals (0,∞), (−∞, 0) and the set R \ {0} are
open subsets of R. Thus, as a consequence of Corollary 2.23, we see that if
f : R2 → R is continuous, then each of the sets {(x, y) ∈ R2 : f(x, y) > 0},
{(x, y) ∈ R2 : f(x, y) < 0}, and {(x, y) ∈ R2 : f(x, y) 6= 0} is open in R2. 3
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Continuity and Boundedness

A bounded function need not be continuous. Consider, for example, the func-
tion f : R2 → R defined by

f(x, y) :=

{
1 if both x and y are rational,

0 otherwise.

Clearly, f is bounded but f is not continuous at any point of R2. Also, a
continuous function need not be bounded. For example, g : R2 → R and
h : (0, 1) × (0, 1) → R defined by

g(x, y) := x+ y and h(x, y) := 1/(x+ y)

are both continuous, but neither g nor h is a bounded function. It may be
noted that the domain of g is closed, but not bounded, whereas the domain
of h is bounded, but not closed. The following result shows that the situation
is nicer if the domain is closed as well as bounded.

Proposition 2.25. Let D ⊆ R2 be closed and bounded, and let f : D → R be
continuous. Then f is bounded, that is, f(D) := {f(x, y) : (x, y) ∈ D} is a
bounded subset of R. Also, f(D) is a closed subset of R. As a consequence, if
D is nonempty, then f attains its bounds, that is, there are (a, b), (c, d) ∈ D
such that f(a, b) = sup f(D) and f(c, d) = inf f(D).

Proof. Suppose f is not bounded above. Then for each n ∈ N, there is
(xn, yn) ∈ D such that f(xn, yn) > n. Since D is bounded, by the Bolzano–
Weierstrass Theorem (part (ii) of Proposition 2.6), the sequence

(
(xn, yn)

)

has a convergent subsequence, say
(
(xnk

, ynk
)
)
. Suppose (xnk

, ynk
) → (x0, y0).

Then (x0, y0) ∈ D, since D is closed, and f(xnk
, ynk

) → f(x0, y0), since f is
continuous. On the other hand, f(xnk

, ynk
) > nk for each k ∈ N, and nk → ∞

as k → ∞, which leads to a contradiction. Hence f must be bounded above.
Similarly, it can be seen that f is bounded below. Thus f(D) is bounded.
Next, suppose (zn) is a sequence in f(D) such that zn → r for some r ∈ R.
Write zn = f(xn, yn), where (xn, yn) ∈ D for n ∈ N. As before,

(
(xn, yn)

)
has

a convergent subsequence, say
(
(xnk

, ynk
)
)
, which must converge to a point

(x0, y0) of D. Since f is continuous at (x0, y0), znk
= f(xnk

, ynk
) → f(x0, y0),

and hence r = f(x0, y0), which shows that r ∈ f(D). Thus f(D) is closed.
Finally, if D is nonempty, then f(D) is a nonempty bounded subset of R and
thus M := sup f(D) and m := inf f(D) are well defined. By the definition
of supremum and infimum, for each n ∈ N, we can find (an, bn), (cn, dn) ∈ D
such that M− 1

n < f(an, bn) ≤M and m ≤ f(cn, dn) < m+ 1
n . Consequently,

f(an, bn) → M and f(cn, dn) → m. Since f(D) is closed, M,m ∈ f(D), that
is, f(a, b) = sup f(D) and f(c, d) = inf f(D) for some (a, b), (c, d) ∈ D. ⊓⊔
Remark 2.26. Subsets of R2 (and more generally, of Rn) that are both closed
and bounded are often referred to as compact sets. Thus, the above proposition
says that the continuous image of a compact set is compact. For more on
compactness, see Exercise 17. 3
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Continuity and Monotonicity

For functions of one variable, there is no direct relationship between continu-
ity and monotonicity. Indeed, it suffices to consider the integer part function
x 7−→ [x] and the absolute value function x 7−→ |x| to conclude that a mono-
tonic function need not be continuous and a continuous function need not be
monotonic. For functions of two variables, a similar situation prevails. In fact,
using the product order on R2, we have introduced in Chapter 1 two distinct
notions: monotonicity and bimonotonicity. We will show below that neither
of these implies or is implied by continuity.

Examples 2.27. (i) Consider f : [−1, 1] × [−1, 1] → R defined by f(x, y) :=
xy. Clearly, f is continuous but not monotonic on [−1, 1] × [−1, 1]. Note,
however, that f is bimonotonically increasing on [−1, 1]×[−1, 1], since we have
x2y2 + x1y1 − x2y1 − x1y2 = (x2 − x1)(y2 − y1) for all (x1, y1), (x2, y2) ∈ R2.

(ii) Consider f : [−1, 1] × [−1, 1] → R defined by f(x, y) := (x + y)3.
Clearly, f is continuous. However, f is not bimonotonic on [−1, 1] × [−1, 1].
To see this, observe that (x1, y1) := (0, 0) and (x2, y2) := (1, 1) are points of
[−1, 1]× [−1, 1] satisfying (x1, y1) ≤ (x2, y2) and

f(x1, y1) + f(x2, y2) − f(x1, y2) − f(x2, y1) = 0 + 8 − 1 − 1 = 6 > 0,

whereas (u1, v1) := (−1,−1) and (u2, v2) := (0, 0) are points of [−1, 1]×[−1, 1]
satisfying (u1, v1) ≤ (u2, v2) and

f(u1, v1) + f(u2, v2) − f(u1, v2) − f(u2, v1) = −8 + 0 + 1 + 1 = −6 < 0.

(iii) Consider f : [−1, 1]× [−1, 1] → R defined by

f(x, y) :=

{
1 if x > 0 and y > 0,

0 otherwise.

It is easy to see that f is monotonically as well as bimonotonically increasing,
but not continuous on [−1, 1]× [−1, 1]. 3

Continuity, Bounded Variation, and Bounded Bivariation

In general, a function of bounded variation need not be continuous. Likewise
for a function of bounded bivariation. In fact, Example 2.27 (iii) provides
a common counterexample. We have seen earlier that a continuous function
need not be monotonic or bimonotonic. The following example shows that it
need not even be of bounded variation or of bounded bivariation.

Example 2.28. Consider f : [0, 1]× [0, 1] → R defined by

f(x, y) :=

{
xy cos (π/2x) if x 6= 0,

0 if x = 0.
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Clearly, f is continuous on (0, 1] × [0, 1]. Moreover, since |f(x, y)| ≤ |xy| for
all (x, y) ∈ [0, 1] × [0, 1], it is readily seen that f is continuous at (0, y) for
each y ∈ [0, 1]. Thus, f is continuous on [0, 1] × [0, 1]. Next, given any even
positive integer n, say n = 2k for some k ∈ N, if we consider the points

x0 = 0 = y0 and xi :=
1

n+ 1 − i
and yi = 1 for i = 1, . . . , n,

then we have (0, 0) = (x0, y0) ≤ (x1, y1) ≤ · · · ≤ (xn, yn) = (1, 1) and more-
over, f(xi, yi) = 0 if i is even and f(xi, yi) = ±xi if i is odd. Thus

n∑

i=1

|f(xi, yi)− f(xi−1, yi−1)| =
1

n
+

1

n
+

1

n− 2
+

1

n− 2
+ · · ·+ 1

2
+

1

2
=

k∑

i=1

1

i
.

Since the set {∑k
i=1(1/i) : k ∈ N} is not bounded above (as is shown, for

example, on page 51 of ACICARA), it follows that f is not of bounded variation
on [0, 1] × [0, 1].

Furthermore, if we let n = 2k and x0, x1, . . . , xn be as above, but take
m = 1, y0 = 0, and y1 = 1, then 0 = x0 ≤ x1 ≤ · · · ≤ xn = 1 and
0 = y0 ≤ y1 = 1, and moreover, for any i ≥ 0, we have f(xi, 0) = 0, whereas
f(xi, 1) = 0 if i is even and f(xi, 1) = ±xi if i is odd, and thus

n∑

i=1

m∑

j=1

|f(xi, yj) + f(xi−1, yj−1) − f(xi, yj−1) − f(xi−1, yj)| =

k∑

i=1

1

i
.

It follows, therefore, that f is not of bounded bivariation on [0, 1]× [0, 1]. 3

Remark 2.29. Using Exercise 38, a refined version of the Jordan decompo-
sition (Propositions 1.12 and 1.17) can be obtained for continuous functions.
Namely, a continuous function of bounded variation is a difference of contin-
uous monotonic functions, whereas a continuous function of bounded bivari-
ation is a difference of continuous bimonotonic functions. 3

Continuity and Convexity

In general, a continuous function is neither convex nor concave. For example,
consider D := [−1, 1] × [−1, 1] and f : D → R defined by f(x, y) := x3 + y3.
Clearly, f is continuous. But f is neither convex nor concave. To see this,
observe that

(
− 1

2 ,− 1
2

)
= 1

2 (−1,−1) + 1
2 (0, 0) and

(
1
2 ,

1
2

)
= 1

2 (1, 1) + 1
2 (0, 0),

but f
(
− 1

2 ,− 1
2

)
= − 1

4 > −1 = 1
2f(−1,−1) + 1

2f(0, 0), and f
(

1
2 ,

1
2

)
= 1

4 <
1 = 1

2f(1, 1) + 1
2f(0, 0). Moreover, a convex function need not be continuous.

For example, if D := {(x, y) ∈ R2 : x2 + y2 ≤ 1} is the closed unit disk and
f : D → R is a variant of the norm function defined by

f(x, y) :=

{√
x2 + y2 if x2 + y2 < 1,

2 if x2 + y2 = 1,
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then f is convex on D, but not continuous on D. Here, the continuity of f
fails precisely at the boundary points of D. In fact, we will show that a convex
function is always continuous at the interior points of its domain. First, we
prove a couple of auxiliary results, which may also be of independent interest.

Lemma 2.30. Let a, b, c, d ∈ R with a < b and c < d. Then every real-valued
convex function on the closed rectangle [a, b] × [c, d] in R2 is bounded.

Proof. Let D := [a, b] × [c, d] and let f : D → R be any convex function.
Define M := max{f(a, c), f(a, d), f(b, c), f(b, d)}. Let (x, y) ∈ D. Then there
is s in [0, 1] such that x = (1− s)a+ sb. Using the convexity of f on D, we see
that f(x, y) ≤ (1 − s)f(a, y) + sf(b, y). Further, there is t ∈ [0, 1] such that
y = (1 − t)c+ td. Again, using the convexity of f on D, we obtain

f(x, y) ≤ (1 − s) [(1 − t)f(a, c) + tf(a, d)] + s [(1 − t)f(b, c) + tf(b, d)]

≤ (1 − s) [(1 − t)M + tM ] + s [(1 − t)M + tM ] = M.

