Chapter 2

Inferring a Boolean Function from Positive and
Negative Examples

2.1 An Introduction

A central problem in data mining is how to analyze observations grouped into two
categories and infer some key patterns that may be implied by these observations.
As discussed in Chapter 1, these observations describe different states of nature of
the system or phenomenon of interest to the analyst.

The previous chapter had a description of some possible application areas where
data from observations may be used to study a variety of natural or man-made
systems. Although there may be more than two classes when analyzing a system,
we assume here that we have only two. Situations with more than two classes can be
transformed into a set of two-class problems. Furthermore, it is assumed that these
two groups (classes) of observations are exhaustive and exclusive. That is, the system
has to be in only one of these two classes at any given moment.

The goal is to somehow analyze the data in these two groups of observations
and try to infer some key pattern(s) that may be implied by these data. This could
be important for a number of reasons. For instance, one may have the definition
of a new data point (or points) but without information of its (their) class. Then,
it is of interest to use the inferred patterns and assign it (them) to one of the two
classes. If the available information is not adequate, then the new point(s) may not
be assigned to any of the two classes and be deemed as undecidable, or as do not
know case(s).

In the following it is assumed that the data are binary vectors (i.e., their individual
fields take on 0/1 values). This is not a real limitation as nonbinary data can easily
be transferred into binary ones. As the following section illustrates, this binary data
and two-class problem has been studied extensively in the literature.

This chapter is organized as follows. After the following section, which reviews
some key developments from the literature, a simple method is presented as to how
nonbinary data can be transferred into equivalent binary data. The fourth section
introduces the required terminology and notation. Sections five and six provide
some formulations to this pattern inference problem. Sections seven, eight and nine

E. Triantaphyllou, Data Mining and Knowledge Discovery via Logic-Based Methods,
Springer Optimization and Its Applications 43, DOI 10.1007/978-1-4419-1630-3_2,
© Springer Science+Business Media, LLC 2010

22 2 Inferring a Boolean Function from Positive and Negative Examples

describe some developments for solving this problem by means of a branch-and-
bound search. They also provide an approach for data preprocessing. Section eleven
describes some computational results. This chapter concludes with section twelve.

2.2 Some Background Information

As mentioned above, suppose that some observations are available and they describe
the behavior of a system of interest. It is also assumed that the behavior of this system
is fully described by a number, say n, of attributes (also known as parameters, vari-
ables, criteria, characteristics, predicates, or just features). Thus, vectors of size n
define these observations. The i-th (fori = 1,2, 3, ..., n) element of such a vector
corresponds to the value of the i-th attribute. These attributes may be of any data
type. For instance, they may take on continuous, discrete, or binary (i.e., 0/1) values.
Furthermore, each observation belongs to one and only one of two distinct classes.
It is also assumed that the observations are noise free. That is, the class value asso-
ciated with each observation is the correct one. In general, these two classes are
called the positive and negative classes. These names are assigned arbitrarily. Thus,
the examples in the positive (negative) class will be called the positive (negative)
examples.

One may assume that some observations, say m, are already available. New
observations (along with their class membership) may become available later but
the analyst has no control on their composition. In addition to the previous scenario,
the analyst may be able to define the composition of new observations (i.e., to set
the values of the n attributes) and then perform a test, or ask an expert (known as
an oracle in the literature) to determine the class membership of a new observation.
The main goal is to use the available classified observations to extract the underly-
ing behavior of the target system in terms of a pattern. Next, this pattern is used to,
hopefully, accurately infer the class membership of unclassified observations.

The extraction of new knowledge in the form of some kind of a model from
collections of classified data is a particular type of learning from examples. Learn-
ing from examples has attracted the interest of many researchers in recent years.
In the typical learning problem of this type, both positive and negative examples are
available and the main goal is to determine a Boolean expression (that is, a set of
logical rules or clauses) which accepts all the positive examples, while it rejects all
the negative examples.

This kind of learning has been examined intensively (see, for instance, [Carbonell,
et al., 1983], [Dietterich and Michalski, 1983], [Kamath, et al., 1992], [Kearns, et al.,
1987], [Pitt and Valiant, 1988], [Quinlan, 1986], and [Valiant, 1984]). Typically,
the knowledge base of an intelligent system can be expressed as a Boolean func-
tion either in the conjunctive normal form (CNF) or in the disjunctive normal form
(DNF) (see, for instance, [Blair, Jeroslow, and Lowe, 1985], [Cavalier, Pardalos, and
Soyster, 1990], [Hooker, 1988a; 1988b], [Jeroslow, 1988; 1989], [Kamath, et al.,
1990], [Kamath, et al., 1992], [Valiant, 1984], and [Williams, 1987]).

2.2 Some Background Information 23

A considerable amount of related research is today known as the PAC (for
Probably Approximately Correct) learning theory (see, for instance, [Valiant, 1984],
[Angluin, 1988], and [Haussler and Warmuth, 1993]). The central idea of the PAC
model is that successful learning of an unknown target concept should entail obtain-
ing, with high probability, a hypothesis that is a good approximation of the target
concept (hence the term: probably approximately correct). The error associated with
the approximation of the target concept is defined as the probability that the pro-
posed concept (denoted as /) and the target concept (denoted as c¢) will disagree on
classifying a new example drawn randomly from unclassified examples. Later in this
chapter this notion of error is used frequently and is related to another concept used
extensively in this chapter called accuracy rate. The hypothesis 4 is a good approxi-
mation of the target concept if the previous error is small (less than some quantity &,
where 1 > ¢ > 0).

In the same framework of thought, a learning algorithm is then a computational
procedure which takes a sample of random positive and negative examples of the
target concept ¢ and returns a hypothesis 4. In the literature a learning algorithm A
is a PAC algorithm if for all positive numbers ¢ and § (where 1 > ¢,6 > 0), when
A runs and accesses unclassified examples, then it eventually halts and outputs a
concept h with probability at least 1 —§ and error at most equal to € [Angluin, 1992].

Conjunctive concepts are properly PAC learnable [Valiant, 1984]. However, the
class of concepts in the form of the disjunction of two conjunctions is not properly
PAC learnable [Pitt and Valiant, 1988]. The same is also true for the class of existen-
tial conjunctive concepts on structural instance spaces with two objects [Haussler,
1989]. The classes of k-DNF, k-CNF, and k-decision lists are properly PAC learn-
able for each fixed k (see, for instance, [Valiant, 1985], [Rivest, 1987], and [Kearns,
et al., 1987]), but it is unknown whether the classes of all DNF, or CNF functions are
PAC learnable [Haussler and Warmuth, 1993] and [Goldman, 1990]. In [Mansour,
1992] an n©U0glogm ajoorithm is given for learning DNF formulas (however, not of
minimal size) under a uniform distribution by using membership queries.

Another related issue is the sample complexity of a learning algorithm, that is, the
number of examples needed to accurately approximate a target concept. The presence
of bias in the selection of a hypothesis from the hypothesis space can be beneficial
in reducing the sample complexity of a learning algorithm. Usually the amount of
bias in the hypothesis space H is measured in terms of the Vapnik—Chernovenkis
dimension, denoted as VCdim(H) [Haussler, 1988].

There are many reasons why one may be interested in inferring a Boolean func-
tion with the minimum (or near minimum) number of terms. In an electronic circuit
design environment, a minimum size Boolean representation is the prerequisite for a
successful VLSI application. In a learning from examples environment, one may be
interested in deriving a compact set of classification rules which satisfy the require-
ments of the input examples. As mentioned in the previous chapter, this can be
motivated for achieving the maximum possible simplicity (as stated succinctly by
Occam’s razor) which could lead to easy verification and validation of the derived
new knowledge.

24 2 Inferring a Boolean Function from Positive and Negative Examples

Since the very early days it was recognized that the problem of inferring a
Boolean function with a specified number of clauses is NP-complete (see, for
instance, [Brayton, et al., 1985] and [Gimpel, 1965]). Some related work in this
area is due to [Bongard, 1970]. The classical approach for dealing with this Boolean
function inference problem as a minimization problem (in the sense of minimizing
the number of CNF or DNF clauses) was developed in [Quine, 1952 and 1955] and
[McCluskey, 1956]. However, the exact versions of the Quine—-McCluskey algorithm
cannot handle large-scale problems. Thus, some heuristic approaches have been pro-
posed. These heuristics include the systems MINI [Hong, et al., 1974], PRESTO
[Brown, 1981], and ESPRESSO-MV [Brayton, ef al., 1985]. Another widely known
approach in dealing with this problem is the use of Karnaugh maps [Karnaugh,
1953]. However, this approach cannot be used to solve large-scale problems [Pappas,
1994]. Another application of Boolean function minimization can be found in the
domain of multicast [Chang, et al., 1999] where one needs a minimum number of
keys.

A related method, denoted as SAT (for satisfiability), has been proposed in
[Kamath, et al., 1992]. In that approach one first pre-assumes an upper limit on the
number of clauses to be considered, say k. Then a clause satisfiability (SAT) model
is formed and solved using an interior point method developed by Karmakar and his
associates [Karmakar, Resende, and Ramakrishnan, 1992]. If this clause satisfiabi-
lity problem is feasible, then the conclusion is that it is possible to correctly classify
all the examples with k or fewer clauses. If the SAT problem (which essentially is
an integer programming model) is infeasible, then one must increase k until feasibi-
lity is reached. In this manner, the SAT approach yields a system with the minimum
number of clauses.

It is important to observe at this point that from the computational point of view
it is much harder to prove that a given SAT problem is infeasible than to prove that
it is feasible. Therefore, trying to determine a minimum size Boolean function by
using the SAT approach may be computationally too difficult. Some computational
results indicate that the B&B approach proposed in [Triantaphyllou, 1994] (and as
described in Chapter 3 of this book) is more efficient than the previous satisfiability-
based approach. Actually, that B&B approach is on the average 5,500 times faster in
those tests.