It follows that M is an upper bound for f . Next, consider the center point
(p, q) :=

(
a+b
2 , c+d2

)
of D and let (u, v) := (a + b − x, c + d − y). Clearly,

(u, v) ∈ D and (p, q) = 1
2 (x, y) + 1

2 (u, v). Hence using the convexity of f , we
obtain f(p, q) ≤ 1

2f(x, y) + 1
2f(u, v) ≤ 1

2f(x, y) + M , that is, f(x, y) ≥ m,
where m := 2 (f(p, q) −M). It follows that m is a lower bound for f . ⊓⊔
Lemma 2.31. Let D be convex and open in R2, and let f : D → R be convex.
Also, let [a, b]× [c, d] be a closed rectangle contained in D, where a, b, c, d ∈ R

with a < b and c < d. Then there is K ∈ R such that

|f(x, y) − f(u, v)| ≤ K (|x− u| + |y − v|) for all (x, y), (u, v) ∈ [a, b]×[c, d].

Proof. Since D is open, there is δ > 0 such that [a−δ, b+δ]× [c−δ, d+δ] ⊆ D.
By Lemma 2.30, there are m,M ∈ R such that m ≤ f(z, w) ≤ M for all
(z, w) ∈ [a− δ, b+ δ] × [c− δ, d+ δ]. Now, fix any (x, y), (u, v) ∈ [a, b]× [c, d].
The case (x, y) = (u, v) is trivial, and so we will assume that (x, y) 6= (u, v).
Then ℓ := |x − u| + |y − v| > 0, and we can consider z := u + δ

ℓ (u − x)

and w := v + δ
ℓ (v − y). Since |u − x| ≤ ℓ, that is, −ℓ ≤ u − x ≤ ℓ, we have

u− δ ≤ z ≤ u+ δ, and hence z ∈ [a− δ, b+ δ]. Similarly, w ∈ [c− δ, d+ δ]. In
particular, (z, w) ∈ D. Moreover, it can be easily verified that

u =
δ

ℓ+ δ
x+

ℓ

ℓ+ δ
z and v =

δ

ℓ+ δ
y +

ℓ

ℓ+ δ
w.

Thus (u, v) = (1 − t)(x, y) + t(z, w), where t := ℓ/(ℓ + δ). Since 0 < t < 1,
using the convexity of f on D, we obtain f(u, v) ≤ (1 − t)f(x, y) + tf(z, w).
Further, since 0 < t < ℓ/δ, we see that

f(u, v) − f(x, y) ≤ t [f(z, w) − f(x, y)] ≤ ℓ

δ
[M −m] = K (|x− u| + |y − v|) ,

where K := (M −m)/δ. Similarly, f(x, y) − f(u, v) ≤ K (|x− u| + |y − v|).
This proves the desired inequality for |f(u, v) − f(x, y)|. ⊓⊔
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We are now ready to show that a convex function is continuous at all the
interior points of its domain. This is an immediate consequence of the above
lemma. (See also Exercise 10.)

Proposition 2.32. Let D be a convex subset of R2 and let f : D → R be
a convex function. Then f is continuous at every interior point of D. In
particular, if D is also open in R2, then f is continuous on D.

Proof. Let (x0, y0) be an interior point of D. Then there is r > 0 such that
R := [x0−r, x0+r]× [y0−r, y0+r] is contained in D. By Lemma 2.31, there is
K ∈ R such that |f(x, y) − f(x0, y0)| ≤ K (|x− x0| + |y − y0|) for (x, y) ∈ R.
This implies that if

(
(xn, yn)

)
is a sequence in D such that (xn, yn) → (x0, y0),

then f(xn, yn) → f(x0, y0). Thus, f is continuous at (x0, y0). ⊓⊔

Continuity and Intermediate Value Property

A result of fundamental importance in one-variable calculus is that continuous
functions possess the intermediate value property (IVP). For ease of reference,
we state this result below; see, for example, Proposition 3.13 of ACICARA.

Fact 2.33. (Intermediate Value Theorem) Let D be a subset of R and let
φ : D → R be a continuous function. Then φ has the IVP on every interval
I ⊆ D, that is, if a, b ∈ I with a < b and r ∈ R is between φ(a) and φ(b), then
there is c ∈ [a, b] such that φ(c) = r; in particular, φ(I) is an interval in R.

The following result may be viewed as an analogue of Fact 2.33 for real-
valued continuous functions of two variables.

Proposition 2.34 (Bivariate Intermediate Value Theorem). Let D be
a subset of R2 and let f : D → R be a continuous function. Then f(E) is an
interval in R for every path-connected subset E of D. In particular, f has the
IVP on every 2-interval in D.

Proof. Suppose E ⊆ D is path-connected. Let z1, z2 ∈ f(E) and let r be any
real number between z1 and z2. Then z1 = f(x1, y1) and z2 = f(x2, y2) for
some (x1, y1), (x2, y2) ∈ E. Since E is path-connected, there is a path Γ joining
(x1, y1) to (x2, y2) that lies in E. Let x, y : [α, β] → R be continuous functions
such that Γ is given by (x(t), y(t)), t ∈ [α, β]. Consider F : [α, β] → R defined
by F (t) := f(x(t), y(t)). By part (ii) of Proposition 2.17, F is continuous, and
by Fact 2.33, F has the IVP on [α, β]. It follows that r = F (t0) for some
t0 ∈ [α, β], and hence r ∈ f(E). This proves that f(E) is an interval in R.
Finally, every 2-interval is path-connected (Example 1.5 (iv)), and so in view
of Proposition 1.25, we see that f has the IVP on every 2-interval in D. ⊓⊔

The following example shows that the converse of the above result is not
true, that is, the IVP does not imply continuity.
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Example 2.35. Consider f : [0, 1]× [0, 1] → R defined by

f(x, y) :=

{
cos(1/y) if y 6= 0,

0 if y = 0.

Then f is not continuous on [0, 1]× [0, 1], because, for example, (0, 1/nπ) →
(0, 0), but f(0, 1/nπ) = (−1)n 6→ f(0, 0) = 0. Note, however, that f is contin-
uous on [0, 1]× (0, 1]. We show that f has the IVP on [0, 1]× [0, 1]. Let r ∈ R

be an intermediate value of f , that is, r is between f(x1, y1) and f(x2, y2)
for some (x1, y1), (x2, y2) ∈ [0, 1] × [0, 1]. If y1 > 0 and y2 > 0, then by the
continuity of f on [0, 1] × (0, 1] and Proposition 2.34, we see that r = f(x, y)
for some (x, y) ∈ I(x1,y1),(x2,y2). If y1 = y2 = 0, then f(x1, y1) = f(x2, y2) = 0
and there is nothing to prove. Thus we may assume, without loss of gener-
ality, that y1 = 0 and y2 > 0. Choose k ∈ N such that (1/kπ) < y2. Now
y1 < (1/(k+ 2)π) < (1/kπ) < y2, and therefore cos(1/y) assumes every value
between −1 and 1 as y varies from y1 to y2. It follows that r = f(x1, y) for
some y ∈ [y1, y2]. Thus f has the IVP on [0, 1] × [0, 1]. 3

Corollary 2.36. Let D be a nonempty, path-connected, closed, and bounded
subset of R2 and let f : D → R be a continuous function. Then the range
f(D) of f is a closed and bounded interval in R.

Proof. First, note that since D is nonempty, so is f(D). By Proposition 2.25,
f(D) is bounded, and moreover, if m := inf f(D) and M := sup f(D), then
f(D) ⊆ [m,M ] and m,M ∈ f(D). Further, by Proposition 2.34, f(D) is an
interval in R. It follows that f(D) = [m,M ]. ⊓⊔

Uniform Continuity

The notion of uniform continuity for functions of one variable can be easily
extended to functions of two variables. Let D be a subset of R2. A function
f : D → R is said to be uniformly continuous on D if for any sequences(
(xn, yn)

)
and

(
(un, vn)

)
in D such that |(xn, yn) − (un, vn)| → 0, we have

|f(xn, yn) − f(un, vn)| → 0.
Specializing one of the two sequences to a constant sequence, we readily see

that a uniformly continuous function is continuous. As in the case of functions
of one variable, the converse is true if the domain is closed and bounded.

Proposition 2.37. Let D ⊆ R2 be a closed and bounded set. Then every
continuous function on D is uniformly continuous on D.

Proof. Suppose f : D → R is continuous but not uniformly continuous
on D. Then there are sequences

(
(xn, yn)

)
and

(
(un, vn)

)
in D such that

|(xn, yn) − (un, vn)| → 0, but |f(xn, yn) − f(un, vn)| 6→ 0. The latter im-
plies that there are ǫ > 0 and positive integers n1 < n2 < · · · such that∣∣f(xnk

, ynk
)−f(unk

, vnk
)
∣∣ ≥ ǫ for all k ∈ N. Now, by the Bolzano–Weierstrass
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Theorem (part (ii) of Proposition 2.6),
(
(xnk

, ynk
)
)

has a convergent sub-

sequence, say
(
(xnkj

, ynkj
)
)
. If (xnkj

, ynkj
) → (x0, y0), then (unkj

, vnkj
) →

(x0, y0), because |(xn, yn) − (un, vn)| → 0. Since f is continuous on D, we see

that
∣∣∣f(xnkj

, ynkj
) − f(unkj

, vnkj
)
∣∣∣ → |f(x0, y0) − f(x0, y0)| = 0. But this is

a contradiction, since
∣∣f(xnkj

, ynkj
) − f(unkj

, vnkj
)
∣∣ ≥ ǫ for all j ∈ N. ⊓⊔

Examples 2.38. (i) Consider f : R2 → R defined by f(x, y) := x+ y. Then
it is clear that f is uniformly continuous on R2.

(ii) If D ⊆ R2 and f : D → R is uniformly continuous, then for every fixed
(x0, y0) ∈ D, the functions φ : D1 → R and ψ : D2 → R, defined as in
Example 2.12(iv), are uniformly continuous. This follows from the defi-
nition of uniform continuity by specializing one of the coordinates in the
two sequences to a constant sequence.

(iii) Consider D ⊆ R2 and f : D → R given by

D := {(x, y) ∈ R2 : x, y ∈ [0, 1] and (x, y) 6= (0, 0)} and f(x, y) :=
1

x+ y
.

Then f is continuous on D but not uniformly continuous on D. To see
the latter, consider the sequences

(
(xn, yn)

)
and

(
(un, vn)

)
in D given

by (xn, yn) := (1/n, 0) and (un, vn) := (1/(n + 1), 0) for n ∈ N. We
have |(xn, yn) − (un, vn)| = 1/n(n+1) → 0, but |f(xn, yn) − f(un, vn)| =
|n− (n+ 1)| = 1 6→ 0. Alternatively, we could use (ii) above and the fact
that φ : (0, 1] → R defined by φ(x) = f(x, 0) = 1/x is not uniformly
continuous on (0, 1]. (See Example 3.18 (ii) on page 80 of ACICARA.) It
may be noted here that the domain of f is bounded but not closed.

(iv) Consider f : R2 → R defined by f(x, y) := x2 + y2. Then f is continuous
on R2, but not uniformly continuous on R2. To see the latter, consider the
sequences

(
(xn, yn)

)
and

(
(un, vn)

)
in D given by (xn, yn) := (n, 0) and

(un, vn) := (n−(1/n), 0) for n ∈ N. We have |(xn, yn) − (un, vn)| = 1/n→
0, but |f(xn, yn) − f(un, vn)| =

∣∣n2 − [n2 − 2 + (1/n2)]
∣∣ = 2−(1/n2) 6→ 0.