In [Felici and Truemper, 2002] the authors propose a different use of the SAT
model. They formulate the problem of finding a clause with maximal coverage as
a minimum cost satisfiability (MINSAT) problem and solve such problem itera-
tively by using the logic SAT solver Leibniz, which was developed by Truemper
[1998]. That method is proved to be computationally feasible and effective in
practice. The same authors also propose several variants and extensions to that
system. Further extensions on this learning approach are also discussed in [Truemper,
2004].

A very closely related problem is to study the construction of a partially defined
Boolean function (or pdBf), not necessarily of minimal size, given disjoint sets of
positive and negative examples. That is, now it is required that the attributes of the
function be grouped according to a given scheme (called a decomposition structure)

2.2 Some Background Information 25

[Boros, et al., 1994]. Typically, a pdBf may have exponentially many different
extensions.

It should be stated here that there are a multitude of methods for inferring a
Boolean function from two sets of training examples. A review of some recent
developments of methods that infer rules (which in essence are like classification
Boolean functions) can be found in [Triantaphyllou and Felici, 2006].

In summary, the most representative advances in distinguishing between obser-
vations in two or more classes can be classified into some distinct categories as fol-
lows: Some common logic approaches by [Zakrevskij, 1988; 1994; 1999; 2001; and
2006]. Clause satisfiability approaches to inductive inference such as the methods
by Kamath, et al., [1992, 1994] and [Felici and Truemper, 2002]. Boolean function
(i.e., logic)-based approaches such as the methods in [Triantaphyllou, ef al., 1994],
[Triantaphyllou, 1994] (these developments are described in detail later in this and
the next chapter); some polynomial time and NP-complete cases of Boolean func-
tion decomposition by [Boros, et al., 1994]; association rules [Adamo, 2000]; rough
and fuzzy sets [Wang, Liu, Yao, Skowron, 2003]. Decision tree-based approaches
[Quinlan, 1979; 1986], [Freitas, 2002] and [Witten and Eibe, 2005]. Support vector
machines (SVM) by [Woldberg and Mangasarian, 1990], [Mangasarian, et al., 1990],
[Mangasarian, et al., 1995], [Abe, 2005], and [Wang, 2005]. Knowledge-based
learning approaches by combining symbolic and connectionist machine (neural
networks)-based learning as proposed by Shavlik [1994], Fu [1993], Goldman and
Sloan [1994] and Cohn, et al. [1994]. Neural networks [Arbib, 2002] and [Dayan
and Abbot, 2001]. Various rule induction approaches as described in the edited book
by [Triantaphyllou and Felici, 2006]; and finally, some nearest neighbor classifica-
tion approaches [Hattori and Torri, 1993], [Kurita, 1991], [Kamgar-Parsi and Kanal,
1985], [Perner and Rosenfeld, 2003], [Berry, Kamath, and Skillicorn, 2004]. The
above listing is not exhaustive as the field of data mining is still expanding rapidly,
both in terms of theory and applications.

The main challenge in inferring a target set of discriminant classification rules
from positive and negative examples is that the user may never be absolutely certain
about the correctness of the classification rules, unless he/she has used the entire set
of all possible examples which is of size 2" in the binary case with n attributes. In the
general case this number is too high. Apparently, even for a small value of n, this task
may be practically impossible to realize.

Fortunately, many real-life applications are governed by the behavior of a
monotone system or they can be described by a combination of a small number of
monotone systems. In data mining the property of monotonicity offers some unique
computational advantages. By knowing the value of certain examples, one can easily
infer the values of more examples. This, in turn, can significantly expedite the learn-
ing process. This chapter discusses the case of inferring general Boolean functions
from disjoint collections of training examples. The case of inferring a monotone
Boolean function is discussed in Chapter 10 of this book.

26 2 Inferring a Boolean Function from Positive and Negative Examples
2.3 Data Binarization

The main idea of how to transform any data type into binary ones is best described
via a simple illustrative example. Suppose that the data in Table 2.1 represent some
sampled observations of the function of a system of interest. Each observation is
described by the value of two continuous attributes denoted as Ay and A,. Further-
more, each observation belongs to one of two classes, denoted as Class 1 and Class 2.
A number of problems can be considered at this point. The main problem is how to
derive a pattern, in the form of a set of rules, which is consistent with these obser-
vations. As the set of rules we consider here logical clauses in the CNF (conjunctive
normal form) or DNF (disjunctive normal form). That is, we seek the extraction of a
Boolean function in CNF or DNF form. A more detailed description of the CNF and
DNF forms is given in the next section.

Although, in general, many such Boolean functions can be derived, the focus of
the proposed approach is on the derivation of a function of minimal size. By minimal
size we mean a Boolean function which consists of the minimum number of CNF or
DNF clauses. We leave it up to the analyst to decide whether he/she wishes to derive
CNF or DNF functions. As explained in Chapter 7, Boolean functions in CNF (DNF)
can easily be derived by using algorithms that initially derive Boolean functions in
DNF (CNF).

Next we will demonstrate how the continuous data depicted in Table 2.1 can
be represented by equivalent observations defined on only binary attributes. This is
achieved as follows. We start with the first continuous attribute, i.e., attribute A; in
this case, and we proceed until we cover all the continuous attributes.

From Table 2.1 it can be observed that the ordered set, denoted as Val(A1), with
all the values of attribute A is defined as the following ordered list:

Val(Ay) = {Vi(A)), fori =1,2,3,...,9)
= {0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.25, 2.75}.
That is, V; (A1) = 0.25, Va(A;) = 0.50, V3(A1) = 0.75, ..., Vo(A;) = 2.75.

Table 2.1. Continuous Observations for Illustrative Example.

Example Class Example Class
No. Ay A No. No. A Ay No.
1 0.25 1.50 1 12 1.00 0.75 1
2 0.75 1.50 1 13 1.50 0.75 1
3 1.00 1.50 1 14 1.75 0.75 2
4 0.50 1.25 1 15 0.50 0.50 1
5 1.25 1.25 2 16 1.25 0.50 2
6 0.75 1.00 1 17 2.25 0.50 2
7 1.25 1.00 1 18 2.75 0.50 2
8 1.50 1.00 2 19 1.25 0.25 2
9 1.75 1.00 1 20 1.75 0.25 2
10 2.25 1.00 2 21 2.25 0.25 2

11 0.25 0.75 |

2.3 Data Binarization 27

Obviously, the cardinality of this set (i.e., the number of elements in this set) is at
most equal to the number of all available observations. In this instance, the cardinal-
ity is equal to 9. Next, we introduce 9 binary attributes A’L ;(fori=1,2,3,...,9)
as follows:

A 1, ifandonlyif A;; > V;(Ay), fori =1,2,3,...,9,
L7 10, otherwise.

In general, the previous formula becomes for any multivalued attribute A ; (where K
is the cardinality of the set V;(A;)):

A 1, ifandonlyif A;; > Vi(Aj), fori =1,2,3,..., K,
1710, otherwise.

Using the above-introduced binary attributes, from the second observation (i.e.,
vector (0.75,1.50) = (A2, Az2)) we get for its first attribute (please note that
A12=0.75)

’ ’ ’ ’ ’ ’ ’ ’ /
{Al,l’ 1,22 “41,3» 1’45A1’55 1,6’A1,7’ l’g,Al’g}:{151»1,0,0,0,0,070}-

Similarly with the above definitions, for the second continuous attribute A, the set
Val(A») is defined as follows:

Val(Az) = {Vi(Az), fori =1,2,3,...,6}
= {0.25, 0.50, 0.75, 1.00, 1.25, 1.50}.

Working as above, for the second observation we have
{A/Z,lv A/2,2’ A’2’3, A’2’4, A’2,5, A/z,e} ={1,1,1,1,1, 1}.

The above transformations are repeated for each of the nonbinary attributes.
In this way, the transformed observations are defined on at most m x n binary
attributes (where m is the number of observations and 7 is the original number of
attributes). The precise number of the transformed attributes can be easily computed
by using the following formula:

n

> IVal(A),

i=1

where |s| denotes the cardinality of set s.

The binary attributed observations which correspond to the original data (as given
in Table 2.1) are presented in Table 2.2 (parts (a) and (b)).

From the way the binary attributes have been defined, it follows that the two sets
of observations are equivalent to each other. However, the observations in Table 2.1
are defined on continuous attributes while the observations in Table 2.2 are defined
on binary ones.

28 2 Inferring a Boolean Function from Positive and Negative Examples

Table 2.2a. The Binary Representation of the Observations in the Illustrative Example (first
set of attributes for each example).

First set of attributes: A ., fori =1,2,3,...,9

Example Li?

’ li / ! li ! ! I !

No. Al,l A1,2 A1,3 A1,4 A1,5 A1,6 A1,7 A1,8 A1,9
1 1 0 0 0 0 0 0 0 0
2 1 1 1 0 0 0 0 0 0
3 1 1 1 1 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0
5 1 1 1 1 1 0 0 0 0
6 1 1 1 0 0 0 0 0 0
7 1 1 1 1 1 0 0 0 0
8 1 1 1 1 1 1 0 0 0
9 1 1 1 1 1 1 1 0 0
10 1 1 1 1 1 1 1 1 0
11 1 0 0 0 0 0 0 0 0
12 1 1 1 1 0 0 0 0 0
13 1 1 1 1 1 1 0 0 0
14 1 1 1 1 1 1 1 0 0
15 1 1 0 0 0 0 0 0 0
16 1 1 1 1 1 0 0 0 0
17 1 1 1 1 1 1 1 1 0
18 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 0 0 0 0
20 1 1 1 1 1 1 1 0 0
21 1 1 1 1 1 1 1 1 0

Table 2.2b. The Binary Representation of the Observations in the Illustrative Example (second
set of attributes for each example).

First set of attributes: A'2 i fori =1,2,3,...,6

Example Class
! ! ! ! ! !

No. A Ay A3 Ars Ays A2 No.
1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
4 1 1 1 1 1 0 1
5 1 1 1 1 1 0 2
6 1 1 1 1 0 0 1
7 1 1 1 1 0 0 1
8 1 1 1 1 0 0 2
9 1 1 1 1 0 0 1

10 1 1 1 1 0 0 2

11 1 1 1 0 0 0 1

12 1 1 1 0 0 0 1

13 1 1 1 0 0 0 1

14 1 1 1 0 0 0 2

15 1 1 0 0 0 0 1

16 1 1 0 0 0 0 2

17 1 1 0 0 0 0 2

18 1 1 0 0 0 0 2

19 1 0 0 0 0 0 2

20 1 0 0 0 0 0 2

21 1 0 0 0 0 0 2

2.4 Definitions and Terminology 29

Given the above considerations, it follows that the original problem has been
transformed to the binary problem depicted in Table 2.2 (parts (a) and (b)). This
problem has the following two sets of positive and negative examples, denoted as
ET and E~, respectively.

1000000001 11111
11100000011 1111
11110000011 1111
1100000001 11110
1110000001 11100

Ef=[111110000111100]and
11 1111100111100
1000000001 11000
1111000001 11000
11 1111000111000
1100000001 10000,
(1111100001111 10]
11 1111000111100
11 1111110111100
11 1111100111000

Fo_ |11 1110000110000
11 1111110110000
11 1111111110000
11 1110000100000
11 1111100100000
(11 1111110100000,

Finally, it should be stated here that [Bartnikowski, et al., 2006] present a detailed
study of the general binarization problem.

2.4 Definitions and Terminology

Let {Ay, Ay, A3, ..., A,} be a set of n Boolean attributes. Each attribute A; (for
i = 1,2,3,...,n) can be either true (denoted by 1) or false (denoted by 0). Let
F be a Boolean function defined on these attributes. For instance, the expression
(A] V Az) A (A3 v Ay) is such a Boolean function, where “v” and “A” stand
for the logical “OR” and “AND” operators, respectively. That is, F' is a mapping
from {0, 1} — {0, 1} which determines for each combination of truth values of the
attributes A, Ay, A3, ..., A, of F, whether F is true or false (denoted as 1 or 0,
respectively).

For each Boolean function F, the positive examples are the vectors v € {0, 1}"
such that F(v) = 1. Similarly, the negative examples are the vectors v € {0, 1}"
such that F(v) = 0. Therefore, given a function F defined on the n attributes

30 2 Inferring a Boolean Function from Positive and Negative Examples

{A1, A2, A3, ..., A,}, then a vector v € {0, 1}" is either a positive or a negative
example.

Equivalently, we say that a vector v € {0, 1}" is accepted (or rejected) by a
Boolean function F if and only if the vector v is a positive (or a negative) example of
F. For instance, let F be the Boolean function (A] V A2) A (A3 V A4). Consider the
two vectors v; = (1,0, 0,0) and v, = (1, 0, 0, 1). Then, it can be easily verified that
F(v1) = 1. That is, the vector v; is a positive example of the function F. However,
the vector v; is a negative example of F (since F (vy) = 0).

The motivation for the following developments is best illustrated via a simple
illustrative example. Consider a system of interest (represented by some Boolean
function) that involves the following four attributes: A, A2, A3, and A4. We do not
know its structure yet. In any situation each attribute can either be true (denoted
by 1) or false (denoted by 0). For instance, in example (0, 1, 1, 0) the attributes
As, Az, Ay, Ay, are true or, equivalently, Ay, A4, Ay, A3, are false. There are 2% =
16 possible examples (also known as states of nature) for this system (Boolean
function). If a Boolean function is specified, then each of these 16 examples could
be categorized either as positive or as negative.

For systems in CNF (to be formally defined below) a state of nature corresponds
to a positive example if and only if it is satisfied by each clause in the system (i.e.,
Boolean function to be inferred). For instance, the state (0, 1, 0, 1) satisfies the clause
(A1 V Az Vv A3z) and thus it corresponds to a positive example (in terms of that clause).
Similarly, a state is a negative example if it violates at least one of the clauses in the
system (Boolean function). Next consider the following three Boolean clauses:

(A1 V Ay vV Az Vv Ayg), (A1 V A), and (A] V Ay V A3).

Then, all the 16 possible states are characterized as (1, 1, 1, 1) positive, (1,0, 0, 0)
negative, (1, 1, 0, 0) negative, and so on.

The terms Boolean function, Boolean expression, and system would be used
to denote the same concept. Also, in this chapter it is assumed, unless otherwise
stated, that any Boolean expression (and consequently any clause) is expressed in
the conjunctive normal form (CNF). An example of a Boolean expression in CNF
is (A V A3V Ay) A (A Vv A7) A (A VvV A(J), which simply is a conjunction of
disjunctions. The above expression evaluates to true value if and only if all three
disjunctions evaluate to true value. It evaluates to false value if and only if at least
one of the disjunctions evaluates to false value. More formally, a Boolean expression
is in the conjunctive normal form (CNF) if it is in the form (where a; is either A; or

Aj and p ; is the set of indices)
k
A (\% ai>. 2.1
j=1 \iep;

Similarly, a Boolean expression is in the disjunctive normal form (DNF) if it is in the

form
k
\ < A a,') . 2.2)
j=1 \iep;

2.4 Definitions and Terminology 31

An example of a Boolean function in DNF is (A] A A2) V (A3 A As A As), which
is a disjunction of conjunctions. Such an expression evaluates to true value if and
only if at least one of the conjunctions evaluates to true value. It evaluates to false
value if and only if all the conjunctions evaluate to false value. In other words, a CNF
expression is a conjunction of disjunctions, while a DNF expression is a disjunction
of conjunctions. It should be stated here that the “boxes” (rules) discussed in some
of the figures in Chapter 1 correspond to DNF systems. This is true because a single
box can be viewed as a conjunction of a set of conditions (see also Section 1.4.2).

It is known [Peysakh, 1987] that any Boolean function can be transformed into
the CNF or the DNF form. Chapter 7 of this book provides a simple approach of
how any algorithm that derives a Boolean function in CNF (DNF) can also derive a
function in DNF (CNF) by performing some simple transformations.

In summary, a set of positive examples (to be denoted as E in this book) and
a set of negative examples (to be denoted as E~ in this book) are assumed to be
available. These data will be used as the training data to infer a Boolean function.
Given these two sets of positive and negative examples, the constraints to be satis-
fied by a Boolean function are as follows. In the CNF case, each positive example
should be accepted by all the disjunctions in the CNF expression and each negative
example should be rejected by at least one of the disjunctions. In the case of DNF
systems, any positive example should be accepted by at least one of the conjunctions
in the DNF expression, while each negative example should be rejected by all the
conjunctions.

The general problem we analyze in this chapter is the construction of a set of
Boolean expressions (clauses in CNF form) which correctly classify a set of sam-
pled examples. We assume that each of these examples can be correctly classified
(by an “oracle” or “expert”) either as a positive example or as a negative exam-
ple. The “expert” somehow knows the correct identification of any example. Such
an expert opinion could be the result of a test, or a series of tests, which could be
used to classify examples of the way the system operates. Furthermore, the under-
lying system of interest is not explicitly known. As illustrated in the first chapter,
this can be a common and very important problem in many and diverse application
areas.

The “expert” somehow can identify (probably through experience or special
tests) the nature of any particular example but lacks the ability to characterize the
classification rules to be used for such classifications. Thus, an important challenge
is to develop methods to approximate the hidden system in situations in which the
nature of finite numbers of examples is known.

We will consider this problem in a practical and applied context. Instead of four
attributes, consider the scenario in which we may have, say, 50 attributes. Here the
number of all the possible states (examples) is 250 — 1,125,899,906,842,624. This
is more than one quadrillion. It would be impractical to generate all possible exam-
ples. However, one may be able to generate and categorize a few hundreds or even
thousands of sampled examples. From this partial set of examples, we will determine
a particular set of CNF clauses which correctly classify all the sampled examples and,
hopefully, a large proportion of the remaining ones.

32 2 Inferring a Boolean Function from Positive and Negative Examples
2.5 Generating Clauses from Negative Examples Only

Consider any example o defined on n binary attributes. For instance, if n = 5, then
consider an example such as (1, 0, 1, 1, 0). Next, observe that the CNF clause (Al \%
AxV A3V AgV As) is satisfied by all examples (d1, d, d3, ds, ds), where d; € {0, 1},
except (1,0, 1, 1, 0). The previous observation leads to the realization that a clause
C, can always be constructed which rejects any single example « while it accepts
all other possible examples in the binary space of dimension n. In order to formalize
this, let ATTRIBUTES (@) be the set of indices of the attributes which are true in
example «. For instance, ATTRIBUTES ((1,0, 1, 1,0)) = {1, 3, 4}. If the clause C,
is defined as
Coa=(B1VBVBV---VBN),

where

P =

A;, if and only if i € ATTRIBUTES(«t) }

A;, otherwise
foreach i =1,2,3,...,n,

then the clause C, will reject only example « and it will accept any other example.
For instance, for the vector « = (1,0, 1, 1,0) the C, clause is the previous CNF
clause (A] VAV A3 \% A4 V As).

Suppose that m examples are somehow generated. Define E™ as the set of m
examples which have been classified as positive examples and £~ as the set of the
examples which have been classified as negative examples. These are the training
examples to be used to generate a Boolean function.