Alternatively, we could use (ii) above and the fact that φ : R → R defined
by φ(x) = f(x, 0) = x2 is not uniformly continuous on R. (See Example
3.18 (iii) on page 80 of ACICARA.) It may be noted here that the domain
of f is closed but not bounded. On the other hand, the restriction of f to
any bounded subset of R2 is uniformly continuous. 3

A criterion for the uniform continuity of a function of two variables that
does not involve convergence of sequences can be given as follows. The result
below may be compared with Proposition 2.22.

Proposition 2.39. Let D ⊆ R2. Consider a function f : D → R. Then f is
uniformly continuous on D if and only if it satisfies the following ǫ-δ condition:
For every ǫ > 0, there is δ > 0 such that

(x, y), (u, v) ∈ D and |(x, y) − (u, v)| < δ =⇒ |f(x, y) − f(u, v)| < ǫ.
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Proof. Assume that f is uniformly continuous on D. Suppose the ǫ-δ condi-
tion does not hold. Then there is ǫ > 0 such that for any δ > 0, we can find
(x, y), (u, v) ∈ D for which |(x, y) − (u, v)| < δ, but |f(x, y)−f(u, v)| ≥ ǫ. Con-
sidering δ := 1/n for n ∈ N, we obtain sequences

(
(xn, yn)

)
and

(
(un, vn)

)
inD

such that |(xn, yn) − (un, vn)| < 1
n and |f(xn, yn)−f(un, vn)| ≥ ǫ for all n ∈ N.

Consequently, |(xn, yn) − (un, vn)| → 0, but |f(xn, yn) − f(un, vn)| →/ 0. This
contradicts the assumption that f is uniformly continuous on D.

Conversely, assume that the ǫ-δ condition is satisfied. Suppose
(
(xn, yn)

)

and
(
(un, vn)

)
are any sequences in D such that |(xn, yn) − (un, vn)| → 0.

Let ǫ > 0 be given. Then there is δ > 0 such that if (x, y), (u, v) ∈ D satisfy
|(x, y) − (u, v)| < δ, then |f(x, y) − f(u, v)| < ǫ. Now, for this δ > 0, we can
find n0 ∈ N such that |(xn, yn) − (un, vn)| < δ for all n ≥ n0. Consequently,
|f(xn, yn) − f(un, vn)| < ǫ for all n ≥ n0. Thus |f(xn, yn) − f(un, vn)| → 0.
This proves the uniform continuity of f on D. ⊓⊔

Implicit Function Theorem

In the study of functions of one variable, one considers the so-called implicitly
defined curves, that is, curves given by equations of the form f(x, y) = 0,
(x, y) ∈ D, where f : D → R is a real-valued function of two variables.
Heuristically, such an equation defines one of the variables as a function of
the other; for example, it may define y as a function of x. In other words,
from the equation f(x, y) = 0, we may be able to solve for y in terms of x. In
fact, this is tacitly assumed when one does implicit differentiation in calculus
of functions of one variable. The following result asserts that it is possible
to solve the equation f(x, y) = 0 locally, around a point (x0, y0) satisfying
f(x0, y0) = 0, provided f is continuous in each variable and is either a strictly
increasing or a strictly decreasing function of y, for each fixed x. Moreover,
the solution y = η(x) is unique and it is a continuous function of x.

Proposition 2.40 (Implicit Function Theorem). Let D ⊆ R2 and (x0, y0)
be an interior point of D, and let f : D → R satisfy f(x0, y0) = 0. Assume
that there is r > 0 with Sr(x0, y0) ⊆ D such that the following conditions hold.

(a) Given any x ∈ (x0−r, x0 +r), the function ψ : (y0−r, y0 +r) → R defined
by ψ(y) := f(x, y) is continuous. Also, given any y ∈ (y0 − r, y0 + r), the
function φ : (x0 − r, x0 + r) → R defined by φ(x) := f(x, y) is continuous.

(b) Given any x ∈ (x0−r, x0 +r), the function ψ : (y0−r, y0 +r) → R defined
by ψ(y) := f(x, y) is strictly monotonic.

Then there are δ > 0 and a unique continuous function η : (x0−δ, x0+δ) → R

with η(x0) = y0 such that (x, η(x)) ∈ Sr(x0, y0) and f(x, η(x)) = 0 for all
x ∈ (x0 − δ, x0 + δ).

Proof. In view of (b), let us first suppose that ψ0 : (y0−r, y0 +r) → R defined
by ψ0(y) := f(x0, y) is strictly increasing on (y0 − r, y0 + r).
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x

y
b

b

by1y2 (x0; y0)
b

xx0 � Æ x0 + Æx0
y0y0 � r

y0 + r f(x; y2) > 0f(x; y1) < 0y = �(x)

Fig. 2.2. Illustration of the proof of the Implicit Function Theorem.

Choose any y1 ∈ (y0 − r, y0) and y2 ∈ (y0, y0 + r). Since f(x0, y0) = 0
and the function ψ0 is strictly increasing on (y0 − r, y0 + r), we see that
f(x0, y1) < 0 and f(x0, y2) > 0. By continuity, the sign of f is preserved on
small horizontal segments of the lines y = y1 and y = y2. (See Figure 2.2.)
More precisely, using (a), we see that the function defined by x 7−→ f(x, y1) is
continuous on (x0−r, x0 +r), and hence it follows from Fact 2.13 that there is
δ1 > 0 with δ1 ≤ r such that f(x, y1) < 0 for all x ∈ (x0−δ1, x0+δ1). Similarly,
there is δ2 > 0 with δ2 ≤ r such that f(x, y2) > 0 for all x ∈ (x0− δ2, x0 + δ2).
Let δ := min{δ1, δ2}. Then

f(x, y1) < 0 < f(x, y2) for all x ∈ (x0 − δ, x0 + δ).

Thus, given any x ∈ (x0 − δ, x0 + δ), the function ψ : (y0 − r, y0 + r) → R

defined by ψ(y) := f(x, y) satisfies ψ(y1) < 0 < ψ(y2). Also by (a), ψ is
continuous. Hence by the IVP of ψ, there is y ∈ (y1, y2) such that ψ(y) = 0,
that is, f(x, y) = 0. Moreover, since ψ(y1) < ψ(y2), it follows from (b) that ψ
is strictly increasing on (y0− r, y0 + r), and hence y is uniquely determined by
x. Thus if we write y = η(x), then we obtain a unique function η : (x0−δ, x0+
δ) → R such that η(x) ∈ (y1, y2) and f(x, η(x)) = 0 for all x ∈ (x0−δ, x0 +δ).
In particular, since f(x0, y0) = 0 and y0 ∈ (y1, y2), we have η(x0) = y0.

To prove the continuity of η, fix any x⋆ ∈ (x0 − δ, x0 + δ) and let (xn) be
a sequence in (x0 − δ, x0 + δ) such that xn → x⋆. We have seen above that
for any x ∈ (x0 − δ, x0 + δ), the function ψ : (y0 − r, y0 + r) → R defined
by ψ(y) = f(x, y) is strictly increasing. Fix y1, y2 ∈ (y0 − r, y0 + r) as above,
so that y1 < η(x) < y2 for all x ∈ (x0 − δ, x0 + δ). Let ǫ > 0 be given and
let us suppose ǫ is so small that y1 < η(x⋆) − ǫ < η(x⋆) + ǫ < y2, that is,
0 < ǫ < min{η(x⋆) − y1, y2 − η(x⋆)}. Using (a) and (b), we see that

f(xn, η(x
⋆)−ǫ) → f(x⋆, η(x⋆)−ǫ) and f(x⋆, η(x⋆)−ǫ) < f(x⋆, η(x⋆)) = 0.
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Hence there is n1 ∈ N such that f(xn, η(x
⋆)− ǫ) < 0 for all n ≥ n1. Similarly,

f(xn, η(x
⋆) + ǫ) → f(x⋆, η(x⋆) + ǫ) > f(x⋆, η(x⋆)) = 0, and hence there is

n2 ∈ N such that f(xn, η(x
⋆) + ǫ) > 0 for all n ≥ n2. Let n0 = max{n1, n2}.

Then f(xn, η(x
⋆) − ǫ) < 0 < f(xn, η(x

⋆) + ǫ) for all n ≥ n0. But since
f(xn, η(xn)) = 0, it follows from (b) that η(x⋆) − ǫ < η(xn) < η(x⋆) + ǫ, that
is, |η(xn) − η(x⋆)| < ǫ for all n ≥ n0. Thus, η(xn) → η(x⋆). This proves that
η is continuous on (x0 − δ, x0 + δ).

The case in which ψ0 : (y0 − r, y0 + r) → R defined by ψ0(y) := f(x0, y)
is strictly decreasing on (y0 − r, y0 + r) is proved similarly. Alternatively, it
follows from applying the result proved above to −f . ⊓⊔

Example 2.41. Consider f : R2 → R defined by f(x, y) = x2 + y2 − 1. Then
C := {(x, y) ∈ R2 : f(x, y) = 0} is the unit circle in R2. If (x0, y0) ∈ C and
y0 6= 0, then we can easily see that the hypotheses of the Implicit Function
Theorem are satisfied, and the “solution” is given by η(x) :=

√
1 − x2 or by

η(x) := −
√

1 − x2 according as y0 > 0 or y0 < 0. 3

Remark 2.42. We have a straightforward analogue of the Implicit Function
Theorem for solving f(x, y) = 0 for x in terms of y. In this situation, condition
(a) in Proposition 2.40 remains the same, while (b) is replaced by the condition
that for any y ∈ (y0 − r, y0 + r), the function φ : (x0 − r, x0 + r) → R

defined by φ(x) := f(x, y) is strictly monotonic. The conclusion would be
that there are δ > 0 and a unique continuous function ξ : (y0 − δ, y0 + δ) → R

with ξ(y0) = x0 such that (ξ(y), y) ∈ Sr(x0, y0) and f(ξ(y), y) = 0 for all
y ∈ (y0 − δ, y0 + δ). This can be proved in a manner similar to the proof of
Proposition 2.40. Alternatively, it follows from applying Proposition 2.40 to
the function (x, y) 7→ f(y, x) and the point (y0, x0). 3

An important consequence of the Implicit Function Theorem is that a
continuous real-valued function of one variable that is strictly monotonic in
an interval about a point admits a continuous (and strictly monotonic) inverse,
locally. A more precise statement appears below. This result may be viewed
as a special case of the so-called Inverse Function Theorem.

Proposition 2.43. Let I be an interval in R and x0 ∈ I. Suppose f : I → R

is continuous and strictly monotonic on I1 := (x0 − r, x0 + r) ∩ I for some
r > 0. Let y0 := f(x0), J := f(I), and J1 := f(I1). Then there are δ > 0 and
a unique continuous function ξ : (y0 − δ, y0 + δ)∩J → R such that ξ(y0) = x0

and f(ξ(y)) = y for all y ∈ (y0 − δ, y0 + δ) ∩ J . In particular, f−1 : J1 → R

is continuous at y0.