For each of the m, (where my = m—m) examples in E~, we generate the unique
clause as defined above. Each of these clauses rejects one and only one example and,
hence, accepts all the examples in E™. This set of m, clauses precisely satisfies the
first objective of inferring a Boolean function which would accept all positive exam-
ples and reject all the negative ones. However, this approach would be impractical
for large selections of negative examples, since it would result in large numbers of
clauses.

More importantly, the above approach would suffer immensely of the overfit-
ting problem. That is, the pattern (set of Boolean clauses) that would be gene-
rated as described previously, would fit perfectly well the negative data and nothing
else. Its generalization capability would be almost nil. In terms of the solid-line
and dotted-line boxes depicted in Figure 1.7 in Chapter 1, the above situation
would be like generating solid-line boxes that cover each of the solid dark points
in Figure 1.7 (assuming that the solid dark points in that figure are the negative
examples). It should be mentioned here that the other extreme situation is to have
overgeneralization of the data. Having a way to control the overfitting and over-
generalization properties of the inferred system is of high priority in data mining and
the subject of ongoing research activity.

From this discussion it becomes clear that it is important to have an approach that
constructs a rather small (relative to m| and m») number of clauses. This would also

2.6 Clause Inference as a Satisfiability Problem 33

be desirable for the reasons of simplicity as described earlier in Chapter 1 (based
on Occam’s razor, etc.). The methods described in the following sections are such
approaches.

2.6 Clause Inference as a Satisfiability Problem

In [Karmakar, et al., 1991] it is shown that given two collections of positive and nega-
tive examples, then a DNF system can be inferred to satisfy the requirements of these
examples. This is achieved by formulating a satisfiability (SAT) problem, which
essentially is an integer programming (IP) problem, and then solve this IP problem
by using the interior point method of Karmakar and his associates [Karmakar, et al.,
1991] as the solution strategy. This approach requires the specification of the number
of conjunctions in the DNF system. The SAT problem uses the following Boolean
variables [Karmakar, et al., 1991]:

0, if A; isin the j-th conjunction

S =

/! 1, if A; is not in the j-th conjunction

, 0, if A; is in the j-th conjunction
s, = -

It 1, if A; is notin the j-th conjunction

a sji, if A =1in the positive example « € E*
o =

It s";» if A; = O'in the positive example o« € E™
o = 1, if the positive example « is accepted by the j-th conjunction

J 0, otherwise

Then, the clauses of this SAT problem are as follows:

sjiVS}i, fori=1,...,n,and j=1,...,k, (2.1a)
v s vl vsii), fori=1,...k, andr=1,...,ma, (2.2a)
ieP, / ieh,

k

vV 1‘7, fora=1,...,m, (2.3a)

=1

a;?‘i\/Z;‘, fori=1,....n,j=1,...,k, andae =1, ..., my, (2.4a)

where P, is the set of indices of A for which A; = 1 in the negative example r € E~.
Similarly, P, is the set of indices of A for which A; = 0 in the negative example
reE”.

Clauses of type (2.1a) ensure that both A; and A; will never appear in any con-
junction. Clauses of type (2.2a) ensure that each negative example is rejected by all

conjunctions. Clauses of type (2.3a) ensure that each positive example is accepted

34 2 Inferring a Boolean Function from Positive and Negative Examples

by at least one conjunction. Finally, clauses of type (2.4a) ensure that z{ = 1 if and
only if the positive example « is accepted by the j-th disjunction. In general, this SAT
problem has k(n(m+1)+my)+m; clauses, and k(2n(1+m)+nmy+m1) Boolean
variables. A detailed example of this formulation can be found in [Karmakar, et al.,
1991].

2.7 An SAT Approach for Inferring CNF Clauses

The SAT formulation for deriving CNF systems is based on the original SAT formu-
lation for deriving DNF systems as described in the previous section. The variables
used in the new formulation are similar to the ones used in the DNF case. They are
defined in a similar way as in the previous section as follows:

0, if A; is in the j-th disjunction

Sii =

! 1, if A; is not in the j-th disjunction

, 0, if A; isin the j-th disjunction
T— -

Jt 1, if A; is not in the j-th disjunction

B sji, if A; = 1in the negative example 8 € E~
.. =

Ji /

s'., if A; = 0 in the negative example 8 € E~

B 1, if the negative example B is accepted by the j-th disjunction
J 0, otherwise

The clauses of the SAT formulation for deriving a CNF system which has up to k
disjunctions are as follows (where n is the number of attributes):

sjiVS;,-, fori=1,...,n,and j=1,...,k, (2.1b)

iEP, 'Ei’r

(v Ej,->v(\/ E}i), fori=1,....,k, andr=1,...,m, (2.2b)
1

J

I <=

115, for B=1,....,ms, (2.3b)

=

o vzf, fori=1,....,n,j=1,....k, and B =1,...,ma, (2.4b)

i

~.

where P is the set of indices of A for which A; = 1 in the positive example r € E +
Similarly, P, is the set of indices of A for which A; = 0 in the positive example
reET.

Clauses of type (2.1b) ensure that both A; and A; will never appear in any dis-
junction at the same time. Clauses of type (2.2b) ensure that each positive example
will be accepted by all k disjunctions. Clauses of type (2.3b) ensure that each nega-

tive example will be rejected by at least one of the k disjunctions. Finally, clauses of

2.8 The One Clause At a Time (OCAT) Concept 35

type (2.4b) ensure that z? = 1 if and only if the negative example is rejected by the
Jj-th conjunction. In general, this problem has k(n(m> + 1) 4+ m1) 4+ m2 clauses, and
k(2n 4+ my) binary variables.

Next, suppose that the following are the two sets (it is assumed that n = 4) E™
and E~ with the positive and negative examples of cardinality m| and m;, respec-
tively. These data were used to derive the integer programming (IP) model of the
SAT formulation and its solution, for the CNF case, shown in the Appendix of this
chapter. This IP model is written for the LINDO integer programming solver and can
be easily adapted to fit many other IP solvers.

1010
0100 0001
1100 _ 1111

+_ —

Ev=too1 1| ™ E=]4000
1001 1000

1110

2.8 The One Clause At a Time (OCAT) Concept

The simple approach for creating clauses (disjunctions for a CNF expression) from
negative examples described in Section 2.5, is very inefficient and ineffective. How-
ever, it provides some interesting insights. First of all, it is clear that in inferring
a Boolean function from training data, one could start with a single data point and
then move to another one and so on until all the points are covered. In the method
described in Section 2.5 that strategy took place for the negative examples only. That
is why that method is very inefficient as the derived systems suffer from extreme
overfitting. The above idea provides the foundation for a sequential strategy. This
is also the notion of the sequential covering algorithm discussed in [Tan, Steinbach,
and Kumara, 2005].

Given a single clause, defined as before one could alleviate its problem of over-
fitting by removing items (i.e., attributes or their negations) off the definition of the
clause. In that way, the clause would become less specific and more generalizing.
That is, the modified clause would cover more than just a single negative example.
This is how those clauses could be expanded in a gradual manner. In terms of the
“boxes” (rules) idea discussed in Figure 1.7, this means that now the boxes would
cover more than just a single negative example. One could keep removing such items
off the definition of the clause until positive examples are covered too or some thresh-
old value is reached. This idea can be explored from various implementation points
of view but the end result is usually a rather large number of clauses.

Even after the above modification, the derived system of clauses may not be the
best. There is no attention paid to the number of clauses derived to be small or,
ideally, minimal. The strategy discussed next was first proposed in [Triantaphyllou,
et al., 1994] and [Triantaphyllou, 1994] and provides a greedy algorithm for achiev-
ing this goal. That approach is conceptually very close to Occam’s razor and compu-
tationally superior to the SAT approach discussed in the previous two sections.

36 2 Inferring a Boolean Function from Positive and Negative Examples

Input: Training data sets E* and E~
i =0; C = @; {initializations}
DO WHILE (E~ # ©)
Stepl:i < i+ 1;
Step 2: Find a clause ¢; which accepts all members of E™ while it
rejects as many members of £~ as possible;
Step 3: Let £ (c;) be the set of members of E~ which are rejected
by ¢;;
Step 4: Let C < C Acj;
Step 5: Let E~ < E—
REPEAT;
Output: A CNF expression C which accepts all examples in set ET while it
rejects all examples in set £~

E™(c);

Figure 2.1. The One Clause At a Time (OCAT) Approach (for the CNF case).

As mentioned in the previous section, the problem of deriving a Boolean func-
tion from sets of observations has been extensively studied in the literature. In our
setting each example is a binary vector of size n (number of binary attributes). The
proposed One Clause At a Time (or OCAT) approach is based on a greedy algorithm.
It uses as input data the two collections of disjoint positive and negative examples.
It determines a set of CNF clauses that, when taken together, reject all the negative
examples and each of them accepts all the positive examples.

The OCAT approach is sequential. In the first iteration it determines a clause
in CNF form (in the current implementation) that accepts all the positive examples
in the E* set while it rejects as many negative examples in the current E~ set as
possible. In the second iteration it performs the same task using the original E™ set
but the current E~ set has only those negative examples that have not been rejected
by any clause so far. The iterations continue until a set of clauses is constructed
which reject all the negative examples. Figure 2.1 summarizes the iterative nature of
the OCAT approach.

The core of the OCAT approach is Step 2 in Figure 2.1. The way this step is
defined in Figure 2.1, implies the solution of an optimization problem. This is how
the number of the inferred clauses could be controlled and not allowed to increase too
much. In the next section a branch-and-bound (B&B)-based algorithm is presented
that solves the problem posed in Step 2. Another faster B&B algorithm is presented
in Chapter 3. However, the first B&B algorithm is presented to motivate the intro-
duction of the second one. A fast heuristic for solving the problem posed in Step 2
of the OCAT approach is described in Chapter 4. The OCAT approach returns the set
of desired clauses as set C.

For the DNF case one needs to modify Step 2 by deriving a clause which rejects
all the negative examples while it accepts as many positive examples in the current
version of the E™ set as possible. Next, one needs to update the set of the positive
examples (in modified Steps 3 and 5) by keeping only those examples which have
not been accepted so far and repeat the loop. Step 4 needs to be modified too so the

2.8 The One Clause At a Time (OCAT) Concept 37

A, A é O OE
30— o i
: O :
251 ° . ©
20— : :
° ofed 78 5

O
O
O

O

C O iQ......
)

o
—
i .1
s o o :\
AZ
L
1.5

0.0 |

0.0 0.5 1.0

Figure 2.2. Some Possible Classification Rules for the Data Depicted in Figure 1.4.

derived system is a disjunction of conjunctions. The process is terminated when no
positive examples are left in the E™ set.

Next, we will try to get an idea about the difficulty of this Boolean function
inference problem. Suppose that a learning problem involves a total of m training
examples each of which is a binary vector of size n. Then, as Section 5.4 proves,
there are 2L, where L = 2" — m, different Boolean functions which satisfy the
requirements of these training data. This is an astronomically large number of possi-
ble solutions. The illustrative example later in Section 5.5 attempts to give a practical
feeling of how incredibly large this solution space can be even for trivially small size
learning problems. Thus, which Boolean function should one try to determine out
of this huge number of possible solutions? The OCAT approach uses the greedy
algorithm described in Figure 2.1 which is based on what is called the principal of
maximum simplicity. This principle is best expressed by Occam’s razor described in
Section 1.4.2 as OCAT tries to infer a Boolean function of minimal or near-minimal
number of clauses.

If one revisits the ideas behind Figure 1.7 (which is repeated here as Figure 2.2)
about the two sets of boxes (rules) which cover the two groups of observations, then
the OCAT approach solves a type of a set covering problem. Furthermore, it has the
following interpretation.

Suppose that we start with the task of first covering the solid black points in
Figure 2.2. We would like to derive a set of solid boxes. Such boxes correspond
to classification rules which, as was shown in Section 1.4.2, are nothing but DNF
expressions, although not defined on binary data. Then, according to the OCAT

38 2 Inferring a Boolean Function from Positive and Negative Examples

algorithm, and for the DNF case, the first step is to determine a box (rule) which
covers the largest concentration of solid black points without covering any of the
gray points. Next, determine a second box which covers the second largest concen-
tration of solid black points, also without covering any of the gray points. We repeat
this step successively, until a set of boxes is derived which, when are taken together,
cover all the solid black points without covering any of the gray ones.

This set of boxes is the “solid black”™ set of classification rules. In an analogous
manner, the “gray” (or “dotted”) set of classification rules can be derived as well.
In the following section a strategy is presented on how to classify new examples as
being in either class or whether they should be deemed as undecidable (i.e., unclas-
sifiable) cases.

Next, suppose that the cardinality (size) of the set of negative examples £~ is
equal to mj. Then, the following theorem [Triantaphyllou, Soyster, and Kumara,
1994] states a critical property of the OCAT approach.

Theorem 2.1. The OCAT approach terminates within my iterations.

Proof. From Section 2.5 it follows that it is always possible to construct a clause C,
that rejects only one negative example while it accepts any other possible example.
At worst, Step 2 of the OCAT approach could propose a clause that rejects only one
negative example at a given iteration. Therefore, the maximum number of iterations
of the OCAT approach is m5. |

In Sections 2.6 and 2.7 we discussed a Boolean inference algorithm based on
a satisfiability (SAT) formulation. In the above version of the OCAT approach,
Boolean functions are derived in CNF. The two approaches have a major difference.

The OCAT approach, as defined in Figure 2.1, attempts to minimize the number
of disjunctions in the proposed CNF system. However, the SAT approach pre-
assumes a given number, say k, of conjunctions in the DNF (or disjunctions in the
CNF) system to be inferred and solves an SAT problem. If this SAT problem is
infeasible, then the conclusion is that there is no DNF system which has k or fewer
conjunctions and satisfies the requirements imposed by the examples. It should be
emphasized here that it is not very critical whether an inference algorithm deter-
mines a CNF or DNF system (i.e., CNF or DNF Boolean function). As shown in
[Triantaphyllou and Soyster, 1995b] and also presented in detail in Chapter 7, either
a CNF or DNF system can be derived by using either algorithm.

2.9 A Branch-and-Bound Approach for Inferring a Single Clause

Branch-and-bound (B&B) is a search strategy which can be used to solve a wide
spectrum of problems. It takes different forms depending on the specific problem
under consideration. For Step 2 of the OCAT approach (for the CNF case), a B&B
approach is given in [Triantaphyllou, Soyster, and Kumara, 1994]. It can be best
described via an illustrative example. Suppose that the following are the two sets

2.9 A Branch-and-Bound Approach for Inferring a Single Clause 39

(it is assumed that n = 4, i.e., the system involves 4 attributes) £ *+ and E~ with the
positive and negative examples of cardinality m and m», respectively.

1010
0100 0001
1100 R

E'=1o011] ™ E=|g0900
1001 1000

1110

We number the positive examples as (1, 2, 3,4) and the negative examples as
(1,2,3,4,5,6). For instance, the set of the negative examples {1, 3} means the set
of the first and the third negative examples (i.e., vectors (1,0, 1,0) and (1, 1, 1, 1),
respectively). The B&B approach will determine a single clause (in CNF) that
accepts all the positive examples in the E™ set, while rejecting as many negative
examples from the current E~ set as possible. Before proceeding with the descrip-
tion of the B&B approach, it is instructive to compare it with a complete enumeration
methodology (or brute force approach).

Consider the first positive example (0, 1, 0, 0). One can observe that in order to
accept this positive example at least one of the four attributes Ay, Az, Az, A4 must
be specified as follows: (A = false, i.e., A1 = true), (Ay = true), (A3 = false, i.e.,
Az = true), and (A4 = false, i.e., A4 = true). Hence, any valid CNF clause must
include at least one of the followmg attributes: Al, Aj, A3, or A4 Similarly, the
second positive example (1, 1, 0, 0) implies that any valid CNF clause must include
at least one of the following attributes: Ay, As, Az, or A4. In this manner, it can be
concluded that any valid CNF clause must include at least one attribute as specified
from each of the following four sets:

(A1, Aa, Az, A4},
{A1, Aa, Az, A4},
{A1, As, Az, Ay}, and
{A1, Az, A3, As}.

As mentioned in the previous section, this is a special case of the set covering
problem which we denote as the minimum cardinality problem (or MCP). Let |s|
denote the cardinality of a set s. For the clause inference problem, the corresponding
MCEP problem takes the following general form:

Problem MCP (the initial formulation):

Us:

i=1

minimize

Subject to:
,3,' € Bi, fori = 1,2,3,...,}1’!],

where the sets B; are defined next.

40 2 Inferring a Boolean Function from Positive and Negative Examples

Table 2.3. The NEG(Ay) Sets for the [llustrative Example.

Set of Negative Set of Negative
Attribute Examples Attribute Examples
Al NEG(Ap) ={1,3,5,6} Al NEG(A)) = (2,4}
Ay NEG(A,) = (3, 6} Ay NEG(A) ={1,2,4,5)
Az NEG(A3) = {1,3,6} Az NEG(A3) = {2,4,5)
Ay NEG(Ay) = (2,3} Ay NEG(Ay) ={1,4,5,6)

The MCP formulation for the current clause inference problem (in CNF) is deve-
loped as follows. Define as NEG(Ay) the set of the negative examples which are
accepted by a clause when the attribute Ay is included in that clause. For the illustra-
tive example in this section the NEG(Ay) sets are presented in Table 2.3.

In the light of the definition of the NEG(Ay) set and the ATTRIBUTES(«) set
(as defined in Section 2.5), the sets B; in problem MCP are defined as follows:

B; = {NEG(Ay), for each Ay € ATTRIBUTES ()},

where «; is the i-th positive example in ET.

Therefore, the previous minimization problem takes the following more precise
form:

Problem MCP (more detailed formulation):

Uﬁi

i=1

Minimize 2.3)

Subject to:
Bi € Bj, fori =1,2,3,...,my,

where B; = {NEG(Ay), foreach Ay € ATTRIBUTES(¢;)}, and «; is the i-th positive
example in E™.

By using the data presented in Table 2.3, formulation (2.3) takes the following
form for the case of the current illustrative example:

4
Minimize

i=1
Subject to:
B1 € B, where B; = {{2,4}, {3, 6}, {2,4, 5}, {1,4,5, 6}},
B2 € Ba, where B, = {{1, 3,5, 6}, {3, 6}, {2,4, 5}, {1, 4,5, 6}},
B3 € B3, where B3 = {{2,4}, {3, 6}, {1,2,4,5}, {1, 3, 6}, {2, 3}},
B4 € Bs4, where By = {{1,3,5,6},{1,2,4,5},{2,4, 5}, {2, 3}}.

2.9 A Branch-and-Bound Approach for Inferring a Single Clause 41

An exhaustive enumeration approach to solve this MCP problem is to construct
a tree that has nodes arranged in 4(= m) levels. In the description of the search
that follows, we call these levels stages. These levels correspond to the four posi-
tive examples enumerated as {1, 2, 3, 4} in E™. Each interior node (i.e., a node with
descendents), say at level 4 (where 1 < h < 4), is connected to n nodes in the next
higher level via n arcs. These n arcs represent the attributes that are true at the s-th
positive example (i.e., the members of the set ATTRIBUTES (), where oy, is the
h-th positive example), as described in Section 2.5. The nodes (or search states) in
this tree represent sets of negative examples. In our illustrative example these are
subsets of the set {1, 2, 3,4, 5, 6}.