Proof. First, let us consider the case in which x0 is an interior point of I.
Then we may choose r > 0 such that (x0 − r, x0 + r) ⊆ I, and therefore
I1 = (x0−r, x0+r). Consider h : Sr(x0, y0) → R defined by h(x, y) := f(x)−y.
Then h is continuous, h(x0, y0) = 0, and given any y ∈ (y0 − r, y0 + r), the
function from I1 to R given by x 7−→ h(x, y) is strictly monotonic. Hence by
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the Implicit Function Theorem (Proposition 2.40 and Remark 2.42), there are
δ > 0 and a unique continuous function ξ : (y0−δ, y0+δ) → R with ξ(y0) = x0

such that (ξ(y), y) ∈ Sr(x0, y0) and h(ξ(y), y) = 0 for all y ∈ (y0 − δ, y0 + δ).
Consequently, f(ξ(y)) = y for all y ∈ (y0 − δ, y0 + δ) ∩ J and, in particular,
(y0 − δ, y0 + δ) ⊆ J . Since f is continuous and strictly monotonic on I1 =
(x0 − r, x0 + r) ⊆ I, it follows that y0 is an interior point of J1 := f(I1) and
f−1 = ξ on J1. Hence f−1 : J1 → R is continuous at y0.

In case x0 is an endpoint of I, we can extend f to a continuous, strictly
monotonic function f∗ on a larger interval I∗ such that x0 is an interior point
of I∗. For example, if f is strictly increasing and I = [x0, b), then we may take
I∗ := [x0 − 1, b) and f∗(x) := f(x) if x ∈ [x0, b) and f∗(x) := (x− x0) + y0 if
x ∈ [x0 − 1, x0). Applying the arguments in the previous paragraph to f∗, we
obtain the desired result. ⊓⊔

As an immediate corollary of Proposition 2.43, we obtain an alternative
proof of the Continuous Inverse Theorem for functions of one variable (given,
for example, on page 78 of ACICARA), which asserts that a continuous one-one
function defined on an interval has a continuous inverse. To this end, we shall
use the following fact from the theory of functions of one variable, which is
completely elementary in the sense that neither the statement nor the proof
involves the notions of continuity or limits. For a proof of this fact and also
for some related results, one may refer to page 29 of ACICARA.

Fact 2.44. Let I be an interval in R. If f : I → R is one-one and has the
IVP on I, then f is strictly monotonic on I.

Corollary 2.45. Let I be an interval in R and let f : I → R be a one-one
continuous function. Then the inverse function f−1 : f(I) → R is continuous.

Proof. By part (i) of Fact 2.33, f has the IVP on I. So, by Fact 2.44, f is
strictly monotonic on I. Hence by Proposition 2.43, f−1 is continuous. ⊓⊔

The notion of continuity can be extended to functions of three or more
variables in a completely analogous manner. Most results extend to this case
in a straightforward way. A result for which the extension to functions of three
variables may not be immediate is the Implicit Function Theorem (Proposition
2.40). Recall that the latter may be roughly stated by saying that if around a
point, f(x, y) is continuous in x as well as in y and strictly monotonic in y, then
we can solve the equation f(x, y) = 0 for y in terms of x around that point. It
turns out that for functions of three variables, in order to solve f(x, y, z) = 0
for z in terms of x and y around a point, what we need apart from the strict
monotonicity in z is not just the continuity in each of the three variables, but
the continuity in the variable z and the (bivariate) continuity in x and y. In
effect, the statement as well as the proof of Proposition 2.40 generalize easily
if the variable x is replaced by two (or more) variables. For ease of reference,
we record below a precise statement of this result. Formulation of analogues
as in Remark 2.42 and a general result in the case of functions of n variables
is left to the reader.
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Proposition 2.46 (Trivariate Implicit Function Theorem). Let D ⊆
R3, (x0, y0, z0) ∈ D, and f : D → R be such that f(x0, y0, z0) = 0. Assume
that there is r > 0 with Sr(x0, y0, z0) ⊆ D and the following conditions hold:

(a) Given any (x, y) ∈ Sr(x0, y0), the function ψ : (z0 − r, z0 + r) → R defined
by ψ(z) = f(x, y, z) is continuous. Also, given any z ∈ (z0 − r, z0 + r), the
function φ : Sr(x0, y0) → R defined by φ(x, y) = f(x, y, z) is continuous.

(b) Given any (x, y) ∈ Sr(x0, y0), the function ψ : (z0 − r, z0 + r) → R defined
by ψ(z) = f(x, y, z) is strictly monotonic.

Then there are δ > 0 and a unique continuous function ζ : Sδ(x0, y0) → R with
ζ(x0, y0) = z0 such that (x, y, ζ(x, y)) ∈ Sr(x0, y0, z0) and f(x, y, ζ(x, y)) = 0
for all (x, y) ∈ Sδ(x0, y0).

Proof. The proof is similar to that of Proposition 2.40 if we make appropriate
notational changes. ⊓⊔

2.3 Limits

Let D ⊆ R2 and (x0, y0) ∈ R2. Assume that an open square of positive radius
centered at (x0, y0), except possibly the center, is contained in D, that is,
Sr(x0, y0)\{(x0, y0)} ⊆ D for some r > 0. Let f : D → R be any function. We
say that a limit of f as (x, y) tends to (x0, y0) exists if there is a real number ℓ
such that whenever a sequence

(
(xn, yn)

)
inD\{(x0, y0)} converges to (x0, y0),

we have f(xn, yn) → ℓ. We then write f(x, y) → ℓ as (x, y) → (x0, y0). It may
be noted that there do exist sequences in D \ {(x0, y0)} that converge to
(x0, y0). For example,

(xn, yn) :=

(
x0 −

r

n+ 1
, y0 −

r

n+ 1

)
for n ∈ N

defines one such sequence. Using this and the fact that the limit of a sequence
in R2 is unique (part (i) of Proposition 2.1), we readily see that if a limit
of f as (x, y) tends to (x0, y0) exists, then it is unique. With this in view, if
f(x, y) → ℓ as (x, y) → (x0, y0), then we may refer to ℓ as the limit of f(x, y)
as (x, y) tends to (x0, y0), and write

lim
(x,y)→(x0,y0)

f(x, y) = ℓ.

Examples 2.47. (i) Consider f : R2 → R defined by f(0, 0) := 1 and
f(x, y) := sin(xy) for (x, y) ∈ R2 \ {(0, 0)}. Then the limit of f as (x, y)
tends to (0, 0) exists and is equal to 0. Indeed, if

(
(xn, yn)

)
is a sequence in

R2 \ {(0, 0)} such that (xn, yn) → (0, 0), then xnyn → 0, and by the con-
tinuity of the sine function, sin(xnyn) → sin 0 = 0, that is, f(xn, yn) → 0.
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(ii) Consider f : R2 → R defined by

f(x, y) =

{
x+ y if x 6= y,

1 if x = y.

Then the limit of f as (x, y) tends to (0, 0) does not exist. This can
be seen by considering two sequences approaching (0, 0), one along the
line y = x and another staying away from this line. For example, if
(xn, yn) := (1/n, 1/n) and (un, vn) := (−1/n, 1/n) for n ∈ N, then(
(xn, yn)

)
and

(
(un, vn)

)
are sequences in R2\{(0, 0)} converging to (0, 0),

but f(xn, yn) → 1 and f(un, vn) → 0.

(iii) Consider f : R2 \ {(0, 0)} → R given by f(x, y) = xy/(x2 + y2) for
(x, y) ∈ R2, (x, y) 6= (0, 0). Then the limit of f as (x, y) tends to (0, 0)
does not exist. This can also be seen by considering two sequences ap-
proaching (0, 0), along different lines through the origin. For example,
if (xn, yn) := (1/n, 1/n) and (un, vn) := (1/n, 2/n) for n ∈ N, then(
(xn, yn)

)
and

(
(un, vn)

)
are sequences in R2\{(0, 0)} converging to (0, 0),

but f(xn, yn) → 1
2 and f(un, vn) → 2

5 . 3

Limits and Continuity

The concepts of continuity and limit are related in a similar way as in the
case of functions of one variable.

Proposition 2.48. Let D ⊆ R2 and let (x0, y0) ∈ R2 be an interior point of
D, that is, Sr(x0, y0) ⊆ D for some r > 0. Let f : D → R be any function.
Then f is continuous at (x0, y0) if and only if the limit of f as (x, y) tends to
(x0, y0) exists and is equal to f(x0, y0).

Proof. Assume that f is continuous at (x0, y0). Let
(
(xn, yn)

)
be any sequence

in D such that (xn, yn) → (x0, y0). By the continuity of f at (x0, y0), we see
that f(xn, yn) → f(x0, y0). It follows that the limit of f as (x, y) tends to
(x0, y0) exists and is equal to f(x0, y0).

To prove the converse, assume that the limit of f as (x, y) tends to (x0, y0)
exists and is equal to f(x0, y0). Let

(
(xn, yn)

)
be any sequence in D such that

(xn, yn) → (x0, y0). If there is n0 ∈ N such that (xn, yn) = (x0, y0) for all
n ≥ n0, then it is clear that f(xn, yn) → f(x0, y0). Otherwise, there are
positive integers n1, n2, . . . such that n1 < n2 < · · · and {n ∈ N : (xn, yn) 6=
(x0, y0)} = {nk : k ∈ N}. Now,

(
(xnk

, ynk
)
)

is a sequence in D\{(x0, y0)} that
converges to (x0, y0), and therefore f(xnk

, ynk
) → f(x0, y0). Since f(xn, yn) =

f(x0, y0) for all n ∈ N \ {nk : k ∈ N}, it follows that f(xn, yn) → f(x0, y0).
Hence f is continuous at (x0, y0). ⊓⊔

As a consequence, we obtain a useful characterization for the existence of
the limit of a function in terms of the continuity of an associated function.
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Corollary 2.49. Let D ⊆ R2 and (x0, y0) ∈ R2 be such that D contains
Sr(x0, y0)\{(x0, y0)} for some r > 0. Given a function f : D → R and ℓ ∈ R,
let F : D ∪ {(x0, y0)} → R be the function defined by

F (x, y) :=

{
f(x, y) if (x, y) ∈ D \ {(x0, y0)},
ℓ if (x, y) = (x0, y0).

Then

lim
(x,y)→(x0,y0)

f(x, y) exists and is equal to ℓ ⇐⇒ F is continuous at (x0, y0).

Proof. Since f(x, y) = F (x, y) for (x, y) ∈ D \ {(x0, y0)}, it is clear that
lim(x,y)→(x0,y0) f(x, y) exists if and only if lim(x,y)→(x0,y0) F (x, y) exists, and
in this case the two limits are equal. Further, since (x0, y0) is an interior point
of D ∪ {(x0, y0)} and F (x0, y0) = ℓ, the desired result follows from applying
Proposition 2.48 to F . ⊓⊔

Examples 2.50. (i) In view of Proposition 2.48 and Example 2.16 (i), we
see that every rational function has a limit wherever it is defined, that is,
if p(x, y) and q(x, y) are polynomials in two variables and if (x0, y0) ∈ R2

is such that q(x0, y0) 6= 0, then

lim
(x,y)→(x0,y0)

p(x, y)

q(x, y)
=
p(x0, y0)

q(x0, y0)
.

On the other hand, if q(x0, y0) = 0, then the limit of p(x, y)/q(x, y) may
not exist, in general. For example, for any m, k ∈ N, the rational function
f(x, y) := xm/yk does not have a limit as (x, y) tends to (0, 0). To see
this, it suffices to approach (0, 0) along the parametric curve given by
(x(t), y(t)) = (αtk, βtm), t ∈ [−1, 1], where α, β are any nonzero constants.
For example, if (xn, yn) := (1/nk, 1/nm) and (un, vn) := (2/nk, 1/nm)
for n ∈ N, then

(
(xn, yn)

)
and

(
(un, vn)

)
are sequences in R2 \ {(0, 0)}

converging to (0, 0), but f(xn, yn) → 1 and f(un, vn) → 2m.

(ii) Consider f : R2 \ {(0, 0)} → R defined by f(x, y) = x2y/(x2 + y2). Then
in view of Proposition 2.48 and Example 2.16 (i), we see that the limit of
f(x, y) as (x, y) tends to (0, 0) exists and is equal to 0. 3

Thanks to Corollary 2.49, basic properties of limits of real-valued func-
tions of two variables can be deduced from the corresponding properties of
continuous functions.

Proposition 2.51. Let D ⊆ R2 and (x0, y0) ∈ R2 be such that D contains
St(x0, y0) \ {(x0, y0)} for some t > 0. Let f, g : D → R, and let ℓ,m ∈ R be
such that

lim
(x,y)→(x0,y0)

f(x, y) = ℓ and lim
(x,y)→(x0,y0)

g(x, y) = m.
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Then for any r ∈ R, the limits of f + g, rf , and fg as (x, y) tends to (x0, y0)
exist, and are equal to ℓ+m, rℓ, and ℓm respectively. Moreover, if ℓ 6= 0, then
there is δ > 0 such that f(x, y) 6= 0 for all (x, y) ∈ D ∩ Sδ(x0, y0) \ {(x0, y0)},
and the limit of 1/f : D∩Sδ(x0, y0)\{(x0, y0)} → R as (x, y) tends to (x0, y0)
exists, and is equal to 1/ℓ.

Proof. Let F,G : D ∪ {(x0, y0)} → R be the functions defined by letting
F (x, y) := f(x, y) and G(x, y) := g(x, y) for (x, y) ∈ D \{(x0, y0)} and setting
F (x0, y0) := ℓ and G(x0, y0) := m. By Corollary 2.49, F and G are continuous
at (x0, y0). So the assertion concerning the limits of f + g, rf , and fg follow
from Proposition 2.15 and Corollary 2.49. If ℓ 6= 0, then the desired existence
of δ and the limit of 1/f follow from Lemma 2.14, Proposition 2.15, and
Corollary 2.49. ⊓⊔

As in the case of functions of one variable, if there are certain inequalities
among the values of real-valued functions of two variables, then the same
prevail when we pass to limits, provided the limits exist. But of course, strict
inequalities such as < can change to weak inequalities such as ≤ when we pass
to the limit. (See Exercise 11.) On the other hand, strict inequalities on limits
yield strict inequalities on the values of the corresponding function around the
point where the limit is taken. (See Exercise 12.) Moreover, for nonnegative
functions, extraction of roots is preserved by passing to limits.

Proposition 2.52. Let D, (x0, y0), r, f, g, ℓ, and m be as in Proposition 2.51.

(i) If there is δ > 0 with δ ≤ r such that f(x, y) ≤ g(x, y) for all (x, y) in
Sδ(x0, y0)\{(x0, y0)}, then ℓ ≤ m. Conversely, if ℓ < m, then there is δ > 0
such that δ ≤ r and f(x, y) < g(x, y) for all (x, y) ∈ Sδ(x0, y0)\{(x0, y0)}.

(ii) If f(x, y) ≥ 0 for all (x, y) ∈ D, then ℓ ≥ 0 and for each k ∈ N, the limit
of f1/k : D → R as (x, y) tends to (x0, y0) exists, and is equal to ℓ1/k.

(iii) [Sandwich Theorem] If ℓ = m and if there is h : D → R such that
f(x, y) ≤ h(x, y) ≤ g(x, y) for all (x, y) ∈ D, then the limit of h as (x, y)
tends to (x0, y0) exists, and is equal to ℓ.

Proof. Consider H : D∪{(x0, y0)} → R defined by H(x, y) := g(x, y)−f(x, y)
for (x, y) ∈ D \ {(x0, y0)} and H(x0, y0) := m − ℓ. By Corollary 2.49 and
Proposition 2.51,H is continuous at (x0, y0). If ℓ > m, then H(x0, y0) < 0 and
hence by Lemma 2.14, there is η > 0 such that H(x, y) < 0, that is, f(x, y) >
g(x, y) for all (x, y) ∈ D∩ Sη(x0, y0). This contradicts the assumption on f and
g. Hence ℓ ≤ m. Conversely, suppose ℓ < m. ThenH(x0, y0) > 0, and hence by
Lemma 2.14, there is δ > 0 such that H(x, y) > 0 for all (x, y) ∈ D∩Sδ(x0, y0),
and so f(x, y) < g(x, y) for all (x, y) ∈ D ∩ Sδ(x0, y0). This proves (i). Next,
if f(x, y) ≥ 0 for all (x, y) ∈ D, then by (i), we obtain ℓ ≥ 0. Further, given
any k ∈ N, the assertion about the limit of f1/k follows from Proposition 2.15
and Corollary 2.49. Finally, (iii) is an immediate consequence of part (vi) of
Fact 2.3. ⊓⊔
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As in the case of functions of one variable, a criterion for the existence
of the limit of a real-valued function of two variables that does not involve
convergence of sequences can be given as follows.

Proposition 2.53. Let D ⊆ R2 and (x0, y0) ∈ R2 be such that D contains
Sr(x0, y0) \ {(x0, y0)} for some r > 0 and let f : D → R be a function. Then
the limit of f(x, y) as (x, y) tends to (x0, y0) exists if and only if there is ℓ ∈ R

satisfying the following ǫ-δ condition: For every ǫ > 0, there is δ > 0 such that

(x, y) ∈ D ∩ Sδ(x0, y0) and (x, y) 6= (x0, y0) =⇒ |f(x, y) − ℓ| < ǫ.

Proof. Given ℓ ∈ R, let F : D ∪ {(x0, y0)} → R be the function associated
with f and ℓ as in Corollary 2.49. Using the equivalence of (i) and (ii) in
Proposition 2.22 together with Corollary 2.49, we obtain the desired result.

⊓⊔

The above characterization yields the following analogue of the Cauchy
Criterion for sequences in R2 (part (iv) of Proposition 2.6).

Proposition 2.54 (Cauchy Criterion for Limits of Functions). Sup-
pose D ⊆ R2 and (x0, y0) ∈ R2 are such that D contains Sr(x0, y0)\{(x0, y0)}
for some r > 0. Let f : D → R be a function. Then lim(x,y)→(x0,y0) f(x, y)
exists if and only if for every ǫ > 0, there is δ > 0 such that

(x, y), (u, v) ∈ D ∩ Sδ(x0, y0) \ {(x0, y0)} =⇒ |f(x, y) − f(u, v)| < ǫ.

Proof. Assume that ℓ := lim(x,y)→(x0,y0) f(x, y) exists. Let ǫ > 0 be given. By
Proposition 2.53, there is δ > 0 such that |f(x, y) − ℓ| < ǫ/2 for all (x, y) in
D∩Sδ(x0, y0) \ {(x0, y0)}. Hence for (x, y), (u, v) ∈ D∩Sδ(x0, y0) \ {(x0, y0)},
we obtain |f(x, y)− f(u, v)| ≤ |f(x, y)− ℓ|+ |ℓ− f(u, v)| < (ǫ/2) + (ǫ/2) = ǫ,
as desired. The converse follows readily from the Cauchy Criterion for limits
of sequences in R (part (iv) of Fact 2.5). ⊓⊔

Limit from a Quadrant

An analogue of the notion of left(-hand) or right(-hand) limits for functions of
one variable is given by limits from any one of the four quadrants for functions
of two variables. These may be defined as follows.

Let D ⊆ R2 and (x0, y0) ∈ R2 be such that (x0, x0 + r)× (y0, y0 + r) ⊆ D
for some r > 0. Given a function f : D → R, we say that a limit of f
from the first quadrant as (x, y) tends to (x0, y0) exists if there is a
real number ℓ such that whenever

(
(xn, yn)

)
is a sequence in D \ {(x0, y0)}

satisfying (xn, yn) ≥ (x0, y0) for all n ∈ N and (xn, yn) → (x0, y0), we have
f(xn, yn) → ℓ. It is easy to see that if such a limit exists, then it is unique. In
this case, we write

f(x, y) → ℓ as (x, y) →
(
x+

0 , y
+
0

)
or lim

(x,y)→(x+

0
,y+

0 )
f(x, y) = ℓ.
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Similarly, we can define limits of f from the second, the third, and the fourth
quadrants. Obvious analogues of the above notation are then used.

Remark 2.55. For limits from a quadrant, Corollary 2.49 admits a straight-
forward analogue. More precisely, let D ⊆ R2 and (x0, y0) ∈ R2 be such that
(x0, x0 + r) × (y0, y0 + r) ⊆ D for some r > 0. Consider D1 := {(x, y) ∈ D :
x ≥ x0 and y ≥ y0} and F1 : D1 ∪ {(x0, y0)} → R defined by

F1(x, y) :=

{
f(x, y) if (x, y) ∈ D1 \ {(x0, y0)},
ℓ if (x, y) = (x0, y0).

Then

lim
(x,y)→(x+

0
,y+

0
)
f(x, y) exists and is equal to ℓ ⇐⇒ F1 is continuous at (x0, y0).

This can be proved by a similar argument as in Corollary 2.49. Moreover, anal-
ogous results for limits from the second, the third, and the fourth quadrants
can be readily obtained. 3

Proposition 2.56. Let D ⊆ R2 and (x0, y0) ∈ R2 be such that D contains
Sr(x0, y0) \ {(x0, y0)} for some r > 0. Let f : D → R be a function and let
ℓ ∈ R. Then lim(x,y)→(x0,y0) f(x, y) = ℓ if and only if lim(x,y)→(x+

0
,y+

0 ) f(x, y),

lim(x,y)→(x−

0
,y+

0 ) f(x, y), lim(x,y)→(x−

0
,y−

0 ) f(x, y), and lim(x,y)→(x+

0
,y−

0 ) f(x, y)

exist and are all equal to ℓ. If, in addition, (x0, y0) ∈ D, then f is continuous
at (x0, y0) if and only if the limit of f from each of the four quadrants as (x, y)
tends to (x0, y0) exists and they are all equal to f(x0, y0).