For instance, the state {2, 3, 5} refers to the second, third, and fifth negative exam-
ples in the set £~ . The set of negative examples that corresponds to a node (state) is
the set of all the negative examples accepted by the attributes that correspond to the
arcs that connect that node with the root node. That is, if one is at node (search state)
Yy and one follows the arc that corresponds to attribute A;, then the resulting state,
say Y, is

Y. = Yk UNEG(A;).

If the above strategy is followed, then the current illustrative example would
create 4 x 4 x 4 x 4 = 256 terminal nodes and, in the general case, n™! terminal
nodes (where m; = |ET|). Then, a clause which accepts all the positive examples
and rejects as many negative examples as possible can be found by simply selecting
a terminal node that corresponds to a search state with the minimum cardinality. This
is true because such a state accepts the minimum number (or equivalently, rejects the
maximum number) of negative examples.

Apparently, an exhaustive enumeration strategy is impractical. This is true
because an exhaustive enumeration would require one to construct a search tree with
n™ different terminal nodes (final states). However, this B&B approach, which is
based on the previous tree, is much faster because it is capable of pruning this tree
rather efficiently. As is explained next, each node of the tree is examined in terms of
two tests. If any of these two tests succeeds, then that node is fathomed and it is not
expanded further.

The tree of this search is shown in Figure 2.3. Consider the two nodes which
correspond to the two states {2, 4} and {2, 4, 5} in the second stage of the search
tree (see also Figure 2.3). Clearly, the states that correspond to the leaves (terminal
nodes) that have the state {2, 4, 5} as an ancestor are going to have at least as many
members (i.e., negative examples) as the states of the leaves (terminal nodes) that
have as ancestor the state {2, 4}. This is true because subsequent states are derived
by performing union operations on these two states with the same sets. Therefore, if
at any stage of building the search tree there is a state that has another state (in the
current stage) as a subset, then that state (node) can be fathomed without eliminating
any optimal solutions. This characterization of the states is formalized by the fol-
lowing definitions of dominated and undominated states, which is derived from the
above discussion.

42 2 Inferring a Boolean Function from Positive and Negative Examples

4,0 {1,3,5, 6}

A, {1,3,6} As0{1,2,3,6}

4,0 {1,2,3,4,5,6}

AN

A3 0 {1,2,3,4,5,6}

4,0 {1,3,5,6}

A, 0 {1,2,3,5,6}
A, 0 {3, 6}
A, ® {3,6)

A, {2,3,6} A, {2,3,6}; Optimal

Solution

Ay 0{2,3,4,6}\ A0 {1,2,3,4,5,6}

N

A0 {2,3,4,5,6} Ty (2.3.4.5.6)
3@ 32,3,4,9,

A, 0 {1,3,4,5,6}
A, {1,2,3,4,5,6}

A3 e {1,2,3,4,5,6}

A, 0{1,2,3,4,5,6}

Al * {15253’435’6} A4. {2 3.4 5} A4. {2,3>435}

A, 0 {2,3,4,6} A e {1,2,4,5}

NS

A,0{2,4,5} A, {2,4,5}; Optimal

_ Solution
A 0 {2,4,5}

A,0{1,2,4,56) ~ Ao {l1,2,45}

Ao {13,456}

Ay {1,456} 4 @ {13,456} A3 0 {1,3,4,5,6}

Az @ {12456} A0 {1,2,3,4,5,6}
A, {1456} A0 {1,2,4,5,6}

4,0 {1,2,4,5,6}

Figure 2.3. The Branch-and-Bound Search for the Illustrative Example.

Definition 2.1. A state Sy is a dominated state if there is another state S; in the
same stage which is a proper subset of S, i.e., if Si C Sk. Otherwise, the state Sk is
an undominated state.

2.9 A Branch-and-Bound Approach for Inferring a Single Clause 43

The notion of dominated states leads to an important simplification of the MCP
problem. Define as MCP’ the problem derived from MCP when all dominated states
are eliminated.

Problem MCP':
mi
Minimize U Bi
i=1
Subject to:
ﬂ,‘ (S Bi/’ fori = 1,2,3,...,m1,
where Bi’ (fori = 1,2,3,...,my) is the set that has as members only the undomi-

nated members of the set B;.
Then, the previous definitions and discussion about dominated and undominated
states lead to the following theorem [Triantaphyllou, Soyster, and Kumara, 1994]:

Theorem 2.2. An optimal solution to MCP' is also optimal to MCP.
The following corollary is a direct implication of Theorem 2.2:

Corollary 2.1. The optimal solutions of the original MCP problem, given as (2.3),
and the previous MCP' problem are identical.

The previous corollary can be used for problem preprocessing. That is, when an
MCP problem formulated as (2.3) is given, then it is beneficial to first transform it
to the problem MCP'. In this way, the number of options (arcs in the B&B search
graph) available at each node (search state) of the search graph will be the same or
smaller than in the original MCP problem. Clearly, this means that the search can be
done faster than in the original MCP problem.

The states in the last stage (i.e., the leaves of the tree) with the minimum number
of negative examples indicate an optimal solution (see also Figure 2.3). In this
example there are two such minimum size states. These are the states {2, 3, 6} and
{2, 4, 5}. The first optimal state (i.e., {2, 3, 6}) is derived from the clause (Ay V Ay).
This is true because the attributes A, and A4 are the only attributes (as indicated
by the B&B search) which are involved in the decisions that generate the state
{2, 3, 6}. Similarly, the second optimal state (i.e., {2, 4, 5}) is derived from the clause
(A1 Vv Aj).

Next we discuss some other ways for making this B&B search (and possibly
other B&B algorithms which share similar principles) even more efficient. One way
to do so for this B&B formulation is to keep in memory only the nodes (states) of the
current level (stage). Then, when an optimal state S is determined at the last stage,
the optimal clause can be found by simply including in the definition of the current
clause all the attributes along the path of the arcs which connect the optimal node
with the root node.

Note that the optimal solution (A2 VvV A4) does not reject the second, third, and
sixth of the current negative examples in £~ . Hence, the remaining negative exam-
ples are

44 2 Inferring a Boolean Function from Positive and Negative Examples

0001
E-=|1111
1110

Similarly, the second OCAT iteration, when applied to the E T set and the new
E~ set, yields the clause (A, V A3z). Now the remaining negative examples are

E-=[0 00 1]

Iterating further, the third OCAT iteration yields the clause (A] VvV Az Vv Au4). That is,
the CNF clauses which are generated from the original E™ and E ™~ training examples
are as follows:

Clause 1 : (Ay VvV Ay)
Clause 2 : (A> V A3)
Clause 3 : (A1 V Az V Ay).

Thus, the inferred Boolean function is
(A2 vV Ag) A (Ay vV A3) A (AL V A3 V Ag).

It can be easily verified that the previous three clauses, when taken together, reject
all the negative examples in £~. Moreover, each of the three clauses accepts all the
positive examples in E™. That is, this function satisfies the desired requirements.

This is the Boolean function derived from the original positive and negative train-
ing examples. Thus, we will call it the “positive” Boolean function or just the “posi-
tive” system. Next, one can treat the original negative examples as positive and the
original negative examples as positive and apply the OCAT approach with the pre-
vious B&B algorithm on this reversed set of data. Then, a “negative” system can
be derived in a similar manner. These two systems, that is, the “positive” and the
“negative” system, correspond to the idea of the “solid” and “dotted” rules depicted
in Figure 1.7 (or, equivalently, in Figure 2.2). They together can be used to classify
new examples of unknown class value.

Given these two systems, and a new example of unknown class value, then the
following four scenarios are possible when the new example is classified by these
two systems:

1) It is accepted by the “positive” system and rejected by the “negative” system.
Then, this new example would be characterized as a positive one.

2) It is accepted by the “negative” system and rejected by the “positive” system.
Then, this new example would be characterized as a negative one.

3) It is accepted by both the “positive” and the “negative” system. Then, this new
example would be characterized as a do not know case (i.e., as undecidable/
unclassifiable due to limited information).

4) It is rejected by both the “positive” and the “negative” system. Then, this new
example would be characterized as a do not know case (i.e., as undecidable/
unclassifiable due to limited information).

Please recall that the rules derived this way correspond to CNF expressions.

2.10 A Heuristic for Problem Preprocessing 45

Regarding the algorithmic steps of the previous B&B approach, there is another
observation that allows for further reduction on the number of states in the B&B
search. Suppose that it is known (possibly via a heuristic) that one of the terminal
states in the B&B search (not necessarily an optimal one) has k elements. Then, at
any stage of the B&B approach, all states which have more than k elements can be
deleted from further consideration. This is a valid step because any descendent of a
state may only get larger at subsequent stages. This observation is summarized in the
following theorem [Triantaphyllou, Soyster, and Kumara, 1994]:

Theorem 2.3. Suppose some feasible solution to MCP (or MCP') has cardinality k.
Then, an optimal solution to a modified B&B search in which all states that have
more than k members are deleted, is also optimal for MCP (or MCP').

Corollary 2.2. The optimal solutions of the original MCP problem, given as (2.3),
and the following problem are identical.

mj

U,Bi

i=1

Minimize

Subject to:
Bi € B, fori =1,2,3,...,my,

where Bi’ (fori = 1,2,3,...,my) is the set that has as members only the mem-
bers of the original set B; which have less than or equal to k members (defined as
above).

2.10 A Heuristic for Problem Preprocessing

The last corollary can be used for problem preprocessing. That is, when an MCP
problem is formulated as (2.3), then it is a good idea first to run a heuristic (as will
be described next) that very quickly yields a good feasible solution of size k (i.e., k is
small) to the original MCP problem. When a value for k is available, the B&B search
does not need to expand nodes in the search graph that have cardinality greater than
k. This is true even for nodes that correspond to undominated states. In this way, the
number of nodes to be expanded in the B&B search tree will, in general, be smaller
than those in the original MCP problem. This step has the potential to expedite the
B&B search.