Proof. If lim(x,y)→(x0,y0) f(x, y) = ℓ, then it is clear that the limit of f from
each of the four quadrants as (x, y) tends to (x0, y0) exists and they are all
equal to ℓ. To prove the converse, suppose the limit of f from each of the
four quadrants as (x, y) tends to (x0, y0) exists and they are all equal to ℓ.
Consider F : D ∪ {(x0, y0)} → R defined by F (x0, y0) := ℓ and F (x, y) :=
f(x, y) for (x, y) ∈ D with (x, y) 6= (x0, y0). Let D1 := {(x, y) ∈ D : x ≥
x0 and y ≥ y0}, D2 := {(x, y) ∈ D : x ≤ x0 and y ≥ y0}, D3 := {(x, y) ∈
D : x ≤ x0 and y ≤ y0}, and D4 := {(x, y) ∈ D : x ≥ x0 and y ≤ y0}.
Also, let D̃i := Di ∪ {(x0, y0)} and Fi := F|D̃i

for i = 1, 2, 3, 4. In view of

Remark 2.55, we see that Fi is continuous at (x0, y0) for i = 1, 2, 3, 4. Hence
by Corollary 2.21, F is continuous at (x0, y0), and therefore by Corollary 2.49,
lim(x,y)→(x0,y0) f(x, y) = ℓ.

In case (x0, y0) ∈ D, the assertion about the continuity of f at (x0, y0)
follows from what is proved above and Proposition 2.48. ⊓⊔

Approaching Infinity

Let D ⊆ R2 be such that D contains a product of semi-infinite open intervals
of the form (a,∞) × (c,∞), where a, c ∈ R. Given a function f : D → R, we
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say that a limit of f as (x, y) tends to (∞,∞) exists if there is a real number
ℓ satisfying the following property:

(
(xn, yn)

)
any sequence in D with xn → ∞ and yn → ∞ =⇒ f(xn, yn) → ℓ.

In this case the real number ℓ is unique and it is sometimes denoted by
lim(x,y)→(∞,∞) f(x, y). Similarly, we can define a limit of f as (x, y) →
(−∞,∞), or as (x, y) → (−∞,−∞), or as (x, y) → (∞,−∞), provided of
course the domain D of f contains a product of semi-infinite open intervals
of the form (−∞, b)× (c,∞), (−∞, b)× (−∞, d), or (a,∞)× (−∞, d), as the
case may be, for some a, b, c, d ∈ R. An alternative definition that is analogous
to the ǫ-δ characterization (Proposition 2.53) can be given for such limits. It
should suffice to consider the case of limits as (x, y) → (∞,∞). We leave a
formulation of the statement and proofs in the other three cases as an exercise.

Proposition 2.57. Let D ⊆ R2 be such that D ⊇ (a,∞) × (c,∞) for some
a, c ∈ R, and let f : D → R be a function. Then lim(x,y)→(∞,∞) f(x, y) exists
if and only if there is ℓ ∈ R satisfying the following ǫ-(α, β) condition: For
every ǫ > 0, there are α, β ∈ R such that

(x, y) ∈ D with (x, y) ≥ (α, β) =⇒ |f(x, y) − ℓ| < ǫ.

Proof. Assume that lim(x,y)→(∞,∞) f(x, y) exists and is equal to a real number
ℓ. Suppose the ǫ-(α, β) condition is not satisfied. Then there is ǫ > 0 such
that for every α, β ∈ R, we can find (x, y) ∈ D with (x, y) ≥ (α, β), but
|f(x, y) − ℓ| ≥ ǫ. Taking (α, β) = (n, n), as n varies over N, we obtain a
sequence

(
(xn, yn)

)
in D such that xn → ∞ and yn → ∞, but f(xn, yn) 6→ ℓ.

This contradicts lim(x,y)→(∞,∞) f(x, y) = ℓ.

Conversely, assume the ǫ-(α, β) condition. Let
(
(xn, yn)

)
be a sequence in

D such that xn → ∞ and yn → ∞. Given any ǫ > 0, find α, β ∈ R for which
α > a and β > c. Now, there is n0 ∈ N such that (xn, yn) ≥ (α, β) for all
n ≥ n0, and hence |f(xn, yn)− ℓ| < ǫ for all n ≥ n0. Thus f(xn, yn) → ℓ, and
so lim(x,y)→(∞,∞) f(x, y) = ℓ. ⊓⊔

As in the case of functions of one variable, in some cases ∞ or −∞ can
be regarded as a “limit” of a function of two variables. Let D ⊆ R2 and
(x0, y0) ∈ R2 be such that D contains Sr(x0, y0) \ {(x0, y0)} for some r > 0
and let f : D → R be any function. We say that f(x, y) tends to ∞ as (x, y)
tends to (x0, y0) if for every sequence

(
(xn, yn)

)
inD\{(x0, y0)} that converges

to (x0, y0), we have f(xn, yn) → ∞. We then write

f(x, y) → ∞ as (x, y) → (x0, y0).

Likewise, we say that f(x, y) tends to −∞ as (x, y) tends to (x0, y0) if for
every sequence

(
(xn, yn)

)
in D \ {(x0, y0)} that converges to (x0, y0), we have

f(xn, yn) → −∞. We then write
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f(x, y) → −∞ as (x, y) → (x0, y0).

For example,

1

x2 + y2
→ ∞ as (x, y) → (0, 0) and − 1

x2 + y2
→ −∞ as (x, y) → (0, 0).

We now give an analogue of Proposition 2.53 for a real-valued function of
two variables that tends to ∞ or to −∞.

Proposition 2.58. Let D ⊆ R2 and (x0, y0) ∈ R2 be such that D contains
Sr(x0, y0)\{(x0, y0)} for some r > 0 and let f : D → R be any function. Then
f(x, y) → ∞ as (x, y) → (x0, y0) if and only if the following α-δ condition
holds: For every α ∈ R, there is δ > 0 such that

(x, y) ∈ D ∩ Sδ(x0, y0) and (x, y) 6= (x0, y0) =⇒ f(x, y) > α.

Likewise, f(x, y) → −∞ as (x, y) → (x0, y0) if and only if the following β-δ
condition holds: For every β ∈ R, there is δ > 0 such that

(x, y) ∈ D ∩ Sδ(x0, y0) and (x, y) 6= (x0, y0) =⇒ f(x, y) < β.

Proof. Assume that f(x, y) → ∞ as (x, y) → (x0, y0). If the α-δ condition
does not hold, then there exists α ∈ R such that for every δ > 0, there is
(x, y) ∈ D ∩ Sδ(x0, y0) with (x, y) 6= (x0, y0) and f(x, y) ≤ α. Taking δ = 1/n
as n varies over N, we obtain a sequence

(
(xn, yn)

)
in D \ {(x0, y0)} such that

(xn, yn) → (x0, y0), but f(xn, yn) 6→ ∞. This contradicts the assumption.
Conversely, assume the α-δ condition. Let

(
(xn, yn)

)
be a sequence in

D \ {(x0, y0)} such that (xn, yn) → (x0, y0), and let α > 0 be given. Then
there is δ > 0 such that f(x, y) > α for all (x, y) ∈ D∩Sδ(x0, y0) with (x, y) 6=
(x0, y0). Further, there is n0 ∈ N such that (xn, yn) ∈ Sδ(x0, y0) for n ≥ n0.
Hence f(xn, yn) > α for n ≥ n0. Thus f(x, y) → ∞ as (x, y) → (x0, y0).

The equivalence of the condition f(x, y) → −∞ as (x, y) → (x0, y0) with
the β-δ condition is proved similarly. ⊓⊔

Recall that we have defined the notion of a monotonically increasing func-
tion of two variables using the product order on R2. We show below that for
such functions, existence of a limit from the first or the third quadrant is
equivalent to boundedness properties.

Proposition 2.59. Let a, b, c, d ∈ R∪{−∞,∞} with a < b and c < d be such
that either a, c ∈ R or a = c = −∞, and either b, d ∈ R or b = d = ∞. Let
f : (a, b) × (c, d) → R be a monotonically increasing function. Then

(i) lim(x,y)→(b−, d−) f(x, y) exists if and only if f is bounded above; in this
case, lim(x,y)→(b−, d−) f(x, y) = sup{f(x, y) : (x, y) ∈ (a, b) × (c, d)}. If f
is not bounded above, then f(x, y) → ∞ as (x, y) → (b−, d−).
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(ii) lim(x,y)→(a+, c+) f(x, y) exists if and only if f is bounded below; in this
case, lim(x,y)→(a+, c+) f(x, y) = inf{f(x, y) : (x, y) ∈ (a, b) × (c, d)}. If f
is not bounded below, then f(x, y) → −∞ as (x, y) → (a+, c+).

Proof. (i) Suppose f is bounded above. Let M := sup{f(x, y) : (x, y) ∈
(a, b) × (c, d)}. Given any ǫ > 0, there is (b0, d0) ∈ (a, b) × (c, d) such that
M−ǫ < f(b0, d0) ≤M . Now, if

(
(xn, yn)

)
is any sequence in (a, b)×(c, d) such

that (xn, yn) → (b, d), then there is n0 ∈ N such that (b0, d0) ≤ (xn, yn) for
n ≥ n0. Since f is monotonically increasing, we obtainM−ǫ < f(xn, yn) ≤M
for n ≥ n0. It follows that lim(x,y)→(b−, d−) f(x, y) exists and is equal to M .

On the other hand, suppose f is not bounded above. Let α ∈ R. Then there
is (b0, d0) ∈ (a, b) × (c, d) such that f(b0, d0) > α. Since f is monotonically
increasing, we see that f(x, y) > α for all (x, y) ∈ (b0, b) × (d0, d). Now,
if
(
(xn, yn)

)
is any sequence in (a, b) × (c, d) such that (xn, yn) → (b, d),

then there is n0 ∈ N such that (b0, d0) ≤ (xn, yn) for n ≥ n0, and hence
f(xn, yn) > α for n ≥ n0. Thus f(xn, yn) → ∞ as (x, y) → (b−, d−). It
follows that f(x, y) → ∞ as (x, y) → (b−, d−). This proves (i).

(ii) The proof of this part is similar to the proof of part (i) above. ⊓⊔

A result similar to the one above holds for monotonically decreasing func-
tions. (See Exercise 31.) Consequently, we see that if f : (a, b)× (c, d) → R is
a monotonic function, then

lim(x,y)→(b−, d−) f(x, y) and lim(x,y)→(a+, c+) f(x, y) exist ⇐⇒ f is bounded.

However, for a bounded monotonic function, limits along the other two quad-
rants may not exist. For example, consider f : [−1, 1] × [−1, 1] → R defined
by

f(x, y) :=

{
(x+ 2)(y + 2) if x+ y ≥ 0,

(x+ 1)(y + 1) if x+ y < 0.

We have noted in Example 1.8 (i) that f is monotonically increasing. Also, it
is clear that f is bounded and (consequently, or otherwise) the limits of f from
the first and the third quadrants as (x, y) tends to (0, 0) exist. But the limits
of f from the second and the fourth quadrants as (x, y) tends to (0, 0) do not
exist. To see this, consider the sequences in R2 defined by (xn, yn) :=

(
− 1
n ,

2
n

)

and (x′n, y
′
n) :=

(
− 2
n ,

1
n

)
for n ∈ N. Then

(xn, yn) → 0 and (x′n, y
′
n) → 0, but f(xn, yn) → 4 and f(x′n, y

′
n) → 1.

Likewise, if (xn, yn) :=
(

2
n , − 1

n

)
and (x′n, y

′
n) :=

(
1
n , − 2

n

)
for n ∈ N, then

(xn, yn) → 0 and (x′n, y
′
n) → 0, but f(xn, yn) → 4 and f(x′n, y

′
n) → 1.