Theorem 2.3 can further improve the performance of the proposed B&B search.
When the B&B search is performed, the number of states at each stage (i.e., level
of the search tree) may also increase dramatically. Therefore, the time and memory
requirements of the search may increase dramatically. An efficient way to overcome
this complication is to run the B&B search in two or more phases. In the first phase
the B&B search is applied by allowing up to a small number, say 5, of states (i.e.,
nodes in the search tree) to be considered at any stage (i.e., level of the search tree).

46 2 Inferring a Boolean Function from Positive and Negative Examples

These 5 states are the ones with the smallest cardinalities. That is, if more than
5 states (nodes) are formed at any stage, then only the 5 states with the smallest
cardinalities will be considered for the next stage. This type of search is used in
the Al literature often and is called beam search (see, for instance, [Dietterich and
Michalski, 1981]).

Since up to 5 states are allowed to be considered at any stage of the B&B search
and the number of stages is equal to the number of positive examples, it follows that
the first phase will terminate quickly. Furthermore, the terminal nodes (final states)
of the search tree will tend to represent states which have a tendency to have small
cardinalities. This is expected to be the case because at each stage only the 5 states
with the smallest cardinalities are considered (any ties are broken arbitrarily).

Suppose that in the first phase of the B&B process more than 5 states were gene-
rated at some stage. Let k be the cardinality of the smallest state that is dropped from
further consideration due to the upper limit of 5 states per stage. Then, if one of
the terminal nodes has cardinality less than k, then one can conclude that this node
(state) represents an optimal solution. This is true because in this case none of the
deleted states could lead to a terminal state with cardinality less than k. If there is no
terminal state with cardinality less than k, then a terminal node (search state) with
the minimal cardinality represents a potentially good feasible solution which may or
may not be optimal. It should be emphasized here that by an optimal solution we
mean the one that represents a single clause in CNF (i.e., a single disjunction) which
accepts all the positive examples in ET while it rejects as many negative examples
in the current £~ set as possible.

If after the first phase optimality is not provable, then the second phase is initia-
ted. In the second phase, the B&B process is repeated with a higher limit, say 20,
states per stage. As in the first phase, these 20 states are the states with the 20 smallest
cardinalities. Suppose that L is the cardinality of the best solution obtained in the first
phase. Then in the second phase, Theorem 2.3 is applied by eliminating any state that
has cardinality greater than L. However, memory limitations may prohibit this B&B
search from reaching an optimal solution. It should be stated here that if a too large
number of states were allowed to be considered at any stage, then the B&B approach
would take excessive time in ranking these states. The previous limit of 20 states was
empirically found to be a reasonable choice.

As was done in the first phase, if more than 20 states are generated at any stage,
then only 20 states are allowed at each stage. Similarly to the first phase, let k be
the cardinality of the smallest state that was dropped from further consideration due
to the upper limit of 20 states per stage. Then, if one of the terminal nodes has
cardinality less than k, one can conclude that this node (state) represents an optimal
solution. Otherwise optimality is not provable. In this case one may want to proceed
with a third phase, or a fourth phase until optimality is eventually reached.

Some computational experiments indicate that Theorems 2.2 and 2.3 provide a
rather efficient way for keeping the states at each stage in a manageable number and
the resulting CPU requirements are dramatically reduced. For instance, a case with
n equal to 10, 50 positive examples, and 170 negative examples required more than
1,100 CPU seconds on an IBM ES/3090-600S machine (Penn State’s mainframe

2.11 Some Computational Results 47

computer in the 1980s and 1990s) running an integer programming implementation
of the OCAT approach by using the MPSX software. However, the same problem
took less than 30 CPU seconds with the proposed B&B formulation. Other similar
comparisons also demonstrated significant improvement in time performance for this
B&B approach.

2.11 Some Computational Results

In order to gain some computational experience with the OCAT approach and this
B&B formulation, some random problems were generated and tested. The derived
computational results are depicted in Table 2.4. For these problems, n, the number
of attributes, was set equal to 30. First a set of 40 random clauses (disjunctions) was
generated (the number 40 is arbitrary). Each such clause included, on the average, 5
attributes (as was the case with the experiments reported in [Hooker, 1988b]). The
range of the number of variables per clause was from 1 to 10. Next, a collection E°
of random examples was generated. In these experiments we generated groups of
100, 200, 300, . . ., 1,000 random examples.

Each such random example was classified, according to the previous 40 clauses,
either as a positive or as a negative example. With 40 clauses, this process resulted in
more negative than positive examples. Because the stages in the B&B algorithm cor-
respond to positive examples, problems with higher percentages of positive examples
would demand more CPU time.

Next, the OCAT approach was applied on the previous positive and negative
examples. The computational results are shown in Table 2.4. In this table the number
of clauses derived by OCAT is denoted as S. The CPU time of the OCAT approach
was recorded as well. This simulation program was written in the PL/I programming
language and run on an IBM ES/3090-600S computer.

Each entry in Table 2.4 represents the performance of a single test problem,
rounded to the nearest integer. Recall that |s| indicates the size (or cardinality) of a
set s. The computational results in Table 2.4 strongly suggest that the B&B approach
is computationally tractable. For instance, no test problem took more than 836 CPU
seconds (with an overage of 96.17 CPU seconds). As was anticipated, the number of
clauses created by this B&B search increases with the number of input examples.

It is also interesting to observe the behavior of the CPU time used by OCAT
under the B&B formulation. Since the number of stages in the B&B search is equal
to the number of positive examples, the CPU time increases with the size of the set
of the positive examples. Furthermore, the total number of examples | E?| is critical
too.

In these test problems the B&B formulation was applied as follows. During the
first phase up to 5 states were allowed. If after the final stage optimality was not
proved, then the best (i.e., the one with the smallest cardinality) solution available
at this point was kept and the B&B approach was repeated by allowing up to 20
B&B states per stage (20 was an upper limit for memory considerations). These 20
states were selected as follows. If more than 20 B&B states were generated at some

48 2 Inferring a Boolean Function from Positive and Negative Examples

Table 2.4. Some Computational Results When n = 30 and the OCAT Approach Is Used.

|[E°| |EY| |ET| S Time |EO| |[EY| |ET| S Time
100 9 91 4 2 400 10 390 6 10
100 5 95 4 2 400 7 393 6 10
100 15 85 4 7 400 36 364 13 282
100 7 93 4 6 400 47 353 6 97
100 3 97 4 1 400 49 351 12 400
100 8 92 4 2 400 15 385 5 7
100 7 93 4 2 400 5 395 5 3
100 1 99 4 1 400 17 383 6 23
100 7 93 4 3 400 16 384 6 8
100 5 95 4 3 500 35 465 12 194
200 5 195 4 2 500 16 484 5 38
200 2 198 5 1 500 7 493 6 15
200 18 182 5 18 500 34 466 7 73
200 6 194 5 2 500 13 487 6 8
200 1 199 4 1 500 20 480 5 19
200 11 189 7 38 500 6 494 5 13
200 19 181 4 4 600 83 517 6 300
200 51 149 2 212 600 49 551 15 315
200 10 190 4 6 600 44 556 5 41
200 4 196 5 2 600 8 592 6 16
300 22 278 8 70 600 23 577 12 184
300 14 286 6 25 600 11 589 6 15
300 14 286 7 29 700 56 644 16 467
300 2 298 5 1 700 18 682 6 30
300 22 278 1 102 700 19 681 6 15
300 36 264 1 243 700 19 681 9 60
300 24 276 4 12 700 13 687 6 26
300 71 229 4 524 800 64 736 18 739
300 3 297 5 2 900 72 828 17 836
300 17 283 1 107 1,000 47 953 14 80

NOTE: The time is in seconds.

stage, then these states were ranked in descending order according to the number of
elements (negative examples) per state and the top 20 states were selected.

In this second phase of the B&B search, the best solution found at the end of
the first phase was used to reduce the state space at each stage (i.e., Theorem 2.3
was applied to reduce the memory requirements). The process was terminated after
this second phase (in which the 20 states per stage limit was imposed) regardless of
whether the current best solution could be confirmed as optimal or not. It should be
mentioned here that if a higher limit of states was used, then the B&B approach
takes more time because at each stage more states need to be considered. Some
computational tests indicated that the previous limits (i.e., 5 and 20 states) seem to
be reasonable. In 83% of the problems examined, confirmation of optimality could

Table 2.5. Some Computational Results When n = 16 and the SAT Approach Is Used.

2.11 Some Computational Results

|E 0| Problem ID K Vars Clauses Time
100 16A1 15 1,650 19,368 2,039
100 16C1 20 1,580 16,467 758
200 16D1 10 1,230 15,901 1,547
200 16E1 15 1,245 14,766 2,156
300 16A2 6 1,602 23,281 608
300 16B1 8 1,728 24,792 78
400 16B2 4 1,076 16,121 236
400 16C2 4 924 13,803 521
400 16D2 4 836 12,461 544
400 16E2 4 532 7,825 376

NOTE: The time is in seconds.

Table 2.6. Some Computational Results When n = 32 and the SAT Approach Is Used.

|E°| Problem ID k Vars Clauses Time
50 32B1 3 228 1,374 5
50 32C1 3 225 1,280 24
50 32D1 4 332 2,703 66
50 32E1 3 222 1,186 8
100 32B2 3 261 2,558 57
100 32C2 3 249 2,182 9
100 32D2 4 404 5,153 178
100 32E2 3 267 2,746 10
150 32C3 3 279 3,272 14
200 32E3 3 330 5,680 133
250 32A1 3 459 9,212 177
250 32B3 3 348 5,734 190
300 32B4 3 381 6,918 259
300 32E4 3 387 7,106 277
400 32D3 4 824 19,478 1,227
400 32E5 3 450 9,380 390
1,000 32C4 3 759 20,862 155

NOTE: The time is in seconds.

49

be made. The low CPU times indicate that this B&B approach is rather efficient both
in terms of CPU time and memory requirements.

Tables 2.5 and 2.6 present some computational results when the SAT approach
is used. These results are the ones originally reported in [Kamath, Karmakar, et al.,
1992]. The CPU times are approximated to the closest integer value (in seconds).
Those experiments were performed on a VAX 8700 running UNIX and that computer
program was written in a combination of FORTRAN and C codes. The strategy of
generating and testing the random problems is similar to the one mentioned in the

50 2 Inferring a Boolean Function from Positive and Negative Examples

OCAT case. The only difference is that now the “hidden system” is in DNF form and
consists of a few conjunctions (three to four). Please recall that in the OCAT case
the “hidden logic” was a system in CNF form consisting of 40 randomly generated
disjunctions.

The main point with the SAT results is that even for a small number of (posi-
tive and negative) examples the CPU times are rather high. This happens because
the resulting SAT problems (as was indicated in formulas presented in Section 2.6)
require many variables and clauses (as is shown under the “Vars” and “Clauses”
columns in Tables 2.5 and 2.6). In Table 2.6 the test problems considered 32
attributes. The CPU times are smaller than the ones with 16 attributes (in Table 2.5)
because now k was allowed to take much smaller values (3 or 4). In the 16-attribute
case, however, k was allowed to take relatively speaking larger values (4 to 20).

In other words, the CPU requirements increase dramatically with the number
of conjunctions assumed in the SAT formulation (denoted as k). This behavior is in
direct agreement with the formulas mentioned in Section 2.6. However, if the original
k value is foo small, then infeasibility will be reached and the SAT problem needs to
run again (with a larger k value) until a feasible solution is reached. This situation
may increase the actual CPU requirements even more dramatically than the numbers
shown in Tables 2.5 and 2.6.

2.12 Concluding Remarks

This chapter examined the problem of inferring a Boolean function from two sets of
disjoint binary data. This is a fundamental problem in data mining and knowledge
discovery and thus has received lots of attention by the scientific community. It may
be hard to determine what is the best way to solve this problem. A computationally
demanding approach is to formulate this problem as a satisfiability (SAT) problem.
In this way a Boolean function of minimal size (in terms of the number of CNF or
DNF clauses that comprise it) can be inferred. However, the computational cost may
make the SAT approach impractical for large size problems.

We have chosen to work with CNF or DNF because any Boolean function can be
transferred into these two forms [Blair, Jeroslow, and Lowe, 1986]. DNF expressions
can be visualized easily as convex polyhedral shapes in the space of the attributes,
while CNF expressions offer more intuitive formulation capabilities.

The approach proposed in this chapter helps to quickly infer a Boolean func-
tion in CNF or DNF. It is termed OCAT (for One Clause At a Time). It is a greedy
approach for inferring a Boolean function by means of one clause at a time. A key
step of the OCAT approach involves the solution of an optimization problem and
thus the OCAT approach may lead to systems comprised of a few clauses. That
would make it consistent with the desire to infer the system of maximum simplicity
as Occam’s razor would dictate.

The previous optimization problem, as part of the OCAT approach, was solved
according to a branch-and-bound (B&B) algorithm. This B&B algorithm can be
expedited by exploiting certain key properties of the problem. These properties could

2.12 Concluding Remarks 51

be used with other B&B algorithms in the future. Solving this problem is the foun-
dation to inferring a Boolean function from training data.

At this point it should be pointed out that one may consider different approaches
besides the one which tries to minimize the inferred CNF expression. One such rea-
sonable approach would be to derive a Boolean function which would minimize a
weighted average of the false-positive, false-negative, and undecidable rates. More
on this idea is discussed later in Chapter 4, Section 4.5.

As stated earlier, this Boolean function inference problem is open-ended. One
will always have a strong incentive to develop new methods that would be faster and
methods to partition large-scale inference problems. The most important aspect is
to have methods which would indeed capture the real essence of the input data, and
thus the actual nature of the system or phenomenon that generated these data. Thus,
this problem will always be one of keen interest to the research and practitioners
communities in the field of data mining and knowledge discovery from data.

52 2 Inferring a Boolean Function from Positive and Negative Examples

Appendix

The SAT Formulation and Solution for the Illustrative Example
in Section 2.7 (for the CNF case)

! ER R R S S S S I I I b I I R R R I R R I I S I S b b R R S R R R I S S I e 2 2 O S b R
! This is the integer IP formulation (to run

! on LINDO) for the illustrative example presented

! in this chapter (for the CNF case).

! The variable names are not identical, but they

! closely reflect the notation used in this chapter.
! ER R I b e b e I I I I I b b b e b e b e b I b S b S R b b b b b b b b b b b b b b b b I b i S
! Note:

| We are interested in checking for feasibility.

! Thus, any objective function is applicable here.

! ORI R R R I I I 2 b I I R R R R R IR I e 2 2 b R R R R R R R IR A S b 2 b b I R R R Sk Sk

MIN S11

ST
L e
S11 + SP11 >= 1

S21 + SP21 >= 1

S12 + SP12 >= 1

S22 + SP22 >= 1

S13 + SP13 >= 1

S23 + SP23 >= 1

SS11 + SS12 + SSP13 >= 1
SS21 + SS22 + SSP23 >= 1
SSP11 + SSP12 + SSP13 >= 1
SSP21 + SSP22 + SSP23 >= 1

! NEXT ARE THE NEGATIONS

S11 + SS11 <=1
S21 + S8S21 <=1
S12 + S8S12 <=1
S22 + SS22 <=1
S13 + SS13 <=1
S23 + SS23 <=1
SP11 + SSP11 <= 1
SP21 + SSP21 <= 1
SP12 + SSP12 <= 1
SP22 + SSP22 <=1
SP13 + SSP13 <=1

SP23 + SSP23 <=

Z1l1l + 7212 >= 1
z21 + 7222 >= 1
z31 + 232 >= 1

! NEXT ARE MORE NEGATIONS

z11 + ZzZ11 <=1

Z12 + 72712 <=1
z13 + 727213 <=1
z21 + 27221 <=1
222 + 27222 <=1
723 + 72723 <=1
z32 + 727232 <=1
Zz31 + 72731 <=1

SP11 + 72711 >= 1
S12 + zZ11l >= 1

SP13 + Zz1l1l >= 1
SP21 + Zzl12 >= 1
S22 + 77212 >= 1

SP23 + Z7zl1l2 >= 1
SP11 + Zz21 >= 1
S12 + 7721 >= 1

S13 + zZ21 >= 1

SP21 + 7722 >= 1
S22 + 7722 >= 1

S23 + 72722 >=1

S11 + Zz31 >= 1

SP12 + Z7z31 >= 1
SP13 + Z7Zz31 >= 1
S21 + 7732 >= 1

SP22 + 7732 >= 1
SP23 + Z7Z32 >= 1
END

INTEGER 40

Appendix

53

54 2 Inferring a Boolean Function from Positive and Negative Examples

This is the corresponding solution as generated by LINDO

NEW INTEGER SOLUTION OF .000000000 AT BRANCH 0 PIVOT 46
LP OPTIMUM FOUND AT STEP 46

OBJECTIVE VALUE = .000000000

ENUMERATION COMPLETE. BRANCHES= 0 PIVOTS= 46

LAST INTEGER SOLUTION IS THE BEST FOUND
RE-INSTALLING BEST SOLUTION. ..

OBJECTIVE FUNCTION VALUE

1) .000000000

VARIABLE VALUE REDUCED COST
S11 .000000 1.000000
SP11 1.000000 .000000
s21 1.000000 .000000
sp21 .000000 .000000
SH) 1.000000 .000000
SP12 .000000 .000000
S22 .000000 .000000
Sp22 1.000000 .000000
S13 1.000000 .000000
SP13 1.000000 .000000
S23 .000000 .000000
SP23 1.000000 .000000
SS11 1.000000 .000000
Ss12 .000000 .000000
SSP13 .000000 .000000
ss21 .000000 .000000
SS22 1.000000 .000000
SSP23 .000000 .000000
SSP11 .000000 .000000
SSP12 1.000000 .000000
SSpP21 1.000000 .000000
SSP22 .000000 .000000
SS13 .000000 .000000
SS23 .000000 .000000
z11 1.000000 .000000
z12 .000000 .000000
721 1.000000 .000000
7222 .000000 .000000
z31 .000000 .000000

232 1.000000 .000000

27211
27212

z13
7713
2721
27222

223
2223
27232
2731

ROW

.000000
1.000000
.000000
.000000
.000000
1.000000
.000000
.000000
.000000
1.000000

SLACK OR SURPLUS
.000000
.000000
.000000
.000000

1.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

1.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

1.000000
.000000
.000000

1.000000
.000000
.000000

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

DUAL PRICES
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

Appendix

55

56 2 Inferring a Boolean Function from Positive and Negative Examples

35) .000000 .000000
36) .000000 .000000
37) .000000 .000000
38) .000000 .000000
39) .000000 .000000
40) 1.000000 .000000
41) .000000 .000000
42) .000000 .000000
43) .000000 .000000
44) .000000 .000000
45) .000000 .000000
46) .000000 .000000
47) .000000 .000000
48) .000000 .000000
49) 1.000000 .000000
50) .000000 .000000
51) .000000 .000000
52) .000000 .000000

NO. ITERATIONS= 46
BRANCHES= 0 DETERM.= -1.000E O

2 Springer
http://www.springer.com/978-1-4419-1629-7

Data Mining and kKnowledge Discovery via Logic-Based
Methods

Theory, Algorithms, and Applications

Triantaphyllou, E.

2010, XN, 350 p. 91 illus., 9 illus. in color., Hardcover
ISEM: 978-1-4419-1629-7