Thus lim(x,y)→(0−, 0+) f(x, y) and lim(x,y)→(0+, 0−) f(x, y) do not exist.
In Exercise 40 of Chapter 1, we introduced the notion of an antimonotonic

function. It can be seen that if f : (a, b) × (c, d) → R is antimonotonic, then
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lim(x,y)→(a+, d−) f(x, y) and lim(x,y)→(b−, c+) f(x, y) exist ⇐⇒ f is bounded.

(See Exercise 35.)

Remark 2.60. The notion of limit of a real-valued function of two variables
admits a straightforward extension to real-valued functions of three or more
variables. Moreover, analogues of all the results in Section 2.3 concerning
limits can be easily formulated and proved in this case. 3

Notes and Comments

For the local study around a point in R2 (and more generally, in Rn), there
are at least two natural analogues of the notion of an interval around a point
in R: open disks and open squares. These two are essentially equivalent, in
the sense that an open disk can be inscribed in an open square with the same
center, and vice versa. (See Exercise 3 of Chapter 1). In this book, we have
preferred to use open squares instead of open disks. This approach is slightly
unusual, but it pays off in several proofs that appear subsequently.

The development of topics discussed in this chapter proceeds along similar
lines as in ACICARA. Sequences in R2 are introduced first and their basic prop-
erties are derived quickly from the corresponding properties of sequences in R.
The notion of continuity is defined using convergence of sequences, and basic
properties of continuous functions are proved using properties of sequences in
R2. These include a result on piecing together continuous functions on over-
lapping domains, which does not seem easy to locate in the literature. Standard
results about continuous functions on connected domains and on compact do-
mains are included, except that for pedagogical reasons, we have preferred the
terminology of path-connected sets and of closed and bounded sets. It may be
remarked that the more general notions of connectedness and compactness are
of fundamental importance in analysis and topology; for an introduction, we
refer to Exercises 17, 18, 19, 20 21, and also the books of Rudin [48] and
Munkres [40]. For a convex function of one variable, continuity at an interior
point was relegated to an exercise in ACICARA. A similar result holds for con-
vex functions of several variables, but proving it is a little more involved, and
we have chosen to give a detailed proof for functions of two variables, using
arguments similar to those in the book of Roberts and Varberg [47]. For an
alternative proof, one may consult the book of Fleming [19].

Following Hardy [29], we state and prove the Implicit Function Theorem
under a weak hypothesis of continuity in each of the two variables and strict
monotonicity in one of the variables. That this is possible appears to have been
first observed by Besicovitch. (See the footnote on p. 203 of [29].) This version
of the Implicit Function Theorem can be used to give an alternative proof of
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the Continuous Inverse Theorem. Also, it will pave the way for proving the
classical version of the Implicit Function Theorem in Chapter 3.

Limits of functions of two variables are defined using sequences. We have
deduced basic properties of limits from the corresponding properties of contin-
uous functions. Perhaps the only nonstandard notion introduced here is that
of a limit from a quadrant. This provides an interesting analogue of the notion
in one-variable calculus of left(-hand) and right(-hand) limits. In general, for
functions of n variables, the notion will have to deal with 2n hyperoctants.

Exercises

Part A

1. Consider the sequence in R2 whose nth term is defined by one of the
following. Determine whether it is convergent. If it is, then find its limit.
(i)
(
1/n, n2

)
, (ii)

(
n, 1/n2

)
, (iii)

(
1/n, 1/n2

)
, (iv) (1/n, (−1)n/n),

(v)
(
1 + 1

1! + 1
2! + · · · + 1

n! , lnn
)
, (vi)

((
1 + 1

n

)n
,
(
1 − 1

n

)n)
.

2. A sequence
(
(xn, yn)

)
in R2 is said to be

bounded above if there is (α1, α2) ∈ R2 such that (xn, yn) ≤ (α1, α2),
that is, xn ≤ α1 and yn ≤ α2 for all n ∈ N,
bounded below if there is (β1, β2) ∈ R2 such that (β1, β2) ≤ (xn, yn),
that is, β1 ≤ xn and β2 ≤ yn for all n ∈ N,
monotonically increasing if (xn, yn) ≤ (xn+1, yn+1) for all n ∈ N,
monotonically decreasing if (xn, yn) ≥ (xn+1, yn+1) for all n ∈ N,
monotonic if it is monotonically increasing or decreasing.

Prove the following.
(i) A monotonically increasing sequence in R2 is bounded above if and

only if it is convergent. Also, if
(
(xn, yn)

)
is monotonically increasing

and bounded above, then limn→∞(xn, yn) = sup{(xn, yn) : n ∈ N}.
(ii) A monotonically decreasing sequence in R2 is bounded below if and

only if it is convergent. Also, if
(
(xn, yn)

)
is monotonically decreasing

and bounded below, then limn→∞(xn, yn) = inf{(xn, yn) : n ∈ N}.
(iii) A monotonic sequence in R2 is convergent if and only if it is bounded.

3. Is it true that every sequence in R2 has a monotonic subsequence? Justify
your answer. [Note: It may be remarked that every sequence in R has a
monotonic subsequence; see page 55 of ACICARA.]

4. Let (x0, y0) ∈ R2. We say that (x0, y0) is a cluster point of a sequence(
(xn, yn)

)
in R2 if there is a subsequence

(
(xnk

, ynk
)
)

of
(
(xn, yn)

)
such

that (xnk
, ynk

) → (x0, y0). Show that if (xn, yn) → (x0, y0), then (x0, y0)
is the only cluster point of

(
(xn, yn)

)
. Also, show that the converse is not

true, that is, there is a sequence
(
(xn, yn)

)
in R2 that has a unique cluster

point but is not convergent.
5. If a subset D of R2 is bounded, then show that its closure D is also a

bounded subset of R2.
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6. Find the closure, the boundary, and the interior of the following subsets
of R2. Also, determine whether these subsets are closed or open.
(i) {(x, y) ∈ R2 : 0 ≤ x < 1 and 0 < y ≤ 2}, (ii) {(x, x2) : x ∈ R},
(iii) any finite subset of R2, (iv) {(m,n) : m,n ∈ N},
(v) {(1/m, 1/n) : m,n ∈ N}, (vi) {(r, s) : r, s ∈ Q}.

7. Let D ⊆ R2. Show that the closure of D is the smallest closed subset of
R2 containing D and the interior of D is the largest open subset of D.

8. Let f, g : [−1, 1]× [−1, 1] → R be the functions defined by

f(x, y) := (x+ y)2 and g(x, y) :=

{
(x+ y)2 if x+ y ≥ 0,

−(x+ y)2 if x+ y < 0.

Show that both f and g are continuous on [−1, 1]× [−1, 1]. Further show
that f is bimonotonic but g is not bimonotonic on [−1, 1]× [−1, 1].

9. Consider f : R2 → R defined by f(0, 0) := 0 and for (x, y) 6= (0, 0), by
one of the following. In each case, determine whether f is continuous.

(i)
xy2

x2 + y2
, (ii)

xy2

x2 + y4
, (iii)

x3y

x6 + y2
, (iv)

x2

x2 + y2
,

(v) xy ln(x2 + y2), (vi)
x3

x2 + y2
, (vii)

x4y

x2 + y2
,

(viii)
x3y − xy3

x2 + y2
, (ix)

sin(x + y)

|x| + |y| , (x)
sin2(x + y)

|x| + |y| .

10. Let D be convex and open in R2, and let f : D → R be a convex function.
If [a, b] × [c, d] is a closed rectangle contained in D, where a, b, c, d ∈ R

with a < b and c < d, then show that f satisfies a Lipschitz condition
on [a, b] × [c, d], that is, there is L ∈ R such that

|f(x, y) − f(u, v)| ≤ L |(x, y) − (u, v)| for all (x, y), (u, v) ∈ [a, b]×[c, d].

(Hint: Use Lemma 2.31, or give a proof similar to that of Lemma 2.31.)
11. Let D := S1(0, 0) \ {(0, 0)} and let f, g : D → R be defined by f(x, y) :=

|x| + |y| and g(x, y) := 1
2 (|x| + |y|). Show that f(x, y) < g(x, y) for all

(x, y) ∈ D, but lim(x,y)→(0,0) f(x, y) = lim(x,y)→(0,0) g(x, y).
12. Show that there is δ > 0 such that sin(xy) < cos(xy) for all (x, y) ∈

Sδ(0, 0). (Hint: Proposition 2.52.)
13. Consider f : R2 → R defined by one of (i)–(iv) below. Determine whether

the two-variable limit lim(x,y)→(0,0) f(x, y) and the two iterated limits

limx→0

[
limy→0 f(x, y)

]
and limy→0

[
limx→0 f(x, y)

]
exist. If they do,

then find them.

(i) f(x, y) := x+ y, (ii) f(x, y) :=





x2y2

x2y2 + (x− y)2
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0),

(iii) f(x, y) :=





x+ y

x− y
if x 6= y,

0 if x = y,
(iv) f(x, y) :=




x sin

1

y
if y 6= 0,

0 if y = 0.
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Part B

14. Show that a sequence in R2 is convergent if and only if it is bounded
and all its convergent subsequences have the same limit. (Hint: Bolzano–
Weierstrass Theorem.)

15. Let m,n be nonnegative integers and let i, j ∈ N be even. Let f : R2 → R

be defined by f(0, 0) := 0 and f(x, y) := xmyn/(xi + yj) for (x, y) 6=
(0, 0). Show that f is continuous at (0, 0) if and only if mj + ni > ij.

16. Let E ⊆ R be open in R and let Φ = (x, y) be a pair of real-valued
functions x, y : E → R. Show that both x and y are continuous on E if
and only if the set Φ−1(V ) := {t ∈ E : (x(t), y(t)) ∈ V } is open in R for
every open subset V of R2.

17. Let D ⊆ R2. A family {Uα : α ∈ A} indexed by an arbitrary set A is
called an open cover of D if each Uα is open in R2 and D is contained
in the union of Uα as α varies over A. Such an open cover is said to have
a finite subcover if there are finitely many indices α1, . . . , αn ∈ A such
that D ⊆ Uα1

∪ · · · ∪Uαn
. The set D is said to be compact if every open

cover of D has a finite subcover. Prove the following.
(i) If D is finite, then D is compact.
(ii) IfD is compact and E ⊆ D is closed, then E is compact. (Hint: If {Uα :

α ∈ A} is an open cover of D, then consider {Uα : α ∈ A}∪ {D \E}.)
(iii) If D is compact, then D is closed. (Hint: If (x0, y0) ∈ D\∂D, then the

set of open squares centered at (x, y) and of radius |(x, y)−(x0, y0)|/2,
as (x, y) varies over D, is an open cover of D.)

(iv) If D is compact, then D is bounded.
(v) If D = [a, b] × [c, d] is a closed rectangle, then D is compact. (Hint:

Use the midpoints (a + b)/2 and (c + d)/2 to subdivide D into four
smaller rectangles. If an open cover of D has no finite subcover, then
the same holds for one of the smaller rectangles. Continue this process
and look at the limiting situation.)

(vi) (Heine–Borel Theorem)D is compact ⇐⇒D is closed and bounded.
Generalize the definition and the properties above to subsets of Rn.

18. Let D ⊆ R2 and E ⊆ R. Prove the following.
(i) If D is compact and f : D → R is continuous, then the range f(D) is

closed and bounded.
(ii) If E is closed and bounded and x, y : E → R are continuous, then the

subset {(x(t), y(t)) : t ∈ E} of R2 is compact.
19. If D ⊆ R2 is path-connected and f : D → R is a continuous function

such that the image f(D) is a finite set, then show that f is a constant
function. Is the conclusion valid if D is not path-connected? Justify your
answer. (Hint: If D has two points, take a path (x(t), y(t)) joining them.
Consider t 7→ f (x(t), y(t)) and use Fact 2.33.)

20. If D ⊆ R2 is path-connected, then show that D cannot be written as a
union of two disjoint, nonempty open subsets of D. (Hint: If it could, then
there would be a continuous function f : D → {0, 1}. Use Exercise 19.)
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21. Let D be an open subset of R2. If D cannot be written as a union of two
disjoint, nonempty open subsets ofD, then show thatD is path-connected.

22. Let D be a bounded subset of R2 and let D denote its closure. Suppose
f : D → R be a continuous function. Prove that f is uniformly continuous
on D if and only if there is a continuous function f̄ : D → R such that
f̄ |D = f .

23. Let f : [0, 1]× [0, 1] → R be the bivariate Thomae function defined by

f(x, y) :=





1 if x = 0 and y ∈ Q ∩ [0, 1],
1/q if x, y ∈ Q ∩ [0, 1] and x = p/q for some

relatively prime positive integers p and q,
0 otherwise.

Show that the set of discontinuities of f is {(x, y) ∈ [0, 1]×[0, 1] : x, y ∈ Q}.
24. (Duhamel’s Theorem) Let a, b ∈ R with a < b and D := [a, b] × [a, b].

If f : D → R is continuous and φ : [a, b] → R is defined by φ(x) := f(x, x)
for x ∈ [a, b], then show that φ is Riemann integrable on [a, b]. Further,
show that given any ǫ > 0, there is δ > 0 such that for every partition
P := {x0, x1, . . . , xn} of [a, b] with µ(P ) < δ, and every ci, c̃i ∈ [xi−1, xi],
for i = 1, . . . , n, we have

∣∣∣
∫ b

a

φ(x) dx −
n∑

i=1

f(ci, c̃i) (xi − xi−1)
∣∣∣ < ǫ.

25. (Bliss’s Theorem) If φ, ψ : [a, b] → R are continuous, then show
that given any ǫ > 0, there is δ > 0 such that for every partition
P := {x0, x1, . . . , xn} of [a, b] with µ(P ) < δ, and every ci, c̃i ∈ [xi−1, xi],
for i = 1, . . . , n, we have

∣∣∣
∫ b

a

φ(x)ψ(x) dx −
n∑

i=1

φ(ci)ψ(c̃i) (xi − xi−1)
∣∣∣ < ǫ.

26. Let D ⊆ R and t0 ∈ R be such that D contains (t0 − r, t0) ∪ (t0, t0 + r)
for some r > 0. For each t ∈ D, let ft : [a, b] → R be a Riemann inte-
grable function. Suppose f(x) := limt→t0 ft(x) for x ∈ [a, b], and ft → f
uniformly in the sense that for every ǫ > 0, there is δ > 0 such that

t ∈ D, 0 < |t− t0| < δ, x ∈ [a, b] =⇒ |ft(x) − f(x)| < ǫ.

Show that f : [a, b] → R is Riemann integrable. Further, show that

limt→t0

∫ b
a
ft(x)dx exists and is equal to

∫ b
a
f(x)dx. Deduce that if F :

[α, β] × [a, b] → R is continuous, then for each t0 ∈ [α, β], we have

lim
t→t0

∫ b

a

F (t, x)dx =

∫ b

a

lim
t→t0

F (t, x)dx =

∫ b

a

F (t0, x)dx.

Conclude that φ : [α, β] → R defined by φ(t) :=
∫ b
a
F (t, x)dx is continuous.
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27. Let D ⊆ R be such that D contains [c,∞) for some c ∈ R. For each
t ∈ D, let ft : [a, b] → R be a Riemann integrable function. Suppose
f(x) := limt→∞ ft(x) for x ∈ [a, b], and ft → f uniformly in the sense
that for every ǫ > 0, there is s ∈ D such that |ft(x) − f(x)| < ǫ for all
t ∈ D with t ≥ s and all x ∈ [a, b]. Show that f : [a, b] → R is Riemann

integrable. Further, show that limt→∞
∫ b
a ft(x)dx exists and is equal to∫ b

a
f(x)dx.

28. Let D ⊆ R2 and (x0, y0) ∈ R2 be such that D contains a punctured
square Sr(x0, y0)\{(x0, y0)} for some r > 0. Suppose f : D → R is such
that lim(x,y)→(x0,y0) f(x, y) exists and is equal to ℓ. Prove the following.
(i) If limy→y0 f(x, y) exists for every fixed x ∈ (x0 − r, x0) ∪ (x0, x0 + r),

then the iterated limit limx→x0

[
limy→y0 f(x, y)

]
exists and is equal

to ℓ.
(ii) If limx→x0

f(x, y) exists for every fixed y ∈ (y0 − r, y0) ∪ (y0, y0 + r),
then the iterated limit limy→y0

[
limx→x0

f(x, y)
]

exists and is equal
to ℓ.

29. Use Exercise 13 (ii) to show that even when both the iterated limits in (i)
and (ii) of Exercise 28 exist, they may not be equal. Also, use Exercise 13
(iv) to show that the existence of the two-variable limit does not imply
that the one-variable limits in (i) and (ii) of Exercise 28 exist.

30. Let D ⊆ R2 be such that D contains (a,∞) × (c,∞) for some a, c ∈ R.
Suppose f : D → R is such that lim(x,y)→(∞,∞) f(x, y) exists and is equal
to ℓ.
(i) If limy→∞ f(x, y) exists for every fixed x ≥ a, then prove that the

iterated limit limx→∞
[
limy→∞ f(x, y)

]
exists and is equal to ℓ.

(ii) If limx→∞ f(x, y) exists for every fixed y ≥ c, then prove that the
iterated limit limy→∞

[
limx→∞ f(x, y)

]
exists and is equal to ℓ.

31. Let a, b, c, d ∈ R with a < b and c < d, and let f : (a, b) × (c, d) → R be a
monotonically decreasing function. Prove the following.
(i) lim(x,y)→(b−, d−) f(x, y) exists if and only if f is bounded below; in this

case, lim(x,y)→(b−, d−) f(x, y) = inf{f(x, y) : (x, y) ∈ (a, b) × (c, d)}. If
f is not bounded below, then f(x, y) → −∞ as (x, y) → (b−, d−).

(ii) lim(x,y)→(a+, c+) f(x, y) exists if and only if f is bounded above; in this
case, lim(x,y)→(a+, c+) f(x, y) = sup{f(x, y) : (x, y) ∈ (a, b)× (c, d)}. If
f is not bounded above, then f(x, y) → ∞ as (x, y) → (a+, c+).

32. Let a, b, c, d ∈ R with a < b and c < d, and let f : (a, b) × (c, d) → R

be a monotonically increasing function. Show that for every (x0, y0) ∈
(a, b) × (c, d), both lim(x,y)→(x−

0
, y−

0
) f(x, y) and lim(x,y)→(x+

0
, y+

0
) f(x, y)

exist, and lim(x,y)→(x−

0
, y−

0
) f(x, y) ≤ f(x0, y0) ≤ lim(x,y)→(x+

0
, y+

0
) f(x, y).

Also, show that if (x1, y1) ∈ (a, b)× (c, d) with x0 < x1 and y0 < y1, then
lim(x,y)→(x+

0
, y+

0
) f(x, y) ≤ lim(x,y)→(x−

1
, y−

1
) f(x, y). Formulate and prove

an analogue of these properties for monotonically decreasing functions.
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33. Let D ⊆ R2 and (x0, y0) be any point of R2. If there is a sequence(
(xn, yn)

)
in D \ {(x0, y0)} such that (xn, yn) → (x0, y0), then (x0, y0)

is called a limit point (or an accumulation point) of D.
(i) Show that (x0, y0) is a limit point of D if and only if for every r > 0,

there is (x, y) ∈ D such that 0 < |(x, y) − (x0, y0)| < r.
(ii) If (x0, y0) is a limit point of D, then show that for every r > 0,

the open disk Br(x0, y0) as well as the open square Sr(x0, y0) contain
infinitely many points of the set D.

(iii) If D is a finite subset of R2, show that D has no limit point.
(iv) Determine all the limit points of D if D := N ×N, or D := Q × Q, or

D := {
(

1
n ,

1
m

)
: n,m ∈ N}, or D := (a, b)×(c, d), or D := [a, b)×(c, d],

where a, b, c, d ∈ R with a < b and c < d.
(v) Let

(
(xn, yn)

)
be a sequence in R2 and supposeD = {(xn, yn) : n ∈ N}

is the set of all its terms. Show that a limit point of D is a cluster
point of the sequence

(
(xn, yn)

)
. Give an example to show that a

cluster point of
(
(xn, yn)

)
need not be a limit point of D.

34. Let D ⊆ R2 and let (x0, y0) be a limit point of D. We say that a limit
of a function f : D → R as (x, y) tends to (x0, y0) exists if there is a real
number ℓ such that whenever

(
(xn, yn)

)
is any sequence in D \ {(x0, y0)}

that converges to (x0, y0), we have f(xn, yn) → ℓ; in this case ℓ is called
a limit of f as (x, y) tends to (x0, y0). Show that if a limit of f as (x, y)
tends to (x0, y0) exists, then it must be unique. Also, prove analogues of
Propositions 2.48, 2.51, 2.52, 2.53, 2.54 and Corollary 2.49.

35. Let a, b, c, d ∈ R with a < b and c < d, and let f : (a, b) × (c, d) → R be
an antimonotonic function. Show that both lim(x,y)→(a+, d−) f(x, y) and
lim(x,y)→(b−, c+) f(x, y) exist if and only if f is bounded. (Hint: Exercise
40 of Chapter 1)

36. Let a, b, c, d ∈ R with a < b and c < d, and let D := (a, b] × (c, d] and
f : D → R be a bimonotonic function.
(i) Define F : D → R by F (x, y) := f(x, y) − f(x, d) − f(b, y) + f(b, d).

Show that either F is monotonically increasing and bounded below,
or F is monotonically decreasing and bounded above.

(ii) If the one-variable limits limx→b− f(x, d) and limy→d− f(b, y) exist,
then show that lim(x,y)→(b−, d−) f(x, y) exists.

37. Let a, b, c, d ∈ R with a < b and c < d. State and prove results analogous
to those in Exercise 36 above for functions defined on [a, b)× [c, d), [a, b)×
(c, d], and (a, b]× [c, d). (Hint: For [a, b)× (c, d] and (a, b]× [c, d), consider
the notion of antimonotonicity.)

38. Let a, b, c, d ∈ R with a < b and c < d, and let f : [a, b] × [c, d] → R be
any function. Show that if f is of bounded variation and vf is continuous,
then f is continuous. On the other hand, give an example to show that
if f is of bounded bivariation and wf is continuous, then f need not be
continuous.
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